
Assessing Anonymized System Logs Usefulness for
Behavioral Analysis in RNN Models
Tom Richard Vargis1,*, Siavash Ghiasvand1,2

1Technische Universität Dresden, Germany
2ScaDS.AI Dresden/Leipzig, Germany

Abstract
System logs are a common source of monitoring data for analyzing computing systems behavior. Due to
the complexity of modern computing systems and the large size of collected monitoring data, automated
analysis mechanisms are required. Numerous machine learning and deep learning methods are proposed
to address this challenge. However, due to the existence of sensitive data in system logs their analysis
and storage raise serious privacy concerns. Anonymization methods could be used to cleanse the
monitoring data before analysis. However, anonymized system logs in general do not provide an
adequate usefulness for majority of behavioral analysis. Content-aware anonymization mechanisms such
as 𝑃𝛼𝑅𝑆 preserve the correlation of system logs even after anonymization. This work evaluates the
usefulness of anonymized system logs of Taurus HPC cluster anonymized using 𝑃𝛼𝑅𝑆, for behavioural
analysis via recurrent neural network models. To facilitate the reproducibility and further development
of this work, the implemented prototype and monitoring data are publicly available [12].

Keywords
System log analysis, Data usefulness, Time series analysis

1. Introduction

It is of great interest to monitor large computing systems’ behavior. This knowledge helps
to improve availability, reduce further damages caused by detectable failures, and diagnose
problems. Despite the independent functionality of computing nodes in large computing
systems, their behavior is highly dependent on other components of the computing system.
The hierarchical design (e.g., Fat tree topology) of large computing systems, such as high-
performance clusters (HPC), and the utilization of shared resources in such systems are the main
reason for behavioral dependency among the computing nodes. Furthermore, the strategies
employed to determine the usage of node sets to further enhance system performance (e.g.,
utilizing neighboring nodes) also have a direct impact on behavioral dependencies among
computing nodes. Earlier studies identified strong spatial and temporal correlations among
computing nodes of large computing systems [1].

In recent years, numerous automatic and semi-automatic behavioral analysis methods have
been proposed. These methods utilize various monitoring data such as data collected by
hardware sensors, system logs, batch system information, and user activity logs to detect and

International Workshop on Data-driven Resilience Research 2022, July 06, 2022, Leipzig, Germany
*Corresponding author.
" tom_richard.vargis@tu-dresden.de (T. R. Vargis); siavash.ghiasvand@tu-dresden.de (S. Ghiasvand)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

ar
X

iv
:2

21
2.

01
10

1v
1 

 [
cs

.L
G

] 
 2

 D
ec

 2
02

2

mailto:tom_richard.vargis@tu-dresden.de
mailto:siavash.ghiasvand@tu-dresden.de
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


predict the system behavior. Due to the complexity of large-scale computing systems and
their dynamic nature, identifying a system’s behavioral pattern is challenging. Furthermore,
sensitive information contained in the monitoring data (e.g., user activity logs), has raised
privacy concerns about the use of some analytical methods as well as the outsourcing of
analysis.

The anonymization method P𝛼RS [2] has been proposed to address the privacy concerns of
processing monitoring data containing sensitive information. Preliminary results indicate the
usefulness of such anonymized system logs for the detection of abnormal behaviors in HPC
systems via auto-encoders [3]. This study examines the effectiveness of using fully anonymized
system logs in one of the most commonly used models of recurrent neural networks (RNN)
for anomaly detection, namely Long short-term memory or LSTM. Due to the nature of these
analyses, a short return time, as well as a short training time, is required. Therefore, the model
needs to be kept as simple as possible, and it should be possible to train the model with as little
data as possible.

The remainder of this work is structured as follows: Section 2 provides an overview of using
deep learning methods for behavioral analysis, with a focus on LSTM. Section 3 describes the
monitoring data, the preprocessing steps, and the main parameters used in this work. The
fitness of the proposed model for this work is verified in Section 4. In Section 5 the results of
each experiment have been discussed. Finally, Section 6 concludes the work and specifies the
important future work directions.

2. Related works

Anomaly detection is a pivotal part of system log analysis and has been the subject of numerous
types of research. Among common deep learning models for anomaly detection, LSTM has
been widely employed due to its success in providing highly accurate predictions. Qicheng Ma
et al. in [4] and Min Du et al. in [5] modeled system logs as natural language sequences and
patterns were extracted from these sequences. This analysis was done to detect insider threats
and any deviations from these sequences were seen as a potential threat. A similar approach
was used in [6] which had a feature extraction algorithm like Word2vec and then employed an
LSTM for anomaly detection.

In [7] log patterns from heterogenous logs were extracted by clustering similar logs together
and from these patterns, sequential features over time were extracted. These features over
time were finally passed through LSTM to detect failures. Log parsing and feature extraction
followed by two LSTMs and an Autoencoder was introduced in [8] for failure detection. An
abnormal instance usually manifests itself as an outlier that significantly deviates from such
patterns. Zhuangbin et. al. concluded that log semantics indeed improves models’ robustness
against noises.

Hao Chen et al. in [9] proposed a novel semantic information embedding technique to detect
anomalies. Some keywords in log entries may represent the meaning of the entire system logs.
A CNN combined with the LSTM approach not only learns semantics but also the quantitative
feature from the log count vector. A slightly different approach is proposed in [10]. Yixin et. al.
in addition to the deep learning model takes a step further by closely examining the timestamps



of the log data which majority of existing studies have generally ignored. Yixin et. al. propose to
integrate log timestamps in deep learning models using interpolation techniques. This addition
was proved to improve the ultimate accuracy of failure detection.

The above-mentioned studies deliver a detection accuracy of greater than 93%1. Whilst
some of these approaches use a supervised method where predefined ground truth is set as
the pattern and any deviation from these were classified as an anomaly, some others use an
unsupervised approach where patterns were identified from the extracted sequential features
by the monitoring data over time. The common point in all the above studies is the usage of
monitoring data in its original format. The existence of sensitive information in monitoring data
raises serious concerns in many use cases, the storage of monitoring data becomes challenging
and the outsourcing of analysis is not possible.

Conversely, to the aforementioned studies, the approach proposed in this work employs
fully anonymized system logs. Thus, eliminating all privacy concerns and making it possible
to outsource the entire log analysis process. On the other hand, the usage of anonymized
monitoring data makes the identification process increasingly challenging since the content of
the encoded logs cannot be retrieved.

3. Method and Data

Recurrent Neural Networks (RNN) are known to perform well on time series data. The model,
Long Short-Term Memory (LSTM) is a special type of RNN capable of learning dependencies
between the data and making sequential predictions. This work builds an LSTM model that
requires short memory of the past to identify and predict the pattern of upcoming log messages.
The log messages are anonymized in a pre-processing step based on the P𝛼RS mechanism [2].
This is achieved by classifying messages with similar patterns into a single class (pattern) and
then generating a unique hash key for each pattern. Both univariate and multivariate data were
tested on this model. The final goal is to assess the usefulness of anonymized system logs for
anomaly detection via LSTM models. Thus, it is essential to avoid unnecessary complexities.
To achieve this goal, a one-layer LSTM model followed by one dense layer was selected. The
Keras2 library was used to implement the model.

In this work, Adam is used as the optimizer and the Mean Absolute Error (MAE)is employed
as the loss function. Mean Squared Logarithmic Error (MSLE) is also used in the later parts of
the report. MSLE considers the relative difference between the real and the predicted value.
As the data used for the analysis is normalized, choosing MAE over MSLE is not expected to
make a notable difference to the error values. In the testing dataset, a point is classified as an
anomaly if the MAE loss goes beyond the specified threshold. Here the threshold is defined as
the maximum value of the MAE loss for the training dataset.

System Logging Protocol or Syslog is the common protocol used to send system logs or event
messages to a specific server, called a Syslog server. It is primarily used to collect various device
logs from several machines in a central location for monitoring and review. Syslog is available

1In controlled environment and with adequate data preparation steps, near to perfect accuracy is possible.
2Available at https://keras.io/about/.



in all Unix and Linux-based systems. As all the TOP5003 HPC systems are Linux-based (at the
time of writing), Syslog analysis applies to all HPC systems. The detailed specification of the
Syslog protocol is defined in RFC54244.

Taurus5 HPC cluster, located in Dresden, has around 2000 compute nodes including 750
GPUs and a total count of 80,000 CPU cores. Taurus is divided into several sections known as
Islands. Each Island has its specific hardware configuration. Island 8 of Taurus is powered by
AMD Rome CPUs and NVIDIA A100 GPUs. Thus, one of the most utilized islands on Taurus by
numerous users and for various applications. For this work, the system logs of first the 16 nodes
of Island 8 are used as the source of monitoring data. This selection is based on the idea that
Island 8 of Taurus is an active Island and the first 16 nodes are known to have shared resources.

For the multivariate model, four features were considered in a specified time bucket (eg: 10
min), namely the average severity, average facility, the frequency of top 10 messages6 from the
last 24 hours, and the frequency of non-top 10 messages from the last 24 hours.

Furthermore, for the univariate model two synthesized datasets, one with repetitive patterns
and the other with significant noises were examined. The goal of using synthesized datasets
was to identify the similarities in the model’s behavior based on the input data.

The model and the collected monitoring data have several adjustable parameters which can
be fine-tuned to improve the prediction accuracy. Table 1 provides a list of parameters used in
this work.

Parameter Possible values
Stateful Fixed
Node bucket Fixed (16 nodes Island8)
Learning rate 0.001, 0.01, 0.1
Epochs 20, 50, 100, 10000
Number of steps 2, 4, 6, 12
Time bucket 5 min, 10 min, 30 min
Cumulative Sum Yes, No
Normalization None, MinMax, Sigmoid
Number of top messages considered Top3, Top5, Top10

Table 1: List of metrics and hyper-parameters

The learning rate hyperparameter used in the training of the LSTM is given a value between
0.0 to 1.0. Four different learning rates [0.1,0.01,0.001,0.0001] were used in the first experiments.
However, to better observe the relevance and impact of learning rate7, the three larger rates
were used in most experiments. Although in the Keras8 framework, by default, LSTMs are
stateless, to consider dependencies between batches, the model needed to be stateful. The time

3https://top500.org
4https://datatracker.ietf.org/doc/html/rfc5424
5Detailed hardware information: https://tud.link/7y2h
6The top 10 classes of syslog messages with highest frequency.
7From various studies it is known that large values of learning rate may impose destructive impact on the learning
process.

8Available from https://keras.io/.



bucket shows the time interval in which the monitoring data is aggregated. For practical reasons
detecting anomalies with a delay of more than 30 minutes is not favorable. The number of steps
in principle is the memory of the LSTM. The model uses this number of steps to predict the
following step. For example, if the time bucket is given as 10 minutes and the number of steps
as 6, then 60 minutes of data is used to predict the next data point. Node bucket defines the
number of nodes selected from an Island on Taurus. Considering the significant similarity in
behavior of the neighboring nodes9 due to shared resources, the first 16 nodes of Island 8 are
taken for training the model.

Cumulative sum of the count of messages is an additional setup where the frequency features
are cumulatively summed up every hour. This accumulation amplifies the system logs’ hourly
pattern facilitating identification of the same by the model. Data is normalized either using the
MinMax scaler function which normalizes the dataframe according to the maximum value or
via a sigmoid function which adjusts the data to the scale of 0 to 1.

4. Model fitness

To evaluate the fitness of the proposed model for the intended purpose of this work, a synthesized
dataset with repetitive patterns was constructed. The synthesized dataset consisted of the first
10 Fibonacci numbers repeated 100 times. The proposed model was able to identify and learn
the repetitive pattern and predict the series with high accuracy as shown in Figure 1a.

12:00
Jan 9, 2022

14:00 16:00 18:00 20:00 22:00 00:00
Jan 10, 2022

0

0.2

0.4

0.6

0.8

1

actual
prediction

Frequency v/s Time

Time

N
or

m
al

iz
ed

 f
re

qu
en

cy

(a) Fibonacci dataset

12:00
Jan 9, 2022

14:00 16:00 18:00 20:00 22:00 00:00
Jan 10, 2022

0

0.2

0.4

0.6

0.8

1

actual
prediction

Frequency v/s Time

Time

N
or

m
al

iz
ed

 f
re

qu
en

cy

(b) Partially randomized

12:00
Jan 9, 2022

14:00 16:00 18:00 20:00 22:00 00:00
Jan 10, 2022

0

0.2

0.4

0.6

0.8

1

actual
prediction

Frequency v/s Time

Time

N
or

m
al

iz
ed

 f
re

qu
en

cy

(c) Detectable trends

Figure 1: Assessment of LSTM model using synthesized dataset

Furthermore, this data was slightly altered by having the first 10 Fibonacci numbers followed
by 10 random numbers from the range of 0 to 30. This set of 20 numbers was then repeated
100 times, to form the test dataset. Figure 1b shows that the model successfully recognized the
repetitive pattern of the Fibonacci part and resembled the random part of the data with a short
delay.

Finally, a random noise (in the range of 0 to 30) was added to the initial dataset and the same
model was trained using this new dataset. This time, as shown in Figure 1c the predictions lag
and, as expected, the model could only learn the general trend in data.

From these observations, it is concluded that the proposed model can learn patterns and
trends in data despite the small size of the dataset, and the low number of epochs. It is important
to note that most applications of log analysis (e.g. live anomaly detection) require a short
execution time. Therefore, using small datasets and a low number of epochs is highly favorable.

9also known as node vicinity [11]



Univariate
Time bucket 10-min 30-min
Number of steps 2 6 9 12 2 6 9 12
Batch size 134 78 89 622 125 27 206 123

Lr

Loss
value

Training
0.001

0.050 0.041 0.047 0.061 0.074 0.070 0.068 0.070
Validation 0.057 0.049 0.052 0.081 0.088 0.076 0.091 0.087
Training

0.01
0.051 0.038 0.033 0.044 0.069 0.055 0.058 0.058

Validation 0.057 0.042 0.037 0.058 0.083 0.065 0.079 0.066
Training

0.1
0.066 0.218 0.603 0.082 0.068 0.506 1.846 0.082

Validation 0.085 0.314 0.693 0.100 0.081 0.796 2.159 0.099

Multivariate
Epochs 50 100
Number of steps 2 6 2 6
Batch size 199 1 125 27

Lr

Loss
value

Train.
0.0001

0.147 0.124 0.145 0.121
Val. 0.114 0.077 0.113 0.079
Train.

0.001
0.149 0.113 0.139 0.092

Val. 0.112 0.074 0.109 0.080
Train.

0.01
0.140 0.114 0.145 0.115

Val. 0.105 0.085 0.108 0.078

Table 2: Comparison of loss values for varying learning rates and number of steps

5. Results and Discussions

Different combinations of parameters were tested for both univariate and multivariate datasets
to evaluate their impact on the model’s prediction. The results of both uni- and multivariate
datasets are shown in Table 2.

For the univariate dataset, in each experiment, one parameter takes different values from
the possible values, while the other parameters remain constant. The set of parameters used in
each experiment is shown as a tuple. The "*" represents the varying parameter.

Learning rate (Lr) [*, 100, 6, 10𝑚𝑖𝑛,𝑁𝑜,𝑀𝑖𝑛𝑀𝑎𝑥, 𝑡𝑜𝑝10]
While at a learning rate of 0.1 the model fails as expected (Figure 2a), it yields slightly better
predictions for a learning rate of 0.001 (Figure 2b).

12:00
Jan 9, 2022

14:00 16:00 18:00 20:00 22:00 00:00
Jan 10, 2022

0

0.2

0.4

0.6

0.8

1
actual
prediction

Frequency v/s Time

Time

N
or

m
al

iz
ed

 f
re

qu
en

cy

(a) Lr = 0.1

12:00
Jan 9, 2022

14:00 16:00 18:00 20:00 22:00 00:00
Jan 10, 2022

0

0.2

0.4

0.6

0.8

1
actual
prediction

Frequency v/s Time

Time

N
or

m
al

iz
ed

 f
re

qu
en

cy

(b) Lr = 0.001

Figure 2: Impact of learning rate on predictions (time bucket = 10 min)

Epochs [0.01, *, 6, 10𝑚𝑖𝑛,𝑁𝑜,𝑀𝑖𝑛𝑀𝑎𝑥, 𝑡𝑜𝑝10]
With a low number of epochs, e.g., 20 epochs, sometimes the error is not sufficiently small and
with large epochs, e.g., 100 or 200 epochs, the error starts to oscillate towards the end. There
is no significant change observed in model behavior for epochs beyond 100. A comparison
between 100 and 10000 epochs is shown in Figure 3. The overfitting problem with a large
number of epochs is visible in Figure 3b. Similar observations were made in all experiments.
Therefore, the decision was made to fix the epochs at 50 so that the error converges.



0 20 40 60 80 100
Epochs

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Lo
ss

Training loss
Validation loss

(a) Epoch = 100

0 250 500 750 1000 1250 1500 1750 2000
Epochs

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Lo
ss

Training loss
Validation loss

(b) Epoch = 10,000

Figure 3: Impact of different amount of epochs on loss value

Number of steps (Ns) [0.01, 50, *, 10𝑚𝑖𝑛,𝑁𝑜,𝑀𝑖𝑛𝑀𝑎𝑥, 𝑡𝑜𝑝10]
Although the number of steps is an adjustable parameter it is also connected to the time bucket
size. Six steps for a 10 min time bucket means that the model uses 60 minutes of data (6 rows of
data) to predict the next row. Training on a few steps, e.g., 2 steps, reduces the model’s memory.
Thus, instead of predicting future behavior, the model memorizes the patterns observed in
recent time steps. In contrast, using a large number of time steps, e.g., 12 steps, the model will
be able to generalize and predict the overall trend in data.

Time bucket [0.01, 50, 6, *, 𝑁𝑜,𝑀𝑖𝑛𝑀𝑎𝑥, 𝑡𝑜𝑝10]
The data collected within a time bucket of 5 minutes contains too many null values leading
to wrong predictions. The 10 and 30-minute buckets provide relatively better data (less null
values). In addition, Taurus’ behavior is highly dependent on the behavior of its users. Hence, it
shows hourly and daily patterns.

Cumulative Sum [0.01, 50, 6, 30𝑚𝑖𝑛, *,𝑀𝑖𝑛𝑀𝑎𝑥, 𝑡𝑜𝑝10]
There is a significant improvement in predictions when the cumulative sum is introduced in
any setup. This is possibly due to the hourly patterns (influenced by user activities) which are
known to exist within Taurus log messages.

Normalization [0.01, 50, 6, 30𝑚𝑖𝑛, 𝑌 𝑒𝑠, *, 𝑡𝑜𝑝10]
Using non-normalized data versus MinMax scaled data, slightly changes the final output.
Sigmoid normalization does not improve the predictions hence, these are excluded. Since an
effective improvement cannot be detected, the data in this work is always normalized with the
MinMax scaler.

Number of top messages considered [0.01, 50, 6, 30𝑚𝑖𝑛, 𝑌 𝑒𝑠,𝑀𝑖𝑛𝑀𝑎𝑥, *]
The choice of the number of top messages slightly influences the predictions. Considering
fewer top messages makes the predictions marginally better. However, this improvement is not
significant enough to vary this parameter.



Univariate data From the above observations the parameter list to be varied is narrowed
down to the Learning rate, Time bucket, and Number of steps. Both time buckets of 10 minutes
and 30 minutes are considered. The learning rate and the number of steps are varied among the
selected range. The batch size is automatically selected by the code so that the model remains
stateful.

The first observation made based on data collected in Table 2 is the role of different learning
rates in prediction accuracy. Regardless of the number of steps and the size of the time bucket,
using a high value of learning rate (0.1), as shown in Fig. 4a the model fails to learn the pattern
of events as expected. A high learning rate causes the model to take larger steps during the
learning phase thus, it might converge to a suboptimal solution much quicker.

12:00
Jan 9, 2022

14:00 16:00 18:00 20:00 22:00 00:00
Jan 10, 2022

0

0.2

0.4

0.6

0.8

1
actual
prediction

Frequency v/s Time

Time

N
or

m
al

iz
ed

 f
re

qu
en

cy

(a) Lr = 0.1, Ns=6

12:00
Jan 9, 2022

14:00 16:00 18:00 20:00 22:00 00:00
Jan 10, 2022

0

0.2

0.4

0.6

0.8

1
actual
prediction

Frequency v/s Time

Time

N
or

m
al

iz
ed

 f
re

qu
en

cy

(b) Lr=0.001, Ns=2

Figure 4: Importance of learning rate and number of steps (time bucket = 10min)

The learning rate of 0.001, on the other hand, slows down the learning process. Thus, with
the given number of epochs, the model fails to make any meaningful predictions based on the
learned information. For the learning rate of 0.001, the model is seen to have very limited
memory. Thus only replicates the very recent steps as shown in Fig. 4b. Although this behavior
diminishes slightly as more time steps are considered, it does not improve the model to a
noticeable extent. For any choice of the number of steps, a learning rate of 0.01 gives fairly
good results among the three choices of learning rates.

12:00
Jan 9, 2022

14:00 16:00 18:00 20:00 22:00 00:00
Jan 10, 2022

0

0.2

0.4

0.6

0.8

1
actual
prediction

Frequency v/s Time

Time

N
or

m
al

iz
ed

 f
re

qu
en

cy

(a) Lr=0.01, Ns=9

12:00
Jan 9, 2022

14:00 16:00 18:00 20:00 22:00 00:00
Jan 10, 2022

0

0.2

0.4

0.6

0.8

1
actual
prediction

Frequency v/s Time

Time

N
or

m
al

iz
ed

 f
re

qu
en

cy

(b) Lr=0.01, Ns=6

Figure 5: Impact of number of steps on predictions

Since for the majority of log analysis applications, a fast-learning model is required, in this
work, the number of epochs and the learning rate are intentionally capped. Therefore, although



it is possible to further reduce the learning rate, this is not favorable as it requires a significantly
larger number of epochs, which in turn extends the entire learning period.

Number of steps (Ns) also plays an equally important role in the model’s accuracy. If too few
or too many steps (e.g., 2 or 12) are considered, the model has almost no proper memory of the
events. Using these setups the model either projects the recently seen values as its predictions,
or it predicts the overall trend in data. This behavior is observed for all learning rates. The
best results as shown in Figure 5a and Figure 5b are achieved in 6 and 9 steps. Although the
prediction lags at certain points, in general, the model provides acceptable predictions.

Traces of routine system operations that typically occur in one-hour cycles are recorded
in system logs. Therefore, observing a more accurate prediction based on the last 6 steps (60
minutes) was not unexpected. Similar observations were made for the 30-minute time bucket.
Compared to the coarser time buckets, the 10-minute bucket provides better prediction accuracy.
Fig. 6 illustrates an overview of the final results.

0 10 20 30 40 50
Epochs

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Lo
ss

Training loss
Validation loss

(a) Lr=0.001,Ns=2

0 10 20 30 40 50
Epochs

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Lo
ss

Training loss
Validation loss

(b) Lr=0.001,Ns=6

0 10 20 30 40 50
Epochs

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Lo
ss

Training loss
Validation loss

(c) Lr=0.001,Ns=9

0 10 20 30 40 50
Epochs

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Lo
ss

Training loss
Validation loss

(d) Lr=0.001,Ns=12

0 10 20 30 40 50
Epochs

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Lo
ss

Training loss
Validation loss

(e) Lr=0.01,Ns=2

0 10 20 30 40 50
Epochs

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Lo
ss

Training loss
Validation loss

(f) Lr=0.01,Ns=6

0 10 20 30 40 50
Epochs

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Lo
ss

Training loss
Validation loss

(g) Lr=0.01,Ns=9

0 10 20 30 40 50
Epochs

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Lo
ss

Training loss
Validation loss

(h) Lr=0.01,Ns=12

Figure 6: Variation in loss plot for 10 min bucket with changing learning rates and and number
of steps

Multivariate data The multivariate setup requires different parameter combinations in
comparison to the univariate setup. Therefore, similar experiments were done to evaluate
the usefulness of anonymized system logs for multivariate analysis via the LSTM model. The
outcome of multivariate analysis using the provided parameters is shown in Table 2.

As expected, using 6-time steps provides better results compared to using only 2 time steps.
This is intuitive as with 2-steps the model has limited memory and has a lagging prediction.
Although the training and validation loss gets slightly better with different adjustments, none
of these setups result in a sufficiently accurate model as seen for the univariate dataset.

Automatic hyperparameter optimization: To further optimize the set of hyperparameters
for the model, additional testing was done on the univariate data using the Keras Tuner10 library.

10Available at https://keras.io/keras_tuner/



According to Figure 5a, the bucket size of 10 minutes and 9 steps were chosen for this experiment.
The same model as defined in Section 4 was employed. The learning rate was varying between
0.0001 and 0.001 and the mean squared logarithmic error (MSLE) was chosen as the loss function.
It is worth mentioning that MSLE was used for the Keras tuner as using other loss functions
resulted in the model getting stuck in a local minimum.

In addition, to explore the impact of model complexity, the number of LSTM layers in
the proposed model was alternating between 1 and 3 layers. To assure the correctness and
completeness of the observations, the number of epochs was also increased to 1500. Figure 7
provides an overview of the outcome in various setups.

0 200 400 600 800 1000 1200 1400
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

Training loss
Validation loss

(a) Lr=0.0001, 1-L

0 200 400 600 800 1000 1200 1400
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ss

Training loss
Validation loss

(b) Lr=0.001, 1-L

0 200 400 600 800 1000 1200 1400
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ss

Training loss
Validation loss

(c) Lr=0.0001, 3-L

0 200 400 600 800 1000 1200 1400
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Lo
ss

Training loss
Validation loss

(d) Lr=0.001, 3-L

Figure 7: Loss plots for 10 min bucket and 9 steps over 1500 epochs.

The best model with 128 neurons and a learning rate of 0.0006 selected by the Keras tuner
did not provide any significant improvement compared to the initial setup, built by manual
experiments. Furthermore, additional layers of LSTM did not improve the predictions. In a
single-layer setup, overfitting of the model after 100 epochs confirms the correctness of choosing
less number of epochs for the provided dataset.

An interesting observation made from Figure 7b is the presence of a mirroring effect on
training and validation loss. This could be an indication of noises in the monitoring data. Thus,
further pre-processing steps might be necessary to improve the accuracy of models trained by
anonymized system logs.

Finally, it can be concluded that univariate analysis is more effective for training LSTM
models using anonymized system logs encoded via the 𝑃𝛼𝑅𝑆 anonymization method. Despite
the improvements observed for varying setups, generally, the effect of training is missing which
can be seen from most of the loss plots. This could be a consequence of the anonymization done
on the data. However, the usefulness of this data for anomaly detection can still be confirmed
from this analysis.

6. Conclusion and future works

This work provided a comprehensive assessment on the usefulness of fully anonymized moni-
toring data for anomaly detection using LSTM models. System logs due to their availability on
current HPC systems and their information richness are desired monitoring data for behavioral
analysis. In addition, conclusions derived from Syslog analysis can be generalized to a wide
range of computing systems. To address the privacy concerns raised due to the existence of
sensitive data in system logs, the 𝑃𝛼𝑅𝑆 anonymization mechanism is applied. 𝑃𝛼𝑅𝑆 preserves
the similarity of system logs while encoding them into a stream of hashed messages. Based on



previous works, it was known that 80% of the system logs on Taurus are generated by the top 10
most frequent patterns. The normal behavior of the system is expected to be dictated by these
highly frequent patterns. Therefore, the frequency of appearance of the top 10 patterns among
resulting anonymized system logs, calculated within a specified time bucket, was chosen as the
quantitative metric. An unsupervised machine learning model, namely LSTM was chosen. The
size of the model, the amount of required data, and the number of epochs were kept to their
minimum, to match the dynamic nature of HPC monitoring data. The selection of effective
hyper-parameters was made rationally by considering the prior information. The prototype
was implemented in Python using Keras. The python code, Syslog data, and information on
how to reproduce this work are available at [12].

According to the analysis, the system logs anonymized by 𝑃𝛼𝑅𝑆, despite the complete
concealment of log information, are still usable even in the simplest LSTM models for behav-
ioral analysis. Therefore, the usefulness of such anonymized data for anomaly detection via
LSTMs is confirmed. However, the best model found after fine-tuning was seen to predict
the pattern to a certain extent but not with significantly high accuracy, mainly caused by the
shortcomings present in the monitoring data. In future work, more quantitative data such as
power consumption and temperature variations will be added to the model, to further improve
the accuracy of behavioral analysis. Significant deviation from the identified normal systems
behavior could be the signal of potential anomalous behavior. However, defining the correct
criteria for such a threshold is a challenging topic which in future works will be addressed.
Furthermore, implementing a robust pipeline for anomaly detection is planned.

Acknowledgments

This work was supported by the German Federal Ministry of Education and Research (BMBF,
01/S18026A-F) by funding the competence center for Big Data and AI "ScaDS.AI Dresden/Leipzig".
The authors gratefully acknowledge the GWK support for funding this project by providing
computing time through the Center for Information Services and HPC (ZIH) at TU Dresden on
HRSK-II.

References

[1] Siavash Ghiasvand, Florina M. Ciorba, Ronny Tschüter, Wolfgang E. Nagel: Lessons Learned
from Spatial and Temporal Correlation of Node Failures in High Performance Computers,
24th Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing (PDP), pp. 377-381, Greece (2016)

[2] Siavash Ghiasvand, Florina M. Ciorba: Anonymization of System Logs for Preserving
Privacy and Reducing Storage, Future of Information and Communication Conference
(FICC), Singapore (2018)

[3] Siavash Ghiasvand: uPAD: Unsupervised Privacy-Aware Anomaly Detection in High Per-
formance Computing Systems, Proceedings of the 8th International Conference on Pattern
Recognition Applications and Methods (ICPRAM), pp. 852-859, Czech Republic (2019)



[4] Ma, Qicheng, and Nidhi Rastogi. "DANTE: Predicting Insider Threat using LSTM on sys-
tem logs." In 2020 IEEE 19th International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom), pp. 1151-1156. IEEE, 2020.

[5] Du, Min, Feifei Li, Guineng Zheng, and Vivek Srikumar. "Deeplog: Anomaly detection
and diagnosis from system logs through deep learning." In Proceedings of the 2017 ACM
SIGSAC conference on computer and communications security, pp. 1285-1298. 2017.

[6] Wang, Mengying, Lele Xu, and Lili Guo. "Anomaly detection of system logs based on natural
language processing and deep learning." In 2018 4th International Conference on Frontiers
of Signal Processing (ICFSP), pp. 140-144. IEEE, 2018.

[7] Zhang, Ke, Jianwu Xu, Martin Renqiang Min, Guofei Jiang, Konstantinos Pelechrinis, and
Hui Zhang. "Automated IT system failure prediction: A deep learning approach." In 2016
IEEE International Conference on Big Data (Big Data), pp. 1291-1300. IEEE, 2016.

[8] Chen, Zhuangbin, Jinyang Liu, Wenwei Gu, Yuxin Su, and Michael R. Lyu. "Experience
Report: Deep Learning-based System Log Analysis for Anomaly Detection." arXiv preprint
arXiv:2107.05908 (2021).

[9] Chen, Hao, Ruizhi Xiao, and Shuyuan Jin. "Unsupervised Anomaly Detection Based on
System Logs."

[10] Huangfu, Yixin, Saeid Habibi, and Alan Wassyng. "System Failure Detection Using Deep
Learning Models Integrating Timestamps With Nonuniform Intervals." IEEE Access 10
(2022): 17629-17640.

[11] Siavash Ghiasvand, Florina M. Ciorba: Anomaly Detection in High Performance Comput-
ers: A Vicinity Perspective, ISPDC, Netherlands (2019)

[12] Tom Richard Vargis. 2022. LSTM model on HPC Cluster monitoring data.
https://github.com/tomrv22/hpcmonitorcode.git


	1 Introduction
	2 Related works
	3 Method and Data
	4 Model fitness
	5 Results and Discussions
	6 Conclusion and future works

