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Monitoring the status of large computing systems is essen-

tial in order to identify unexpected behavior and improve their

performance and up-time. However, due to the large scale and

distributed design of such computing systems as well as the

large number of monitoring parameters, automated monitor-

ing methods should be applied. Such automatic monitoring

methods should also have the ability to adapt themselves to

the continuous changes of the computing system. In addition,

they should be able to identify behavioral anomalies in useful

time, in order to perform appropriate reactions.

Majority of the existing automated monitoring tools are

rule-based or highly dependent on manual adjustments [1].

Power awareness of HPC system jobs helps prevent temper-

ature hot-spots in the system and further failures [2]. The

machine learning based tools are either purposely built for

certain computing systems which cannot be applied directly

to other systems, or are highly resource intensive thus, do

not scale with the growing size of computing systems [3].

Furthermore, the lack of labeled and recent operational mea-

surement datasets makes the creation and comparison of

supervised machine learning based approaches significantly

challenging [4]. To the best of our knowledge, this is the first

work which proposes a general light-weight and unsupervised

method for near real-time anomaly detection using operational

data measurement on large computing systems.

The proposed method has been successfully applied on op-

erational data of Taurus1 HPC cluster which is collected using

MetricQ [5]. A proof-of-concept realization of the proposed

method is implemented using Python and Keras API2. To

facilitate the reproducibility of this work, the source code and

sample data are publicly available [6].

1https://doc.zih.tu-dresden.de/jobs and resources/hardware overview/
2https://keras.io/

Changes in system’s behavior are reflected in its opera-

tional data measurements (parameters). Processing all existing

operational parameters of large-scale and high-performance

computing systems (HPCs) in order to identify anomalies is

practically impossible due to high overhead and long response

time. Correlation between these operational parameters is the

key to address this challenge [7]. This work proposes an

unsupervised approach to utilize the energy consumption and

temperature measurements of the computing nodes in order to

detect abnormal system behavior.

On Taurus each computing node has two CPUs and due

to the design of the cooling pipeline, there are different

correlations between CPUs of coupled neighboring nodes. In

total five parameters of each computing node is collected.

Power consumption of each CPU, temperature of each CPU,

and the total power consumption of the computing node. It

is important to note that in contrast to energy consumption

measurements which instantly reflect operational changes of

each computing node, the temperature sensors reflect such

changes with a short delay.

The streamed monitoring data is down-sampled to 10-

second buckets. Normalization of the data using MinMax

or Standard scaler proved to play a significant role in the

accuracy of predictions. Autoencoder model was chosen for

the unsupervised learning process which adapts itself to the

dynamic behavior of the computing system.

In order to achieve near to real-time response time with low

performance overhead, a simplified neural network using the

Long Short-Term Memory (LSTM) neural network cells were

designed in the Autoencoder model. The simplest model was

defined initially with 1 encoder and decoder layer each with a

bridge in between. However, this did not yield much accurate

results. It improved with increasing number layers and a model

with 3 LSTM encoder layers followed by an encoder-decoder

bridge and 3 LSTM decoder layers was able to achieve high

accuracy without much loss of performance. Adding more

layers were only seen to make the model more complex. The

http://arxiv.org/abs/2402.05114v1


proposed model requires as low as 50 epochs for each training

process. Every four hours, the training process is repeated and

the predictions are made continuously. Progressive learning

enables the model to adapt itself to system’s behavior and

optimally fit the data.

The maximum error value in predictions from the current

4-hour interval is defined as the threshold for the next interval.

The threshold value is calculated for each feature separately

and is updated every four hours.

The data is fed into the model in groups of four rows

(40 seconds) which was achieved using a moving window.

Consequently, the predictions were made in groups of four.

Therefore, a prediction from a particular timestamp have four

different values in each group. The average of all predictions

corresponding to a particular timestamp is calculated as the

final prediction. Although this process could be performed us-

ing a single row , the multi-row approach offered significantly

higher accuracy. The choice of 4 rows here is arbitary. Based

on testing the average of four rows of prediction provides good

accuracy. And using larger window sizes might lead to further

delay and performance degradation.

The length of the moving window as well as the training

intervals in this work are empirical choices. These hyperpa-

rameters should be adjusted according to each particular use

case. In order to further optimize the proposed model, the hy-

perparameters domain was further explored using KerasTuner3

to find the best possible values. According to KerasTuner

the best model should have one layer less than the proposed

model. However, since the accuracy slightly dropped for the

new model, the original model was maintained.

The correct selection of features according to their cor-

relation is one of the deciding factors in this work. Using

the correct selection of features in this work, the number

of trainable parameters in the proposed model were reduced

to less than 68,000. Which in turn, significantly improved

the performance of the model and enables a close to real-

time identification of anomalies. Experiences done on Taurus

operational data shows that the proposed model quickly learns

the behavioral patterns and optimally fits to the data.

With minimal training, the model provides quick predictions

with an approximate accuracy of 96%. However, currently

any prediction with an error value above the threshold is

categorized as an anomaly. Therefore, the decision mechanism

should be improved such that a cross-features decision would

be made which in turn will also reduce the number of false

positives. In addition, the definition and the update-interval

of feature thresholds should be fine-tuned to improve the final

results. In contrast to syslog analysis [1], the selection of nodes

based on vicinity perspective did not have a significant impact

on the predicted anomalies. Further analysis of this behavior

is also planned as part of the future works.
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