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We present NPointFunctions, a package to incorporate desired amplitudes and observables for

an arbitrary BSM model in FlexibleSUSY. The package relies on the SARAH-generated output

used with FeynArts/FormCalc, embedded in an appropriate way, thus allowing calculations up

to one-loop level. The resulting tool is an extension to FlexibleSUSY, a generator of spectrum

generator programs. NPointFunctionswas designed to be customizable, modular and extensible

with additional process- or amplitude- dependent contributions. We explain, how these goals are

achieved, and discuss modifications to the default FlexibleSUSYworkflow.
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1. Introduction

In the desire to study the parameter space of some BSM theories, one often uses software

packages. However, they usually exist for a very narrow range of models, mostly very close to

SM, MSSM, 2HDM, and some higher dimensional operator additions. This is only a slice of all

interesting possibilities, so that FlexibleSUSY [1, 2] was created to be used for an arbitrary SUSY or

non-SUSY model.1 It is a program written mostly in Wolfram Language and C++, which generates

a fast and precise C++ spectrum generator for any model specified by the user. The output spectrum-

program applies user-defined boundary conditions at up to three different energy scales for the model

(thus utilizing RGE running between them) and creates a set of mixing matrices, pole masses, and

some auxiliary quantities, which might be specified in the corresponding FlexibleSUSYmodel file.

Recent versions of FlexibleSUSY introduced the computation of several important observables

which are suitable for phenomenological studies and comparisons against experimental data; we

highlight in particular the extension FlexibleDecay [7].

To simplify and modularize the addition of new observables to FlexibleSUSY, an extension

named NPointFunctionswas created. This package is an engine for the automated calculation of

amplitudes and quantities that rely on them for any model. It incorporates a well-defined approach of

widely used packages FeynArts [8] and FormCalc [9] up to some technical details to be mentioned

later. It was designed and structured to be:

customizable as the user can access and modify the calculation of observables with the help of

simple and advanced settings;

extensible as one can straightforwardly add new or change existing observables;

modular as the file structure of the Wolfram Language and C++ code transparently reflects

performed tasks.

In the following sections, we briefly describe the changes of the main FlexibleSUSYworkflow

and show how design goals mentioned above are implemented.

2. Ways to calculate and customize NPointFunctions observables

In this section, we describe what the user should change to calculate an observable and how

the calculation of the observable can be modified.

To create a C++ spectrum generator, FlexibleSUSY usually goes through the so-called meta-

phase. It executes Wolfram Language routines of the meta directory, which add model-specific

information, produced by SARAH, to template files in C++ language of the templates directory.

The resulting set of filled C++ files is combined into a single program — a spectrum generator.

The decision about observables to calculate is done during the meta-phase. To add them the

user needs to change the settings file FlexibleSUSY.m.in of the corresponding model. Namely,

one adds desired observables into ExtraSLHAOutputBlocks. Once added, the observables modify

the standard meta-phase steps, in particular, by launching NPointFunctions.

1The only code with a similar capability is SARAH/SPheno/FlavorKit [3–6].
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Different observables are defined by a unique set of options, which usually contain: generations

of external particles, the loop level, the combination of diagrams to include, the type of output, etc.

Up to one-loop level amplitudes can be calculated due to FormCalc, however in the case of higher

loops, one can include additional external packages and/or use some hard-coded expressions, like in

other FlexibleSUSY extensions. By diagrams we mean something very general, like penguins and

boxes with all fields or penguins without tree-level scalar fields (which might be useful for Higgs

particle propagation). The supported output formats are SLHA [10, 11], FLHA [12], and WCxf [13].

If more customization for an observable is required, then one can use advanced ways, designed

to be straightforward for the user, to achieve it. Some general NPointFunctions settings, specific

for the observable, can be changed in the appropriate O8/class.m file (see figure 1). They include

MS/DR renormalization scheme, external momenta treatment, usage of on-shell external particles,

which mode of NPointFunctions to use, etc. Currently, there are two modes to calculate an

amplitude: using general settings only and using additional options in a O8/settings.m file. The

former is used so far for cross-checks via the unit-test framework for several self energies in the

SM/MSSM and Z-boson penguins in the MRSSM [14]. The latter allows to customize plenty of

different options for the calculation of the observable.

As it was mentioned previously, we rely on FeynArts/FormCalc to create amplitudes. How-

ever, due to the usage of C++ template metaprogramming and the specifics of required amplitudes,

we use the packages in a non-standard way. For example, the particle content of the model, vertices,

and masses are stored in appropriate namespaces. This allows us to use generic expressions of

amplitudes only and make a C++ compiler substitute all classes with appropriate particle gener-

ations. Thus the amplitudes are modified appropriately before the usage of a FormCalc routine

because it calculates amplitudes at the level of particles, which is not required by FlexibleSUSY.

It also requires us to obtain all color factors for amplitudes by other means and we rely here on

ColorMath [15].

After these introductory remarks, we explain the O8/settings.m file, which can be cre-

ated for every observable O8 and contains low-level instructions for FeynArts/FormCalc. We

highlight only the most important settings: topologies[LOOPS], diagrams[LOOP, TYPE],

amplitudes[LOOP, TYPE], chains[LOOPS], sum[LOOPS]. The first three allow to exclude un-

wanted contributions based on: the adjacency matrix of a diagram, generic fields in a diagram, and

class insertions. The fourth specifies the fermionic operators to neglect. The last one defines which

particle generations to skip at the C++ level.

The structure of these settings is naturally defined by how topologies, diagrams, and amplitudes

are stored internally and will be explicitly explained in the forthcoming manual. A tree-shaped

container allows us to use its descending structure to simply remove undesired combinations even

for some amplitude substitutions. Also, settings responsible for changes of amplitudes usually

depend on the topology where they should be applied, which is naturally reflected by the tree. Let

us now shed light on the details of the mentioned settings.

The entry point for the calculation is always defined by topologies[LOOP], which defines

the required graphs and which is a set of connections between user-defined symbols and topology

names. The latter uniquely defines topologies by corresponding connections to adjacency matrices.

An integer variable LOOP defines the loop level of the observable O8, where these settings can be

applied.

3



NPointFunctions: a calculator of amplitudes and observables in FlexibleSUSY Uladzimir Khasianevich

FlexibleSUSY

configure

Observable O8

FlexibleSUSY.m.in

NPointFunctions

O8/class.m

Observables observable

WriteOut write

FlexibleSUSY
class NPointFunctions

[settings] internal
settings∗

rules
FSMathLink [librarylink]

Figure 1: A subset of .m files and their dependencies, which are evaluated during the FlexibleSUSYmeta

phase. They are relevant for observable O8 , generated with the help of the NPointFunctions extension. The

file names (configure, FlexibleSUSY.m.in and O8/class.m) under highlighted blocks define whether

corresponding block is evaluated or not.

Generic fields are inserted into topologies by FeynArts. One uses diagrams[LOOP, TYPE]

to define generic fields which should not be inserted. The variable TYPE defines whether the option

should be applied if some setting is present in FlexibleSUSY.m.in file or not. For example,

we have defined setting names Vectors and Scalars. The first one is aimed to be used for

diagrams with vector bosons only and the second only with scalars. Mentioning Vectors in the

corresponding observable in FlexibleSUSY.m.in assumes that there are no diagrams with scalars

in the output and vice versa. If we use the names separately, then it is useful to make Vectors

remove all vectors if it is unused and similarly for the Scalar name. Then, it allows us to combine

both settings and keep both vectors and scalars without additional chaos of checks for a different

combination of options.

Having expressions of diagrams allows us to calculate amplitudes with FormCalc, which

makes generic field substitutions for class levels. One specifies in amplitudes[LOOP, TYPE]

the contributions to exclude, based on class insertions. For example, amplitudes with massless

particles usually require special treatment and this option allows to remove them from the generated

expressions in order to handle them in an appropriate way.

One of the goals forNPointFunctions is to provide a simple way to extract Wilson coefficients.

If one considers observables with external fermions, then there might exist a need to change or fine-

tune fermionic chains in order to achieve the structures of the desired subset of operators. It is done

by chains[LOOP], where chains to be dropped are specified.

In some cases, one can’t sum over all generations for some generic field in the amplitude.

For example, in cLFV observables, one usually has self-energy-like diagrams within the so-called

penguin contribution. The fermion in a tree-like propagator should differ from the external one.

This behavior can be defined in sum[LOOP].

There are other settings of minor importance. More settings, as well as observables, can be

added to NPointFunctions by the user. It is rather straightforward thanks to the modular structure

described in the next section.
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3. The modular structure of NPointFunctions

In the previous section, we have briefly discussed the default meta-phase of FlexibleSUSY

and mentioned that the user can include the observable O8 and modify its settings. Now we highlight

the most important steps of the default meta-phase, as indicated by the FlexibleSUSY block in

figure 1, and describe the changes introduced by NPointFunctions. These seemingly redundant

details are required to add a new observable O8: one needs to create a separate file for each of the

meta-phase steps in meta/NPointFunctions/O8 directory: observable.m, write.m, class.m

and two C++ template files in templates/npointfunctionsdirectory. If some advanced settings

for FeynArts/FormCalc are required, then settings.m can be created. The content of the last

file was described in the previous section. More knowledge is required to write the other ones.

The default meta-phase of FlexibleSUSY performs several steps to convert SARAH output into

a C++ spectrum generator. The only important ones are shown in the FlexibleSUSY block:

Observables.m connects the name of observable given in the FlexibleSUSY.m.in file with

the C++ definitions: name, textual description, type, and a function name to calculate the

observable are listed there. This information allows FlexibleSUSY to fill template files

correctly. To add a new observable a separate file observable.m should be created with the

data specified above.

WriteOut.m specifies, how to output the result of calculation in a way that can be read and passed

to other programs via the SLHA and FLHA formats. In particular, the new observable file

write.m defines the exact structure of the Wilson coefficients which are calculated by the

observable.

FlexibleSUSY.m fills C++ template files with model-specific information. Each file is modified by

a specific "write class" function. For a new observable one defines a similar one in class.m

file. If there is a need to use FeynArts/FormCalc, then it should be specified inside this file.

It allows adding new packages, capable of doing calculations with more loops, or replacing

used ones in the future. Also, to fill template files for an observable, one needs to create them

in templates/npointfunctions directory. The only requirement for them is to contain

the definition of the calculate function defined in observable.m.

FSMathLink.m defines, how to call observable via the Wolfram Language interface. One can

create an optional file librarylink.m and specify there the desired interface.

If the O8 is mentioned appropriately in FlexibleSUSY.m.in, then all files of the Observable

O8 block on figure 1 are loaded during the FlexibleSUSYmeta-phase automatically.

One can define new settings for NPointFunctions. The modular structure of the package,

shown in the NPointFunctions block in figure 1, makes it transparent:

NPointFunctions.m is an entry point for the extension that specifies in which mode FeynArts

and FormCalc should be used and translates amplitudes in SARAH conventions into C++ code.

internal.m operates with FeynArts and FormCalc in their specific conventions, loading all

other settings*.m parser files as well.
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settings*.m is a set of files under different names. Each file describes the appropriate operations

for a corresponding setting. It’s simpler to keep a parser of every specific setting in a separate

file because then the modifications are orthogonal.

rules.m contains a set of conversion rules from FeynArts/FormCalc conventions to SARAH ones.

4. Conclusions

We have provided a brief overview of a new extension to the FlexibleSUSY program, called

NPointFunctions. It allows adding the automatic computation of observables to spectrum gen-

erators generated by FlexibleSUSY. The observables can be computed up to the one-loop level.

Important design goals are customizability, extensibility, and modularity of the code. We have de-

scribed the basic structure of the code, reflecting these goals, and we have illustrated the possibilities

of code modification by the user via settings files and by the addition of new observables and new

options to the FeynArts/FormCalc packages used during their evaluation. A more detailed manual

with specific instructions and usage examples will be the subject of a forthcoming publication.
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