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Structural strain severely impacts material properties such as the linear and non-linear optical
response. Moreover, strain plays a key role, e.g., in the physics of ferroelectrics and in particular
of their domain walls. µ-Raman spectroscopy is a well-suited technique for the investigation of
such strain effects, as it allows to measure the lattice dynamics locally. However, quantifying
and reconstructing strain fields from Raman maps requires knowledge on the strain dependence
of phonon frequencies. In this work, we have analyzed both theoretically and experimentally the
phonon frequencies in the widely used ferroelectrics lithium niobate and lithium tantalate as a
function of uniaxial strain via density functional theory and µ-Raman spectroscopy. Overall, we
find a good agreement between our ab initio models and the experimental data performed with a
stress cell. The majority of phonons show an increase in frequency under compressive strain, while
the opposite is observed for tensile strains. Moreover, for E-type phonons, we observe the lifting of
degeneracy already at moderate strain fields (i.e. at ±0.2 %) along the x and y directions. This work
hence allows for the systematic analysis of 3D strains in modern-type bulk and thin-film devices
assembled from lithium niobate and tantalate.

Keywords: Lithium niobate, lithium tantalate, strain, stress, ferroelectric, domain walls, Raman spec-
troscopy, DFT

I. INTRODUCTION

Lithium niobate (LN) and Lithium tantalate (LT)
are cornerstone materials in nonlinear optics and opto-
electronics, with established applications ranging from
second-harmonic generation [1, 2], over optical ring res-
onators, to holographic memory devices [3], to name just
a few. These devices are based on bulk single crystal
platforms and have been constantly optimized over the
last decades via meticulous analyses of crystal compo-
sitional aspects [4–6], degradation effects [7], defect dis-
tribution, and the precise imaging of domain structures
[8–10]. Single crystalline LN (or LT) thin films on insulat-
ing substrates have recently opened up a completely new
scenario. This new platform allows for much higher inte-
grability into existing nanoelectronic and nanophotonic
structures [11, 12] and outperforms bulk-based devices
due to the submicron-scale confinement of optical modes
[13–15].

Nevertheless, the transition towards thin-film LN
(TFLN) devices emphasizes the importance of crystal
properties that so far have played a minor role in LN
bulk investigations and device fabrication. Among these,
we count the increased influence of mechanical stress (σ)
fields [16, 17], e.g., due to the bonding process of the LN
thin film onto the substrate, or occurring as a result of
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the poling procedure or waveguide fabrication, which is
paramount for the reliable and reproducible production
of highly efficient nonlinear optical devices. Accumulated
stress does not only increase the chance of critical failure
(e.g. due to delamination) [16, 17], but also influences op-
tical key properties such as refractive indices [18, 19] and
thus endangers the optical responses of a periodically-
poled domain grid [20].

Among established imaging techniques applied for
the analysis of LN platforms, Raman spectroscopy can
provide critical information about internal mechanical
stress. To discriminate the influence of stress fields from
other factors, e.g. electrical fields [21] or compositional
heterogeneity [22], and to quantify occurring stress mark-
ers, it is essential to gain fundamental knowledge on
the relation of phonon properties and mechanical stress
fields. To date, the only investigations in this regard were
conducted via hydrostatic pressure-cells [23, 24]. How-
ever, such experiments only investigate the influence of
isotropically applied stress. In reality, effects like stress
fields in the vicinity of LN DWs, or mechanical stress
in LN thin films, are not isotropic [25, 26]. Under these
environments, the directionality of stress largely changes
the materials properties. Therefore, it is necessary to the-
oretically predict and experimentally verify the influence
of uniaxial stress on phonon properties. This then pro-
vides a fundamental reference for future investigations of
mechanical stress fields, in analogy to the reference work
of Stone et al. [21] for incident electrical fields.

In this work, we firstly provide the theoretical pre-
diction on the evolution of the phonon properties in
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LN and LT crystals upon uniaxial compression along all
three crystal axes via density functional theory (DFT)
in Sec. II A. Secondly, we combine a piezo-driven uni-
axial stress cell with a µ-Raman spectroscopy setup to
enable the experimental study of stress on the LN crys-
tals. Experimentally, we compare stoichiometric and 5%
MgO-doped LN samples compressed along the x,y, and z
axes [see Sec. II B]. Sec. III C then provides a discussion
of the calculated and measured data.

With this work, we thus provide a basis for the quan-
titative, local stress analysis in LN and LT platforms via
µ-Raman spectroscopy and give a reference for the deeper
understanding and further optimization of LN- and LT-
based devices.

II. METHODOLOGY

A. Computational Approach

The DFT calculations are performed within the gen-
eralized gradient approximation (GGA) [27] in the for-
mulation of Perdew, Burke, and Ernzerhof (PBE) [28] as
implemented in the Vienna Ab Initio Simulation Package
(VASP) [29]. Thereby, projector augmented wave (PAW)
[30] potentials with projectors up to l = 3 for Nb and Ta,
and l = 2 for Li and O have been used, which proved to
be accurate enough as demonstrated in a previous work
[31]. The electronic wave functions are expanded into a
plane-wave basis set up to kinetic energy of 475 eV. In
order to model uniaxial stress, the lattice constants of
the rhombohedral unit cell were adjusted according to
the expression

an(ε) = (I + ε)an(0), (1)

where ε, I, an(0), and an(ε) denote the strain tensor,
the identity matrix, and the nth unstrained and strained
lattice vector, respectively. The strain tensor was then
calculated using the elastic compliance tensor S from
Ref. [32],

ε = Sσ, (2)

and the boundary conditions for uniaxial stress. This
means that all components of the stress tensor σ are
set to zero, except for the component in the direction
of which uniaxial stress is to be exerted. For instance,
if uniaxial stress is to be calculated along the x direc-
tion, σ1 6= 0 = σ2 = σ3 = σ4 (Voigt notation) is set as
boundary condition. Due to constraints of the unit cell
sizes, only stoichiometric LN and LT is calculated. How-
ever, as later demonstrated by experiments by comparing
5% MgO-doped and stoichiometric LN, it is shown that
the results for 5% MgO-doped and stoichiometric LN are
comparable, therefore this assumption is justified, to only
calculate stoichiometric LN and LT.

The calculations were performed in two ranges for LN
and LT: First, the effects of strain, i.e. compressive as
well as tensile strain, on the phonon frequencies have
been calculated in fine increments up to values reachable
in the experiments. Second, calculations for higher values
of strains, but more coarse increments, were performed.
For LN and LT this procedure has been performed for
lower strains up to 0.10 %, as well as for higher values
up to 2.4 %. Here, increments of 0.02 % and 0.4 % have
been chosen, respectively. The Hellmann-Feynman forces
are minimized under a threshold value of 0.005 eV/Å by
relaxation of the atomic positions. For our calculations of
unstrained structures we have used commonly accepted
experimental lattice constants (aLNR = 5.494 Å, αLN =
55.867 ◦ and aLTR = 5.474 Å, αLT = 56.171 ◦) [31].

The Γ-centered phonon frequencies and eigenvectors
are derived by the frozen-phonon method [33] without
symmetry constraints. For the calculation of the Hessian
matrix, atomic displacements of 0.015 Å in each Carte-
sian direction are considered. Since our approach does
not take into account the long-range electric fields ac-
companying the longitudinal-optical (LO) phonons, our
calculations are restricted to transversal-optical (TO)
phonons, only. A 8×8×8 k-point mesh is used to sample
the first Brillouin-zone corresponding to the orthorhom-
bic unit cell, which yields 192 irreducible points.

B. Experimental Procedure

In order to complement the above theoretical investi-
gations, we measured the frequency shift of the phonon
modes in LN by combining µ-Raman spectroscopy with
a uniaxial stress cell [34]. All measurements were per-
formed using a LabRAM HR spectroscope from Horiba
in 180◦ back-scattering geometry. In this setup, a HeNe
laser at 632.8 nm wavelength was focused onto the sam-
ples using a 100X and 0.9 NA objective. For each data
point, two acquisitions were collected for 10 s each, while
using a diffraction grating of 1800 grid lines per millime-
ter for spectral analysis. For these settings, the cor-
responding spectral resolution is 0.56 cm−1, which was
determined as part of the calibration using a He-Ne
gas discharge lamp. Here, the plasma line at a wave-
length of 671.7 nm has a natural line width of 0.025 nm
(0.56 cm−1), which corresponds to the spectral resolution
i.e. the standard deviation, which only means how well
the two overlapping peaks can be resolved. On the other
hand, with the help of the standard error obtained from
peak fitting, each peak center can be pinpointed with a
100-1000 times more precision, and this is the quantity
we are interested in.

All the samples used in this work were firmly attached
to the uniaxial stress cell using black stycast epoxy resin
[35] such that the strain is fully transmitted to the sample
through the epoxy resin. The force applied to the sample
was directly measured through a force sensor attached to
the back of the device. This force was later converted to
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TABLE I. Description of the samples used for the experimental stress measurement analysis.

sample name description size stress axis
sLN-x z-cut stoichiometric LN y × z: 580 × 113 µm2 x
sLN-y z-cut stoichiometric LN x × z: 580 × 113 µm2 y

5Mg-LN-x z-cut 5%-MgO doped LN y × z: 500 × 140 µm2 x
5Mg-LN-y z-cut 5%-MgO doped LN x × z: 400 × 100 µm2 y
5Mg-LN-z x-cut 5%-MgO doped LN y × x: 400 × 100 µm2 z

stress using the relation

σ =
F

A
, (3)

whereA denotes the cross-section of the samples provided
in table I, and F is the force measured by the force sensor.
In order to compensate for any charge-induced effects due
to the piezoelectric effect, the top and bottom faces of the
sample surfaces were electrically grounded using 10 nm-
thick chromium electrodes. All the measurements were
always performed across the chromium electrodes, which
at the given thickness are still sufficiently transparent
and do not affect our measurements, as also shown in
the past for in situ second-harmonic microscopy studies
[36].

A total of five samples were measured [see Tab. I].
First, stoichiometric LN, being close to the ideal crystals
considered for the theoretical calculations, is measured
and used to compare theory with experiment. Second,
5% MgO-doped LN samples are chosen, because they
are widely used among the ferroelectrics and integrated
optics community due to their low photorefraction and
highly conductive domain walls [12, 37–39]. Compar-
ing the results on the stoichiometric and MgO-doped
crystals allows us to see whether or not there are any
stoichiometry-specific changes in the responses, which
would also not be covered by the DFT calculations.

1. Data extraction method

The Raman spectra of single-crystalline LN and LT are
well understood and have been investigated thoroughly
before [31, 40–43]. The optical phonons of LN and LT
consist of four A1, five A2, and nine doubly-degenerated
E phonon branches. Here, A1 and E are optical branches
and are both Raman and Infrared active. In contrast, the
A2 branch is optically inactive. Furthermore, depending
on the scattering geometry these branches either appear
as TO or LO modes. Conveniently LN and LT peaks
are labeled by type of symmetry (A1 or E), followed by
the specific type (TO or LO) and consecutive number
counting from low to high frequency. For example, the
phonon E(TO9) labels the ninth, i.e. highest frequency,
E-type TO phonon. The assignment of peaks in this
work has been performed according to the most recent
accepted assignment by Margueron et al., Sanna et al.
and Rüsing et al. [31, 41, 42].

Figure 1(a), (b) and (c) shows example Raman spec-
tra of the 5Mg-LN-x, 5Mg-LN-y, and 5Mg-LN-z samples,
respectively. These spectra are measured in different
scattering geometries represented by the Porto notation
ki(ei, es)ks, where ki and ks represent the direction of in-
cident and scattered light in crystal coordinates, and ei
and es denote the direction of polarization of both incom-
ing and Raman scattered beams, respectively [41]. Here,
each plot contains 3 spectra, where spectrum A belongs
to the unstressed (0 MPa) state of the sample while spec-
trum B describes a compressed state of the sample. The
third is the difference spectrum of the former two. To
eliminate the intensity influences in the difference spec-
trum and to solely highlight the effect of the frequency
shift due to applied stress, all the spectra were first nor-
malized individually by subtracting the noise background
(if applicable) and divided by the intensity of the high-
est peak [10]. From the different spectra of Fig. 1(b), it
can be clearly noticed that the frequency of the E(TO1)
phonon mode in Z(XY)Z geometry increased under com-
pression, while the frequency for A1(TO1) in X(ZZ)X
geometry decreased. Apart from these large differences,
further changes are difficult to notice. So, to quantify
frequency shifts as a function of stress, the fitting of the
spectra by Lorentzian functions is performed. In this
way, the frequencies at the maxima of the phonon peaks
were determined for different stress values and plotted
against applied stress, such as shown in Fig. 2. Via statis-
tical analysis of the phonon shifts, we are able to deduce
the experimental phonon-stress-shift coefficients with a
precision of 0.01 cm−1/%.

Additionally, it is well-known [44, 45] that the spectra
of congruent or MgO-doped LN show broader and less
resolvable peaks as compared to the stoichiometric LN.
Here, various peaks overlap with each other, that then
leads to a more challenging peak assignment. For exam-
ple, the pairs E(TO3)- A1(LO1), A1(LO2)-E(TO4), and
A1(LO3)-E(TO7) overlap with each other in the Z(XX)Z
and Z(YY)Z geometry of MgO-doped LN. Therefore, in
Sec. III A, to avoid any misleading conclusions, for these
peaks the Raman shifts with the stress have not been
fitted [see Table II and IV].

Furthermore, to find an optimum location on the sam-
ple, a series of optimization measurements [see SI for fur-
ther information] are performed. As a result, all the mea-
surements were performed in the center of the sample and
10 µm below the sample surface.
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FIG. 1. (a) Z(XX)Z Raman spectra of unstressed (0 MPa)
and x compressed (-85.7 MPa) 5% MgO-doped LN (5Mg-LN-
x). (b) Z(XY)Z Raman spectra of unstressed (0 MPa) and
y compressed (-140.7 MPa) 5% MgO-doped LN (5Mg-LN-
y). (c) X(ZZ)X Raman spectra of unstressed (0 MPa) and z
compressed (-175 MPa) z-axis of 5% MgO-doped LN (5Mg-
LN-z). The difference curve in all (a)-(c) graphs represents
the difference spectra between the stressed and unstressed
states of the sample.

III. RESULTS

A. Experimental Results

For the sake of simplicity, we only show the pressure
dependency for selected phonon modes; the complete re-
sults are shown in the Supplement information (SI).

Fig. 2 shows the response of the E(TO1) phonon mode
under x and y compression for both the stoichiometric
and 5%-MgO doped LN samples. The three curves in a
single plot represent the three different scattering geome-
tries given in Porto’s notation. Since the change of the
frequency (∆ω) with respect to the unstressed state is the
quantity of interest, we have plotted the frequencies with
respect to the 0 MPa value as a function of stress. Hence,
we also account for any offset due to sample mounting or
bending effects as discussed in the SI.

The coloured region around the fitted lines show the
one-sigma confidence interval, calculated from linear fit-
ting which included the standard error of individual
peaks. The E(TO1) mode shows a linear positive slope
for the compression in all cases. In the case of x compres-
sion for both sLN-x and 5Mg-LN-x samples, the slope is
larger in Z(YY)Z measurement geometry. On the other
hand, when the same samples are compressed along the
y crystallographic axis, the slope is larger for Z(XY)Z
and Z(XX)Z scattering geometries. We have observed
this behavior for almost all the phonon modes [see SI].
The value of different slopes in different measurement ge-
ometry can be interpreted as the lifting of the two-fold
degeneracy of the E-modes predicted by theory as dis-
cussed below.

When comparing 5Mg-LN-x/-y and sLN-x/-y, the
slopes are similar as shown in Fig. 2. The origin of
the small deviations could be due to the presence of de-
fects in doped-LN. This argument is consistent with the
work done by Tejerina et al., where they show that dop-
ing increases the phonon shift under hydrostatic pressure
(∆ω/∆σ) [46], especially for the A1(TO2), A1(TO3), and
E(TO4) phonon modes. The comparison for other peaks
is also summarized in Table II.

As will later be shown by theory, the phonon frequency
should decrease under tension with a slightly different
magnitude. That is why the phonon response of sample
sLN-x is also measured experimentally in Z(YY)Z scat-
tering geometry under tension. For tensile strain, the
opposite response is observed as expected: the frequency
decreased on applying tension to the sample. For exam-
ple, phonon mode E(TO6) shows the largest response as
for compression with a slope of −8.15 ± 2.88 cm−1/GPa.
The plot for E(TO6) and the slopes for all peaks are pro-
vided in SI.

B. Strain Simulation

First, to assess the quality of the models in this work,
the calculated phonon frequencies of unstrained stoichio-
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FIG. 2. Measured response of the E(TO1) phonon mode (a)-(b) in the samples sLN compressed along the x and y axes,
respectively and (c)-(d) in the sample 5Mg-LN compressed along the x and the y axes, respectively. The stoichiometric and
5% MgO-doped LN behave similarly.

TABLE II. Experimentally determined Raman shift changes ∆ω as a function of stress σ for x compression. The slopes
were obtained after linearly fitting the experimental changes in frequency upon x compression. An asterisk labels silent modes
[41]. In the case of 5% MgO-doped LN, many peaks overlap with each other [see Fig. 1(a)-(b)], therefore extracting the peak
frequency with an acceptable error was not possible. This is represented by the ’-’ sign.

sLN-x (cm−1/GPa) 5Mg-LN-x (cm−1/GPa)

Phonon modes Z(XX)Z Z(XY)Z Z(YY)Z Z(XX)Z Z(XY)Z Z(YY)Z
A1(LO1) 2.13 ± 0.52 * 2.06 ± 0.58 - * -
A1(LO2) 3.29 ± 0.17 * 3.66 ± 0.17 - * -
A1(LO3) 0.39 ± 0.94 * 0.29 ± 0.71 - * -
A1(LO4) 1.96 ± 0.21 * 2.32 ± 0.19 3.07 ± 0.83 * 3.79 ± 0.80

E(TO1) 0.70 ± 0.26 0.63 ± 0.26 1.98 ± 0.27 0.71 ± 0.35 1.05 ± 0.22 2.68 ± 0.29
E(TO2) 0.34 ± 0.17 0.26 ± 0.25 1.68 ± 0.16 -0.51 ± 0.45 -0.63 ± 0.52 1.52 ± 0.3
E(TO3) 1.28 ± 0.44 1.39 ± 0.65 1.67 ± 0.42 - - -
E(TO4) 2.12 ± 0.35 1.56 ± 0.59 3.02 ± 0.4 - - -

E(TO5/6) 6.36 ± 0.98 6.25 ± 1.5 8.17 ± 0.87 5.87 ± 4.23 3.77 ± 3.69 9.38 ± 2.16
E(TO7) 0.44 ± 0.37 0.86 ± 1.51 1.24 ± 0.22 - - -
E(TO8) -0.47 ± 0.30 0.37 ± 0.36 3.03 ± 0.27 -0.29 ± 0.8 1.66 ± 0.69 4.32 ± 0.67

metric LN and LT are compared with previous works
[31] (all data appear in the SI). Compared to our exper-
iment, the largest deviation from the experimental val-
ues for LN and LT occurs for the A1(TO4) mode with
20 cm−1 and 22 cm−1, respectively. The mean devia-
tion from experimental values for LN and LT is about
8.7 cm−1 and 8.4 cm−1. Thus, compared with the mean
deviation of the theoretical results of Ref. [31] which was
about 10.7 cm−1 and 10.8 cm−1 for LN and LT, there is

a close agreement with both the theoretical and experi-
mental values. In addition, the typical deviations are also
consistent with literature values, such as Refs. [41, 47].

In order to demonstrate the dependence of the phonon
frequencies predicted by our calculations, the E(TO4)
mode of LN was chosen [see Fig. 3]. Figures 3(a) and
(b) show the results of the calculations with lower and
higher strains, respectively. The frequency shift of the
E(TO4) mode has an approximately linear dependence
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FIG. 3. DFT calculated relative frequency shifts of the
E(TO4) mode of stoichiometric LN as a function of strain
in z-direction in (a) steps of 0.4 % and (b) steps of 0.02 %.
The linear fit and the standard deviation of both are plot-
ted and their parameters displayed. The slopes for strain are
defined as (∆ω)/(|∆ε|) and displayed with the fitting error.

on the applied compression. Such a linear dependence is
observed in all of our calculations for each mode for both
the compressive and tensile strain in stoichiometric LN
and LT. This is consistent with the results of LN and LT
under hydrostatic pressure by Mendes-Filho et al. [23].
In Fig. 3(a) the frequency increases up to 6 cm−1 and in
(b) up to 0.3 cm−1.

Our calculations predict for stoichiometric LN and LT
that the degeneracy of the E modes is lifted under strain
applied along the x and y direction due to the reduction
of the threefold symmetry. This results in splitting into
two branches, which is consistent with previous studies
on various 2D materials, that reported a mode splitting
under strain due to the reduction of symmetry [48, 49].
Consequently, for strains applied along the x and y direc-
tion, all E modes are considered separately. For example,
the E(TO9) mode for compression in x and y directions
has a significant splitting [see Fig. 4(a)]. In contrast, it
is noticeable that the E(TO9) mode remains degenerate
for z compression since the considered strains in the z
direction of both LN and LT do not lead to any reduced
symmetry. This is the case for all E modes of LN and LT
under strain.

Since the slopes, for strains in the x and y directions
of LN and LT, are very similar [see SI] due to the sym-

TABLE III. Calculated slopes of transversal A1 and E modes
of stoichiometric LN under compressive and tensile strain, and
stoichiometric LT under compressive strain in the x-direction
at higher strains in cm−1/%. The slopes for strain are defined
as (∆ω)/(|∆ε|).

Phonon LN comp. LN tens. LT comp.
mode ∆ω[cm−1/%] ∆ω[cm−1/%] ∆ω[cm−1/%]

A1(TO1) 1.31 -2.87 3.16
A1(TO2) 3.64 -4.78 4.51
A1(TO3) 5.18 -7.08 4.84
A1(TO4) 3.95 -3.79 3.93

E(TO1) 0.68/3.26 -1.56/-3.37 1.32/1.45
E(TO2) 1.52/0.32 -3.69/0.04 2.68/0.91
E(TO3) 1.09/2.24 -4.40/-1.56 2.62/2.45
E(TO4) 2.19/1.98 -3.42/-1.65 2.73/2.40
E(TO5) 6.58/6.09 -9.57/-13.57 7.39/8.31
E(TO6) 12.84/12.39 -4.93/-3.76 14.82/13.58
E(TO7) 4.18/2.72 1.01/-1.52 0.83/2.02
E(TO8) 3.63/0.91 -0.67/-4.51 4.65/1.54
E(TO9) 1.36/4.94 0.70/-5.12 4.00/3.45

metry of the crystals, Table III shows only the slopes
for strain in the x direction. With the exception of the
A1(TO1) and A1(TO4) modes, compressive strain leads
to an increase in frequency, while tensile strain leads to
a decrease in frequencies, which is consistent with results
from previous research on other materials [50, 51]. Com-
paring the slopes under the compressive and tensile strain
of LN, we find that they hardly differ for the individual
modes. This behavior is not surprising, however, it is not
universal, as shown for a 2D material by Pak et al. [50].
Although under both compressive and tensile strain the
E(TO5/6) modes have the largest frequency shifts, the
E(TO6) mode has a larger slope than the E(TO5) mode
under compression. However, this relation turns around
under tensile strain as can be seen in Table III. This ap-
plies to strain in the x and y direction for both LN and
LT (see SI).

In addition, the results of LT under compression are
listed in Table III for the same modes. In direct com-
parison with the results of LN, they are very similar
along both directions, as well as magnitude. This is in
agreement with Mendes-Filho et al. [23] and expected
since LN and LT are isostructural. Nevertheless, there
are some small deviations. In particular, the degeneracy
lifting is attenuated compared to LN. For instance, the
upper branch of the E(TO1) mode has a notable lower
slope than that of LN. Also, the E(TO9) mode exhibits
a significantly attenuated degeneracy lift for LT under
compression than for LN. These deviations can be ex-
plained with the help of the eigenvectors. In Fig. 5 the
eigenvectors of A1(TO1−4) and E(TO1−9) are shown in
the rhombohedral unit cell [31, 41]. Such modes with
high vibrational contributions from Nb and Ta ions, like
the E(TO1) mode, lead to a slightly different vibrational
behavior [31]. The modes that have in turn low contribu-
tions of Nb and Ta ions with respect to their eigenvectors,
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FIG. 4. The DFT calculated relative frequency shifts of (a) E(TO9) (first row), (b) E(TO5) (second row) and (c) A1(TO2)
(third row) modes of stoichiometric LN as a function of strain in steps of 0.4 % along the x, y and z direction. The slopes for
strain are defined as (∆ω)/(|∆ε|) and displayed with the fitting error.

are very similar under compression of LN and LT. Since
in the E(TO9) mode, the displacement of O is more in-
volved than that of Nb/Ta, the reason for the difference
between LN and LT may be due to the nature of Nb/Ta-
O bond, similar to observations in Refs. [31, 41]. The
mean Nb-O distance (2.02 Å) is larger than that of Ta-
O (2.00 Å). Stronger bonding with the oxygen atoms,
and thus larger deformation of the oxygen octahedron,
might be the reason for the difference between LN and
LT concerning the E(TO9) mode. Also, slight differences
in E(TO7) and E(TO8), which are pure distortions of
the oxygen octahedron, might be related to the different
Nb/Ta-O bonds.

The E(TO5/6) and A1(TO2) modes are characteristic
for LN and LT under strain, since these have particularly
high slopes, as shown in Table III and Fig. 4(b) and (c).
This is also in agreement with Ref. [23]. The E(TO5/6)
are especially sensitive to strain in the x and y directions.
This can be explained by a simple analysis of their eigen-
vectors. In Fig. 5 it can be seen that these two modes,
in contrast to all other modes, are characterized by par-
ticularly large displacements of the lithium ions parallel
to the x-y-plane. Hence, these modes are most affected
when the distances between the ions parallel to the x-y-
plane are shortened. The A1(TO2) mode has among the
largest slope for strain along the z direction. This can
be reasonably explained in terms of the eigenvectors as
well. As seen in Fig. 5, the ions of the A1(TO2) mode

vibrate in z direction. When compression in the z direc-
tion shortens the bond length between the ions parallel
to their displacement, the frequency is expected to in-
crease. As the eigenvectors of the A1(TO2) mode point
most in the z direction, it consequently has the largest
slope compared to all other modes when compressed in
the z-direction. All further data and results on LN and
LT under compressive and tensile strain are provided in
the SI.

C. Discussion: Comparing theory and experiment

As mentioned in the introduction section, the calcula-
tions are performed in units of strain and the experiments
are performed in units of stress. In order to compare
both results we have converted the experimental values
of stress into values of strain using the equation given
below:

σ = Eε, (4)

where E is Young’s Modulus of a sample [52]. The calcu-
lated value of Young’s Moduli of LN along the x, y, and z
axes are 173.6 GPa, 173.07 GPa, and 201.0 GPa, respec-
tively [see calculations in SI]. For every measured stress,
we calculated the respective strain value and plotted the
corresponding frequency shift along with the theoreti-
cal data as a function of strain [see Fig. 6]. Since the
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FIG. 6. Comparison of the experimental and theoretical frequency shift (at lower strains): (a)-(b) E(TO6) phonon mode under
compression along the x and y axes of stoichiometric LN. The shaded region around all the curves is the confidence interval of
the linear fit.

stoichiometric samples are the closest system to the stoi-
chiometric system considered for theoretical calculations,
they are compared with theoretical data in Fig. 6.

For x compression, theoretically, the E(TO6) mode
shows lifting of the degeneracy in accordance with the
results of Sec. III B. For a more accurate comparison,
the slopes for higher strains for y and z compression are
listed in Table IV. The theoretical results on the degener-
acy lifting offer a new interpretation of the experimental
results. In particular, comparing the data for the E(TO7)
mode with compression in the x direction, it can be seen

that the data for the Z(YY)Z resembles the upper branch,
and its slope of the theoretical data, and the data for the
Z(XY)Z and Z(XX)Z geometry is similar to the theoret-
ical data and slope of the lower branch. For y compres-
sion, the same can be observed, with the Z(XY)Z and
Z(XX)Z geometries having the higher slope, respectively,
and the Z(YY)Z having the lower slope, i.e. the slopes
flip for y compression. Consequently, it can be assumed
that with the help of different scattering geometries the
lifting of the degeneracy by x and y compression can be
reproduced experimentally.
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Based on this interpretation, it can be concluded that
the experimental and theoretical data fit very well. For
a more accurate comparison, the slopes for higher strains
for y and z compression are listed in Table IV.

Interpreting the experimental data as lifting the de-
generate E modes on x and y compression can also help
characterize compressed LN. From the data, it can be
implied that one has x compressed LN when the Z(YY)Z
geometry measures a higher slope than for the Z(XY)Z
and Z(XX)Z geometries. If, on the other hand, one has y
compressed LN, this arguement just reverts. In contrast,
if no splitting E modes are observed in different scattering
geometries, it can be concluded that the LN under inves-
tigation must be a z-compressed sample. Furthermore,
the experimental comparison in Fig. 6 and Table IV, con-
firms the prediction that the E(TO6) mode is the mode
with highest slope for x and y compression. In compari-
son with Sec. III A and III B, the slopes for x compression
are very similar to those for y compression.

As concluded from the experimental results in
Sec. III A, the 5% MgO-doped LN responds equally well
as the stoichiometric LN, upon compression. We com-
pare the 5Mg-LN-z sample with theoretical data of sto-
ichiometric LN for z compression. As theoretically pre-
dicted and confirmed by the experiment, both E(TO7)
and A1(TO4) modes show a linear dependence on z com-
pression [see Fig.7(a)-(b)]. For the E(TO7) mode, no
degeneracy lifting occurs for z compression, which can
also be seen in the experimental data. This investigation
provides another rule for characterizing compressed LN.

As described in Sec. III B the frequencies of most
modes are linearly increasing with increasing compres-
sion. For a few modes, this is not the case, e.g., for
the A1(TO4) modes. For this mode, a linear decrease
in frequency with increasing compression is theoretically
predicted. This is consistent with experimental measure-
ments, as shown in Fig. 7(b). This unusual behavior can
also be explained with the help of the eigenvectors. In
Fig. 5 it can be seen that the oxygen ions move towards
the positively charged niobium ions and then away from
them. If z compression reduces the distance between the
cations, then as the oxygen ions displace away from nio-
bium, the restoring force towards niobium may be weak-
ened by the shortened distance to the lithium ions, which
also exert the Coulomb force on the negatively-charged
oxygen ions. Thus, the frequency for z compression might
be reduced. In a similar way, this explanation can also
be applied to A1(TO1) modes. All other modes for com-
parison for z compression are shown in Table IV.

IV. CONCLUSIONS

Experimental and theoretical phonon frequencies as a
function of uniaxial strain have been evaluated and com-
pared for LN and LT. This investigation has shown that
all phonon modes are affected by strain. Both theoretical
and experimental results are consistent with the roughly
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FIG. 7. Comparison of theoretical stoichiometric and ex-
perimental 5Mg-LN-z sample when compressing along the z-
direction, for frequency shifts of (a) E(TO7) and (b) A1(TO4).
E(TO7) shows a positive slope while A1(TO4) shows a nega-
tive slope for z compression.

linear behavior of the modes and can be reasonably ex-
plained by an analysis of the calculated eigenvectors. The
linearity of the slopes confirms the previous works un-
der hydrostatic pressure and under external electric fields
[21, 23].

Accordingly, the obtained slopes provide reference val-
ues for the peak shifts. Furthermore, with the help of the
slopes, it is possible to characterize compressed LN crys-
tals and, hence, the vicinity of domain walls and wave
guides in LN. Our experimental and theoretical investi-
gations show that x and y compressed LN has partic-
ularly high peak shifts for the E(TO5/6) modes and z
compressed LN for the A1(TO2), E(TO7) and E(TO8)
modes [23].

Furthermore, calculations have shown that the degen-
eracy of the E modes is lifted for x and y compression
upon symmetry reduction. The splitting has also been
observed in our experiments when measured under differ-
ent scattering geometries. Based on our theoretical and
experimental investigations three rules can be formulated
to characterize the direction of uniaxial compression of
a LN sample using different scattering geometries. This
only concerns the E modes. The sample is x compressed
if higher frequency shifts are observed for the Z(YY)Z
geometry than for the Z(XY)Z and Z(XX)Z geometries
when applying the same compressive stress. For y com-
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TABLE IV. Comparison between the theoretical response at higher strains with the experimental response of the samples
sLN-y and 5Mg-LN-z. Asterisks label modes that are Raman silent in the given scattering geometry.

sLN-y (cm−1/%) 5Mg-LN-z (cm−1/%)

Modes Z(XX)Z Z(XY)Z Z(YY)Z Theory X(ZZ)X X(YZ)X X(YY)X Theory
A1(LO1) 8.01 ± 1.41 * 6.31 ± 0.68 * * * * *
A1(LO2) 7.95 ± 0.35 * 6.18 ± 0.68 * * * * *
A1(LO3) 4.24 ± 1.94 * 2.82 ± 0.68 * * * * *
A1(LO4) 6.75 ± 0.33 * 5.12 ± 0.68 * * * * *

A1(TO1) * * * 1.15 -4.97 ± 0.93 * -5.10 ± 5.63 -2.97
A1(TO2) * * * 3.83 7.49 ± 1.08 * 5.98 ± 4.73 4.44
A1(TO3) * * * 4.47 4.54 ± 1.24 * -0.19 ± 1.4 0.65
A1(TO4) * * * 3.87 -4.94 ± 0.65 * -6.94 ± 0.60 -4.91

E(TO1) 6.27 ± 0.63 5.97 ± 0.63 4.41 ± 0.60 3.25/0.83 * 0.40 ± 0.44 -0.15 ± 0.54 -0.61
E(TO2) 5.48 ± 0.35 4.84 ± 0.35 1.56 ± 0.34 -0.70/2.36 * 0.61 ± 0.53 1.08 ± 1.51 -2.55
E(TO3) 7.56 ± 1.04 5.81 ± 1.04 4.68 ± 1.07 1.34/2.21 * 1.46 ± 1.75 1.44 ± 7.44 0.50
E(TO4) 4.5 ± 0.69 4.44 ± 0.69 2.42± 0.68 2.03/2.12 * 5.43 ± 0.92 -3.84 ± 11.74 2.40
E(TO5) * * * 6.73/6.55 * * * -0.68
E(TO6) 12.9 ± 1.85 11.13 ± 1.85 9.16 ± 2.02 13.00/11.86 * 0.72 ± 2.31 1.90 ± 1.9 -0.94
E(TO7) 3.41 ± 0.68 1.64 ± 0.68 1.23 ± 0.82 4.12/2.01 * 7.21 ± 2.64 7.69 ± 0.59 4.75
E(TO8) 8.56 ± 0.48 6.72 ± 0.48 3.27 ± 0.70 3.75/1.00 * 6.73 ± 0.62 6.20 ± 5.94 3.35
E(TO9) - - - 5.41/0.91 - - -7.95 ± 13.41 0.90

pression, the opposite is the case. In contrast, when no
differences are observed between the frequency shift of
the E modes for various scattering geometries, it can be
concluded that the sample under investigation must be z
compressed.

Furthermore, the calculation has shown that the be-
havior of LT under strain is not significantly different
from that of LN. Experimentally, it has additionally re-
vealed that the frequency shifts under compression of sto-
ichiometric and 5% MgO-doped LN are comparable. As
DWs in LN and LT can be represented in the first ap-
proximation as strained lattices, our investigation might
be helpful to understand the Raman signal of DWs. Fur-
ther studies of strained samples, concerning e.g., their
linear and non-linear optical response might further help
to characterize ferroelectric DWs.
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S1. OPTIMIZING THE MEASUREMENTS

In the stress cell, the samples are mounted onto two sample plates above a 1 mm gap.

This gap is the region where the maximum strain is expected. The strain is gradually

transmitted through the epoxy to the sample. Therefore, finding an optimum location on

the samples is central for this work to achieve reproducible results.

In order to do so, we performed a series of optimization measurements. With the help

of Raman spectroscopy the distribution of the strain was measured along the length of the

sample (i.e. the strained axes), see Fig. S1(a). Here, a stoichiometric LN (sLN-x) sample was

compressed to the stress of −91.5 MPa along the crystallographic x-axis. To see the gradual

increase of the strain towards the center from both ends of the sample, the Raman spectra

were measured at 200 points over a 4 mm length of the sample with increments of 20µm. As

the E(TO6) phonon is one of the isolated peaks and also as demonstrated in the main text,

this phonon shows the strongest response to the stress, we now show the peak frequency of

the E(TO6) as a function of position. Indeed, the plot shows that the frequency of E(TO6)

mode increases towards the center of the compressed sLN-x and stays constant over ≈1 mm

length, indicating that the strain is transmitted to the sample through the epoxy and is

uniform in the center of the sample. Based on this result we decided to measure always in

the center of the 1 mm gap of the device, which is easily identified in the optical microscope.

One may also notice the two red colored arrows pointing to missing or shifted data points.

This was observed in all the phonon modes. These likely indicate dust particles sitting on

the sample surface. Such areas were avoided during subsequent measurements.

Furthermore, since the sample is sitting on top of the 1 mm gap, in order to investigate

a bending effect, depth scans on the same compressed sample at −91.5 MPa stress (sLN-x)

were performed, and the results were compared to a reference unstressed stoichiometric LN

sample, as shown in Fig. S1(b). To achieve the depth scan, the laser was focused at different

depths along the sample thickness. The first thing to notice is that the frequency of phonon

mode E(TO6) decreases with a slightly different slope when moving into the depth of both

the unstressed and stressed samples. The error bars in the unstressed sample are of the

same order of magnitude as the slope, indicating no strain inhomogeneity with depth for

the unstressed sample. On the other hand for the sample sLN-x compressed at −91.5 MPa,

∗ email: ekta.singh1@tu-dresden.de
† email: mike.pionteck@theo.physik.uni-giessen.de
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FIG. S1. Optimization of the measurement on sample sLN-x. (a) Line scan at -91.5 MPa. (b)

depth scan on unstressed and compressed sLN-x based on the response of the E(TO6) phonon

frequency. (c) Hysteresis behavior of the E(TO8) phonon mode with applied stress (σxx) applied

along the crystallographic x-axis during the first and following cycles. Here, after one initial cycle,

a reproducible behavior was established.

we observe a small but significant slope of (−3.87± 0.411)× 10−3cm−1µm−1, which can be

interpreted in terms of the sample is bent downwards. Such slight bends may be caused by

very small inhomogeneities in the mounting, variations in thickness, or width of the sample,

and cannot be avoided completely.

As each sample is mounted individually, it may bend slightly upwards or downwards,

which will cause a slight offset error in the frequency, as additional uniaxial stress is added

or subtracted. Assuming the determined depth dependency for this sample is an average

slope for up- or downward bends, we can use this to estimate the error that is caused by this

effect. Whenever a sample is bent, this will result in three distinct regions in the sample:

• At a line parallel to the horizontal center no bending strain will be experienced (neutral

line).

• The region above will experience compressive (tensile) strain for a downward (upward)

bending.

• In the region below the neutral line the behavior will be reversed.
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Our measurements were always performed at a depth of approximately 10µm with respect

to the top surface, as this region could be located easily. All the samples in this work

had thicknesses in the range of 100µm. Therefore, our measured spot was conservatively

estimated at about a 50µm distance from the neutral line. Therefore, if the sample is bent

up- or downwards, an additional frequency shift at each phonon is added. For example, for

the E(TO6) based on the depth dependency determined in the paragraph above this amounts

to an offset of 0.19±0.021 cm−1 at a stress of 91.5 MPa. If we now compare this value to the

error in the peak frequency due to fitting, which for the E(TO6) in the sample sLN-x, for

example, is ∆ω = 0.08 cm−1 then this is approximate twice the error for the largest stresses.

Please note, that this error will proportionally decrease for smaller applied forces, as the

bending will proportionally decrease as well. However, compared to the stress response of

the E(TO6) [see Table II in the main paper] this error is still small. For other phonons, a

similar relative error will be observed, as both the bending error and the stress-dependent

shift are proportional.

In addition to the strain inhomogeneity along the length and depth of the sample, we

expect that the hardening of the epoxy (during curing) may put the sample under stress even

before measurement, which may relax during measurement cycles. Indeed, we observed that

some phonon modes such as E(TO8) showed a hysteresis behavior. As seen from Fig. S1(c),

the first cycle shows hysteresis but typically after 3 cycles, the response was reproducible

within error limits. As mentioned earlier this behavior is a result of epoxy and indirectly

sample relaxation after the first cycle. Therefore, such a procedure was performed for each

sample.

In conclusion, these are three optimization steps that were always considered before

starting any measurement on a new sample.
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S2. YOUNG’S MODULUS CALCULATION FOR LITHIUM NIOBATE

Mechanical properties of a solid are described by the fourth rank elastic stiffness tensor

cijkl and the elastic compliance tensor sijkl. sijkl is the inverse of elastic stiffness tensor

(cijkl), i.e. sijkl = c−1ijkl. Both these tensors connect the symmetric and second rank strain

(εij) and stress (σij) tensors to each other. The stress is defined by force applied to a unit

area of material, while the strain is the relative change of length in a material. The SI unit

of the stress is given by Nm−2, while a strain is a unitless quantity. In the elastic regime,

cijkl and sijkl are connected to stress and the strain via Hooke’s law:

εij = sijklσkl

σij = cijklεkl
(S1)

Equation (S1) is written in a tensorial form, which can be simplified into matrix form

by using Voigt notation, where indices i, j, k, and l can take values from 1, 2, and 3 which

correspond to x, y, and z directions, respectively.

11 → 1 12 → 6 13 → 5

22 → 2 21 → 6 23 → 4

33 → 3 31 → 5 32 → 4

Since, the strain and the stress tensors are symmetric (ij = ji), the 81 components (34) of

the fourth rank stiffness and compliance tensor are reduced to 36 independent components,

where cijkl = cjikl = cjilk = cijlk. It is due to this fact that the elastic constants can be written

in 6× 6 matrix. This matrix can be further simplified to 21 independent components because

the stiffness coefficients are second-order derivatives of the mechanical energy density with

respect to strain components. The order in which the differentiation is taken does not affect

the energy density, which makes the stiffness coefficients symmetric as well.

Furthermore, the symmetries of a crystal can simplify these matrices even more with the

help of Neumann’s law [1]. In the case of ferroelectric LiNbO3 crystal, which belongs to the

trigonal crystal system and 3m point group, the final form of the matrices is given as follows

[1, 2].

Elastic stiffness matrix of LiNbO3
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c11 c12 c13 c14 0 0

c12 c22 c13 −c14 0 0

c13 c13 c33 0 0 0

c14 −c14 0 c44 0 0

0 0 0 0 c44 c14

0 0 0 0 c14
1

2
(c11 − c12)




Elastic compliance matrix of LiNbO3




s11 s12 s13 s14 0 0

s12 s22 s13 −s14 0 0

s13 s13 s33 0 0 0

s14 −s14 0 s44 0 0

0 0 0 0 s44 2s14

0 0 0 0 2s14 2(s11 − s12)




TABLE S1. The room temperature value of elastic compliance and stiffness coefficients at the

constant electric field for LiNbO3.

Compliance coefficients (×10−11 m2N−1 ) s11 s12 s13 s14 s33 s44

[3] 0.578 -0.101 -0.147 -0.102 0.502 0.170

Stiffness coefficients (×1011 Nm−2 ) c11 c12 c13 c14 c33 c44

[3] 2.03 0.53 0.75 0.09 2.45 0.60

The values of these coefficients are measured by Warner et.al., provided in table S1.

However, the stoichiometry of LiNbO3 is not provided by them in that paper [3]. Assuming

that the values of cijkl coefficients do not change dramatically for the 5% MgO-doped and

stoichiometric LiNbO3, the values given in table S1 have been used in this thesis for further

calculations of the Young’s Modulus. Using the matrix form of equation (S1), the stress and

the strain can be written as equation (S2) and (S3) as follows:

ε1 = s11σ1 + s12σ2 + s13σ3 + s14σ4

ε2 = s12σ1 + s22σ2 + s13σ3 − s14σ4
ε3 = s13σ1 + s13σ2 + s33σ3

ε4 = s14σ1 − s14σ2 + s44σ4

(S2)
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and

σ1 = c11ε1 + c12ε2 + c13ε3 + c14ε4

σ2 = c12ε1 + c22ε2 + c13ε3 − c14ε4
σ3 = c13ε1 + c13ε2 + c33ε3

σ4 = c14ε1 − c14ε2 + c44ε4

(S3)

FIG. S2. Distribution of the strain according to equation S2, when the compressive stress is applied

only along y-axis in LiNbO3 (σ1 = 0, σ2 6= 0, σ3 = 0). Green color represents unstrained and blue

color represents the strained shape of the rectangular shape crystal according to the equations (S2)

: (a) Normal strain ε1 and ε2 alone. (b) Normal strain ε3 alone. (c) Shear strain ε4 alone. (d) All

the strains from (a), (b), and (c) are combined together in a 3-dimensional image.

In order to get the Young’s Modulus along x-axis, we need the ratio E11 =
σ1
ε1

, which can

be obtained by dividing σ1 in equation (S3) by ε1, as follows.

E11 =
σ1
ε1

= c11 + c12
ε2
ε1

+ c13
ε3
ε1

+ c14
ε4
ε1

(S4)
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where
ε2
ε1

,
ε3
ε1

or
ε4
ε1

are quantities equal to the negative of Poisson’s ratio. These ratios

can also be obtained by using equation (S2). For uniaxial stress along the x-axis, all the

stress components except σ1 should be zero. Using this information one can calculate the

Poisson’s ratio of LiNbO3 as follows:

ν12 = −ε2
ε1

= −
(
s12
s11

)
= −

(−1.01

5.78

)
= 0.1747

ν13 = −ε3
ε1

= −
(
s13
s11

)
= −

(−1.47

5.78

)
= 0.254

ν14 = −ε4
ε1

= −
(
s14
s11

)
= −

(−1.02

5.78

)
= 0.17647

(S5)

Inserting these values in equation (S4) one can calculate Young’s Modulus along the x-

axis. The same method of calculation is applied to calculate the Young’s Modulus of LiNbO3

along the y and z axes, for values see table S2.

TABLE S2. Calculated Young’s Modulus of LiNbO3 along the x, y, and z crystallographic axes

E11 (GPa) E22 (GPa) E33 (GPa)

173.6 173.07 201.0
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S3. RESULTS

A. Experiment

In this section all the experimental slopes of compressed samples sln-x/y, 5Mg-LN-x/y/z

are provided in the tables S3, S5, and S6 respectively. Table S4 provides experimental

slopes of the tensile stress on sample sLN-x only.

TABLE S3. Experimental phonon frequency shift values ∆ω of stoichiometric lithium niobate

upon uniaxial compression along the x- and y-axis.

sLN-x (cm−1/GPa) sln-y (cm−1/GPa)

Phonon modes Z(XX)Z Z(XY)Z Z(YY)Z Z(XX)Z Z(XY)Z Z(YY)Z

A1(LO1) 2.13 ± 0.52 * 2.06 ± 0.58 4.61 ± 0.81 * 3.64 ± 1.89

A1(LO2) 3.29 ± 0.17 * 3.66 ± 0.17 4.58 ± 0.20 * 3.56 ± 0.60

A1(LO3) 0.39 ±0.94 * 0.29 ± 0.71 2.44 ± 1.11 * 1.62 ±

A1(LO4) 1.96 ± 0.21 * 2.32 ± 0.19 3.89 ± 0.19 * 2.95 ± 0.39

E(TO1) 0.7 ± 0.26 0.63 ± 0.26 1.98 ± 0.27 3.62 ± 0.36 3.44 ± 0.36 2.54 ± 0.35

E(TO2) 0.34 ± 0.17 0.26 ± 0.25 1.6 8± 0.16 3.16 ± 0.20 2.79 ± 0.20 0.9 ± 0.20

E(TO3) 1.28 ± 0.44 1.39 ± 0.65 1.67 ± 0.42 4.35 ± 0.6 3.35 ± 0.6 2.7 ± 0.62

E(TO4) 2.12 ± 0.35 1.56 ± 0.59 3.02 ± 0.4 2.59 ± 0.4 2.56 ± 0.4 1.39 ± 0.39

E(TO5/6) 6.36 ± 0.98 6.25 ± 1.5 8.17 ± 0.87 7.43 ± 1.06 6.41 ± 1.06 5.28 ± 1.16

E(TO7) 0.44 ± 0.37 0.86 ± 1.51 1.24 ± 0.22 1.97 ± 0.39 0.94 ± 0.39 0.71 ± 0.47

E(TO8) -0.47 ± 0.3 0.37 ± 0.36 3.03 ± 0.27 4.93 ± 0.27 3.87 ± 0.27 1.89 ± 0.41
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TABLE S4. Experimental phonon frequency shift values ∆ω of stoichiometric lithium niobate

upon uniaxial tension along the x-axis.

Tension sLN-x (cm−1/GPa), Z(YY)Z

A1(LO1) A1(LO2) A1(LO3) A1(LO4) E(TO1) E(TO2) E(TO3)

-3.92 ± 2.39 -2.35 ± 0.57 0.35 ± 2.6 -1.2±0.55 -4.04 ± 0.93 -2.01± 0.6 -3.01±1.72

E(TO4) E(TO5/6) E(TO7) E(TO8)

-2.7 ±1.35 -8.15 ± 2.88 -0.86 ± 0.81 -6.01 ±0.85

σxx

sL
N
-x

compression

tension

FIG. S3. E(TO6) phonon response under compression and tension along the x-axis in Z(YY)Z

scattering geometry.
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TABLE S5. Experimental phonon frequency shift values ∆ω of 5% MgO-doped lithium niobate

upon uniaxial stress along the x- and y-axis.In the case of 5% MgO-doped LN, many peaks overlap

with each other, therefore extracting the peak frequency with an acceptable error was not possible.

This is represented by ’-’ sign.

5Mg-LN-x (cm−1/GPa) 5Mg-LN-y (cm−1/GPa)

Phonon modes Z(XX)Z Z(XY)Z Z(YY)Z Z(XX)Z Z(XY)Z Z(YY)Z

A1(LO1) - * - - * -

A1(LO2) - * - - * -

A1(LO3) - * - - * -

A1(LO4) 3.07 ± 0.83 * 3.79 ± 0.8 2.49 ± 0.42 * 2.09 ± 0.45

E(TO1) 0.71 ± 0.35 1.05 ± 0.22 2.68 ± 0.29 1.88 ± 0.14 1.85 ± 0.22 1.56 ± 0.18

E(TO2) -0.51 ± 0.45 -0.63 ± 0.52 1.52 ± 0.3 1.64 ± 0.22 0.77 ± 0.33 0.83 ± 0.3

E(TO3) - - - - - -

E(TO4) - - - - - -

E(TO5/6) 0.71 ± 0.35 1.05 ± 0.2 2 2.68 ± 0.29 1.88 ± 0.14 1.85 ± 0.22 1.56 ± 0.18

E(TO7) - - - - - -

E(TO8) -0.29 ± 0.8 1.66 ± 0.69 4.32 ± 0.67 2.46 ± 0.39 2.23 ± 0.59 1.06 ± 0.48
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TABLE S6. Experimental phonon frequency shift values ∆ω of 5% MgO-doped lithium niobate

upon uniaxial compression along the z-axis.

5Mg-LN-z (cm−1/GPa)

Phonon modes X(ZZ)X X(YZ)X X(YY)X

A1(TO1) -2.47 ± 0.63 * -2.53 ± 2.8

A1(TO2) 3.72 ± 0.70 * 2.97 ± 2.17

A1(TO3) 2.23 ± 4.44 * -0.09 ± 0.70

A1(TO4) -2.46 ± 0.14 * -3.46 ± 0.30

E(TO1) * 0.2 ± 0.22 -0.07 ± 0.27

E(TO2) * 0.3 ± 0.26 0.54 ± 0.75

E(TO3) * 0.72 ± 0.87 0.07 ± 0.37

E(TO4) * 2.7 ± 0.46 -1.91 ± 5.84

E(TO5/6) * 0.36 ± 1.15 0.94 ± 3.19

E(TO7) * 3.58 ± 1.31 3.83 ± 0.3

E(TO8) * 3.38 ± 0.31 3.08 ± 2.95
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B. Theory

In order to compare the calculated phonon frequencies in unstrained LN and LT with

Ref. [4], they are displayed in Table S7 and S8. In addition, Table S9 and S10 show all the

slopes of LN and LT under uniaxial compressive and tensile strain.

TABLE S7. Calculated frequencies of the Raman active phonon modes in unstrained LN in com-

parison with calculated and measured frequencies of Ref. [4].

Phonon mode Theory [cm−1] Theory [cm−1] [4] Exp. [cm−1] [4]

A1(TO1) 242 239 252–255

A1(TO2) 282 289 275–276

A1(TO3) 350 353 333–334

A1(TO4) 613 610 633

E(TO1) 150 148 150–151

E(TO2) 216 216 237

E(TO3) 265 262 262–263

E(TO4) 319 323 320–321

E(TO5) 372 380 367–369

E(TO6) 384 391 367–369

E(TO7) 420 423 432

E(TO8) 577 579 580–581

E(TO9) 668 667 664
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TABLE S8. Calculated frequencies of the Raman active phonon modes in unstrained LT in com-

parison with calculated and measured frequencies of Ref. [4].

Phonon mode Theory [cm−1] Theory [cm−1] [4] Exp. [cm−1] [4]

A1(TO1) 200 209 209–210

A1(TO2) 255 286 256–257

A1(TO3) 369 376 359–360

A1(TO4) 578 591 600

E(TO1) 139 144 143

E(TO2) 193 199 210

E(TO3) 247 253 254–257

E(TO4) 313 319 315–317

E(TO5) 370 409 383-384

E(TO6) 384 420 383-384

E(TO7) 452 459 460-465

E(TO8) 579 590 592

E(TO9) 658 669 661-662
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TABLE S9. Calculated slopes of transversal A1 and E modes of LN under compressive and tensile

strain in the x, y and z direction for strains in steps of 0.2 % in cm−1/%. The slopes for strain are

defined as (∆ω)/(|∆ε|).

compressive strain (cm−1/%) tensile strain (cm−1/%)

Phonon modes x direction y direction z direction x direction y direction z direction

A1(TO1) 1.31 1.15 -2.97 -2.87 -2.76 2.59

A1(TO2) 3.64 3.83 4.44 -4.78 -5.04 -5.20

A1(TO3) 5.18 4.47 0.65 -7.08 -5.76 -0.32

A1(TO4) 3.95 3.87 -4.91 -3.79 -3.61 5.36

E(TO1) 0.68/3.26 3.25/0.83 -0.61 -1.56/-3.37 -3.58/-1.57 0.30

E(TO2) 1.52/0.32 -0.70/2.36 -2.55 -3.69/-0.04 -1.19/-1.51 1.14

E(TO3) 1.09/2.24 1.34/2.21 0.50 -4.40/-1.56 -2.99/-3.06 -0.53

E(TO4) 2.19/1.98 2.03/2.12 2.40 -3.42/-1.65 -1.55/-3.29 -2.56

E(TO5) 6.58/6.09 6.73/6.55 -0.68 -9.57/-13.57 -13.97/-11.17 1.29

E(TO6) 12.84/12.39 13.00/11.86 -0.94 -4.93/-3.76 -2.57/-5.68 1.12

E(TO7) 4.18/2.72 4.12/2.01 4.75 1.01/-1.52 0.98/-1.43 -4.08

E(TO8) 3.63/0.91 3.75/1.00 3.35 -0.67/-4.51 -1.17/-4.33 -2.57

E(TO9) 1.36/4.94 5.41/0.91 0.90 0.70/-5.12 -4.67/0.19 -0.52
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TABLE S10. Calculated slopes of transversal A1 and E modes of LT under compressive and tensile

strain in the x, y and z direction for strains in steps of 0.4 % in cm−1/%. The slopes for strain are

defined as (∆ω)/(|∆ε|).

compressive strain (cm−1/%) tensile strain (cm−1/%)

Phonon modes x direction y direction z direction x direction y direction z direction

A1(TO1) 3.16 3.11 -2.78 -2.40 -2.41 2.58

A1(TO2) 4.51 4.43 3.77 -3.66 -3.50 -3.93

A1(TO3) 4.84 3.87 1.71 1.51 -6.90 -1.60

A1(TO4) 3.98 1.92 -4.93 -4.64 -4.28 4.93

E(TO1) 1.32/1.45 1.82/0.98 -0.49 -0.55/-2.28 -1.87/-1.03 0.45

E(TO2) 2.68/0.91 0.22/3.45 -3.36 -3.96/-0.59 -1.84/-2.91 2.00

E(TO3) 2.62/2.45 2.79/2.40 -1.35 -2.19/-4.51 -4.18/-2.85 1.21

E(TO4) 2.73/2.40 2.88/2.18 1.59 -3.75/-3.07 -2.85/-3.62 -1.97

E(TO5) 7.39/8.31 9.28/7.34 -0.42 -5.70/-15.88 -16.06/-11.51 0.63

E(TO6) 14.82/13.58 14.46/14.06 -0.97 -8.04/-5.76 -4.54/-9.32 1.14

E(TO7) 0.83/2.02 2.12/0.72 4.32 -0.12/-1.35 -1.21/-0.21 -4.60

E(TO8) 4.65/1.54 4.99/3.26 5.28 -2.06/-1.25 -0.80/-3.01 -4.50

E(TO9) 4.06/3.45 4.05/3.41 3.18 -2.37/-3.26 -2.50/-3.09 -2.77
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