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This paper introduces a comprehensive approach for calculating energy-efficient flight
paths for unmanned aerial vehicles (UAVs) operating in urban environments. The primary
objective is to minimize energy consumption by exploiting local wind phenomena, specifically
targeting upwind and tailwind regions resulting from the airflow around buildings. The
flight path planning algorithm uses a precalculated wind field to optimize the flight path.
To achieve optimized flight trajectories, a customized A-star-Algorithm, enhanced with path
smoothing techniques, is applied. A novel energy-distance map forms the base for the A-star
heuristic function, which incorporates the key influential factors. The proposed approach is
demonstrated using a benchmark scenario involving a delivery UAV, where energy-efficient
flight paths are compared against the shortest way trajectories across 12 distinct scenarios. The
results demonstrate significant energy savings potential when flying in urban areas by exploiting
knowledge of the current wind conditions.

I. Introduction
The field of last-mile logistics in urban environments currently faces significant challenges. With the increase in

traffic congestion and space usage, there is a growing need for novel approaches to address these issues. Specifically, the
final step of the supply chain is often the least efficient. However, electrically powered unmanned aerial vehicles (UAVs)
present a promising solution for improving last-mile logistics, even in remote areas, while minimizing environmental
impact. The focus of this paper is motivated by the increasing adoption of delivery UAVs in urban environments
for last-mile logistics. UAVs offer the potential to alleviate urban street traffic and reduce delivery times. Moreover,
their automation capabilities and electric power source make them environmentally friendly. It is important to note
that UAVs typically have lower payload capacities compared to ground-based vehicles [1]. Consequently, optimizing
the efficiency of logistic UAVs becomes crucial. One effective approach is to optimize the flight path to achieve
energy-efficient trajectories. Our previous research [2, 3] has demonstrated that by exploiting local wind conditions in
urban environments, significant reductions in power consumption can be achieved.

This paper presents a novel approach for obtaining energy-efficient flight paths for typical delivery missions in an
urban environment by using the knowledge of the wind field. The approach is holistic, consisting of several components.
Firstly, in section II, we introduce a realistic city district representative of a typical European area, which was developed
in our previous work [3]. This city district comes with a realistic wind field for the urban environment that was
derived using a Parallelized Large-Eddy Simulation Model (PALM) [4]. The determined wind field was substantiated
through validation conducted in a wind tunnel experiment [5]. Secondly, achieving an energy-optimal flight path
across various wind conditions poses a classic route optimization problem. Numerous methods have been developed to
find optimal routes, including Branch-and-Bound [6], evolutionary computing (e.g., [7]), multiple-agent systems [8],
neural networks [9], and experience optimization, all of them can be applied in the embedded optimization process.
Previous studies in UAV flight path planning and optimization have addressed various challenges, such as finding the
shortest trajectory in scenarios with obstacles [10], avoiding hazardous weather conditions [11], navigating restricted
airspaces [12], optimizing agricultural applications like fertilizer and pesticide spraying in specific crop fields [13], and
addressing military objectives such as evading enemy radar sites [14]. Minimizing travel time in a hybrid routing and
scheduling problem for UAV delivery systems has also been explored [15]. Reference [16] focused on the optimization
of contemporary airline trajectories to minimize fuel consumption, taking into account constraints on flight paths in the
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horizontal plane. Many trajectory optimization methods, including [16, 17], apply the A-star algorithm or one of its
variant, such as Theta-Star [11, 18]. The Branch-and-Bound method offers advantages in three-dimensional path finding
[16] and computational efficiency [19].

Section III introduces a customized A-star algorithm designed to address the energy-efficient path planning challenges
in urban environments. This algorithm takes into account the turning constraints of the UAV and incorporates smoothing
techniques to generate a flyable trajectory directly during the optimization process. Path smoothing is achieved by
applying piecewise polynomials that ensure a continuous trajectory within the limits of the UAV’s flight envelope.
Specifically, continuous cubic Bézier spiral segments, as derived in [20], are employed to satisfy the maximum curvature
constraints of the UAV, see Section III.B.

Finally, in Section III.D, a novel diffusion-based method for generating an energy-distance map is presented, which
is then used to derive a well-suited heuristic function for the A-star algorithm. While the A-star algorithm is commonly
applied to minimize distance or travel time, various improvements such as Theta-Star [11, 18], ALT algorithms based
on A* search, Landmarks, and the Triangle inequality [21] have been developed. In contrast, the proposed approach
incorporates both distance and upwind factors, as these factors have the most significant impact on the energy required
of a lightweight UAV.

We apply a realistic city district connected with the generated wind field and apply the path optimization methodology,
which includes flight trajectory modelling and faster search enabled by heuristics. The effectiveness of the proposed
approach is demonstrated through 12 delivery tasks, where the energy-optimized paths are compared to the shortest
routes in Section IV.

II. Problem Formulation
One common situation where a UAV is used for last-mile logistics involves delivering goods within a specific area of

a city. This is done by flying the UAV from a pick-up point to a drop-off point, using a fully electric fixed wing aircraft.
The scenarios aircraft is similar in size and features to the Phoenix Wings PWOne delivery UAV [22], which has a
wingspan of 1.3 m and a maximum take-off weight of 3.4 kg. The UAV typically cruises at an average speed of 60 kph,
and it’s estimated to have a glide ratio of 20.

The generic city model and its wind field is adopted and validated from previous work [3, 5]. The model is
representative of a typical European urban area and includes eight buildings of unique shapes and varying heights,
which are depicted in Figure 1. Specifically, there are three residential buildings with a height of 50 m, four terraced
houses with a height of 20 m, and a supermarket building with an attached office block with a height of 15 m. We
designed this arrangement to obtain typical local wind effects found in those environments. By exploiting these wind
fields, we can potentially decrease the energy consumption of an UAV during a delivery mission.

Fig. 1 Generic city model that represents a typical European urban area for simulating delivery tasks

This paper analyses 12 different test scenarios that involve delivering items under various wind speeds. Specifically,
there are four delivery tasks that were performed in three different wind speeds for each task. Figure 2 shows these
scenarios, with a single wind direction being used for all cases to remain within the influence zone of high-rise buildings.
The delivery tasks involve flying from Point North to Point South, South to North, West to East, and East to West.
The goal in each scenario is to reduce the energy required by the UAV by taking advantage of local wind effects. It
is assumed that the aircraft flies at a constant true airspeed corresponding to its best-performance cruise speed. The
start and end altitude is set to 20 meters. This altitude is realistic for air delivery in cities with takeoff and landing in
multicopter-mode. The energy required for these procedures is not considered. The investigation is based on average
wind speeds in a typical European city, with Dresden, Germany serving as an example. The wind speeds for the city,
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averaged over a year, are shown in Figure 3. Three characteristic wind speeds at a height of 10 meters were selected to
represent the wind speed spectrum. These are the average wind speed for the windiest and calmest days and the average
wind speed for the entire year. These speeds were used to create a wind profile shape, which was obtained from a wind
tunnel experiment in [23]. Table 1 summarizes the freestream wind speed 𝑢𝑊∞ for the wind profiles.

Pt. West

Pt. East

Pt. North

Pt. South

Wind

x

𝑧ℎ = 50 m

𝑧ℎ = 20 m

y

𝑧ℎ = 15 m

Fig. 2 Flight scenario with constant wind direction from west, as well as four tracks by flying from Point West
to East, South to North and vice versa for each
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Fig. 3 Average of mean hourly wind speeds (dark gray line), with 25th to 75th and 10th to 90th percentile bands
for Dresden, representing a typical continental European city [24]

Table 1 Summary of wind speeds applied in scenarios

Explanation 𝑢𝑊 (𝑧 = 10 m) in kph 𝑢𝑊 (𝑧 = 10 m) in m/s 𝑢𝑊∞ in m/s
Calmest day 12.9 3.6 6.5

Year-averaged day 16.4 4.6 8.3
Most windy day 19.8 5.5 9.9

The topography of the generic city model and the realistic wind field were applied to a large eddy simulation
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to obtain a realistic wind field within the urban environment for the following flight path optimization. A detailed
description of the used software, the settings, and its validation can be found in [3].

III. Trajectory Optimization
The aim of planning the flight path is to minimize a cost function J,

𝐽 =

∫ 𝑠 𝑓

𝑠0

𝐴(𝑋, 𝑠) ds, (1)

where 𝑋 is the position vector of the aircraft, 𝑠 𝑓 the arrival point and 𝐴(𝑋, 𝑠) the quantity to be minimized at each step.
For example, if the goal is to minimize the distance, then 𝐴(𝑋, 𝑠) is set to 𝐴(𝑋, 𝑠) = 1. This is a complex optimization
problem that is usually solved using a discrete grid instead of a continuous integral. There are several solvers available in
the literature to minimize the cost function Eq. (1), including the Branch-and-Bound algorithm used in this paper [6] or
evolutionary computing-based algorithms [7]. This chapter introduces a tailored version of the A-Star Algorithm. The
basic A-Star-Algorithm is a popular variant of the Branch-and-Bound algorithms, which is adapted from the Dĳkstra
Algorithm [19]. The presented algorithm is modified to satisfy flight mechanic constraints and achieve an optimal
smoothed flight trajectory. The chapter begins by presenting the applied discrete grid, followed by an explanation of the
algorithm. The derivation of the cost function required to calculate the exact cost is then provided. Unlike basic A-Star
Algorithms that use the distance as an estimate of the minimum cost from any vertex to the target, this modified version
incorporates a novel approach to its heuristic cost function, which is elaborated at the end of the chapter.

A. Model Area Discretization
As a starting point in this paper, the vertices from large eddy simulation (LES) in [3] are used, namely 2.5 m

equidistant grid points. In the path finding problem, an aircraft can fly from the current vertex to all adjacent vertices as
illustrated in Fig. 4. This figure shows the 3D grid with the current vertex in black, the vertices on the same level in
yellow, below them in green, and above them in red. However, an equidistant grid, as used for the wind field calculation,
disregards any limits imposed by the UAV’s performance. For instance, an equidistant grid would lead to a flight path
angle demand of 45 degrees which well exceeds the UAVs maximum achievable climb speed. This requires a shrinking
of the original grid in the vertical direction. The optimal gliding ratio 𝐺 determines the vertical flight grid distance Δ 𝑓𝑣
as:

Δ 𝑓𝑣 =
Δ𝑥

𝐺
, (2)

where Δ𝑥 can be substituted by Δ𝑦 due to the equidistant grid of the LES. Eq. (2) assumes flying with the maximum
glide ratio as the best flight condition for descent, even if the glide path differs because of the wind influence. Hence,
the value of climb ratio is the same as the maximum glide ratio, where it is assumed that the electric propulsion is
powerful enough and close to its optimum operation condition for the climbing flight. Given the specifications of the
UAV 𝑢𝑈𝐴𝑉,TAS = 60 kph and 𝐺 = 20, as well as LES grid Δ𝑥 = 2.5 m, Δ 𝑓𝑣 is Δ 𝑓𝑣 = Δ𝑥

Υ
= 2.5𝑚

20 = 0.125 m. Since this
derived vertical grid is finer than the one, used in LES, wind components 𝑢𝑤 , 𝑣𝑤 , 𝑤𝑤 are derived by linear interpolation.
In addition to the flight path angle range, a minimum turn radius is considered later in the next chapter.

To achieve a finer heading spectrum in the horizontal direction, we implemented the idea of increasing connectivity
[11]. This involves the evaluation of the nodes of adjacent connections to allow for greater directional possibilities.
Figure 5 illustrates, how the expansion of a single node varies with the connectivity constant 𝐾 , where more connections
result in longer computational times. This figure simply demonstrates the connections in 2D for the purpose of
simplification. For our implementation, we have used a value of 𝐾 = 3 as a trade-off between the quality of headings
covered and computational efficiency. Nevertheless, the wind field data of between it is taken into account for energy
required determination.

To limit the number of nodes, we eliminate unnecessary points. Previous studies have shown that slight changes in
altitude occurs in optimization as climbing requires much energy effort. Furthermore, regulations restrict the altitude of
flights. Therefore, as we set the starting and ending points at the same level of 𝑧0 = 20 m to exclude take-off and landing
procedures, we introduce a flight sector with allowable flight altitudes of 𝑧 = 𝑧0 ± 0.75 m.

B. Extended A-Star-Algorithm
As previously mentioned, the A-Star-Algorithm is frequently used to optimize routes or trajectories from a starting

to an ending point. To begin with, we will provide a brief explanation of the basic A-Star-Algorithm. Afterwards, a
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Fig. 4 The connection lines from a vertex (black) to all adjacent vertices (red, green and orange) define possible
tracks (blue arrows) in 3D space

𝐾 = 1 𝐾 = 2 𝐾 = 3

Fig. 5 The connectivity constant 𝐾 determines the connections of a single node to allow for greater directional
possibilities [11]

customized version is proposed.
In short, the A-Star-Algorithm commences at the starting point and determines the best path by selecting the optimal
point at each branching. The best point is identified by the lowest total cost of the path, which is determined by adding
up the exact cost 𝑔(𝑠) of the path from the starting point to the node 𝑠, and the heuristic estimated cost from node 𝑠
to the ending point, represented by ℎ(𝑠). Thus, the algorithm begins by analysing all possible paths in detail from
the starting point by successively selecting the next node 𝑠 with the lowest total cost 𝐽 = 𝑔(𝑠) + ℎ(𝑠). As a result, a
potential path is not examined if the branch is considered too expensive. This method saves computational time since
not all possible paths have to be calculated. The exact steps of the basic A-Star-Algorithm are shown and explained in
algorithm VI in the appendix. The main disadvantage of the basic algorithm in our application is that it only takes into
account a single cost value between nodes, which limits the available paths between two nodes. This means that only
one specific route can be taken, whereas there may be alternative trajectories that can be flown, such as a direct route or
one with various lateral movements.
An extension of the basic algorithm enables to consider smoothed flight motions of the UAV. Hence, we examine
three nodes at once to allow heading changes and check if the path respects a minimum turning radius 𝑟𝑚𝑖𝑛 as a limit
of the UAV. Therefore, a continuous-curvature path-smoothing algorithm based on cubic Bezier curves, including a
maximum curvature constraint [20], is used. This method can be described on the basis of Fig. 6 as follows. Consider
the section containing three points 𝑠1, 𝑠2 and 𝑠3. Point 𝑠2 becomes a curvature steering point and 𝑠1, as well as 𝑠3 get a
continuous junction to the lines between the three points. The smoothing procedure is proclaimed in [20]. In short, a
plane containing the three points yields to a 2D problem, and then eight control points are determined to create two
cubic Bézier spiral curves between 𝑠1 and 𝑠3. One curve P is defined by the four control points 𝐵0, 𝐵1, 𝐵2, 𝐵3 and the
function

𝑃(𝑚) = 𝐵0 (1 − 𝑚)3 + 3𝐵1 (1 − 𝑚)2𝑚 + 3𝐵2 (1 − 𝑚)𝑚2 + 𝐵3𝑚
3 , 𝑚 ∈ [0, 1] . (3)

The control points are then transformed back into 3D space. The minimum turning radius 𝑟𝑚𝑖𝑛 of the UAV, which is
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Fig. 6 Path smoothing between the three selected points 𝑠1, 𝑠2, and 𝑠3: They get steering points and construct
two cubic Bézier spiral curves, colored in green and orange

used during the second step for the curvature constraint calculation, is defined by

𝑟𝑚𝑖𝑛 =
𝑢2

UAV ,TAS

𝑔 · tan(arccos( 1
𝑛𝑚𝑎𝑥

))
, (4)

where 𝑢UAV ,TAS is the true airspeed (TAS), 𝑔 the gravitational acceleration, and 𝑛𝑚𝑎𝑥 a maximum load factor of the UAV.
Reference [25] shows that static load factors of UAVs do not exceed existing aviation regulations. Thus, a load factor of
𝑛 = 2.5 is chosen for turning flights. The minimum turning radius of the UAV 𝑟𝑚𝑖𝑛 determines the maximum curvature
𝑘𝑚𝑎𝑥 of the flight path:

𝑘𝑚𝑎𝑥 =
1
𝑟𝑚𝑖𝑛

(5)

leads to a distance 𝑑𝑚𝑖𝑛

𝑑𝑚𝑖𝑛 =
1.228 · sin 𝛽
𝑘𝑚𝑎𝑥 · cos2 𝛽

, (6)

where 𝛽 is the half angle between the two lines. This is done by comparing the distance 𝑑𝑚𝑖𝑛 required for the UAV to turn
with the lengths of the two lines 𝑠1𝑠2 and 𝑠2𝑠3. If one line is shorter than 𝑑𝑚𝑖𝑛, it is not possible to create a continuous
path that fulfils the curvature requirement. In this case, the combination of the three points is excluded from further
investigation. Afterwards, the path is verified to ensure it is obstacle-free. Finally, the cost of flying the path segment
between the three points 𝐽1,3 is calculated using the method outlined in the following section for exact cost, and it is added
to the cost of flying to the first point 𝑠1 to obtain the exact cost of flying to point 𝑠3: 𝑔(3) = 𝐽𝑠𝑡𝑎𝑟𝑡 ,3 = 𝐽𝑠𝑡𝑎𝑟𝑡 ,1 + 𝐽1,3.
To ensure a continuous connection to the next three-point-segment, the midpoint 𝑠4 of the segment is placed on the
collinear line of 𝑠2𝑠3, see Fig. 6. As a consequence, each point 𝑠 has different outgoing branches to leave 𝑠, depending
on the three-point-segment before. Thus, we introduce an extended A-Star-Algorithm. Algorithm VII in the appendix
shows and explains the differences to the basic one, where functions ensures the mentioned prespecified requirements.
Furthermore, the basic variable of just one point-to-point connection become one that consist the point connections of
the three points to consist the allowed path segment.

C. Cost Function for Exact Energy Identification
The objective of this paper is to minimize the energy supplied by the UAV’s propulsion system during a flight with

variable altitude between a fixed start and end point as mentioned in Section II. To achieve an optimal flight trajectory, a
new cost function is proposed in this section. The first step is to define a generic flight path cost function (7) as an
integral over the flight path s, which is then discretized in grid points sequentially flown through until the end point N.

𝐽 =

∫ 𝑠𝑒

𝑠0

𝐴(𝑠) ds =
𝑁∑︁
𝑖=0

𝐴𝑖 Δ𝑠𝑖 . (7)

In the second step, a function for the energy required is derived to substitute the 𝐴𝑖 in Eq. (7). Firstly, a 2D level
flight is considered, and then the approach is extended to 3D space. All flight mechanical assumptions are based on

6



standard literature, such as [26]. To simplify the calculations, the energy supplied by the propulsion system is assumed
to be proportional to the thrust force multiplied by the distance covered by the UAV. For an UAV flying in steady cruise
flight, it is assumed that the force generated by the propulsion system is equal to the aerodynamic drag force 𝐷. Based
on this assumption, the energy required to fly between two points on the path is given by

𝐸𝑖 = 𝐷 · Δ𝑠𝑖 = 𝐷 · 𝑢UAV ,TAS · Δ𝑡𝑖 (8)

where 𝑢UAV ,TAS is the true airspeed (TAS) of the UAV and Δ𝑡𝑖 is the time required to cover the distance between two
grid points Δ𝑠𝑖 . Introducing Δ𝑡𝑖 allows the incorporation of wind effects in the model. Ground speed at the i-th grid
point is denoted as 𝑢∗UAV ,i, and the time required to travel Δ𝑠𝑖 is expressed as

Δ𝑡𝑖 =
Δ𝑠𝑖

𝑢∗UAV ,i
. (9)

With headwind 𝑢𝑊,𝑖 and crosswind 𝑣𝑊,𝑖 at the i-th grid point, the ground speed 𝑢∗UAV of the UAV is related to its true
airspeed by the following equation. 𝑢∗UAV and true airspeed is given by

𝑢∗UAV ,i =
√︃
(𝑢𝑈𝐴𝑉,𝑇𝐴𝑆 − 𝑢𝑊,𝑖)2 − 𝑣2

𝑊,𝑖
. (10)

The equation for the energy required between two nodes in 2D can be obtained by using equations (8), (9), and (10):

𝐸𝑖 = 𝐷 · 𝑢UAV ,TAS ·
Δ𝑠𝑖√︃

(𝑢UAV ,TAS − 𝑢𝑊,𝑖)2 − 𝑣2
𝑊,𝑖

. (11)

In the next step of the analysis, the effect of up- and downwinds on level flight is taken into account. For instance, if
there is an upwind component, the UAV needs to pitch down to maintain the same flight level. This means that the
upwind component 𝑤𝑊,𝑖 will cause a decrease in the flight path angle 𝛾𝑖,𝑤𝑖𝑛𝑑:

sin(𝛾𝑖,𝑤𝑖𝑛𝑑) =
𝑤𝑊,𝑖

𝑢∗
𝑈𝐴𝑉,𝑖

. (12)

When flying in an upwind condition, this decrease in flight path angle results in a reduction of the required thrust force
to maintain steady level flight, since a component of the weight vector now supports the force in the direction of flight.
As a result, at an upwind point, the perceived drag force that needs to be compensated by thrust force is reduced, and
can be calculated as:

𝐷𝑖 = 𝐷0 − sin(𝛾𝑖,𝑤𝑖𝑛𝑑) · 𝑚𝑔 (13)

Here, 𝐷0 is the drag force in normal horizontal flight condition and 𝑚𝑔 is the weight of the UAV.
In the 3D case, where changes in altitude are allowed, the flight path angle 𝛾𝑖 is composed of two components: the
path component 𝛾𝑖, 𝑝𝑎𝑡ℎ and the wind component 𝛾𝑖,𝑤𝑖𝑛𝑑 , as given by 𝛾𝑖 = 𝛾𝑖, 𝑝𝑎𝑡ℎ + 𝛾𝑖,𝑤𝑖𝑛𝑑 . The wind component is
defined by Eq. (12). The altitude changing component is given by

tan(𝛾𝑖, 𝑝𝑎𝑡ℎ) =
Δ𝑠𝑖,𝑧

Δ𝑠𝑖,𝑥𝑦
, (14)

where Δ𝑠𝑖,𝑧 is the vertical distance and Δ𝑠𝑖,𝑥𝑦 the horizontal distance to the next point. Using the equation given in
Eq.(11) to obtain

𝐸𝑖 =
Δ𝑠𝑖√︃

(𝑢UAV ,TAS − 𝑢𝑊,𝑖)2 − 𝑣2
𝑊,𝑖

· (𝐷0 − sin(𝛾𝑖) · 𝑚𝑔) · 𝑢UAV ,TAS . (15)

The effect of vertical wind on ground speed 𝑢∗UAV ,i is small compared to the other factors and can be negligible. The
value of 𝐷0 can be determined by the UAV’s glide ratio 𝐺:

𝐷0 =
𝐿

𝐺
=
𝑚𝑔

𝐺
(16)
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with 𝐿 as lift force equal to the weight force and the glide ratio 𝐺 of the fixed-wing UAV. In curve flight with roll angle
`, 𝐷0 rises to 𝐷, defined by

𝐷 =

(
𝑚𝑔

𝐺
+ 𝑘 · (𝑚𝑔)2

( 𝜌2 𝑢2
UAV ,TAS𝑆)2 · 𝑐𝑜𝑠2`

)
· 𝜌

2
𝑢2

UAV ,TAS𝑆 , (17)

where 𝑆 is the wing surface and 𝑘 the wing contour factor. Using Eq. (15), the cost function for the minimization of the
total energy required can be written as:

𝐸 =

𝑁∑︁
𝑖=0

Δ𝑠𝑖√︃
(𝑢UAV ,TAS − 𝑢𝑊,𝑖)2 − 𝑣2

𝑊,𝑖

· (𝐷 − sin(𝛾𝑖) · 𝑚𝑔) · 𝑢UAV ,TAS . (18)

D. Heuristic Function for Energy Identification
The exact cost function 𝑔(𝑠) for the algorithm is defined in Eq. (18), as described in the previous section. The

heuristic cost function ℎ(𝑠) provides A-Star an estimate of the minimum cost from any vertex 𝑠 to the goal. If ℎ(𝑠) is
closer to the exact cost of the path, A-Star can find the best way more quickly [27]. However, if ℎ(𝑠) overestimates the
exact cost, the algorithm may not find the best path. Therefore, the heuristic function should always be smaller than the
exact cost, and both must be on the same scale.
In reference [3], ℎ(𝑠) is defined based on the energy required to fly directly from point 𝑠 to the final point, without the
influence of wind. This approach requires a very small weighting factor 𝑤 = 0.001 to account for favourable wind
conditions that require less energy. Therefore, the performance of the computation is heavily influenced by the heuristic
function. Hence, this paper proposes a new heuristic function that combines two ideas: Using diagonal distances as a
good fit for minimizing distances, and distorting maps to represent region-specific data. Specifically, an energy-distance
map is introduced. This section starts by introducing the cartogram method for distorting maps and deriving its driving
variable. It then evaluates the quality of the heuristics and compares the novel method to the baseline proposed in [3].
Cartograms are maps that rescale geographic regions to visualize spatial statistics, see Fig. 8. The method behind them
is derived in [28], which assigns an area in the map a density instead of a specific variable and allows the density to
diffuse like in elementary physics. After density equalization, the specific area is placed at a new position. The driving
process of diffusion is described by the current diffusion flux vector J with

J = v(r, 𝑡) · 𝜌(r, 𝑡) , (19)

where v(r, 𝑡) is the velocity and 𝜌(r, 𝑡) the density at position r and time 𝑡. Diffusion follows the gradient of the density
field from regions of high density to regions of low density:

J = −∇𝜌 . (20)

The diffusion process ends when the density becomes uniform everywhere after some time. The total displacement
from start to finish determines the map distortion. The pure cartogram code from [28] is available as C source code ∗.
The density function 𝜌(r, 𝑡) drives the diffusion process. Hence, a initial density function 𝜌(r, 𝑡 = 0) is required. The
density must be positive and should capture the main driving force behind the energy required to fly. Upwind conditions
have a greater impact on exact costs than tailwind or crosswind using the derived equation Eq. (18). We established a
linear function for density that decreases with increasing upwind at a single node. This reduces the energy-distance,
which means that less energy is required to fly between nodes in upwind conditions. To ensure that the density is
always positive, there is a minimum density value 𝜌𝑚𝑖𝑛 at a specific upwind value. The specific upwind value 𝑤𝑤,𝑚𝑎𝑥

is determined by the upwind threshold where the energy required would be negative. These constraints result in the
following equation, which is illustrated in Fig.7.

𝜌(r, 𝑡 = 0) = Δ𝜌

Δ𝑤𝑤

·
(
𝑤𝑤 (r) − 𝑤𝑤,𝑚𝑎𝑥

)
+ 𝜌𝑚𝑖𝑛 . (21)

As mentioned earlier in Sec. III.A, only small changes in altitude occur. Therefore, in this paper, the diffusion
process is limited to the altitude of 𝑧 = 20 m. It is the level of the starting and ending points that makes the process 2D.

∗http://websites.umich.edu/ mejn/cart/
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𝜌

Δ𝜌

𝜌𝑚𝑖𝑛

𝑤𝑤,𝑚𝑎𝑥

𝑤𝑤

Δ𝑤𝑤

Fig. 7 Initial linear density function 𝜌(r, 𝑡 = 0) at position r with minimum density value 𝜌𝑚𝑖𝑛 if upwind 𝑤𝑤 (r)
is greater than or equal to 𝑤𝑤,𝑚𝑎𝑥

Higher and lower altitudes are represented by the position of the corresponding nodes r = (𝑥, 𝑦, 𝑧) = (𝑥, 𝑦, 𝑧 = 20 m).
This is valid because of the slight changes in the upwind in the z-direction.
Furthermore, the density of nodes inside buildings is set to 𝜌(r, 𝑡) = 0.1, to facilitate the movement of adjacent nodes
that have also low density and are forced to move. Additionally, we add a 25-node-wide grid at each map border with
the same low density value to enable movement. To ensure no movement at the border, one row of nodes with the mean
density value is added as a boundary condition.

Fig. 8 Diffustion-based Cartograms with population cartogram of Britain by county on the left as an example
from [28] and the obtained energy-distance map on the right with the grid ( ), initial buildings ( ), and
distorted buildings ( )

After the diffusion process, each node from the basic x-y-coordinates described in Section III.A is assigned an
energy-grid position r = (𝑥, 𝑦), see Fig. 8. The heuristic energy required between two nodes 𝑠𝑖 and 𝑠 𝑗 is determined by
their energy-distance, given by

𝐸ℎ,𝑖 𝑗 = 𝛼 · r𝑖r 𝑗 , (22)

where 𝛼 is a factor defined as follows. We examine every connection from each node to its adjacent vertex at constant
flight level of start and target. By comparing the exact costs to fly 𝐸𝑔, 𝑖 𝑗 from node 𝑠𝑖 to 𝑠 𝑗 with the energy-distance
r𝑖r 𝑗 , we derive 𝛼 through the mean value

𝛼 =
1
𝑁

𝑁∑︁
𝑖=1

𝐸𝑔,𝑖 𝑗

r𝑖r 𝑗

. (23)

9



We obtain 𝛼 ≈ 1.0 using this approach. For example, in the West-East scenario with a wind speed of 𝑢𝑊∞ = 6.5 m/s,
the value of 𝛼 is 1.3 and the values for r𝑖r 𝑗 vary between 0 and 43.9. The quality of the energy grid can be quantified
by the standard deviation 𝜎, which measures the amount of variation. The obtained standard deviation of 𝜎 = 0.92
indicates good quality, but leads to differences contrary to exact costs. Thus, it is necessary to include a weighting factor
for heuristic costs in this case as well. An extensive parameter study has shown that 𝑤 = 0.7 consistently results in the
optimum path within an acceptable computation time (in this scenario).
Finally, we will now demonstrate the improvement achieved by the novel heuristic approach in detail, using a visualization
of the optimized path for the scenario with wind speed 𝑢𝑊∞ = 6.5𝑚/𝑠 and an West-East track direction. Specifically,
we will compare the heuristic costs along the optimized path to the exact costs from each point along the path to the
target, expressed as a percentage of the total cost, depicted in Fig. 9. The black line shows the percentage exact cost,
which are 100% by definition. The red line represents the approach described in [3], which is based on the heuristic
function defined by

𝐸ℎ,𝑖 𝑗 = Δ𝑠𝑖 · 𝐷0 . (24)

On the other hand, the green solid line shows the new heuristic approach based on Eq.22. It is evident from the graph
that the new heuristic function leads to a significant improvement, with the heuristic costs being much closer to the
exact costs compared to the previous approach. However, some nodes still have higher heuristic costs than exact costs,
violating the constraint that the heuristic costs should always be smaller. Hence, it is necessary, to apply a weighting
function that effectively lowers the cost beyond that threshold.
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𝑐
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𝑡
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𝑟
𝑔
𝑒
𝑡
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Exact
Distance*Drag

Energy Distance
Energy Distance*Weighting

Fig. 9 Comparison between heuristic function values along optimized path for the scenario with wind speed
𝑢𝑊∞ = 6.5𝑚/𝑠 and the North-South track direction

We found a weighting function that consistently results in the optimum path, described by

𝑤 =

{
0.7, if 𝑠𝑆𝑡𝑎𝑟𝑡,𝑖

𝑠𝑆𝑡𝑎𝑟𝑡,𝑇𝑎𝑟𝑔𝑒𝑡
< 0.5

0.4 + 0.6 · 𝑠𝑆𝑡𝑎𝑟𝑡,𝑖
𝑠𝑆𝑡𝑎𝑟𝑡,𝑇𝑎𝑟𝑔𝑒𝑡

, otherwise
. (25)

It takes into account the fact that the estimate becomes more accurate as a node gets closer to the target. The heuristic
function including the weighting factor is shown in Fig. 9 as dashed green line.

IV. Results of Trajectory Optimization
In this section, we present the results of the flight path optimization using the cost function proposed in Section III.C

and the heuristic in Section III.D. The optimization was performed for 12 different scenarios as specified in Section II,
where each scenario involved one of the four track directions and a freestream wind speed of 6.5 m/s, 8.3 m/s, or
9.9 m/s. For each scenario, two optimal trajectories were computed, one using the energy optimal cost function of
Eq.(18), and the other using a simple shortest path optimization described in Eq.(7). The A-Star-Algorithm was used for
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optimization in each case. The trajectory grid resolution was set to the adjusted LES grid from the wind field prediction
as described in Section III.A.
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Fig. 10 Comparison between shortest-way-optimization ( ) and energy-optimization ( ) flight track in
North-South-North scenarios
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Fig. 11 Comparison between shortest-way-optimization ( ) and energy-optimization ( ) flight track in
West-East-West scenarios

Figures 10 and 11 depict the results of the flight path optimization for all the scenarios considered in this study. The
energy required for each scenario is quantified and presented in terms of energy savings in percentage. This percentage
is calculated as

𝑝 =
𝐸shortest way − 𝐸energy opt.

𝐸shortest way
· 100% , (26)

where 𝐸shortest way and 𝐸energy opt. are the energy required for the shortest path and the energy-optimal path, respectively.
The obtained results indicate that all the scenarios achieve significant energy reduction, with a clear trend of increased
energy savings observed for higher wind speeds, as anticipated.

Figure 12 presents an example of an actual flight paths, where the orange line represents the shortest path and the
blue line shows the path with the lowest energy required. Note that the energy savings achieved through optimization
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mainly result from exploiting regions of upwind not of tailwinds. This can be seen in Figure 13, which shows the
upwind profiles along the trajectories. The energy-optimized trajectory passes through much larger upwind fields than
the shortest path. According to Eq. (15), small differences in upwind have a greater impact on the required energy than
small differences in tailwinds.

x

y

Overflight of
small building

Fig. 12 Flight path for 𝑢𝑊∞ = 6.5m/s with wind field in height of 20 m( ), buildings ( ), shortest way ( ),
and energy optimized path after A-Star-Algorithm ( ), flying South to North
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Fig. 13 Upwind for 𝑢𝑊∞ = 6.5m/s, South to North, flying shortest way ( ) and energy optimized path ( )
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The flight paths obtained from the optimization process exhibit interesting characteristics that merit further
investigation. Firstly, all energy optimized paths are observed to be situated near the rooftops of elongated buildings.
This is due to the presence of strong upwinds in front of buildings, which result in lower energy consumption when
flying alongside them with the wind perpendicular to the building’s orientation. This phenomenon is akin to ridge
lift, similar to gliding in mountainous regions. Consequently, North-South-North paths exhibit greater energy savings
than West-East-West paths due to the greater opportunities to "slide" on the rooftops. Secondly, the altitude changes
during the optimized flight paths are minimal. This is because the energy required to climb is significantly higher than
that required to maintain a level flight. Conversely, descending does not sufficiently offset these costs. This altitude
behaviour is seen in Fig. 14. Lastly, the energy optimized flight paths tend to be longer than the shortest path, as
they exploit favorable upwind locations. However, the energy savings obtained compensate for the additional distance
traveled. Table 2 provides a summary of the flight tracks corresponding to all the different scenarios.

0 10 20 30 40 50 60 70 80

19.5

20

20.5

√︁
𝑥2 + 𝑦2 /m

h
/m

Fig. 14 Altitude for 𝑢𝑊∞ = 6.5m/s, South to North, flying shortest way ( ) and energy optimized path ( )

Table 2 Flight tracks

Route 𝑢𝑊∞ shortest way energy optimized
track in m track in m

North-South 6.5 197.6 2069.3
8.3 197.6 206.5
9.9 197.6 207.3

South-North 6.5 197.6 204.4
8.3 197.6 204.1
9.9 197.6 277.4

West-East 6.5 215.6 219.9
8.3 215.6 220.1
9.9 215.6 221.0

East-West 6.5 215.5 222.1
8.3 215.5 221.9
9.9 215.5 218.4

The newly proposed heuristic function has resulted in significantly shorter computation times. Table 3 presents the
computation durations on a standard workstation PC for the previous method in Eq. 24 and the new heuristic function in
Eq. 22. The longer computation time for the West-East track is due to the fact that the start-target node vector slope is
not part of the connection slope, as mentioned in Section III.A. Conversely, for the South-North track, the start-target
node vector slope is part of the connection slope.

13



Table 3 Computation durations

Route and type 𝑢𝑊∞ Duration
in 𝑚/𝑠 in s

West-East, former heuristic related to Eq. 24 6.5 172800
West-East, energy-distance map heuristic related to Eq. 22 6.5 85778
South-North, energy-distance map heuristic related to Eq. 22 6.5 2797

V. Conclusion
We introduced an approach for optimizing the energy required of 3D flight trajectories for delivery UAVs. The

methodology applied an existing realistic city model including the wind field to facilitate the path optimization process.
Our results demonstrated the effectiveness of the customized A-Star-Algorithm in optimizing flight paths. The main
result is that the consistent benefit of optimizing flight paths at various wind speeds, leading to a significant reduction in
energy consumption. Notably, our approach differed from previous work by implementing smoothing techniques during
the optimization process and apply a heuristic A-star function that considered the primary influential factors. These
enhancements contributed to the improved quality of the results obtained.
In the future, greater emphasis will be given on addressing the constraints associated with the initial energy-distance map
in order to enhance its quality by reducing the standard deviation. Furthermore, it is planned to incorporate turbulent
wind field data, as opposed to relying solely on time-averaged wind data.

Appendix

VI. Basic A-Star-Algorithm
The algorithm is structured in a main loop (line 1-29). At each step, it picks the node 𝑠 out of the node list openPoints

(line 9-11, at the beginning the starting point) with the smallest cost and processes that node. This cost is defined by
summing up the exact cost of the path from the starting point to the node 𝑠, 𝑔(𝑠), and the heuristic estimated cost from
node 𝑠 to the ending point described by ℎ(𝑠). After that, all connected neighbour nodes of node 𝑠 are inserted in the
node list openPoints, if they were not attended before (line 15-26). This loop of the algorithm ends the checking for a
path if the ending point is reached (line 12).

Algorithm 1 Basic A-Star-Algorithm
Input: Neighbour list of points 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑙𝑖𝑠𝑡 = [𝑝0 : (𝑝𝑥𝑥𝑥 , 𝑝𝑥𝑥𝑦 , ...), ..., 𝑝𝑛 : (...)], cost list from point to neighbour

cost(𝑝𝑖 , 𝑝 𝑗 ), heuristic cost list from point to destination ℎ(𝑝𝑖)
Output: A-Star-Path 𝑝𝑎𝑡ℎ = [𝑠0, ..., 𝑠𝑛]

1: function AStar()
2: 𝑔(𝑠𝑠𝑡𝑎𝑟𝑡 ) := 0
3: 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑠𝑠𝑡𝑎𝑟𝑡 ) := 𝑠𝑠𝑡𝑎𝑟𝑡
4: 𝑜𝑝𝑒𝑛𝑃𝑜𝑖𝑛𝑡𝑠 := ∅
5: 𝑜𝑝𝑒𝑛𝑃𝑜𝑖𝑛𝑡𝑠.𝑎𝑑𝑑 (𝑠𝑠𝑡𝑎𝑟𝑡 )
6: 𝑐𝑙𝑜𝑠𝑒𝑑𝑃𝑜𝑖𝑛𝑡𝑠 := ∅
7: while 𝑜𝑝𝑒𝑛 ≠ ∅ do
8: 𝑠 := 𝑁𝑜𝑛𝑒
9: for 𝑣 ∈ 𝑜𝑝𝑒𝑛𝑃𝑜𝑖𝑛𝑡𝑠 do

10: if 𝑠 = 𝑁𝑜𝑛𝑒 or 𝑔(𝑣) + ℎ(𝑣) < 𝑔(𝑠) + ℎ(𝑠) then
11: 𝑠 := 𝑣
12: if 𝑠 = 𝑠𝑔𝑜𝑎𝑙 then
13: 𝑝𝑎𝑡ℎ =ReconstPath()
14: return "Path found:", 𝑝𝑎𝑡ℎ
15: for all 𝑠′ ∈ neighbours(𝑠) do
16: if 𝑠′ ∉ 𝑜𝑝𝑒𝑛𝑃𝑜𝑖𝑛𝑡𝑠 and 𝑠′ ∉ 𝑐𝑙𝑜𝑠𝑒𝑑𝑃𝑜𝑖𝑛𝑡𝑠 then
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17: 𝑜𝑝𝑒𝑛𝑃𝑜𝑖𝑛𝑡𝑠.𝑎𝑑𝑑 (𝑠′)
18: 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑠′) := 𝑠
19: 𝑔(𝑠′) := 𝑔(𝑠)+cost(𝑠, 𝑠′)
20: else
21: if 𝑔(𝑠′) > 𝑔(𝑠)+cost(𝑠, 𝑠′) then
22: 𝑔(𝑠′) := 𝑔(𝑠)+cost(𝑠, 𝑠′)
23: 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑠′) := 𝑠
24: if 𝑠′ ∈ 𝑐𝑙𝑜𝑠𝑒𝑑𝑃𝑜𝑖𝑛𝑡𝑠 then
25: 𝑐𝑙𝑜𝑠𝑒𝑑𝑃𝑜𝑖𝑛𝑡𝑠.𝑟𝑒𝑚𝑜𝑣𝑒(𝑠′)
26: 𝑜𝑝𝑒𝑛𝑃𝑜𝑖𝑛𝑡𝑠.𝑎𝑑𝑑 (𝑠′)
27: 𝑜𝑝𝑒𝑛𝑃𝑜𝑖𝑛𝑡𝑠.𝑟𝑒𝑚𝑜𝑣𝑒(𝑠)
28: 𝑐𝑙𝑜𝑠𝑒𝑑𝑃𝑜𝑖𝑛𝑡𝑠.𝑎𝑑𝑑 (𝑠)
29: return "Path does not exist!"

VII. Extended A-Star-Algorithm
At each three-point-segment 𝑠1𝑠2𝑠3, the information about all three points have to be available to compute the angle

between the two connecting lines. This angle is equivalent to the heading change of the UAV. As a consequence, each
point list in the algorithm has to contain these points for three reasons. Firstly, this information is necessary for checking
the heading change constraint in allocation of the neighbour points (Alg. VI, line 15). Line 𝑠1𝑠2 has to be collinear with
line 𝑠′2𝑠

′
3 from the next three-point-segment 𝑠′1𝑠

′
2𝑠

′
3. Secondly, it is required during the reconstruction of the path at

the end (Alg. VI, line 13). The parent-list consists the analysed connection between two three-point-segments and the
reconstruction algorithm collects these connections and put them to one path together. It is possible that this procedure
contains two paths. These can be one desired path and one path with a connection that violates the constraint. Thirdly,
the algorithm suspends points that were analysed (Alg. VI, line 28). However, this point has to be analysed again, if the
point is reached from another direction. Thus, the extended A-Star-Algorithm contains the function angleReq() that
ensures the prespecified requirements of the connecting lines between three-point-segment (line 17). Furthermore, it
contains function bezier() to construct the cubic Bézier spiral curves between these points, crashcheck() for obstacle
avoidance on this curves, and cost() to calculate the exact cost, the energy required, for this flight trajectory. Moreover,
the point lists in the basic algorithm become lists that consist the point connections (𝑠1𝑠2𝑠3) to prevent the mentioned
shortcomings. The function neighbours() includes the mentioned connectivity constant and ensures the collinearity
between the two segments. The modifications made to the basic A-Star algorithm are highlighted in red text color,
indicating the differences of the extended A-Star algorithm.

Algorithm 2 Extended A-Star-Algorithm
Input: Neighbour list of points 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑙𝑖𝑠𝑡 = [𝑝0 : (𝑝𝑥𝑥𝑥 , 𝑝𝑥𝑥𝑦 , ...), ..., 𝑝𝑛 : (...)], cost list from point to neighbour

cost(𝑝𝑖 , 𝑝 𝑗 ), heuristic cost list from point to destination ℎ(𝑝𝑖)
Output: A-Star-Path 𝑝𝑎𝑡ℎ = [𝑠0, ..., 𝑠𝑛]

1: function AStar()
2: 𝑔(𝑠𝑠𝑡𝑎𝑟𝑡&𝑠𝑠𝑡𝑎𝑟𝑡&𝑠𝑠𝑡𝑎𝑟𝑡 ) := 0
3: 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑠𝑠𝑡𝑎𝑟𝑡&𝑠𝑠𝑡𝑎𝑟𝑡&𝑠𝑠𝑡𝑎𝑟𝑡 ) := 𝑠𝑠𝑡𝑎𝑟𝑡&𝑠𝑠𝑡𝑎𝑟𝑡&𝑠𝑠𝑡𝑎𝑟𝑡
4: 𝑜𝑝𝑒𝑛𝑃𝑜𝑖𝑛𝑡𝑠 := ∅
5: 𝑜𝑝𝑒𝑛𝑃𝑜𝑖𝑛𝑡𝑠.𝑎𝑑𝑑 (𝑠𝑠𝑡𝑎𝑟𝑡&𝑠𝑠𝑡𝑎𝑟𝑡&𝑠𝑠𝑡𝑎𝑟𝑡 )
6: 𝑐𝑙𝑜𝑠𝑒𝑑𝑃𝑜𝑖𝑛𝑡𝑠 := ∅
7: while 𝑜𝑝𝑒𝑛 ≠ ∅ do
8: 𝑛 := 𝑁𝑜𝑛𝑒
9: for 𝑣 ∈ 𝑜𝑝𝑒𝑛𝑃𝑜𝑖𝑛𝑡𝑠 do

10: if 𝑠 = 𝑁𝑜𝑛𝑒 or 𝑔(𝑣) + ℎ(𝑣 [2]) < 𝑔(𝑛) + ℎ(𝑛[2]) then
11: 𝑛 := 𝑣
12: 𝑠1&𝑠2&𝑠3 := 𝑛
13: if 𝑠3 = 𝑠𝑔𝑜𝑎𝑙 then
14: 𝑝𝑎𝑡ℎ =ReconstPath()
15: return "Path found:", 𝑝𝑎𝑡ℎ
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16: for all 𝑠′1&𝑠′2&𝑠′3 ∈ neighbours(𝑠1&𝑠2&𝑠3) do
17: 𝑛′ := 𝑠′1&𝑠′2&𝑠′3
18: 𝑟𝑖𝑔ℎ𝑡𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝐵𝑜𝑜𝑙𝑒𝑎𝑛 = angleReq(𝑛′)
19: 𝑏𝑒𝑧𝑖𝑒𝑟𝐵𝑜𝑜𝑙𝑒𝑎𝑛 = bezier(𝑛′)
20: 𝑐𝑟𝑎𝑠ℎ𝑐ℎ𝑒𝑐𝑘𝐵𝑜𝑜𝑙𝑒𝑎𝑛 = crashcheck(𝑛′)
21: 𝐵𝑜𝑜𝑙𝑒𝑎𝑛 = 𝑟𝑖𝑔ℎ𝑡𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝐵𝑜𝑜𝑙𝑒𝑎𝑛 ∧ 𝑏𝑒𝑧𝑖𝑒𝑟𝐵𝑜𝑜𝑙𝑒𝑎𝑛 ∧ 𝑐𝑟𝑎𝑠ℎ𝑐ℎ𝑒𝑐𝑘𝐵𝑜𝑜𝑙𝑒𝑎𝑛

22: if 𝑛′ ∉ 𝑜𝑝𝑒𝑛𝑃𝑜𝑖𝑛𝑡𝑠 and 𝑛′ ∉ 𝑐𝑙𝑜𝑠𝑒𝑑𝑃𝑜𝑖𝑛𝑡𝑠 and 𝐵𝑜𝑜𝑙𝑒𝑎𝑛 then
23: 𝑜𝑝𝑒𝑛𝑃𝑜𝑖𝑛𝑡𝑠.𝑎𝑑𝑑 (𝑛′)
24: 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑛′) := 𝑛 ⊲ Note: 𝑛 = 𝑠1&𝑠2&𝑠3
25: 𝑔(𝑛′) := 𝑔(𝑛)+cost(𝑠′1, 𝑠

′
2, 𝑠

′
3)

26: else
27: if 𝑔(𝑛′) > 𝑔(𝑛)+cost(𝑠′1, 𝑠

′
2, 𝑠

′
3) and 𝐵𝑜𝑜𝑙𝑒𝑎𝑛 then

28: 𝑔(𝑛′) := 𝑔(𝑛)+cost(𝑠′1, 𝑠
′
2, 𝑠

′
3)

29: 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑛′) := 𝑛
30: if 𝑛′ ∈ 𝑐𝑙𝑜𝑠𝑒𝑑𝑃𝑜𝑖𝑛𝑡𝑠 then
31: 𝑐𝑙𝑜𝑠𝑒𝑑𝑃𝑜𝑖𝑛𝑡𝑠.𝑟𝑒𝑚𝑜𝑣𝑒(𝑛′)
32: 𝑜𝑝𝑒𝑛𝑃𝑜𝑖𝑛𝑡𝑠.𝑎𝑑𝑑 (𝑛′)
33: 𝑜𝑝𝑒𝑛𝑃𝑜𝑖𝑛𝑡𝑠.𝑟𝑒𝑚𝑜𝑣𝑒(𝑛)
34: 𝑐𝑙𝑜𝑠𝑒𝑑𝑃𝑜𝑖𝑛𝑡𝑠.𝑎𝑑𝑑 (𝑛)
35: return "Path does not exist!"
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