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A B S T R A C T
This paper develops a Deep Reinforcement Learning (DRL)-agent for navigation and control of
autonomous surface vessels (ASV) on inland waterways. Spatial restrictions due to waterway
geometry and the resulting challenges, such as high flow velocities or shallow banks, require
controlled and precise movement of the ASV. A state-of-the-art bootstrapped Q-learning
algorithm in combination with a versatile training environment generator leads to a robust and
accurate rudder controller. To validate our results, we compare the path-following capabilities of
the proposed approach to a vessel-specific PID controller on real-world river data from the lower-
and middle Rhine, indicating that the DRL algorithm could effectively prove generalizability
even in never-seen scenarios while simultaneously attaining high navigational accuracy.

1. Introduction
According to a survey on the development of the global ocean surface robot market by BIS Research (2018), the

market for autonomous vessels is "expected to grow at the rate of 26.7% for the period 2024-2035". For autonomous
vessels to be integrated seamlessly into existing hybrid traffic, it is crucial to fulfilling their automated tasks with
high accuracy. This is especially true for spatially restricted inland waterways such as rivers, bights and canals. The
Directorate-General for Mobility and Transport (2023) of the European Commission emphasizes the importance
of inland waterway traffic and its development due to decreased costs and increased safety in comparison to other
modes of transport. To build on this directive, the present study is one of the first approaches to solving the path-
following problem for underactuated vessels on restricted waterways using deep reinforcement learning (DRL) and
under consideration of environmental influences. Breivik and Fossen (2004) stated, that, compared to other automated
systems, ships on inland waterways face additional challenges due to their environment (e.g., strong directional
currents, shallow banks) and underlying physics (e.g., underactuation, highly non-linear maneuvering models), leading
to a highly dynamic and stochastic operational environment. To overcome these hurdles, we incorporate water depth,
current direction, and speed into the agent’s perception, allowing it to navigate tight river turns safely.

In this paper, an ensemble-based DRL algorithm is used to develop a high-precision and generalizable path-
following controller for inland transportation vessels. The contribution to the field is as follows:

• We develop a tunable segmental generator to create realistic and diverse training environments specifically for in-
land waterways. The source code is publicly available as a GitHub repository via github.com/nikpau/sr-gen.

• We use a state-of-the-art bootstrapped DQN-based algorithm to generate robust and generalizable policies for
rudder control under varying external environmental disturbances.

• To demonstrate the generalizability and robustness of our approach, we validate the produced policies on real-
world data from the middle and lower Rhine.

The rest of the paper is organized as follows. Section 2 recapitulates current literature on the topic of path-following
and formalizes the problem. The kinodynamic ship-maneuvering model is detailed in Section 3 while section 4
introduces methodologies and how they are incorporated into the path-follower controller design. The fifth section sets
up a benchmark controller for validation and Section 6 applies the path-following results to various maritime scenarios
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and validates the controller on separate segments of the Rhine river. Section 7 performs a robustness analysis, and the
last section concludes.

2. Path-following for ASV
2.1. State of the art

The objective of path-following for ships demands a controller to generate steering commands that enable an
underactuated autonomous surface vessel (ASV) to follow a pre-defined path with minimal angular and spatial
deviation. The problem formulation for this study will only include rudder angles as control outputs while keeping
the engine revolutions constant.

According to Fossen (2011), an onboard path-following system requires three sub-systems to be implemented:
guidance, navigation, and control. To autonomously control a vessel, we require to know its current position
(navigation), planned trajectory (guidance), and a set of control actions to move towards its current goal (control).

Line-of-sight (LOS) guidance is one common approach in implementing directional awareness of the agent,
achieving convergence to the desired path. It has been successfully applied in various problem settings, as in Fossen
et al. (2003) and Fossen and Lekkas (2017) with traditional control approaches and Oh and Sun (2010) for a model-
predictive-control application. Vector field guidance (VFG) Nelson et al. (2007) is a different approach that uses a
global vector field encompassing the path to guide the vessel towards it, independent of the magnitude of deviation.
Woo et al. (2019) integrated VFG into a combined path-following and collision avoidance method.

After setting up a suitable guidance algorithm, the next step demands a control system. There are two main
methodological approaches to solving the path-following problem, analytic control, and reinforcement learning. As
part of the analytic control family, proportional-integral-derivative (PID) controllers are well understood, require few
computational resources and have successfully been used to develop path-followers in calm and disturbed waters. While
Moreira et al. (2007) achieved path-following using a LOS guidance system and PID controller for steering control,
Perera et al. (2014) used fuzzy logic to derive, and PID controller to execute sequential actions for path-following
but also collision avoidance of a small model vessel. Paramesh and Rajendran (2021) used PID control to navigate
a tanker along a given path under the influence of regular waves. PID performance, however, is vessel-dependent,
requires expert tuning and often is sensitive to external disturbances. More recent advances in control theory allow
for different approaches such as non-linear model-predictive-control Xia et al. (2013); Sandeepkumar et al. (2022),
backstepping control Zhang et al. (2017), or sliding mode control Liu et al. (2018).

Reinforcement Learning (RL) is based on agent-environment interaction, aimed at learning a correct set of actions
given some observed state. The actions taken by the agent are evaluated based on a hand-crafted reward function,
whose goal is to reinforce actions that bring the agent closer to its defined goal, ultimately finding a policy that solves
the problem optimally. Recently, interest in academia in using RL-based motion control has surged due to its ability
to tackle problems with high uncertainty and non-linear system dynamics. Various researchers, such as Shen and
Guo (2016), Martinsen and Lekkas (2018a) use a family of continuous-action algorithms in which the agent is free to
choose any action on the applicable range every time step. While this allows for a highly reactive policy, it is possible to
choose actions leading to unrealistic behavior, such as maximally opposing rudder angles on two successive time steps.
Discrete action solutions as discussed by Zhao et al. (2019); Amendola et al. (2019, 2020); Martinsen et al. (2020) often
share the identical drawback, leading some researchers to block the agent from choosing the next action until the last
one was performed subject to physical constraints of the vessel. While this approach is viable in restricting physically
impossible movements, it impairs the agent’s reactivity during the time of blockage. To mitigate this problem in this
study, we opted only to allow the agent to choose from actions within the vessel’s physical possibilities.
2.2. Path following on rivers

Contrary to the open sea, rivers pose additional navigational challenges mainly due to their limited spatial extent,
strong directional currents, shallow banks, and small path-curve radii.

Figure 1 depicts the heading-control setup used in this study. We assume a given path consisting of a discrete set of
𝐾 waypoints 𝑃𝑘 = (𝑥𝑘, 𝑦𝑘)⊤, 𝑘 ∈ {1,… , 𝐾}, where two consecutive waypoints 𝑃𝑘 and 𝑃𝑘+1 enclose the path heading

𝜒𝑃𝑘 = atan2(𝑦𝑘+1 − 𝑦𝑘, 𝑥𝑘+1 − 𝑥𝑘), (1)
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Figure 1: Heading control setup

Using such discrete waypoints, however, will produce discontinuous jumps in the desired path heading once the vessel
crosses the waypoint in front of it. To infer a continuous path heading during training, this study uses a distance-
dependent weighted sum of the current and next path segment heading:

𝜒𝐶𝑘 =
{

1 −
𝑥𝑒

𝑑(𝑃𝑘, 𝑃𝑘+1)
𝜒𝑃𝑘

}

+
{ 𝑥𝑒
𝑑(𝑃𝑘, 𝑃𝑘+1)

𝜒𝑃𝑘+1
}

, (2)

with 𝑑(𝑃𝑘, 𝑃𝑘+1) =
√

(𝑥𝑘 − 𝑥𝑘+1)2 + (𝑦𝑘 − 𝑦𝑘+1)2 being the Euclidean distance between two succeeding waypoints
and the along-track distance 𝑥𝑒 given by

𝑥𝑒 =
(

𝑥𝐴 − 𝑥𝑘
)

cos
(

𝜒𝑃𝑘
)

+
(

𝑦𝐴 − 𝑦𝑘
)

sin
(

𝜒𝑃𝑘
)

, (3)

using the current vessel position 𝐴 = (𝑥𝐴, 𝑦𝐴)⊤. Most vessel-related variables such as the vessel position, the along-
track error, cross-track error etc., are time-dependent. For simplicity, and to avoid clutter, we will drop the time index
𝑡 in this and the next section, i.e. we write 𝐴 = (𝑥𝐴, 𝑦𝐴)⊤ instead of 𝐴𝑡 = (𝑥𝐴,𝑡, 𝑦𝐴,𝑡)⊤.

There are two fundamental metrics to control for in a path-following scenario: Cross-track-error (𝑦𝑒) and heading-
error (𝜒𝑒). The cross-track-error normal to the path can then be found via

𝑦𝑒 = (𝑥𝐴 − 𝑥𝑘) sin(𝜒𝐶𝑘 ) + (𝑦𝐴 − 𝑦𝑘) cos(𝜒𝐶𝑘 ). (4)
From the cross-track-error, we can construct a vector field after Nelson et al. (2007) to determine the desired course as

𝜒𝑑 = tan−1(𝑐𝑦𝑒) + 𝜒𝑃𝑘 , (5)
where 𝑐 is a tunable hyperparameter controlling the speed of convergence of the vector field. Using the vessel’s current
heading 𝜓 and drift angle 𝛽 (see Figure 2), the course error calculates to

𝜒𝑒 = 𝜒𝑑 − 𝜓 − 𝛽. (6)
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Figure 2: Global and local coordinate systems.

The path-following objective is to generate control actions that move both cross-track error and course error to
zero.

3. ASV kinodynamics
3.1. Equations of motion

The present study uses the 3-degree-of-freedom MMG model of ship maneuvering Yasukawa and Yoshimura
(2015) to describe the autonomous vessel’s movement in the horizontal plane. The ASV is modeled as a rigid body
with a single propeller. This paper uses the coordinate system shown in Figure 2. The 𝑜0 − 𝑥0𝑦0𝑧0 coordinate system
corresponds to the earth-fixed water surface while the 𝑜− 𝑥𝑦𝑧 system is vessel-fixed with origin 𝑜 at midship and 𝑥, 𝑦
pointing towards the bow and starboard respectively, 𝑧 is pointing downwards. The center of gravity is at (𝑥𝐺, 0, 0)in the vessel-fixed coordinate system; total sway at the center of gravity then is 𝑣 = 𝑣𝑚 + 𝑥𝐺𝑟, with 𝑣𝑚 being the
sway velocity at midships and 𝑟 the turning rate. Surge velocity is denoted by 𝑢, thus total ship velocity is given by
𝑈 =

√

𝑢2 + 𝑣2𝑚, drift angle at midships by 𝛽 = tan−1(𝑣𝑚∕𝑢) and the heading 𝜓 by the angle between 𝑥0 and 𝑥.
The forces acting on the ship are decomposed as follows:

(

𝑚 + 𝑚𝑥
)

𝑢̇ −
(

𝑚 + 𝑚𝑦
)

𝑣𝑚𝑟 − 𝑥𝐺𝑚𝑟2 = 𝑋,
(

𝑚 + 𝑚𝑦
)

𝑣̇𝑚 +
(

𝑚 + 𝑚𝑥
)

𝑢𝑟 + 𝑥𝐺𝑚𝑟̇ = 𝑌 ,
(

𝐼𝑧𝐺 + 𝑥2𝐺𝑚 + 𝐽𝑧
)

𝑟̇ + 𝑥𝐺𝑚
(

𝑣̇𝑚 + 𝑢𝑟
)

= 𝑁,

⎫

⎪

⎬

⎪

⎭

(7)

where 𝑚 is the mass of the ASV, 𝑚𝑥 and 𝑚𝑦 are the added masses in 𝑥- and 𝑦-axis direction respectively, 𝑥𝐺 is the
longitudinal coordinate of center of gravity, 𝐼𝑧𝐺 is the moment of inertia, 𝐽𝑧 is the added moment of inertia, and 𝑟 is
the yaw rate.

Total forces of the left-hand-side of (7), 𝑋, 𝑌 ,𝑁 , are surge force, lateral force and yaw moment around midship
and consist of the following parts:

𝑋 = 𝑋H +𝑋R +𝑋P,
𝑌 = 𝑌H + 𝑌R,
𝑁 = 𝑁H +𝑁R.

⎫

⎪

⎬

⎪

⎭

(8)

The subscripts H,R,P describe forces acting on the hull, rudder and propeller respectively. Further implementation
details are deferred to the original paper by Yasukawa and Yoshimura (2015).
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Scale 1/5
Displacement 2500.8 𝑚3

Length between perpendiculars 64.0 𝑚
Width 11.6 𝑚
Block coefficient 0.81
Draft 4.16 𝑚
Rudder area 4.5 𝑚2

Propeller diameter 1.76 𝑚

Table 1
Principal particulars of a KVLCC2 L64-model tanker

3.2. Environmental forces
According to Fossen (2011, p. 39), vessel speed under the influence of currents becomes a relative speed 𝑈 =

√

(𝑢 − 𝑢𝑐)2 + (𝑣𝑚 − 𝑣𝑐)2 where 𝑢𝑐 and 𝑣𝑐 are the current component velocities in longitudinal and lateral direction.
The effects of shallow water on wake fraction, thrust deduction and flow-straightening coefficients are calculated

after Amin and Hasegawa (2010) while the effects on hydrodynamic derivatives are adapted using combined
formulations from Kijima and Nakiri (1990) and Ankudinov et al. (1990). A summary can be found at Taimuri et al.
(2020). The effects on the maneuverability of the vessel are demonstrated in a zigzag and turning maneuver test shown
in Figure 3. For the zigzag test, the vessel starts with an initial velocity 𝑈0 = 4.0𝑚∕𝑠, a rudder angle of 0◦ and an
arbitrary course 𝜓̄ − 𝛽 (This study uses 𝜓̄ − 𝛽 = 0). The rudder angle is increased by 5.0◦𝑠−1 until it reaches its
maximum value (10◦ or 20◦), at which it is held until the vessel’s course is changed by the same amount. The rudder
direction is then reversed with the same principle. For this test, currents are turned off. The turning maneuver test starts
with the same initial conditions as the zigzag test, however, the rudder angle is increased to 35◦ and held there for the
rest of the experiment. For both tests, we see impaired maneuverability for the vessel under shallow water conditions
(ℎ∕𝑑 = 1.2), which is to be expected and emphasizes the need for a precise controller on inland waterways.

The open-source implementation of the MMG dynamics used for this study can be found at Paulig (2022).
3.3. Vessel model

The vessel type used for simulation is a 1:5 scale model (L-64) of the KVLCC2 Tanker, as it has one of the most
well-understood dynamics publicly available. The ship’s principal particulars can be found in Table 1. We use a 1:5
scaling to mimic the dimensions and behavior of small- to medium-sized inland cargo vessels.

4. Reinforcement Learning framework
4.1. Fundamentals

RL is a subfield of machine learning in which an agent is trained to act in an environment such that it maximizes a
reward signal received from the environment Sutton and Barto (2018). Formally, the simulated environment is modeled
as a Markov Decision Process (MDP)Puterman (1994) described by the tuple ( ,, ,, 𝛾). At every time step 𝑡,
given a current state of the environment 𝑠𝑡 ∈  the agent executes an action 𝑎𝑡 ∈  according to a parameterized
policy 𝜋𝜃 ∶  → . After performing the action, the agent receives a reward 𝑟𝑡 ∈  and transitions to the next
state 𝑠𝑡+1 according to the state transition probability distribution  ∶  ×  ×  → [0, 1]. The return is defined as
the cumulative discounted reward 𝑅𝑡 = ∑𝑇

𝑖=𝑡 𝛾
𝑖−𝑡𝑟𝑖 from the current time step until the final time step of the episode

𝑡 + 𝑇 with 𝛾 ∈ [0, 1] being the discount factor that trades off the importance of immediate and later rewards. All the
contributions of the tuple ( ,, ,, 𝛾) for the path-following objective will be specified in Section 4.3.

The goal of RL is to find a policy that maximizes reward in the long-term starting from some initial state. Most
current algorithms use a state-action value function𝑄 ∶ × → ℝ to assign a value to each state-action pair such that
higher values represent pairs leading to a higher long-term reward.𝑄𝜋(𝑠, 𝑎) = 𝔼𝑠∼ ,𝑎∼𝜋(𝑅𝑡 ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) resembles
the expected discounted sum of rewards starting from state 𝑠, taking action 𝑎 and following policy 𝜋 afterwards. The
algorithmic foundation for this work is the Q-Learning algorithm Watkins and Dayan (1992) that uses the Bellman

Paulig, Okhrin (2023): Preprint submitted to Elsevier Page 5 of 20



Robust Path Following on Rivers

0 2 4 6 8 10 12
t * U0/L

40

20

0

20

40
An

gl
e[

]
10/ 10Z

h/d = 
h/d = 1.2

0 2 4 6 8 10 12
t * U0/L

40

20

0

20

40

An
gl

e[
]

20/ 20Z
h/d = 
h/d = 1.2
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(b) 35◦ starboard turning maneuver in deep and shallow water.
Initial velocity 𝑈0 = 4.0𝑚∕𝑠, steering rate Δ𝛿 = 5.0◦∕𝑠.

Figure 3: Zigzag and turning maneuver tests for water depth ℎ and ship draught 𝑑.

optimality equations Bellman (1957) to solve for the optimal Q-values 𝑄∗ satisfying

𝑄∗(𝑠, 𝑎) = 𝔼
{

𝑟𝑡 + max
𝑎𝑡+1∈

𝑄∗ (𝑠𝑡+1, 𝑎𝑡+1
)

∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎
}

, (9)

from which an optimal policy can be derived by 𝜋∗(𝑠) = argmax𝑎𝑄∗(𝑠, 𝑎). The Q-Learning update rule for a given
Q-value estimate 𝑄̂(𝑠, 𝑎) and learning rate 𝛼 is

𝑄̂
(

𝑠𝑡, 𝑎𝑡
)

← 𝑄̂
(

𝑠𝑡, 𝑎𝑡
)

+ 𝛼{𝜏𝑇 − 𝑄̂
(

𝑠𝑡, 𝑎𝑡
)

}, for 𝜏𝑇 = 𝑟𝑡+1 + 𝛾 max
𝑎𝑡+1∈

𝑄̂
(

𝑠𝑡+1, 𝑎𝑡+1
)

. (10)

To keep track of the Q-values, their value must be stored for each state-action pair, which is infeasible even for
moderately-sized environments. To overcome this limitation Mnih et al. (2015) introduced the DQN algorithm that
uses two neural networks as function approximators for Q-Value estimation. The second network is a frozen copy
of the first one that gets periodically updated to match the first. This contributes significantly to training stability, as
bootstrapping the next action’s Q-Value from the same network can lead to unpredictable behavior, especially in the
early stages of training.
4.2. Overestimation bias

One of the most often criticized problems of the Q-learning update rule in (10), is an overestimation bias. It is
induced through the fact, that the estimation of the bootstrapped target 𝜏𝑇 uses the maximum over all possible actions.
Because all Q-Values are approximations of their true expectation, some estimations are probably higher than the true
expected value Thrun and Schwartz (1993). This can lead to misjudgment during exploration, as states with falsely
attributed high Q-Values are taken into consideration more often, than the ones with falsely attributed low Q-Values.
Eventually, this inequality can overall lead to suboptimal policies.

Several approaches set out to mitigate this overestimation. Van Hasselt (2010) introduced Double Q-Learning,
replacing over- with underestimation by separating selection and evaluation of the maximum, thereby achieving
significant performance improvements in the deep-learning setup Van Hasselt et al. (2016).

The approach in this paper was proposed by Waltz and Okhrin (2022) and provides an extension of the bootstrapping
framework from Osband et al. (2016). The general idea is to rely on the ability of bootstrapping to provide measures
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Figure 4: Bootstrapped DQN architecture as proposed by Osband et al. (2016)

of accuracy for statistical estimates, which is usually achieved by resampling an original dataset with replacement and
calculating the statistics of interest using these bootstrapped samples.

In the DRL setting, this is translated into either maintaining several distinct Q-networks, each with its own target
network or using a single network with a shared core and several heads (see Figure 4). This work will use the latter
approach. The bootstrapping nature is achieved by randomly initializing the network heads and using a binary map
to determine which head is to be updated on the current iteration. Additionally, Waltz and Okhrin (2022) propose to
replace the maximum over all possible actions in the target with a kernel-based testing procedure. Suppose a network
with one common core and 𝐵 ∈ ℕ heads. Furthermore, let 𝜅 be a kernel function (in our study we use the Gaussian
cumulative distribution function Φ(⋅)). The target for the 𝑏𝑡ℎ head then becomes

𝜏𝑇 ,𝑏 = 𝑟 + 𝛾

[

∑

𝑎𝑡+1∈
𝜅
{

𝑇𝑄̂𝑏
(

𝑠𝑡+1, 𝑎𝑡+1
)

}

]−1
∑

𝑎𝑡+1∈
𝜅
{

𝑇𝑄̂𝑏
(

𝑠𝑡+1, 𝑎𝑡+1
)

}

𝑄̂𝑏
(

𝑠𝑡+1, 𝑎𝑡+1; 𝜃−𝑏
)

, (11)

where

𝑇𝑄̂𝑏
(

𝑠𝑡+1, 𝑎𝑡+1
)

=
𝑄̂𝑏

(

𝑠𝑡+1, 𝑎𝑡+1; 𝜃−𝑏
)

− max
𝑎𝑡+1∈

𝑄̂𝑏
(

𝑠𝑡+1, 𝑎𝑡+1; 𝜃−𝑏
)

√

V̂ar
{

𝑄̂𝑏
(

𝑠𝑡+1, 𝑎𝑡+1; 𝜃−𝑏
)

}

+ V̂ar
{

𝑄̂𝑏
(

𝑠𝑡+1, 𝑎∗; 𝜃−𝑏
)

}

, (12)

is a statistic for testing whether the selected action from head 𝑣 is not smaller than the maximum estimate for that head,
and the currently maximizing action

𝑎∗ ∈
{

𝑎 ∈  ∣ 𝑄̂𝑏
(

𝑠𝑡+1, 𝑎; 𝜃−𝑏
)

= max
𝑎𝑡+1∈

𝑄̂𝑏
(

𝑠𝑡+1, 𝑎𝑡+1; 𝜃−𝑏
)

}

(13)

In the following, we will stick with the naming of Waltz and Okhrin (2022) and call this algorithm KEBDQN. Further
implementation details are deferred to the original paper.
4.3. Controller design for inland ASVs

In this section, we describe the state, action and reward structure of the MDP used to model inland waterways
for this study. As described in Section 4.1, on every time step, 𝑡, the agent -our vessel- observes a state 𝑠𝑡 from the
environment and chooses to perform action 𝑎𝑡 according to its policy 𝜋𝜃 .

State space The state space 𝑠𝑡 =
(

𝑠𝑑𝑡
⊤ 𝑠𝑒𝑡

⊤
)⊤ is assumed to be fully observable and involves two parts: The first part

𝑠𝑑 =
(

𝑢𝑡, 𝑣𝑡, 𝑟𝑡, 𝛿𝑡, 𝑢𝑡−1, 𝑣𝑡−1, 𝑟𝑡−1, 𝛿𝑡−1
)⊤ , (14)

contains information about surge, sway and yaw rates and the rudder angle, 𝛿, at the current and previous time
steps. This way the agent can perceive the changes in dynamics resulting from different environmental conditions,
Paulig, Okhrin (2023): Preprint submitted to Elsevier Page 7 of 20
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for example, increased sway rates due to cross-current fields, or due to the agent’s actions. The second part encodes
information about the surroundings of the agent:

𝑠𝑒 =
(

𝑦̃𝑒,𝑡, 𝑦̃𝑒,𝑡−1, 𝜒𝑒,𝑡 𝜒𝑒,𝑡−1,
ℎ𝑡−𝑑
max(ℎ) , 𝛾𝑟𝑒𝑙

)⊤
, (15)

where ℎ𝑡 is the current water depth below keel, and 𝑑 is the ship draught, thus ℎ𝑡−𝑑
max(ℎ) is the remaining water under

keel normalized by the maximum depth possible in the environment. The current attack angle relative to the bow is
𝛾𝑟𝑒𝑙, and 𝑦̃𝑒,𝑡 = 𝑐1 tanh(𝑦𝑒,𝑡), with 𝑐1 being a tunable hyperparameter controlling the importance of the cross-track
error. The above cross-track-error scaling is done to stabilize training in later stages, as its magnitude exceeds all other
observations being measured.
Action space In this study we follow other researchers Moreira et al. (2007); Amendola et al. (2019); Zhao et al.
(2019); Amendola et al. (2020) and assume constant thrust by fixing the propeller rotation rate to 4.0𝑠−1 i.e. the agent
does not control its velocity, but its rudder angle. There are three possible actions 𝑎𝑡 ∈ {𝛿𝑡−1 − 2◦, 𝛿𝑡−1, 𝛿𝑡−1 + 2◦},
that either increase or decrease the rudder angle by two degrees or leave it as is. The admissible rudder range is
𝛿𝑡 ∈ {−20◦,−18◦,… , 18◦, 20◦}. The choice of a stepwise rudder change rather than choosing between fixed angles
avoids generating successive rudder commands of unrealistic magnitude, for example, {𝑎𝑡 = −20◦, 𝑎𝑡+1 = 20◦}, which
would lead to structural damage of the rudder.
Reward structure The reward the environment emits acts as an immediate measurement of the quality of the action
taken by the agent. To fulfill the path-following objective, minimal spatial and angular deviation from the given path
is intended. Therefore, the reward system includes three parts:

𝑅𝑡 = 𝜔1𝑅𝑦𝑒,𝑡 + 𝜔2𝑅𝜒𝑒,𝑡 + 𝑅aground,𝑡. (16)
The first part rewards closeness to the desired path, while the second guides the agent towards its desired course

as dictated by the underlying vector field. The terms are defined as:

𝑅𝑦𝑒,𝑡 = exp(−𝑐2|𝑦𝑒,𝑡|), (17)
and

𝑅𝜒𝑒,𝑡 = exp(−𝑐3|𝜒𝑒,𝑡|) (18)
If the water depth below the agent is less than 1.2𝑑, the agent will receive a negative reward defined by

𝑅aground,𝑡 =

{

−20 if ℎ𝑡 < 1.2𝑑
0 otherwise. (19)

The factor of 1.2 is used as a lower bound as the shallow-water correction terms for the hydrodynamic derivatives
Kijima and Nakiri (1990); Ankudinov et al. (1990) lead to unrealistic vessel behavior below this bound. If the vessel
advances to areas where the water depth falls below this threshold, the current episode is terminated. Preliminary
testing concluded that values of 𝑐2 = 0.1, 𝑐3 = 10, 𝜔1 = 0.6 and 𝜔2 = 0.4 yielded a reward structure sensitive to
cross-track error deviations of more than one ship width. Figure 5 shows a contour plot of the reward structure described
above. The selection of weights was chosen such, that cross-track deviations are penalized more quickly than course
deviations. This was done to allow the vessel to advance through curves and current fields with a non-zero drift angle
while still attaining high rewards.
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Figure 5: Reward contours for the path-following setup

4.4. Training environment generation
Since restricted waterways in general, and rivers in particular feature a wide variety of widths, lengths, riverbed

profiles, water depth distributions and current velocities, a robust agent needs to be trained in an equally diverse training
environment.

To generate arbitrary rivers we loosely follow the procedures in Fossen (2011, p. 255) by using an alternating
sequence of straight and curved segments of equal width 𝑤𝑆 , as shown in Figure 6. A given straight segment is
described by the tuple 𝑆𝑆 ∶= (𝜉, 𝑙), while each curved segment is defined by the triple 𝑆𝐶 ∶= (𝜉, 𝑟𝐶 , 𝜙), where 𝜉 is
the starting angle of the segment against the ordinate, 𝑙 is the length of the straight segment, 𝑟𝐶 is the radius of the
circle inscribing the curved segment, and 𝜙 is the angle by which we want the segment to curve (curvature).

A training environment is now build by chaining 𝑛 straight and curved segments together in an alternating fashion
to form a 𝑛-random river

Riv(𝑛) = (𝑆𝑆1 , 𝑆
𝐶
1 , 𝑆

𝑆
2 , 𝑆

𝐶
2 ,… , 𝑆𝑆𝑛 , 𝑆

𝐶
𝑛 ), (20)

by the following rules: The first angle 𝜉1 is initialized arbitrarily, in our study we use 𝜉1 = 0. All successive angles are
calculated by:

𝜉𝑘 = 𝜉1 +
𝑘−1
∑

𝑖=1
𝜙𝑖, (21)

for 𝑘 ∈ {1, 2,… , 𝑛}.
We additionally divide the entire 𝑛-random river into 𝑝 cross-sections 𝐶𝑗 = {𝑞1,𝑗 ,… , 𝑞𝑚,𝑗}, 𝑗 ∈ {1, 2… , 𝑝},

each holding 𝑚 supporting points 𝑞𝑖,𝑗 = (𝑥𝑞𝑖,𝑗 , 𝑦𝑞𝑖,𝑗 )
⊤, 𝑖 ∈ {1, 2… , 𝑚}. The set of all supporting points forms a

two-dimensional grid (see Figure 6, bottom right), which will be used for current field and water depth sampling.
On straight segments, the grid is equidistant such that 𝑑(𝑞𝑖,𝑗 , 𝑞𝑖,𝑗+1) = 𝑑(𝑞𝑖+1,𝑗 , 𝑞𝑖,𝑗), while for curved segments, the
distance between adjacent supporting points varies depending on the segment’s curvature.

For every cross-section 𝐶𝑗 , the water depth is sampled according to

ℎ𝑞𝑖,𝑗 = −ℎmax exp
{

−𝜖 ⋅ 𝑑(𝑞𝑖,𝑗 , 𝑞𝑀𝑗 )4
}

+ 𝜂, (22)

with random noise 𝜂 ∼  (0, 𝜎), maximum water depth ℎmax, and 𝜖, a parameter controlling the river wall steepness
and fairway width. 𝑞𝑀 is the middle point of a given cross-section 𝑗 such that 𝑑(𝑞1, 𝑞𝑀𝑗 ) = 𝑑(𝑞𝑚, 𝑞𝑀𝑗 ).
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Figure 6: Example river generated from five segments as described in Section 4.4. The bottom right view details a curved
river segment, showing the width of the segment 𝑤𝑆 , a cross-section, 𝐶𝑖 (see Figure 7 for a side-view), as well as an
example path comprised of four waypoints starting at 𝑃𝑘 and ending at 𝑃𝑘+𝑛.
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Figure 7: Cross-section view through a river segment. The distorted grey line resembles the depth-generation function with
added noise.

To induce a current field, for a given maximum current speed 𝜈𝑚𝑎𝑥, and a cross-section 𝐶𝑗 , we set the direction
of current for all supporting points in that cross-section to be 𝛾𝑞⋅,𝑗 = 2

𝑝𝜋𝑗 radians and the current speed to be
𝜈𝑞⋅,𝑗 = 𝖿 ( 2𝑝𝜋𝑗)𝜈𝑚𝑎𝑥 for all supporting points of𝐶𝑗 . The function 𝖿 ∶ ℝ → [−1, 1] can be an arbitrary continuous periodic
function, this study uses the cosine. By tying the current generation process to the number of cross-sections, two rivers
constructed from identical segments also share an identical current field, which is helpful in terms of reproducibility,
yet, since the segments are rotated at random on each generation iteration, the likelihood of constructing alike rivers
during training decreases exponentially with the number of segments.
4.5. Training

For training, we chose a discretization time-step of Δ𝑇 = 1𝑠 and an episode length of 2000 steps equating to
roughly 33 minutes in real-time. At the beginning of each episode, a random river is generated as described in 4.4. We
construct 𝑛 = 5 straight and curved segments with angles, radii, and lengths drawn uniformly from the following sets

𝜙 ∈ {±60◦,±61◦,… ,±100◦},
𝑟 ∈ {1000,… , 5000},
𝑙 ∈ {400,… , 2000}.

The value ranges for 𝑟 and 𝑙 are chosen such that they resemble real-world river behavior and avoid the construction of
unrealistically sharp turns or too short straights. During training, we sample values from each set with equal probability.
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Figure 8: Example rivers used for training, generated as in 4.4

We set𝑤𝑆 = 500𝑚, 𝑑(𝑞𝑘, 𝑞𝑘+1) = 20𝑚 and the maximum current velocity 𝜈 = 1.5𝑚𝑠−1; two example generated rivers
can be found in Figure 8.

At the beginning of each episode, the agent-vessel is placed at the outset of the first segment of the constructed
river with a heading equal to the current path heading plus some noise

𝜓0 = 𝜒𝑃0 + 𝑅, with𝑅 ∼  (−5◦, 5◦), (23)
an initial speed 𝑈0 = 4.0𝑚𝑠−1, and a fixed propeller rotation rate of 4.0𝑠−1. For this study, we use a network with one
common core and 10 heads. The core network is a multilayer perceptron with a single hidden layer containing 128
neurons. The heads follow the same structure as the core, with one hidden layer, each containing 128 neurons. During
training random batches of 128 transitions are sampled from a replay buffer of size 106, gradient updates are performed
by the Adam optimizer Kingma and Ba (2015) with a learning rate of 𝛼 = 5 × 10−4 and a discount rate of 𝛾 = 0.99.
Training has been conducted for 3×106 steps, the implementation framework for the KEBDQN is the TUD_RL package
Waltz and Paulig (2022) written in Python.

For comparison, we also trained a vanilla DQN alongside the KEBDQN. The DQN hyperparameter setup can be
found in the appendix, while Figure 9 summarizes the training of 15 different seeds per algorithm.

5. PID Benchmark
In preparation for the validation of our approach, we chose a PID rudder controller design for the KVLCC2 tanker

from Paramesh and Rajendran (2021) to serve as a performance benchmark. The original PID implementation is
tuned to the full-size vessel, therefore the provided gains cannot be used in this paper. To find the best possible PID
configuration for comparison against the DRL controller, we use a Particle Swarm Optimization (PSO) procedure with
random uniform inertia weights proposed by Eberhart and Shi (2000) to tune our PID controller. The rudder angle at
every time step evaluates to:
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point-wise confidence intervals. The theoretical reward limit is 2000.

0 100 200 300 400 500

40

20

0

Cr
os

s-
tra

ck
-e

rro
r

[m
]

No current
1ms 1 from bow
1ms 1 from stern

0 100 200 300 400 500
Time [s]

0.2

0.1

0.0

0.1

He
ad

in
g 

er
ro

r
[ra

d]

Figure 10: PID-response for achieving zero course error.

𝛿𝑡 = 𝐾𝑝𝜒𝑒,𝑡 +𝐾𝑑𝑟𝑡 +𝐾𝑖 ∫

𝑡

0
𝜒𝑒,𝑡d𝑡. (24)

Initial gains, 𝐾𝑝 = 2.96, 𝐾𝑑 = 19, 𝐾𝑖 = 0.03, have been found via a coarse grid search. The PSO algorithm used the
objective function

𝐽 (𝑡) = ∫

𝑡

0
𝜒2
𝑒,𝑡d𝑡 (25)

to solve for argmin𝐾𝑝,𝐾𝑖,𝐾𝑑 𝐽 (𝑡) which yielded 𝐾𝑝 = 2.81, 𝐾𝑑 = 64, 𝐾𝑖 = 0.0 as gains, thereby reducing the system to
a PD controller. We also used a different objective function with an additive term for minimum overshoot, yet the result
could not beat the simple procedure from above. The controller response was tested in three different scenarios. In all
three, the agent is set into a straight channel with a course error of 14◦ and a cross-track error of 50 meters. Responses
for no current, current to bow and stern can be found in Figure 10. Additionally, as with the RL agent, the maximum
change in rudder angle is limited to 2◦𝑠−1 to respect the structural integrity of the ASV.
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6. Simulation and validation
The policy found from training was simulated on several sections of the lower and middle Rhine as well as on

artificial scenarios checking for reactivity under harsh environmental changes. All experiments are enrolled for the
KEBDQN, PID and DQN approach for comparison.
6.1. Rhine river

The first scenario validates the performance on a near 180◦ degree turn on the lower Rhine close to Düsseldorf
harbor (51.22◦𝑁, 6.73◦𝐸), as it features one of the tightest turns in the lower Rhine. Figure 11 shows a map containing
the path to be followed, and the trajectories generated by each approach; the corresponding metrics are depicted in
Figure 12.
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Figure 11: 2D map of the 180-degree turn around Düsseldorf harbor. The lines represent the paths taken by our ASV
given the respective control approach. The dots represent equitemporally-spaced points with a distance of 30 seconds.
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Figure 12: Time series of relevant metrics for the Düsseldorf harbor scenario. The reward plot for the PID controller
is the reward it would have received if being judged by the same reward function as the RL-based controller.

The second validation scenario was selected on the middle Rhine. We chose a segment close to the Lorelei
(50.12◦𝑁, 7.73◦𝐸) which features one of the smallest widths on the river together with a fast succession of right
and left turns. The results can be seen in Figure 13 and 14. In both scenarios, the path was generated by selecting
the deepest point for every cross-section through the entire river and smoothing the result using two-dimensional
exponential smoothing.
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Figure 13: 2D map of the starboard turn near the Lorelei.
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Figure 14: Time series of relevant metrics for the Lorelei scenario. The reward plot for the PID controller is the reward
it would have received if being judged by the same reward function as the RL-based controller.

Analyzing the rudder commands generated for both scenarios, we observe relative similarity in magnitude and
direction, indicating that the DRL agents were able to learn a similar behavior as exerted by the PID controller.

Inspecting the cross-track error and course error for both scenarios, both controllers are again found to follow
akin patterns, however, the DRL controller reacts quicker, thus being able to achieve a maximum cross-track deviation
of 4.36𝑚 compared to 26.30𝑚 from the PID controller for the Düsseldorf harbor scenario, and 14.67𝑚 and 27.47𝑚
respectively for the Lorelei.

One of the major drawbacks of discrete RL-based controllers is the jittering of the rudder angle as seen in the
rudder commands in Figures 12 and 14, however, since the rudder steps in the RL approach are chosen such that the
structural limits of the ASV are respected, the jittering is not prone to damaging the rudder of the ASV if this algorithm
had been deployed in the real world. In earlier stages of research, we followed other authors Martinsen and Lekkas
(2018a,b), and added a penalty for changing rudder angles too quickly, concluding that less change in rudder angle
came at the cost of losing cross-track-error accuracy. Since we valued accuracy higher than slow rudder change, the
penalty term was removed.
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Figure 15: Straight-path-following experiment. Consecutive markers are each 30 seconds apart.

6.2. Straight paths
For maneuvers like berthing, docking, and locking or advancing through canals it seems natural to ask the vessel to

follow a straight line with very high accuracy. We will test this ability for the PID and DRL controller in a straight-path
scenario. We would expect the PID controller to achieve near-perfect convergence to the path, as any other result would
indicate a misconfigured set-point. As with the PID calibration, the vessel will be placed in a straight canal 50 and 20
meters starboard to the path with a course error of 14◦ and 5.7◦ respectively. Propeller revolutions are fixed to 4.0𝑠−1
and the initial velocity𝑈0 = 2.0𝑚𝑠−1. We assume no currents and a water depth to draught ratio of roughly ℎ∕𝑑 = 2.40.

The results from Figure 15 confirm our initial assumption about the PID controller. In comparison to our DRL
approach, the PID converges faster and more accurately, falling below one meter of cross-track error after 600𝑚 of
advance. The DRL rate of convergence seems to be dependent on the offset magnitude from the path. In the 20𝑚 offset
scenario, the KEBDQN performs similarly to the PID, while for the 50𝑚 offset the DRL agent has noticeable difficulties
returning to the path. We assume, that the agent rarely saw cross-track errors this large at the beginning of an episode
during training, therefore no convergence strategy could be developed.

7. Robustness analysis
7.1. Varying revolutions

To verify the robustness of our approach, both controllers were driven up and downstream through the entire lower-
and middle Rhine, each in a single episode. We did this once for a propeller revolution rate of 4.0𝑠−1, which is also the
frequency used for training, and another time using 5.0𝑠−1 to investigate the generalization capabilities of our approach.

The cross-track-error distributions achieved are depicted in Figure 17. For the downstream scenario we find
acceptable results for both controllers, whereby the DRL solution exerts significantly smaller variance, yet in the
downstream scenario, is biased towards starboard, for both 4.0𝑠−1 and 5.0𝑠−1. Interestingly, this bias does not appear
in the upstream scenarios, ruling out doubt about starboard-biased training, as we would expect to observe a bias
towards port for driving upstream. For the upstream scenario, the PID controller appears to be sensitive to changes
in ship velocity, with a tendency of becoming more stable for higher velocities. The inability of the PID controller to
stay on course at a slower speed and high current velocities to the bow (the middle Rhine features current velocities
of up to 2.4𝑚𝑠−1, and the lower Rhine up to 1.5𝑚𝑠−1), is likely due to misconfiguration of the PID controller for
such environments. The fundamental problem with PIDs is that it may be impossible to find a set of gains, optimally
controlling the rudder in dynamic environments featuring a wide range of external disturbances.

DRL approaches in contrast have the ability to adapt to more general cases, as they can rely on their experience
acquired from the training. Although the agents did not see current velocities above 1.5𝑚𝑠−1, they were trained to react
to those from every direction. This may lead to an additional environmental awareness, capable of achieving small
cross-track errors across varying external disturbances.
7.2. Noisy observations

To further explore the robustness of our approach against the PID controller, we decided to compare cross-
track-error performance under noisy sensor inputs. Impaired sensor measurements appear regularly in real-world
applications, thus posing a valuable platform to evaluate controller behavior.

We again chose the unaltered Düsseldorf scenario on the lower Rhine as in Section 6.1 but with added Gaussian
noise to the yaw-rate 𝑟̄𝑡 = 𝑟𝑡 + 𝜖𝑟, 𝜖𝑟 ∼  (0, 𝜎̄𝑟) and course error 𝜒̄𝑒𝑡 = 𝜒𝑒𝑡 + 𝜖𝜒𝑒 , 𝜖𝜒𝑒 ∼  (0, 𝜎̄𝜒𝑒 ). The standard
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Figure 16: Cross-track-error for 10 different attempts per controller with sensor noise. The shaded area for the noisy runs
resembles one standard deviation distance from the 10-run average. Clean runs are the same as in Figure 12 and have no
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deviations are calculated from the empirical distributions of yaw rate and course error obtained from driving the
KEBDQN controller through the entire river in a single episode and had been measured to be 𝜎̄𝑟 = 0.004 rad ⋅𝑠−1
and 𝜎̄𝜒𝑒 = 0.052◦. All other sensor inputs for the DRL approach are left unchanged.

The results in Figure 16 paint an ambiguous picture. On the one hand, we still observe greater accuracy in cross-
track error for the DRL controller, on the other hand, the deviation from the noise-free run is smaller for the PID
controller. We also did this for several other scenarios (available upon request), all with similar outcomes. Although
the variation in cross-track error for the PID controller under noisy inputs is smaller technically, the accuracy achieved
by the DRL controller remains higher.

Therefore, we can conclude, that in terms of sensor noise, our PID controller attains lower deviations from its
anticipated position contrary to the DRL system. However, the broader picture of robustness can be seen in favor of
the DRL controller, since it not only produces smaller absolute cross-track errors -even under noisy inputs-, it also
performed well under unseen propeller revolutions and very slow vessel advance rates.

8. Conclusion
ASV path-following on inland waterways poses several additional challenges compared to the open sea. The

present study addresses these challenges by using a state-of-the-art bootstrapped DQN algorithm to develop a robust
and versatile rudder controller for path-following on inland waterways. Optimal control approaches such as PID or
traditional DRL algorithms such as DQN showed inferior adaptability to the highly dynamic river environment,
especially for upstream scenarios with strong flow velocities to the vessel’s bow. We acknowledge that those approaches
can also generate rudder commands leading to accurate control of the ASV. Yet, they would require re-training or
reconfiguration to adapt to the versatile dynamics of restricted waterways. Furthermore, our paper neither considers
traffic nor dynamic changes in propeller revolutions, which may be oversimplified and should be addressed in future
research.
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Parameter Value

Number of hidden layers 2
Number of neurons per layer [256, 128]
Batch size 128
Discount factor (𝛾) 0.99
Loss function MSE
Replay buffer size 1.0 × 106
Optimizer Adam
Target network update frequency 1000 steps
Initial exploration rate (𝜖𝑖𝑛𝑖𝑡𝑖𝑎𝑙) 1.0
Final exploration rate (𝜖𝑓𝑖𝑛𝑎𝑙) 0.01
Exploration decay time 1.0 × 106 steps

Table 2
List of hyperparameters used to train the DQN.

A. DQN hyperparameters
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