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Abstract
Knowledge of the cleaning mechanism is necessary to choose a suitable model
for a cleaning simulation. In the present work, an existing classification scheme
for cleaning mechanisms is considered. Altough this framework is quite promis-
ing, the generation of training data constitutes a bottleneck, since the labeling
was done manually and very roughly in order to supply the necessary amount of
samples in a reasonable time. This, in turn, causes the scheme to be inaccurate
when applied tomore realistic data. The aimof the presentwork is to improve the
preparation of training data preparation by introducing a semi-automatic label-
ing procedure. The labeling procedure involves a new perspective on the data
and the application of a gradient filter procedure. Furthermore, fully convolu-
tional networks (FCNs) are employed to generalize different gradient filter. The
labeling procedure is significantly faster andmore consistent thanmanual label-
ing. Also, a proof of concept is provided showing that the FCNs are a suitable
technique for the present classification task.

1 INTRODUCTION

Cleaning and decontamination is one of the most important topics in the food processing industry [1]. Multiple cleanings
per daymay be required since various products are produced on the same facilities [2]. Various authors claim that cleaning
raises high economical and ecological costs. To name an example: Rad and Lewis [3] analyzed the water consumption of
market milk processors and found out that cleaning causes 28% of total water consumption, which is the highest among
different contributions. Alvarez et al. [4] found out that cleaning of processing machines in dairy industry causes a daily
downtime of 4–6 h. Although the mentioned figures were collected a decade ago, the problem is more relevant than ever
before in times of energy revolution.
Although cleaning raises high costs, its dimensioning is done mostly empirically [5]. Cleaning processes are not fully

optimized yet, due to a lack of methods. Simulation of cleaning processes would be a feasible approach for systematic
variation of operating parameters with subject to reduce ecological and economical costs [6]. However, cleaning processes
are very complex and often involve time-dependent material properties and turbulent multiphase flows [7]. A cost effi-
cient way of conducting cleaning simulations of film-like soils with accuracies reasonable for industrial application is
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the Boundary Condition Cleaning Model (BCCM) approach, first introduced by Joppa et al. [8]. In a preliminary step,
the flow within the component of interest is simulated by means of a computational fluid dynamics (CFD) simulation
without considering the dimensions of the soil. In the actual cleaning simulation, the flow field is frozen and a scalar
transport equation is solved for the transport of the soil within the flow. The knowledge about the soil and its removal is
transformed into a suitable boundary condition for the scalar transport equation. In follow-up works of the same authors
further cleaning models were developed with the concept of decoupling flow simulation and calculation of soil removal
[6, 9, 10]. However, the newer models no longer require solving a scalar transport equation, since soil removal is described
differently. The way how this is done depends on the cleaning behavior of the soil, that is, the specific cleaning mecha-
nism that is active in a particular situation [7]. Hence, knowledge about the cleaning mechanism is mandatory for the
applicability of the aforementioned models.
Various authors distinguish soils according to their cleaning mechanism. A detailed discussion of the literature can be

found in Golla et al. [7]. The cleaning mechanisms considered in the present paper are based on the work of Köhler et al.
[11]. These cleaningmechanisms are diffusive dissolution, cohesive separation, adhesive detachment, and viscous shifting
(depicted in Figure 1 of Golla et al. [7]). Diffusive dissolution is the transport of soil molecules into the cleaning fluid,
driven by a concentration gradient. Cohesive separation occurs, when the cohesive strength within the soil is exceeded
by hydrodynamic loads and soil chunks are removed. Since cohesive separation of small soil chunks close to the soil
surface is similar to diffusive dissolution, the mechanisms are impossible to distinguish from amacroscopic point of view.
Therefore, within this paper, the term cohesive separation adresses both aforementioned cleaning mechanisms. Adhesive
detachment is the counterpart of cohesive separation. Here, the adhesive strength between soil and substrate is overcome
by hydrodynamic loads and large soil patches are removed at once. Finally, in case of viscous shifting the soil is or becomes
flowable due to certain physical or chemical effects (e.g., melting).
In previous work, the present authors developed a machine learning (ML) algorithm that automates and objectifies the

identification of the cleaning mechanism based on grayscale image data from cleaning experiments under usage of feed
forward neural networks (NNs) [7]. TheNNswere trained using image data generated in cleaning experimentswithmodel
soils, exhibiting a clear cleaning mechanism. Later, they were applied to more realistic soils with spatial and temporal
variation of cleaning mechanism. Excellent accuracies above > 95%were achieved in predicting the dominating cleaning
mechanism throughout thewhole cleaning process on themodel soils. However,when predicting the cleaningmechanism
resolved in time, the algorithm achieved only up to 80% accuracy. The application to more realistic soils exhibited a good
qualitative agreement, however, no quantitative assessment of the performance was made since the labeling procedure
was not applicable to realistic soils. For the data labeling, the cleaning experiments were investigated frame by frame and
regions belonging to a certain cleaning mechanism for a certain time were tagged accordingly. No pixelwise investigation
was done, since this would have been too cumbersome manually. On the other hand pixel-by-pixel and frame-by-frame
labeled data would be necessary to obtain both, a classification scheme working on realistic soils and the possibility to
quantitative assessment.
In the present paper, an improved labeling strategy will be developed to fulfill this requirement and a first realization for

a classification algorithm processing this data will be provided. A family of algorithms designed to obtain pixel-by-pixel
segmentation of image data are FCNs [12]. To label the data, a procedure based on gradient filters is introduced.

2 CLEANING EXPERIMENTS AND DATA PREPARATION

The cleaning experiment utilized in this work are described in detail inGolla et al. [7], so that only a brief summary is given
here. The experimentswere conductedwith dried starch (pregelatinizedwaxymaize starch), dried ketchup, and petroleum
jelly, each soil type being representative for one cleaningmechanism. A duct with rectangular cross sectionwas used, with
one of the larger side walls transparent to observe the cleaning process and the opposed wall soiled with the substance of
interest. The cleaning process was monitored using a grayscale camera and the measured quantity was the intensity 𝐼. In
Figure 2 of Golla et al. [7] sample images and evolutions of gray value over time are shown for each cleaning mechanism.
One major change applied in the present work is the way the data are observed during labeling. Previously, the videos

were investigated frame by frame: this makes it easy to recognize cleaning but it is hard to perfectly locate pixels, where a
cleaning mechanism is active. In the present work, instead of observing 𝑥–𝑧-planes in each frame 𝑛, 𝑧–𝑡-planes are now
the starting point. An example of how such a view is created is shown in Figure 1. The way the data are presented now
makes it easier to locate the cleaning process in space and time, and for the educated viewer, it is very easy to distinguish
whether a suggested labeling is suitable or not.
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F IGURE 1 Changed labeling view. (A) Original view on 𝑥–𝑧-plane. (B) Video footage as three-dimensional block. (C) New view on
𝑧–𝑡-plane. (D) Regions associated with cleaning in the 𝑧–𝑡 view.

In the present study, a total data basis of four experiments for each cleaning mechanism was employed. Three of these
four experiments were used for training purpose. In each of the remaining experiments, one 𝑧–𝑡-plane was labeled manu-
ally to allow quantitative assessment of the accuracy. The manual labeling was done by investigating the evolution of the
gray value over time for each 𝑧-location and took around 30min for each 𝑧–𝑡-plane.

3 METHODOLOGY

3.1 Gradient filter procedure

A typical image processing technique is edge detection, which will be a fundamental in the method for detection of
cleaning modes presented here. When applying edge detection, the image gradient is computed numerically using finite
differences. This is equivalent to performing the convolution of the imagewith a gradient filter, such as𝐺1 = [−1 0 1] (see
Gonzales and Woods [13]). The gradient filter procedure applied here consists of three steps and is illustrated in Figure 2.
To detect cleaning, a generalized gradient filter of the form

𝐺Δ =

⎡⎢⎢⎣
⋯ − 1 − 1 − 1
⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟

Δ times

0 1 1 1 ⋯
⏟⎴⎴⏟⎴⎴⏟

Δ times

⎤⎥⎥⎦
, (1)

is applied, where Δ is the filter radius. A small filter radius serves well to locate steep gradients, while a large filter radius
identifies flat gradients. As a first step, the temporal gradient was computed. Assuming the gray values being stored as
𝐼𝑛
𝑖,𝑘
, where 𝑖 is the pixel index in 𝑥-direction, and 𝑘 the pixel index in 𝑧-direction, respectively. Given a frame with frame

index 𝑛, the absolute value of the temporal gradient is calculated as

�̇�𝑛
𝑖,𝑘

=

Δ∑
�̃�=−Δ

|||𝐼𝑛+�̃�𝑖,𝑘
𝐺�̃�
Δ

|||. (2)

F IGURE 2 Gradient filter procedure consisting of three steps, starting from a gray scale signal in time: 1. Application of the filter 𝐺Δ, 2.
Application of the threshold 𝑇, 3. Application of the dilatation radius Δd. Result is the labeling of the gray scale evolution by a cleaning
mechanism, here the gray shaded laps of time.
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F IGURE 3 Data processing through the FCN. (A) Data processing within a convolution block of the FCN. Each sample refers to an
evolution of gray value over time taken from a single pixel, 𝐿in is the number of frames, dashed squares indicate padding, 𝑁B is the number of
samples within a batch. For the convolution block shown, the number of channels are |𝐶𝑏−1| = 1, |𝐶𝑏| = 4. (B) Architecture of the whole
network.

To allow the computation of the first and last Δ values, a padding was applied by extending the evolutions of the gray
value by Δ times the first and Δ times last value. In a second step, a threshold 𝑇 was applied to the filter: all gradient
values above the threshold were considered to be associated with cleaning. The threshold can be set either in form of an
absolute or relative value. In the last step, the interval where cleaning is detected can be enlarged by applying a dilatation
radius Δd. Thus, the gradient filter procedure has three hyperparameters: the filter radius Δ, the threshold 𝑇, and the
dilatation radius Δd. Applying this procedure, one filter was tuned for each experiment. The result of the filter can be
easily evaluated using the new labeling view discussed in Section 2. Note that the gradient filter procedure does not detect
which cleaning mechanism is present. This information must be provided manually.

3.2 Fully convolutional networks

FCNs are a subfamily of convolutional neural networks (CNNs) dedicated to pixel-by-pixel segmentation of images [12].
CNNs are based on the convolution operation and during the training procedure, the filters are learned. For that reason,
CNNs are well suited for the present task, since it is required to generalize a set of filters generated with the gradient
filter procedure. Typically, CNNs consist of two parts: in the first part convolutional layers, pooling layers and activation
functions are used to build features from the data. In the second part, the features are passed through fully connected
layers, similar to a feed forward NN to receive an output for a certain task. Almost each CNN can be transformed in an
FCN by replacing the second part with a convolutional layer and ensuring that the number of inputs matches the number
of outputs [14].
The architecture used in the present paper only consists of convolution blocks and is illustrated in Figure 3. Pooling

layers are omitted to keep the architecture simple. Each convolution block 𝑏 has a set of channels 𝐶𝑏 = {1𝑏, 2𝑏, …}. The
data were passed batch-wise through the network, that means the data were partitioned in batches and the trainable
parameters of the algorithm updated after every batch. After the whole training data are seen once by the algorithm, this
is called an epoch. Within each convolution block 𝑏, three operations were used:

1. One-dimensional convolution
2. Batch normalization
3. Activation function
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The result of the first step was calculated using

𝑒
𝑛,𝑠
𝑐𝑏

=
∑

𝑐∈𝐶𝑏−1

3∑
𝑘=1

𝑤𝑘
𝑐,𝑐𝑏

𝑎
𝑛−2+𝑘,𝑠
𝑐 . (3)

Herein, 𝑛 is the frame index, 𝑠 is the sample number within the present batch, and 𝑐𝑏 the channel of interest. The first
sum iterates over all channels belonging to the previous block, while the inner sum corresponds to the discrete cross-
correlation operator. The upper bound, 3, equals the size of the kernel and could be any odd number. The weights 𝑤𝑘

𝑐,𝑐𝑏

represent the filter kernels and are the trainable parameters of the FCN. Each block 𝑏 contains 3 ⋅ |𝐶𝑏−1| ⋅ |𝐶𝑏| trainable
parameters, so that the number of parameters is independent of the input size. The values 𝑎𝑛−2+𝑘,𝑠𝑐 represent the output of
the channel 𝑐 belonging to the previous block. If the sum is evaluated for the first block (𝑏 = 1), the values 𝑎 correspond to
the input data only consisting of a single channel. For evaluating the sum at the first and last entry, the data were extended
by applying zero padding. As a second step, batch normalization was applied, where the results from the first step were
normalized with mean and standard deviation, which were computed considering the entire batch. In the third step, the
data were passed through a nonlinear activation function. This is necessary to filter for particularly important features.
In the present study, ReLU and tanh were tested, observing that the results are similar. The results shown later on were
obtained with tanh. To ensure that only one output is generated per input, the final convolution block was configured
with two channels representing cleaning and no cleaning, respectively. The result was finally passed through a softmax
activation function to decide which label to assign. The rest of the network was built symmetrically. A employed number
of convolution blocks was 2𝑁𝑏, with 𝑁𝑏 the block depth. The number of channels within each block was computed as

|𝐶𝑏| =
⎧⎪⎨⎪⎩

|𝐶𝑏−1|𝛿 if 𝑏 ≤ 𝑁𝑏,

|𝐶𝑏−1|∕𝛿 if 𝑁𝑏 < 𝑏 < 2𝑁𝑏,

2 if 𝑏 = 2𝑁𝑏.

(4)

The procedure just described involves the hyperparameters |𝐶1|, 𝑁𝑏, 𝛿 defining the architecture. The FCNs were
implemented in Python 3.11 using the PyTorch library.

3.3 Training

In total, four different FCNs were trained. One of the FCNs was trained with all nine experiments with the objective
to identify cleaning in general (FCN-All). Each of the remaining FCNs was trained just to detect one single cleaning
mechanism, each using three experiments (FCN-C, A, V). The training was conducted over a maximum of 100 epochs,
while a batchsize of 10 000 was used and each experiment provides around 8000 samples. The samples were taken in a
way that the length of the samples 𝐿in was always the same, and the gray values were always normalized with the first
value [7]. To avoid imbalances, class weights were assigned in a way that each class contributed equally to the loss, in total.
Throughout the training, cross entropy loss was utilized. At the beginning of the training, the ADAM optimizer was used
with an initial learn rate of 0.01. After each 30 epochs, the learn rate was reduced by a factor of 0.5. If the validation loss
was not improving for 20 epochs, the optimizer was switched to SGD with a momentum of 0.9. This procedure provided
better results. Every time the validation loss improved, the current model parameters were stored overwriting the recent
parameters. If the validation loss did not improve for 30 epochs, the training was stopped early.

4 RESULTS

4.1 Gradient filter results

First, the gradient filter procedure was applied to the manually labeled experiments. An individual filter could be tuned
for each experiment within a minute and the resulting classification mask is compared to the manual result in Figure 4.
Quantitative comparison is done using the accuracymetric, which is defined as the number of correctly classified samples
divided by the total number of samples classified. Since the samples for each class are not equally distributed, the inter-
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F IGURE 4 Comparison of the classification results. Green regions are only tagged manually, red regions are tagged only by the
respective technique employed, and purple indicates overlapping regions, where both labelings are positive. First row: original image, second
row: results obtained with gradient filter procedure, third row: results obtained by FCNs trained for each cleaning mechanism, fourth row:
results obtained by FCN trained to detect cleaning in general, fifth row: sample evolutions of gray value over time with labeling obtained by
gradient filter procedure.
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TABLE 1 Resulting accuracy and IoU metrics obtained by the different techniques employed.

Cohesive separation Adhesive detachment Viscous shifting
Acc. IoU Acc. IoU Acc. IoU

Gradient filter 0.96 0.82 0.99 0.71 0.87 0.81
FCN—C, A, V 0.80 0.70 0.99 0.68 0.87 0.82
FCN—all 0.78 0.79 0.94 0.20 0.72 0.58

section over union (IoU) metric was used additionally. The IoUmetric compares the pixel mask obtained manually to the
mask obtained by a procedure to be assessed. As the name indicates, it is defined as the ratio between the intersection and
the union of these masks.
All metrics computed are listed in Table 1. For the gradient filter procedure, the lowest accuracy is obtained for viscous

shifting and the highest accuracy for adhesive detachment. The accuracy metric is very good in all cases and Figure 4
confirms that misclassifications only arise by slight under- or overestimation of the time when the cleaning process starts
or ends. For all cases, IoU metrics above 70% were achieved. To gain more insight into the quality of the classification
result, an evolution of gray value over timewas considered for each cleaningmechanism and the labelings were compared
(Figure 4, last row). In case of cohesive separation, the labels obtained manually start earlier than the result of the filter.
The example highlights that it is hard to tell when the cleaning process really starts. The advantage of the filter procedure is
that it would rather introduce a systematic error, while manual labeling always involves random uncertainties. Systematic
errors can be circumvented using a suitable post processing technique, for example, by applying a one-sided dilatation to
the classification here. The example of viscous shifting is the most complex, since it might involve reattachment of the
soil to the wall. In this case, using the filter procedure more regions are associated with cleaning than manually assigned.

4.2 Fully convolutional networks

Finally, FCNs were considered. From inspecting the masks in Figure 4, only a slight difference between the results of
the gradient filter procedure and the FCNs for each cleaning mechanism (FCN—C, A, V) is visible. In case of cohesive
separation, the size of the green region at the beginning of the cleaning is increased, indicating a stronger deviation from
the manual labels. Table 1 shows that the metrics only decreased in case of cohesive separation.
The FCN—All that is trained to detect cleaning in general has worse performance than previous candidates. Horizon-

tal red stripes in Figure 4, fourth row, show that the FCN—All sometimes misclassifies samples further away from the
cleaning process. In case of the mechanism cohesive separation the FCN—All benefits from more variation in the data
achieving bettermetrics. The opposite effect occurs for detecting adhesive detachment.Here, imagenoise ismisinterpreted
as viscous shifting.
The present results can now be compared to the results obtained with the online network from the previous work [7]. In

this reference, accuracies up to 80%were achievedwhen the algorithmwas trainedwith 10–20 experiments for each clean-
ing mechanism and substantial time was invested to design appropriate features. Juxtaposing both results demonstrates
that the metrics obtained with the present approach are promising. Especially when considering the smaller amount of
training data.

5 CONCLUSIONS

The present paper proposed an improved labeling strategy, which supports the data curation procedure for an existing
classification scheme for cleaning mechanisms. The existing algorithm was analyzed and it was concluded that the level
of detail of the training labels is the bottleneck for further enhancement of the algorithm and application towards real-
istic soils. Hence, an improved labeling strategy was developed, which is based on three entities: first, the perspective of
investigation, which makes it easier to decide whether a labeling can be considered as good or bad. Second, the gradient
filter procedure, which allows to obtain a fast and consistent labeling suggestion by only tuning three hyperparameters.
Third, generalizing filters using FCNs.
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While the FCN can be used as labeling assistance, they are also a promising architecture for a classification algorithm,
which will be investigated in the future. In the present work, the FCNs only consider the gray value evolution over time
of a single pixel. To also include macroscale information, multiple gray value evolutions will be considered. Furthermore,
active learning strategies can be used to improve the performance of FCNs used for labeling assistance.
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