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Forbidden Tournaments

and the Orientation Completion Problem∗

Manuel Bodirsky†1 and Santiago Guzmán-Pro‡1

1Institut für Algebra, TU Dresden

Abstract

For a fixed finite set of finite tournaments F , the F-free orientation problem asks whether
a given finite undirected graph G has an F-free orientation, i.e., whether the edges of G can
be oriented so that the resulting digraph does not embed any of the tournaments from F .
We prove that for every F , this problem is in P or NP-complete. Our proof reduces the
classification task to a complete complexity classification of the orientation completion problem

for F , which is the variant of the problem above where the input is a directed graph instead
of an undirected graph, introduced by Bang-Jensen, Huang, and Zhu (2017). Our proof uses
results from the theory of constraint satisfaction, and a result of Agarwal and Kompatscher
(2018) about infinite permutation groups and transformation monoids.

1 Introduction

For a fixed finite set of finite oriented graphs F , the F-free orientation problem asks whether a given
finite undirected graph G has an F-free orientation, i.e., whether the edges of G can be oriented so
that the resulting digraph does not contain any F ∈ F as an induced oriented graph. This problem
was first studied from a structural perspective: Skrien [41] proposed structural characterisations of
graphs that admit an F -free orientation, where F is a fixed set of oriented paths on 3-vertices. The
most notorious result in this direction that a connected graph G is a proper circular-arc graph if
and only if it admits a {({1, 2, 3}, {(1, 2), (1, 3)}), ({1, 2, 3}, {(2, 1), (3, 1)})}-free orientation [41].

From an algorithmic perspective, the F -free orientation problem can be easily reduced to 2-SAT
if F is a set of oriented paths on 3 vertices [3]. Later, in [31] the authors extended the previous
observation, and showed that for several sets of oriented graphs on 3 vertices the F -free orientation
problem is in P — leaving only open the symmetric cases

F = {({1, 2, 3}, {(1, 2), (1, 3)}), ({1, 2, 3}, {(1, 2), (2, 3), (3, 1)})}

and F = {({1, 2, 3}, {(2, 1), (3, 1)}), ({1, 2, 3}, {(1, 2), (2, 3), (3, 1)})}.
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of the European Union or the European Research Council Executive Agency. Neither the European Union nor the
granting authority can be held responsible for them.
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On the other hand, the Roy-Gallai-Hasse-Vitaver Theorem [27,32,39,42] implies that the k-colouring
problem can be interpreted as an F -free orientation problem, i.e., there is a finite set of oriented
graphs Fk such that a graph G is k-colourable if and only if it admits an Fk-free orientation. This
yields natural instances of NP-hard F -free orientation problems.

Recently, a thorough study of problems that stem from orientation problems was initiated by
Bang-Jensen, Huang, and Zhu [4]. For a fixed class of oriented graphs C, the orientation completion
problem asks whether a partially oriented graph G can be completed to an oriented graph in C
by orienting its non-oriented edges. In particular, given a finite set of oriented graphs F , the F-
free orientation completion problem generalises the F -free orientation problem. In [4], the authors
study the complexity of the orientation completion problem for several classes of digraphs such as
in-tournaments, local tournaments, and locally transitive tournaments. They show that for each of
these classes, the orientation completion problem is in P or NP-complete.

In this work, we prove that for any finite set of finite tournaments F , the F -free orientation
problem is in P or NP-complete. Our proof reduces the classification task to the F -free orientation
completion problem, for which we then provide a complete complexity classification. This interme-
diate result is interesting in its own right, addressing the study initiated by Bang-Jensen, Huang,
and Zhu [4].

The rest of this work is structured as follows. In Section 2, we introduce the necessary model
theoretic background for this work. Similarly, in Section 3, we provide context for the theory of
constraint satisfaction. In Section 4, we prove that for each finite set of tournaments F , there is
a Boolean structure whose CSP is polynomial-time equivalent to the F -free orientation problem.
This yields a dichotomy for the F -free orientation completion problem, and moreover, we propose
a complete classification of the complexity of these problems in terms of F and the F -free tourna-
ments. In Section 6, we build on the previous classification to classify the complexity of the F -free
orientation problem. We will do so by using a result of Agarwal and Kompatscher [1] about infi-
nite permutation groups and transformation monoids which we introduce in Section 5. Finally, in
Section 7 we present our classification from Sections 4 and 6 in graph theoretic terms, and propose
some applications which we believe are interesting in their own right to graph theorists. Moreover,
these examples can help readers that are less familiar with constraint satisfaction techniques to
gain intuition before reading the technical proofs of this paper — readers with a model theory or
constraint satisfaction background and motivation can skip this section.

In the remaining of this section we first extend the motivation of our work, by mentioning some
relations of the F -free orientation problem to previously studied problems in graph theory, finite
model theory, constraint satisfaction theory, and infinite model theory. We conclude this section
by introducing the formal setting under which we study the orientation and orientation completion
problems.

1.1 Related Work

Similar to F -free orientation problems, Damaschke [22] considers characterisations of graph classes
by means of finitely many forbidden ordered graphs. For instance, if (P3,≤) is the linear ordering
of P3 = ({1, 2, 3}, {12, 13}) where 1 ≤ 2 ≤ 3, then a graph G is chordal if and only if it admits a
(P3,≤)-free linear ordering [22]. Shortly after, Duffus, Ginn, and Rödl [23] consider the complexity
classification of the following ordering problem: given a linearly ordered graph (G,≤), decide if an
input graph H admits a (G,≤)-free linear ordering. They showed that for almost all 2-connected
graphs G, the (G,≤)-free ordering is NP-complete, and conjectured that this is the case for all
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2-connected graphs unless G is a clique. Similar problems have been considered for circular or-
derings [30], for so-called tree-layouts of graphs [37], and for 2-edge-coloured graphs [19] (for a
comprehensive study of such problems from a structural perspective see [29]). Here we initiate a
parallel study to the one started by Duffus, Ginn, and Rödl [23] by considering orientation instead
of ordering problems.

Both the F -free orientation problem and the F -free orientation completion problem can be
viewed as special cases of a significantly larger class of computational problems, namely the class of
problems that can be expressed in the logic MMSNP2. In the context of digraphs, a computational
problem expressed in MMSNP2 asks “given a digraph D, is there an edge colouring of D that avoids
some fixed finite set of edge-coloured digraphs?”. This logic relates to Feder and Vardi’s famous
logic MMSNP (for monotone monadic strict NP) as Courcelle’s logic MSO2 relates to MSO [5]. It
has the same expressive power as guarded disjunctive Datalog [8], which is a formalism studied in
database theory. It can be shown that every CSP in MMSNP2 can be expressed as a Constraint
Satisfaction Problem (CSP) for a reduct of a finitely bounded homogeneous structure [11], and
hence falls into the scope of the so-called tractability conjecture [16]. This conjecture states that
such CSPs are in P or NP-complete, and even provides a mathematical condition to describe
the boundary between the cases in P and the NP-complete cases. This condition has numerous
equivalent characterisations [6, 7, 9], but despite recent progress [35] the tractability conjecture
for MMSNP2 is still wide open. In contrast, the P versus NP-complete dichotomy is true for
MMSNP [25, 34] (using the complexity dichotomy for finite-domain CSPs [20, 43]), and even the
tractability conjecture has been verified in this case [12]. The graph orientation problems studied
here cannot be expressed in MMSNP, but it is straightforward to formulate them in MMSNP2. Our
result not only shows a complexity dichotomy for the F -free orientation problems, but verifies the
tractability conjecture for this subclass of MMSNP2.

1.2 Formal Setting

This work lies in the intersection of graph theory, model theory, and computational complexity. For
this reason, we begin by carefully introducing basic notation and nomenclature; in this section, we
start with terminology from graph theory. A digraph D consists of a vertex set V (D) and a binary
relation E(D) ⊆ V (D)2. The elements of E(D) are called edges, and whenever there are vertices
x, y ∈ V (D) such that (x, y) ∈ E(D) and (y, x) ∈ E(V ), we write xy ∈ E(D), and we say that xy
is a symmetric edge of D — notice that in graph theory an edge might refer to a symmetric edge
in this context. Most digraphs considered here will be loopless, i.e., they do not contain edges of
the form (x, x) for x ∈ V (D). Whenever the digraph is clear from the context, we will simply write
V for V (D), and E for E(D).

A (loopless) graph G will be viewed as a (loopless) digraph where E(G) is a symmetric relation,
and an oriented graph O is a digraph where E(O) is an anti-symmetric relation (i.e., none of the
edges in E(O) is symmetric). It will be convenient to denote by U the relation E∪E−1, i.e, given a
digraph D we have (x, y) ∈ U if and only if (x, y) ∈ E(D) or (y, x) ∈ E(D). The underlying graph
of a digraph D is the graph u(D) with vertex set V (D) and edge set U(D) = U . The relation U
will be very important and highly used in this work so, when D is clear from context we will write
U for U(D). Given a digraph D, we will write (V, U) for the underlying graph of U , and (D,U) for
the structure that contains both the oriented edges and the edge relation of the underlying graph.

An orientation of a graph G is an oriented graph G′ such that u(G′) = G. A tournament is an
orientation of the complete graph Kn with n vertices, for some n ≥ 1, and a graph is semicomplete
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if its underlying graph is complete. We denote by Tn the transitive tournament on n vertices, and

by
−→
C n the directed cycle on n vertices.
Given digraphs D and H we say that D is a subdigraph of H if V (D) ⊆ V (H) and E(D) ⊆

E(H). We say that D is spanning subdigraph of H is V (D) = V (H). In particular, if G′ is an
orientation of a graph G, then G′ is a spanning subdigraph of G. A homomorphism ϕ : D → H is
a function ϕ : V (D) → V (H) such that if (x, y) ∈ E(D), then (ϕ(x), ϕ(y)) ∈ E(H) — this notion
naturally generalises to homomorphisms of relational structures, which we introduce later. If such a
homomorphism exists, we write D → H , otherwise we write D 6→ H . An embedding is an injective
homomorphism ϕ : D → H such that (x, y) ∈ E(D) if and only if (ϕ(x), ϕ(y)) ∈ E(H). Notice
that if H is an oriented graph and T is a tournament, then every homomorphism ϕ : T → H is an
embedding. Finally, given a set of digraphs F , we say that a digraph D is F-free if there is no
embedding ϕ : F → D for any F ∈ F . We now formalize the orientation and orientation completion
problems in the setting described above.

F-free orientation problem

• Input: a finite graph (symmetric digraph) G;

• Question: is there an F -free orientation G′ of G?

F-free orientation completion problem

• Input: a finite digraph D;

• Question: is there a spanning subdigraph D′ of D such that D′ is an F -free oriented graph?

Clearly, for every fixed set of oriented graphs F both the F -free orientation and the F -free
orientation completion problem are in the complexity class NP. As previously mentioned, this work
studies the F -free orientation (completion) problem when F is a set of tournaments. Given a
tournament T , we will often write T -free orientation (completion) problem instead of {T }-free

orientation problem. For instance, since every graph admits an acyclic orientation, the
−→
C3-free ori-

entation problem is trivial and polynomial-time tractable. On the contrary, the
−→
C3-free orientation

completion problem is NP-complete (Corollary 55). Note that if F contains a tournament with
only one vertex, then there is no F -free oriented graph with a non-empty set of vertices, and hence
both of the computational problems above are trivial. So we tacitly assume from now on that all
vertices in F have at least two vertices.

2 Model Theory Set Up

Relational structures generalise digraphs and allow multiple relations with relations of arbitrary
finite arity. They are a natural tool in our study of graph problems. To define them formally,
we need the concept of a relational signature, which is a set τ of relation symbols R,S, . . . , each
equipped with an arity k ∈ N. A τ -structure A consists of a set A (the domain) and for each R ∈ τ
of arity k a relation RA ⊆ Ak. Clearly, a digraph D (and hence also a graph) can be viewed as
a structure with domain V (D) and the signature {E} where E is a binary relation symbol that
denotes the edge relation E(D) of the graph.

A substructure of τ -structure A is a τ -structure B such that for every R ∈ τ of arity k we
have RB = RA ∩ Bk; however, note that a substructure of a digraph when viewed as a structure
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corresponds to induced subgraphs in graph theory, rather than subgraphs as introduced earlier.
The union of two τ -structures A and B is the τ -structure C with domain C := A ∪ B and the
relation RC := RA ∪ RB for every R ∈ τ . If A is a τ -structure and A′ is a σ-structure with the
same domain, for σ ⊆ τ , and RA = RA

′

for every R ∈ σ, then A′ is called a reduct of A, and A is
called a expansion of A′.

A homomorphism between two τ -structures A and B is a function h : A→ B such that for every
R ∈ τ of arity k we have a = (a1, . . . , ak) ∈ RA ⇒ f(a) := (f(a1), . . . , f(ak)) ∈ RB. The constraint
satisfaction problem of a τ -structure B is the class of all finite τ -structures A with a homomorphism
toB; for fixedB of finite relational signature τ , this class can be viewed as a computational problem,
where the input consists of an arbitrary finite τ -structure A, and the question is to decide whether
A ∈ CSP(B). For example, CSP(K3) can be viewed as the famous graph 3-colouring problem. Two
structures are called homomorphically equivalent if there are homomorphism between the structures
in both ways. Clearly, homomorphically equivalent structures have the same CSP.

An endomorphism of A is a homomorphism from A to A. The set of all endomorphisms of a
structure A forms a transformation monoid. It is well-known that a transformation monoid M is
an endomorphism monoid of a relational structure if and only if it is locally closed, i.e., if f : A→ A
is such that for every n ∈ N and a ∈ An there exists g ∈ M such that f(a) = g(a), then g ∈ M ;
these are the closed sets of the topology of pointwise convergence, which is the product topology
on AA where the topoogy on A is taken to be discrete.

A homomorphism is called strong if the implication ⇒ in the definition of homomorphisms is
replaced by an equivalence ⇔. An embedding is an injective strong homomorphism. A structure A
is called a core if all endomorphisms of A are embeddings. An isomorphism is a bijective embedding.
An automorphism of a structure A is an isomorphism of A with itself. Note that if A is a finite
core structure, then all endomorphisms of A are automorphisms; this statement is false for general
infinite structures A.

A structure is called homogeneous if every isomorphism between finite substructrues can be
extended to an automorphism. It is a well-known fact that a permutation group is the automorphism
group of a relational structure A if and only if it is closed with respect to the restriction of the
topology on AA above to the set of all permutations, which we denote by Sym(A). If P is a set
of permutations, we write 〈P 〉 for the smallest permutation group that contains P and is closed in
Sym(A).

In our study of graph orientation problems, it will be convenient to pass from classes of finite
structures to a single countably infinite structure, using Fräıssé theory. We do not need the full
power of the theory, but exclusively work with the following fact.

Theorem 1 (see, e.g., [33]). Let τ be a finite relational signature. Let C be a class of finite τ-
structures which is closed under substructures, isomorphisms, and unions. Then there exists a
countably infinite homogeneous τ-structure A such that C equals the class of finite τ-structures that
have an embedding into A. The structure A is unique up to isomorphism, and called the Fräıssé-limit
of C.

Example 2. Let C be the class of all finite graphs. Then C satisfies the assumptions of Theorem 1,
and the Fräıssé-limit of C is called the Rado graph, which we denote by R. For n ≥ 2, the Henson
graph Hn is the Fräıssé-limit of the class C of all finite graphs that do not embed Kn.

A class C of finite τ -structures is called finitely bounded if there exists a finite set F of finite
τ -structures such that A ∈ C if and only if there is no structure in F which embeds into A; then

5



then refer to the elements of F as the bounds for C. We say that a structure B is finitely bounded
if the class of all finite structures A that embeds into B is finitely bounded.

Example 3. The Rado graph R and the Henson graphs are finitely bounded. For the Rado graph,
the bounds contain the one-vertex loop graph, and the two-vertex graph with a single edge (which
forces the edge relation of the Fräıssé-limit to be loopless and symmetric).

We now turn to definitions that are specific for our study of graph orientation problems. Let F
be a finite set of finite tournaments. Then the class of all finite F -free oriented graphs satisfies the
conditions from Theorem 1 (here we use our general assumption that all tournaments in F have
at least two vertices), and hence has a countably infinite homogeneous Fraissé-limit DF = (V ;E).
Note that DF is finitely bounded: as bounds we take the structures in F and additionally the loop
digraph and the two-element digraph which contains a symmetric edge. Clearly, CSP(DF ) is in P
since it suffices to check whether given given directed graph contains one of the tournaments from
F as a subgraph, which can be tested in polynomial time (where the degree of the polynomial is
bounded by the maximal number of elements of the structures in F).

The infinite structures DF turn out to be closely related to F -free orientation (completion)
problems via the following expansions and reducts.

• Let HF = (V ;U) be the underlying graph of DF , that is, U = E ∪ E−1. Then a finite
undirected graph G has an F -free orientation if and only if it has a homomorphism to HF .
Conversely, a finite directed graph has a homomorphism to HF if and only if the underlying
graph has an F -free orientation. Hence, the F -free orientation problem and CSP(HF ) are
essentially the same problem.

• Similarly as in the previous item, the F -free orientation completion problem may be viewed
as CSP(DF , U).

If all tournaments in F contain a directed cycle, then every finite graph G has an F -free
orientation, since we may orient the edges along an arbitrary linear order of the vertices. Hence,
the F -free orientation problem is trivial and in P. Note that in this case, HF is the Rado graph.

Otherwise, there exists a smallest n = nF ∈ N such that F contains the transitive tournament
Tn with n vertices. In this case, there exists a largest k = kF ∈ N such that Kk has an F -free
orientation [24]. Finally, mF denotes the size of the smallest largest tournament in F . Now we
present some easy observations.

Observation 4. It follows from the definition of nF that if k ≤ nF − 1, then Tk is F-free. Hence,
the inequality kF ≥ nF − 1 holds. Since every tournament in F has at least two vertices, we have
nF ≥ 2 and kF ≥ 1.

Observation 5. A notable special case is the situation that the inequality from the previous obser-
vation is actually an equality.

• If nF = 2 then no graph with a non-empty edge set has an F-free orientation, kF = 1, and
the F-free orientation problem is trivial and in P.

• Suppose that there is no F-free tournament with nF vertices. Then the F-free orientation
problem is equivalent to finding an nF -element clique in a given finite graph, and hence in P.
This generalises the previous two cases. Note that in this case we have kF = nF − 1.
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We will later observe (Lemma 34) that the two cases above correspond to when HF is the Rado
graph, or HF is a Henson graph.

Lemma 6. Let F be a finite set of finite tournaments. If nF ≥ 3, then the structure HF is a core.

Proof. First consider the case that k := kF as defined above is even. The relation x 6= y can be
defined primitively positively by the formula

∃u1, . . . , uk
(

U(x, u1) ∧ · · · ∧ U(x, uk/2) ∧ U(uk/2+1, y) ∧ · · · ∧ U(uk, y)
)

.

Note that if x = y then x, u1, . . . , uk would induce a clique which does not have an F -free orientation.
Similarly, one may show that the complement of the edge relation has a primitive positive definition
by removing and edge from Kk+1. This shows that every endomorphism of HF is an embedding.
The case that k is odd can be handled similarly.

3 Constraint Satisfaction Preliminaries

In 2017, Bulatov [20] and Zhuk [43] proved the Feder-Vardi conjecture, i.e., they proved that finite-
domain CSPs exhibit a complexity dichotomy. To state their result in its strongest form, we need
to introduce the concept of a polymorphism of a τ -structure B, which is a mapping f : Bk → B, for
some k ∈ N, such that for all R ∈ τ and a1, . . . , ak ∈ RB we have f(a1, . . . , ak) ∈ RB. The result
of Bulatov and Zhuk can be phrased as follows.

Theorem 7 ( [20,43]). Let B be a finite structure. If B has a polymorphism which is a weak near
unanimity operation, i.e., which satisfies for all x, y ∈ B that

f(x, . . . , x, y) = f(x, . . . , y, x) = · · · = f(y, x, . . . , x),

then CSP(B) is in P.

Before Bulatov and Zhuk proved this theorem, it was already known that finite structures
without a weak near unanimity polymorphism can simulate the three-coloring problem in a very
specific way: using primitive positive interpretations. Actually, this hardness condition works for
arbitrary (not only finite domain) structures, and we recall it in detail in the following.

A primitive positive formula is a formula φ(y1, . . . , yk) of the form

∃x1, . . . , xn(ψ1 ∧ · · · ∧ ψm)

where ψ1, . . . , ψm are atomic formulas with variables from x1, . . . , xn and the free variables y1, . . . , yk.
Note that the equality symbol =, the symbol ⊤ for true, and the symbol ⊥ for false are per-
mitted in atomic formulas. A relation R ⊆ Bk is called primitively positively definable in a τ -
structure B if there exists a primitive positive formula φ(y1, . . . , yk) over the signature τ such that
R = {(b1, . . . , bk) | B |= φ(b1, . . . , bk)}. Suppose that φ is a primitive positive formula build with
relation symbols from the signature τ and without the equality symbol. The canonical database A

of φ is the τ -structure whose elements are the (free and existentially quantified) variables of φ, and
where a ∈ RA, for a relation symbol R ∈ τ of arity k, if φ contains the conjunct R(a). We stress
that the following two lemmata also hold for structures B with an infinite domain.

Lemma 8 (see, e.g., [9,21]). Suppose that R is a relation with a primitive positive definition in B.
Then there is a polynomial-time reduction from CSP(B, R) to CSP(B).
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It turns out that primitive positive definability over a structure B with a finite domain can
be characterised using the polymorphisms of B (we mention that the result below also holds for
countably infinite ω-categorical structures B [14]; however, this fact is not needed in our proofs).

Theorem 9 (see, e.g., [18,28]). Let B be a relational structure with a finite domain. A relation R
has a primitive positive definition on B if and only if R is preserved by all polymorphisms of B.

IfB is a τ -structure, and A is a σ-structure, then a primitive positive interpretation of A inB is a
partial map I fromBd toA such that for each atomic formula φ(y1, . . . , yk) over the signature σ there
exists a primitive positive formula φI that defines

{

(b1, . . . , bk) ∈ Bkd | A |= φ(I(b1), . . . , I(bk))
}

.
We refer to d as the dimension of I.

Lemma 10 (see, e.g., [9]). Suppose that A has a primitive positive interpretation in B. Then there
is a polynomial-time reduction from CSP(A) to CSP(B).

It is well-known and easy to prove that primitive positive interpretations can be composed (see,
e.g., [9]).

Corollary 11. Suppose that K3 has a primitive positive interpretation in B. Then CSP(B) is
NP-hard.

The special case of the result of Bulatov and of Zhuk for Boolean structures, i.e., structures with
a two-element domain, is of particular importance in the present paper. This case has been known
since much longer, and it is referred to as Schaefer’s theorem. In this special case, one can spell
out concrete descriptions of the weak near unanimity polymorphisms that imply polynomial-time
tractability of the CSP.

Theorem 12 (Schaefer’s theorem). Let B be a structure with a domain of size two. Then ei-
ther B interprets K3 primitively positively, or B has one of the following weak near unanimity
polymorphisms

• the binary minimum or maximum operation, i.e., an operation f satisfying f(x, y) = f(y, x)
and f(x, x) = x for all x, y ∈ B,

• the ternary majority operation, i.e., the (unique!) operation f satisfying f(x, x, y) = f(x, y, x) =
f(y, x, x) = x for all x, y ∈ B,

• the ternary minority operation, i.e., the (unique!) operation f satisfying f(x, x, y) = f(x, y, x) =
f(y, x, x) = y for all x, y ∈ B,

• a constant operation, i.e., an operation satisfying f(x) = f(y) for all x, y ∈ B.

In all of these cases, CSP(B) is in P.

A full complexity classification for Boolean CSPs up to logspace reductions can found in [2];
also see [17]. The following is a well-known fact from linear algebra and will be useful later.

Lemma 13. A Boolean relation R ⊆ {0, 1}n is preserved by the Boolean minority operation if and
only if R is the solution space of a system of linear equalities over the two-element field F2.

The infinite-domain tractability conjecture of Bodirsky and Pinsker from 2011 first appeared
in [16]; the formulation below is equivalent to it by results from [6].
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Theorem 14. Let B be a reduct of a finitely bounded countable homogeneous structure. If B

does not interpret primitively positively a graph which is homomorphically equivalent to K3, then
CSP(B) is in P.

We will verify a strong form of this conjecture for the F -free orientation problem (Theorem 50;
we only require that B = HF does not interpret K3 primitively positively). A known obstruction
for B to admit a primitive positive interpretation of K3 is the existence of a so-called pseudo weak
near uanimity polymorphism, which is a polymorphism of B of arity k ≥ 2 such that there are
endomorphisms e1, . . . , ek satisfying for all x, y ∈ B that

e1(f(x, . . . , x, y)) = e2(f(x, . . . , y, x)) = · · · = ek(f(y, x, . . . , x)).

We will verify in Theorem 50 that if HF does not admit a primitive positive interpretation of K3,
then it has a pseudo weak near unanimity polymorphism.

Example 15. Recall from Section 2 that if all tournaments in F contain a directed cycle, then
HF is isomorphic to the Rado graph R. Using the homogeneity of R, it is easy to construct an
embedding f : R3 → R. One may find embeddings e1, e2, e3 of R into itself such that e1(f(x, x, y)) =
e2(f(x, y, x)) = e3(f(y, x, x)), so R has a ternary pseudo near unanimity polymorphism. The same
construction works for the Henson graphs.

4 The Orientation Completion Problem

We divide this section into two parts. In the first one, we show that for each finite set of finite
tournaments F there is a Boolean structure whose CSP is equivalent to the F -free orientation
completion problem. This naturally yields a complexity classification of the F -free orientation
completion problem in terms of Schaefer’s cases and the constructed Boolean structure. In the
second part, we observe that these cases reduce to only two possibilities: either the Boolean structure
primitively positively interprets K3, or it is preserved by the minority polymorphism. In particular,
this means that either the F -free orientation completion problem reduces (in log-space) to linear
equations over Z2, or otherwise, the F -free orientation completion problem is NP-complete. We
provide several examples in Section 7.

4.1 Equivalence to Boolean CSPs

If T is a tournament with vertex set {1, . . . , n}, n ≥ 2, we define bT ∈ {0, 1}(
n

2) as follows. The
entries of bT will be indexed by 2-element subsets {i, j} of {1, . . . , n} written as (bT )ij . For all
{i, j} ⊆ {1, . . . , n} with i < j we have that (bT )ij = 1 if and only if E(i, j). This coding clearly

yields a bijection between {0, 1}(
n

2) and labeled tournaments with vertex set {1, . . . , n}. We illustrate
this coding in Fig. 1.

Let BF be the structure with domain {0, 1} whose signature contains for every n ∈ {2, . . . ,mF}

the relation symbol Pn of arity
(

n
2

)

which denotes in BF the relation consisting of all bT ∈ {0, 1}(
n

2)

such that the tournament T is F -free. The structure (BF ,0,1) is the expansion of BF by the two
unary singleton relations 0 := {0} and 1 := {1}.

Example 16. For the sake of clarity, we provide an explicit description of BF if F is a set
of tournaments on 3 vertices. Firstly, it is easy to see that the ternary relation PBF

3 is empty if
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1 2 3
(1, 1, 1)

1 2 3
(1, 1, 0)

1 2 3
(0, 1, 1)

1 2 3
(1, 0, 1)

1 2 3
(0, 0, 0)

1 2 3
(0, 0, 1)

1 2 3
(1, 0, 0)

1 2 3
(0, 1, 0)

Figure 1: The eight labeled tournaments on 3 vertices. The labels correspond to the associated
tuple (x1,2, x1,3, x2,3) where xi,j = 1 if (i, j) ∈ E(G), and xi,j = 0 if (j, i) ∈ E(G) for 1 ≤ i < j ≤ 3.

F = {T3,
−→
C3}, i.e., there is no F-free orientation of K3 in this case. If F = ∅, then P

B∅

3 = {0, 1}3,
i.e., any orientation of K3 is F-free. If F = {T3} the relation PBF

3 is the set {(1, 0, 1), (0, 1, 0)},

since the T3-free orientations of K3 correspond to both cyclic orientations of K3. Finally, if F =
−→
C3,

then PBF
3 = {0, 1}3 \ {(1, 0, 1), (0, 1, 0)}.

A reduction similar to the reduction in the next theorem has been described in [13].

Theorem 17. The following statements hold for any finite set of finite tournaments F .

1. There is a polynomial-time reduction from the F-free orientation problem to CSP(BF ).

2. There is a polynomial-time reduction from the F-free orientation completion problem to
CSP(BF ,0,1).

Proof. Let D be a given input digraph of the F -free orientation completion problem, and fix an
enumeration (v1, . . . , vn) of the vertex set V (D). Create a variable xi,j for each i, j ∈ {1, . . . , n}
with i < j. Now suppose that vi1 , . . . , viℓ , for i1 < · · · < iℓ and ℓ ≤ mF , induce a semicomplete
digraph. If ℓ = k then we add the constraint Pk(xi1,i2 , xi1,i3 , . . . , xik−1,ik). Finally, for each pair
of vertices i < j we add the constraint 1(xi,j) if (i, j) ∈ E(D) and (j, i) 6∈ E(D); otherwise, if
(i, j) 6∈ E(D) and (j, i) ∈ E(D), we add the constraint 0(xi,j). Clearly, the resulting instance of
CSP(BF ,0,1) has a solution if and only if D can be completed to an F -free oriented graph. With
similar arguments but omitting the unary constraints 0(x) and 1(x), we obtain a polynomial-time
reduction from the F -free orientation problem to CSP(BF ).

In the rest of this section, we show that there is a polynomial-time reduction from CSP(BF ) to
the F -free orientation completion problem, and use this reduction to classify the complexity of the
F -free orientation completion problem.

Given a digraph D = (V,E) and an edge (x, y) ∈ E, we write D − (x, y) to denote the digraph
(V,E \ {(x, y)}). Consider a set of tournaments F and a symmetric edge xy of D. We say that xy
is free in D (with respect to F) if D− (x, y) and D− (y, x) can be completed to an F -free oriented
graph. We say that a pair (x, y) forces a pair (u, v) in D (with respect to F) if xy and uv are free
symmetric edges in D, and every F -free orientation completion of D − (y, x) contains (u, v) as an
oriented edge. In other words, if xy and uv are free edges in D, we say that (x, y) forces (u, v) if
any orientation completion D′ of D such that (x, y), (v, u) ∈ E(D′) contains some tournament T of
F . For instance, in the digraph D1 (see Fig. 2) the pair (x, y) forces the pair (u, v) with respect to
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{
−→
C3}. Recall that if F contains a transitive tournament, we denote by nF the minimum number of

vertices of a transitive tournament in F .

Lemma 18. Let F be a non-empty finite set of tournaments, and m the minimum number of
vertices in a tournament of F . In this case, the following statements are equivalent.

1. An oriented graph D is F-free if and only if it contains no tournament on m vertices.

2. For each digraph D there is an F-free orientation completion of D if and only if every orien-
tation completion of D is F-free.

3. For every digraph D, if a pair (x, y) forces a pair (u, v) in D with respect to F , then x = u
and y = v.

4. For every semicomplete digraph D on m vertices, if a pair (x, y) forces a pair (u, v) in D with
respect to F , then x = u and y = v.

Proof. Suppose that the first item holds. It immediately follows that a digraph D admits an
orientation completion if and only if D contains no semicomplete digraph on m vertices. In this
case, any orientation completion of D is F -free. Thus, the first item implies the second one.

Assume the second statement to be true. Since there is a tournament on m vertices in F , it
must be the case that no orientation of Km is F -free. By the choice of m it must be the case that
F contains all tournaments on m vertices up to isomorphism, and that F contains no tournament
on less than m vertices. Thus, an oriented graph is F -free if and only if it contains no tournament
on m vertices.

Directly from the definition of “(x, y) forces (u, v)” one can notice that the negation of the
third statement implies the negation of the second one. Equivalently, the second item implies the
third one, and trivially, the third item implies the fourth one. Finally, we argue that the fourth
item implies the first one by contraposition. So, assuming the first item is not true, we know that
there must be at least one F -free tournament on m vertices. Let T be a tournament in F with
m vertices, and (x1, y1), . . . , (xn, yn) be the edges of T . Consider the semicomplete digraph T i

recursively defined as T i := (V (T ), E(T i−1)∪ {(yi, xi)}), where T 0 := T . In particular, notice that
T n is the complete graph on m vertices, so T n admits an F -free orientation. Moreover, by the
symmetries of complete graphs, for any edge (x, y) ∈ T n there is an F -free orientation completion
of T n − (x, y). Let l be minimal such that T l can be completed to an F -free tournament. Clearly,
xlyl is a symmetric edge in T l, and since l ≤ n − 1, there is non-symmetric edge in T l, namely,
(xl+1, yl+1) ∈ E(T l) and (yl+1, xl+1) 6∈ E(T l). From these observations, and by the choice of l,
it follows that xlyl and xl+1yl+1 are (different) symmetric edges in T l+1, and (xl+1, yl+1) forces
(yl, xl). The claim follows.

It is evident that for every set of tournaments F , every digraph D, and every symmetric edge
xy ∈ E(D), the edge (x, y) forces itself. In the proof of the following lemma, we will implicitly use
the following observations several times:

1. If (x, y) forces (u, v), then (v, u) forces (y, x).

2. If (x, y) forces (u, v) and (u, v) forces (a, b), then (x, y) forces (a, b).

3. If ϕ : D → D′ is a homomorphism, and (x, y) forces (u, v) in D, then (ϕ(x), ϕ(y)) forces
(ϕ(u), ϕ(v)) in D′.

11



The following lemma shows that given a digraph D with a pair (x, y) that forces a pair (u, v),
we can construct a digraph D′ with a pair (x′, y′) that forces a pair (u′, v′), and the latter also
forces the former. Moreover, D′ can be chosen in such a was that the vertices x′, y′ are “far apart”
from the pair u′, v′. To this end, we consider the following notion of distance. Given a pair of
vertices x, y in a connected digraph D, we denote by d(x, y) the distance between x and x in the
underlying graph u(D). That is, the number of undirected edges in a shortest path between x and
y in u(D). The previously mentioned construction is described in the proof of the following lemma,
and illustrated in Fig. 2.

Lemma 19. The following statements are equivalent for a finite set of finite tournaments F .

1. There is a digraph D with two pairs of vertices (x, y) and (u, v) such that (x, y) forces (u, v),
and (x, y) 6= (u, v).

2. There is a digraph D with two pairs of vertices (x, y) and (u, v) such that (x, y) forces (u, v),
and |{x, y, u, v}| = 4.

3. For every positive integer k, there is a digraph D with two pairs of vertices (x, y) and (u, v)
such that (x, y) and (u, v) force each other, and d(a, b) ≥ k for a ∈ {x, y} and b ∈ {u, v}.

Proof. It is evident that the third statement implies the first one. Now, we prove that the first item
implies the second one. Suppose that (x, y) 6= (u, v). If |{x, y, u, v}| = 4, then there is nothing left
to prove. So suppose that |{x, y, u, v}| = 3. Notice that up to symmetry, there are two cases to
consider: when y = u, and when y = v. We consider the latter one. Consider two copies of D, D1

and D2, where (xi, yi) forces (ui, yi) in Di for each i ∈ {1, 2}. In this case, let D′ be the digraph
obtained from the disjoint union of D1 with D2 after identifying y1 with u2 and u1 with y2. Using
the enumerated observations preceding this lemma, we conclude that (x1, y1) forces (y2, x2) in D

′.
The case when y = u follows with a similar construction.

Finally, we show that the second statement implies the third one. Let D, x, y, u, and v be
as in the second statement, and k ≥ 2. Consider k copies D1, . . . , Dk of D where (xi, yi) forces
(ui, vi) in Di for each i ∈ {1, . . . , k}. It is not hard to notice that by considering the disjoint union
D1 + · · ·+Dk, and identifying ui with xi+1, and vi with yi for i ∈ [k − 1], we obtain a digraph D′

where (x1, x2) forces (uk, vk), and d(a, b) ≥ k for a ∈ {x1, y1} and b ∈ {uk, vk}. Finally, consider
D′ together with a disjoint copy D′′ of itself, and the following identifications u′k ∼ x′′1 , u

′′
k ∼ x′1,

v′k ∼ y′′1 , and v
′′
k ∼ y′1. It is not hard to see that we obtain a digraph (D′ +D′′)/∼ with two pairs of

vertices (x′1, y
′
1) and (u′1, v

′
1) that force each other and d(a, b) ≥ k for a ∈ {x′1, y

′
1} and b ∈ {u′1, v

′
1}.

The lemma is now proved.

Recall that the F -free orientation completion problem and CSP(DF , U) are trivially polynomial-
time equivalent. We will see that there is a primitive positive interpretation of (BF ,0,1) in (DF , U).
This will yield a polynomial-time reduction from CSP(BF ,0,1) to CSP(DF , U), and thus, also to
the F -free orientation completion problem. To do so, we first consider the 4-ary relation S4 defined
by

S4(x1, x2, x3, x4) ⇔
(

(E(x1, x2) ∧ E(x3, x4)) ∨ (E(x2, x1) ∧ E(x4, x3))
)

. (1)

Intuitively, S4 encodes that the first and last pair of vertices are adjacent, and both edges have the
same direction.
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u

x y = v

D1

x y

u v

D2

x y

u v

D3

Figure 2: Three digraphs D1, D2, and D3 where in each case, the pair (x, y) forces the pair (u, v)

with respect to {
−→
C3}. In D1, the cardinality of {x, y, u, v} is 3. In D2, |{x, y, u, v}| = 4, and it

is obtained from D1 as in the proof of Lemma 19. Finally, in D3, d(a, b) ≥ 2 for a ∈ {x, y} and
b ∈ {u, v}, and D3 is obtained from D2 as in the proof of Lemma 19 for k = 2.

Lemma 20. For every non-empty finite set of tournaments F , there is a primitive positive defini-
tion of S4 in (DF , U).

Proof. By Lemma 18, and by the third part of Lemma 19, there is a digraph D with two pairs of
vertices (x, y) and (u, v) such that (x, y) and (u, v) force each other, and d(a, b) ≥ 4 for a ∈ {x, y}
and b ∈ {u, v}. Interpret D as an {E,U}-structure DU , where (x, y) ∈ E(DU ) if and only if
(x, y) ∈ E(D) and (y, x) 6∈ E(D), and (x, y) ∈ U(DU ) if and only if (x, y) ∈ E(D) and (y, x) ∈ E(D).
In other words, the interpretation of U in D′ corresponds to the symmetric symmetric edges of D,
and the interpretation of E corresponds to the anti-symmetric edges of D. Let φ(x1, . . . , xn) be the
canonical conjunctive query of DU , where x1 corresponds to x, x2 to y, x3 to u, and x4 to v. With
this setting, if φS(x1, x2, x3, x4) is the primitive positive-formula ∃x5, . . . , xnφ(x1, . . . , xn), then φS
implies S4. Now, we briefly argue that S4 also implies φS . Let y1, . . . , y4 be four vertices of D such
that S4(y1, y2, y3, y4), and without loss of generality assume that (y1, y2), (y3, y4) ∈ E(DF ). Suppose
that |{y1, y2, y3, y4}| = 4 and let D′ be a F -free orientation of D where (x1, x2), (x3, x4) ∈ E(D′).
For each i, j ∈ {1, 2, 3, 4}, if there is an edge (yi, yj) in DF , then add an edge (xi, xj) to D

′ obtaining
an oriented graph D′′. Notice that since d(xi, xj) ≥ 4 for i ∈ {1, 2} and j ∈ {3, 4}, any triangle of
D′′ is a triangle of D′ and so, D′′ is an F -free oriented graph. Thus, there is partial automorphism
that maps yi 7→ xi for i ∈ {1, 2, 3, 4}, and by homogeneity of DF this can be extended to an
automorphism f : DF → DF . Since every edge of D′ is an edge of D′′ and φS is a primitive
positive formula, it is the case that φS is true of x1, x2, x3, x4 in DF . Therefore, since primitive
positive formulas are preserved by automorphisms, and f−1(xi) = yi for i ∈ {1, 2, 3, 4}, we conclude
that DF |= φS(y1, y2, y3, y4). Finally, the cases when |{y1, y2, y3, y4}| ∈ {2, 3} follow similarly, but
instead of obtaining D′′ from D′ by adding new edges, we obtain D′′ from D′ by identifying xi
with xj whenever yi = yj. Again, the observation that D′′ is a F -free oriented graph follows from
the fact that d(xi, xj) ≥ 4 for i ∈ {1, 2} and j ∈ {3, 4}. With the corresponding identifications, we
obtain a partial automorphism of DF that defined by mapping yi 7→ xi for i ∈ {1, 2, 3, 4}. Finally,
using the fact that primitive positive formulas are preserved under homomorphisms (and D′′ is a
homomorphic image ofD′) and under automorphisms, we conclude thatDF |= φS(y1, y2, y3, y4).
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Now, we show that using the relation S4 we can primitively positively interpret (BF ,0,1) in
(DF , U, S4). Also, recall that HF is the underlying graph of DF , i.e., the reduct of (DF , U) after
forgetting the relation E. We also see that we can primitively positively interpret BF in (HF , S4).

Lemma 21. For every finite set of finite tournaments F , there is a primitive positive interpretation
of (BF ,0,1) in (DF , U, S4), and a primitive positive interpretation of BF in (HF , S4).

Proof. We first consider the primitive positive interpretation of (BF ,0,1) in (DF , U, S4). The
dimension of the interpretation is 2, and the domain formula is ⊤I(x, y) := U(x, y). Equality
=I(x1, y1, x2, y2) is defined by S4(x1, y1, x2, y2), and the unary relations 0I(x, y) and 0I(x, y) are
defined by E(y, x) and E(x, y), respectively. Finally, for each positive integer n, the 2

(

n
2

)

-ary
relation

δPn
(x1,2, y1,2, x1,3, y1,3, . . . , xn−1,n, yn−1,n)

expresses that there are n vertices k1, . . . , kn such that:

1. U(ki, kj) for each i, j ∈ [n], i.e., the vertices k1, . . . , kn induce a tournament in DF , and

2. for each pair i < j the 4-tuple (xi,j , yi,j, ki, kj) belongs to S4, i.e., the edges kikj and xi,jyi,j
have the same orientation in DF .

The same interpretation without the defining formulas δ0 and δ1 yield a primitive positive interpre-
tation of BF in (HF , S4). Notice that in this case, the first item means that the vertices k1, . . . , kn
induce a clique in HF .

Using these two lemmas, we can easily prove the following statement.

Proposition 22. Let F be a finite set of finite tournaments. If F is not the empty set, then there
is primitive positive interpretation of (BF ,0,1) in (DF , U).

Proof. By Lemma 20, S4 has a primitive positive definition in (DF , U), and by Lemma 21, there is
primitive positive interpretation of (BF ,0,1) in (DF , U, S4).

Theorem 17 asserts that the F -free orientation completion problem reduces in polynomial-time
to CSP(BF ,0,1). Also, as mentioned in Section 2, the F -free orientation completion problem and
CSP(DF , U) are polynomial-time equivalent. Finally, Proposition 22 together with Lemma 10 show
that CSP(BF ,0,1) reduces in polynomial-time to CSP(DF , U). Thus, the following statement is
proved by the arguments in this paragraph.

Theorem 23. The following problems are polynomial-time equivalent for each set finite set of finite
tournaments F .

1. The F-free orientation completion problem.

2. CSP(BF ,0,1).

3. CSP(DF , U).

If a Boolean structure B contains no constant endomorphism, then it is a core, and hence
CSP(B) and CSP(B,0,1) are polynomial-time equivalent (see, e.g., [9]). Notice that for a set of
tournaments F the structure BF contains a constant endomorphism if and only if for each n ≤ mF

either Pn is empty or Pn contains both constant tuples. In particular, if F contains a transitive
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tournament and there is at least one F -free tournament on tournament on nF vertices, then PnF

is neither empty nor contains a constant tuple, and thus, BF contains no constant endomorphism.
With these arguments in mind, the following statement is an immediate implication of Theorem 23.

Corollary 24. Let F be a finite set of finite tournaments that contains a transitive tournament. If
there is at least one F-free tournament with nF -vertices, then the following problems are polynomial-
time equivalent.

1. The F-free orientation completion problem.

2. CSP(BF ,0,1).

3. CSP(BF ).

4. CSP(DF , U).

4.2 Complexity Classification

Theorem 23 together with Schaefer’s theorem yield a classification of the F -free orientation comple-
tion problem in terms of the Boolean structure (BF ,0,1). In this section, we see that if (BF ,0,1)
does not primitively positively interpret K3, then it is preserved by the Boolean minority operation,
or by a constant operation.

Lemma 25. Let F be a finite set of finite tournaments. The following statements are equivalent
for each positive integer n ≤ mF such that Tn is F-free.

1. Every tournament on n vertices is F-free.

2. Pn = {0, 1}(
n

2).

3. Pn is preserved by the minimum operation.

4. Pn is preserved by the maximum operation.

5. Pn is preserved by the majority operation.

6. Pn is preserved by the minority operation.

Proof. The first two items are clearly equivalent, and the second item implies 3–6. Denote by b0
(resp. b1) the constant 0 (resp. constant 1) tuples of arity

(

n
2

)

. Since Tn is F -free, the tuples b0
and b1 belong to Pn. It is not hard to notice that for any pair of tuples b, b′ ∈ Pn the equalities
majority(b1, b, b

′) = max(b, b′), and majority(b0, b, b
′) = min(b, b′) hold. Thus, if Pn is preserved by

the majority operation, then it is preserved by the minimum and the maximum operations.
To conclude the proof, we show that each of the statements 3, 4, 6 imply the first two. Suppose

that Pn is preserved by the minimum operation. For i, j ∈ [n] with i < j, we denote by bij the
tuple where (bij)kl = 1 if and only if i = k and j = l. We show that each bij belongs to Pn. Given
i < j consider the following permutations of Tn where the edge set is defined by the linear ordering
of [n]:

T 1 := (n, n− 1, . . . , j + 1, j − 1, j − 2, . . . , i, j, i− 1, i− 2, . . . 1),

and T 2 := (n, n− 1, . . . , j + 1, i, j, j − 1, . . . , i+ 1, i− 1, i− 2, . . . , 1).
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With a simple computation of the minimum operation one can notice that min(bT 1 , bT 2) = bij . Since
Tn is F -free, it follows that bT 1 , bT 2 ∈ Pn, and so bij ∈ Pn. It is not hard to notice that the tuple bij

encode those tournaments obtained from Tn be reversing the orientation of one arc. Similarly, the
tuples cij where (cij)kl = 0 if and only if i = k and l = j, encode the same family of tournaments
(up to isomorphism). Thus, it is also the case that for each i, j ∈ [n] with 1 ≤ i < j ≤ n, all
tuples cij belong to Pn. Finally, consider a set of pairs {(i1, j1), . . . , (il, jl)} ⊆ [n]2 with ik < jk
for each k ∈ [l]. By composing the minimum operation as min(ci1j1 ,min(ci2j2 , . . . )), we obtain a
tuple b where bij = 0 if and only if (i, j) = (ik, jk) for some k ∈ [l]. Thus, we conclude that each

b ∈ {0, 1}(
n

2) belongs to Pn, i.e., Pn = {0, 1}(
n

2), and so, the third item implies the second one. The
case when F is preserved by the maximum operation follows with dual arguments.

Finally, suppose that Pn is preserved by the minority operation. For a pair of tuples b, b′ we
denote by b+ b′ the coordinate-wise addition modulo 2, and notice that minority(b0, b, b

′) = b+ b′.
Thus, since Pn is preserved by the minority operation, and b0 ∈ Pn, we conclude that Pn is closed

under addition modulo 2. Evidently, every tuple b ∈ {0, 1}(
n

2) can be expressed as a sum of tuples
of the form bij (introduced in the previous paragraph). Hence, it suffices to show that bij ∈ Pn for
each pair i < j. To do so, consider the following permutations of Tn where the edge set is define
by the linear ordering of [n]:

T 1 := (1, . . . , i− 1, i, i+ 2, . . . , j, i+ 1, j + 1, j + 2, . . . , n),

and T 2 := (1, . . . , i− 1, i+ 1, i+ 2, . . . , j, i, j + 1, j + 2, . . . , n).

It is not hard to notice that bij = bT 1 + bT 2 , and since Tn is F -free and Pn is closed under addition

modulo 2, we conclude that bij ∈ Pn. So, by the arguments above we conclude that Pn = {0, 1}(
n

2).
The equivalence between 1–6 is now proved.

Recall that mF denotes the maximum number of vertices of a tournament in F .

Lemma 26. Let F be a finite set of finite tournaments. The following statements are equivalent
for each positive integer n ≤ mF .

1. Either all tournaments on n vertices are F-free, or no tournament on n vertices is F-free.

2. Either Pn = ∅ or Pn = {0, 1}(
n

2).

3. Pn is preserved by the minimum operation.

4. Pn is preserved by the maximum operation.

5. Pn is preserved by the majority operation.

Proof. It is evident that the first two items are equivalent, and that each of these implies the rest.
We show that each of 3–5 imply the first two. To do so, we will see that in each case, if Pn 6= ∅, then
Pn contains the constant tuple b1 (where all entries are 1), i.e., Tn is F -free. We will thus conclude

by Lemma 25 that Pn = {0, 1}(
n

2). To begin with, suppose that Pn is preserved by the maximum
operation, and that there is some tuple bT ∈ Pn for some F -free tournament T with vertex set [n].
If bT = b1, there is nothing left to prove, so suppose bij = 0 for some 1 ≤ i < j ≤ n. Let T ′ be the
permutation of T obtained from transposing i with j. Since (bT )ij = 0 and (bT ′)ij = 1, it follows
that the number of coordinates which equal 1 in max(bT , bT ′) is strictly larger than those which
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equal 1 in bT . Since Pn is preserved by maximum operation, we can iterate this procedure to see

that b1 ∈ Pn. Thus Tn is F -free and so, using Lemma 25 we conclude that Pn = {0, 1}(
n

2). The
case when Pn is preserved by the minimum operation follows from dual arguments.

Finally, suppose that Pn is preserved by majority, and that there is some F -free tournament with
vertex set [n], i.e., bT ∈ Pn. We begin by showing that there is a tuple bT ′ ∈ Pn such that (bT ′)1j = 1
for all 1 < j ≤ n. Let l be the maximum outdegree of T , and suppose l < n− 1 (otherwise, there
is nothing left to prove). Consider two permutations T 1 and T 2 of T such that for i ∈ {1, 2}, the
vertex 1 is the vertex of largest outdegree of T i and {i+1, . . . , i+ l} are its outneighbours. Consider
a third labeling T 3 such that (1, 2), (1, i+ 1) ∈ E(T 3). Clearly, if b = majority(bT 1 , bT 2 , bT 3), then
b1j = 1 for all 2 ≤ j ≤ l + 1. Since Pn is preserved by the majority operation, we can proceed
inductively to find a tuple b ∈ Pn such that b1j = 1 for all 1 < j ≤ n. With a similar finite inductive
argument over k ∈ [n], we can find a tuple b ∈ Pn such that bij = 1 for all i ≤ k and j > i. Thus, we

conclude that b1 ∈ Pn and so, Tn is F -free. Hence, by Lemma 25, we conclude that Pn = {0, 1}(
n

2).
The claim follows.

Building on Lemma 26, we prove the following statement.

Lemma 27. Let F be a finite set of finite tournaments. If BF does not interpret K3 primitively
positively, then BF is preserved by the Boolean minority operation or a constant operation.

Proof. If BF does not interpret K3 primitively positively, then, by Schaefer’s theorem, BF is
preserved by the minimum, the maximum, the majority, the minority, or the constant operation. If
either of the last two cases holds, the claim is proved. Otherwise, suppose that BF is preserved by
the minimum, the maximum, or the majority operation. Then, for each n ≤ mF the relation Pn

is preserved by one of these operations. By Lemma 26, we conclude that for each n ≤ mF either

Pn = ∅ or Pn = {0, 1}(
n

2). Hence, each Pn is trivially preserved by any constant operation, and so,
BF is preserved by a constant operation.

We are now ready to state the proposed classification for the complexity of F -free orientation
completion problems.

Theorem 28. Let F be a finite set of finite tournaments. Then exactly one of the following two
cases applies.

• K3 has a primitive positive interpretation in (BF ,0,1) and in (DF , U). In this case, CSP(DF , U)
and the F-free orientation completion problem are NP-complete.

• (BF ,0,1) has the the minority operation as polymporphism, and (DF , U) has a ternary pseudo
near unanimity polymorphism. In this case, CSP(DF , U) and the F-free orientation problem
are in P.

Proof. The two cases are mutually disjoint: if (BF ,0,1) is has the minority operation as polymor-
phism, then every structure with a first-order interpretation in it has such a polymorphism as well
(see, e.g., Corollary 6.5.16 in [9]), but K3 does not have such a polymorphism (see, e.g., Proposition
6.1.43 in [9]).

Now we see that one of the two cases holds, and first suppose that K3 has a primitive positive
interpretation in (BF ,0,1). Since (BF ,0,1) has a primitive positive interpretation in (DF , U), by
composing these interpretations, we obtain a primitive positive interpretation of K3 in (BF ,0,1).
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The NP-hardness of CSP(DF , U) and the F -free orientation completion problem now follows from
Lemma 10.

Otherwise, if K3 does not have a primitive positive interpretation in (BF ,0,1), then Schae-
fer’s theorem (Theorem 12) implies that CSP(BF ,0,1) is in P, and (BF ,0,1) has a polymor-
phism which is a constant operation, or the minimum, maximum, majority, or minority operation.
Lemma 27, and the obvious fact that (BF ,0,1) cannot be preserved by constant operations, imply
that (BF ,0,1) has a minority polymorphism. In this case we construct the ternary pseudo near
unanimity polymorphism of (DF , U) as follows. Consider the digraph with domain V 3 and edge
set

{

((u1, u2, u3), (v1, v2, v3)) | (u1, v1), (u2, v2), (u3, v3) ∈ U, |{i | (ui, vi) ∈ E}| ∈ {0, 2}
}

.

Since BF has a minority polymorphism, every finite subgraph F of this graph has an embedding
h to DF , and by the homogeneity of DF there exist automorphisms e1, e2 of DF such that for all
x, y ∈ V with (x, x, y), (x, y, x), (y, x, x) ∈ V (F ) we have e1(h(x, x, y) = e2(h(x, y, x)) = h(y, x, x).
The existence of a ternary pseudo weak near unanimity polymorphism can be shown as Proposition
6.6 in [16]. The polynomial-time tractability of CSP(DF , U) and the F -free orientation completion
problem now follows from the polynomial-time tractability of CSP(BF ,0,1) via Theorem 17.

5 Symmetries

Recall that, given a set of tournaments F , we denote by DF the countable universal homogeneous
F -free digraph, and by HF its its underlying graph. In order to classify the complexity of the
F -free orientation problem, it will be highly useful to understand the symmetries of HF in terms
of the symmetries of DF . Specifically, we use the description of the automorphism group of HF in
terms of the automorphism group of DF proposed by Agarwal and Kompatscher [1]. To provide
examples of these symmetries we consider the four non-isomorphic tournaments on 4 vertices T4,
TC4, C

−
3 , and C+

3 depicted in Fig. 3.

T4 TC4 C−
3 C+

3

Figure 3: The four non-isomorphic oriented tournaments on 4 vertices

If D is a digraph, then we denote by −D the digraph obtained by flipping the orientation of all
arcs of D, and we call it the flip of D. It is not hard to notice that if D is a Tk-free digraph, then
−D is also Tk-free. The following example shows that there are finite sets F of tournaments that
are not preserved by flips.

Example 29. Note that −(C−
3 ) is isomorphic to C+

3 . Hence, C−
3 is a {T4, C

+
3 }-free oriented graph

whose flip is not {T4, C
+
3 }-free.
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There is a second source of possible symmetries between F -free oriented graphs. Given a vertex
a ∈ V (D), the switch of D with respect to a is the oriented graph obtained by switching the
orientation of all arcs incident to a. We denote the resulting oriented graph by swa(D).

Example 30. The digraph TC+
4 is the switch of T4 with respect v, where v is a any vertex of T4

with positive in- and out-degree.

We say that a class of digraphs C is preserved by switches (resp., flips) if for every D ∈ C and
each a ∈ V (D) it is the case that C contains a digraph isomorphic to swa(D) (resp., −D). It is
evident that the class of F -free digraphs is preserved by switches (resp., flips) if and only if F
is preserved by switches (resp., flips). For instance, the previous example shows that the class of
T4-free graphs is preserved by flips but not by switches.

Since HF is the underlying graph of DF , every automorphism of DF is an automorphism of
HF . Agarwal and Kompatscher [1] gave a description of the possible automorphism groups of HF

in terms of the automorphism group of DF , and a few additional permutations that we introduce
in the following paragraphs.

For any set X , we denote by Sym(X) the permutation group of all permutation of X . If
−DF

∼= DF , we denote by − any isomorphism − : DF → −DF . In other words, − : V (DF ) →
V (DF) is a bijection such that (x, y) ∈ E(DF ) if and only if (−(y),−(x)) ∈ E(DF). Similarly, if
swa(DF) ∼= DF for some a ∈ V (DF), we denote by sw any isomorphism sw: DF → swa(DF ). That
is, sw : V (DF ) → V (DF ) is a bijection such that (a, x) ∈ E(DF) if and only if (sw(x), sw(a)) ∈
E(DF ), (x, a) ∈ E(DF ) if and only if (sw(a), sw(x)) ∈ E(DF ), and whenever x 6= a 6= y, there is
an edge (x, y) ∈ E(DF ) if and only if (sw(x), sw(y)) ∈ E(DF ). The next two lemmas follow from
Lemma 2.4 in [1].

Lemma 31. The following statements are equivalent for a finite set of finite tournaments F .

1. F is preserved by flips.

2. The class of F-free digraphs is preserved by flips.

3. DF is isomorphic to −DF .

4. − : V (DF) → V (DF) exists and − ∈ Aut(HF ).

Proof. The first two items are clearly equivalent. By definition of − : V (DF ) → V (DF ), the last
two items are clearly equivalent. Moreover, it is immediate to notice that if − : V (DF) → V (DF )
exists, then − defines an automorphism of HF . The equivalence of the second and third statements
follows from Lemma 2.4 in [1].

Lemma 32. The following statements are equivalent for a finite set of finite tournaments F .

1. F is preserved by switches.

2. The class of F-free digraphs is preserved by switches.

3. DF is isomorphic to swa(DF ) for some a ∈ V (DF).

4. DF is isomorphic to swa(DF ) for each a ∈ V (DF ).

5. sw: V (DF ) → V (DF ) exists and sw ∈ Aut(HF ).
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Proof. Similarly as before, the equivalence between items 2–4 follow from Lemma 2.4 in [1]. While
the first two statements are clearly equivalent, and the last two are equivalent by the definition of
sw.

As anticipated, the following statement asserts that Aut(HF) is either Aut(DF ) or the small-
est closed supergroup of Aut(DF) that contains −, sw, or both. The following statement is an
adaptation of the third statement of Theorem 2.2 in [1] to the notation of the present work.

Theorem 33 (Theorem 2.2(iii) in [1]). Let F be a finite set of finite tournaments. Then, HF is the
Rado graph, HF is a Henson graph, or HF is not homogeneous. In the last case, the automorphism
group of HF equals one of the permutation groups from the following list.

1. Aut(DF ).

2. 〈Aut(DF) ∪ {−}〉.

3. 〈Aut(DF) ∪ {sw}〉.

4. 〈Aut(DF) ∪ {−, sw}〉.

Our approach for proving dichotomy for the F -free orientation problem will follow a case dis-
tinction on Aut(HF ) according to the cases listed above. For this, it will be convenient to describe
for which sets F the graph HF is the Rado graph or a Henson graph.

Lemma 34. The following statements hold for a finite set of finite tournaments F .

1. HF is the Rado graph R if and only if F contains no transitive tournament.

2. HF is a Henson graph Hn if and only if

• F contains a transitive tournament,

• nF = n, and

• there is no F-free tournament with n vertices.

Proof. If F contains no transitive tournament, then R admits an F -free orientation (orient the
edges of the Rado graph according to any linear ordering of V (R)), and so it follows that HF is
the Rado graph. If F contains a transitive tournament, then it follows from [24] that there is a
complete graph that does not admit an F -free orientation, and thus HF is not the Rado graph.

With similar arguments as in the Rado case, one can notice that if F contains a transitive
tournament and there is no F -free, then HF is the Henson graph HnF . Now, we show that the
converse statement holds by contraposition. First, if n ≤ nF , then Kn admits an F -free orientation,
so HF is not Hn. Also, if F contains no transitive tournament, then there is nothing to prove given
the first statement. So, suppose that F contains a transitive tournament, that there is some F -free
tournament on nF vertices, and n > nF . It suffices to show that there is a graph G with no
complete subgraph on nF + 1 vertices such that G does not admit an F -free orientation, i.e., HF

does not embed so HF is not the Henson graph Hn for any n > nF . It is well-known that for every
positive integer k ≥ 3, there is there is a Kk-free graph G such that every 2-edge-colouring of G
yields a monochromatic complete graph on k− 1 vertices (see, e.g., [26]). Let G be such a graph for
k = nF + 1. Consider any orientation G′ of G, and any linear ordering ≤ of V (G). Now, colour an
edge xy of G with blue if x ≤ y and (x, y) ∈ E(G′) or if y ≤ x and (y, x) ∈ E(G′); otherwise, colour
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xy with red. By the choice of G, there must k vertices v1, . . . , vk that induce a monochromatic
clique. It is not hard to notice that v1, . . . , vk must induce a transitive tournament on G′, so G′

contains a transitive tournament on nF + 1 vertices. Since this holds for any orientation G′ of G,
we conclude that G does not admit an F -free orientation. Thus, G embeds in the Henson graph
Hn for each n ≥ nF + 1, but not in HF . This concludes the proof.

Finally, it will also be convenient to have an alternative description of Aut(HF ) if it contains
the action sw. Let P ⊆ V 3 be the ternary relation that contains all triples (i, j, k) ∈ V 3 such that
U(i, j), U(j, k), U(i, k), and |{(i, j), (j, k), (i, k)} ∩ E| is even.

Theorem 35. For a finite set of finite tournaments F the following equalities hold.

1. 〈Aut(DF) ∪ {sw}〉 = Aut(V ;P ), and

2. 〈Aut(DF) ∪ {−, sw}〉 = 〈Aut(V ;P ) ∪ {−}〉.

Proof. First observe that P is preserved by sw; this implies the inclusions ⊆ in the two statements.
Now suppose for contradiction that there exists α ∈ Aut(V ;P ) \ 〈Aut(DF) ∪ {sw}〉. Then The-
orem 33 implies that Aut(HF ) contains −, which is a contradiction because − clearly does not
preserve P .

Theorem 36. For all finite sets F of finite tournaments, HF is a model complete core.

Proof. The fact that HF is core follows from Lemma 6, and the model completeness of HF is a side
product of the proof in [1] (similarly as in [15]).

6 The Orientation Problem

We prove the complexity dichotomy for the F -free orientation problem following a similar idea as we
proved the dichotomy for the F -free orientation completion problem: we show that for each finite
set of finite tournaments F , there is a Boolean structure whose CSP is polynomial-time equivalent
to the F -free orientation problem. We will do so by a case distinction over the automorphism group
of HF , and repeatedly use the following lemma (see [9]).

Lemma 37. If C is an ω-categorical model-complete core, then all orbits of k-tuples of Aut(C) are
primitively positively definable in C.

Throughout the remaining of this section, let F be a fixed finite set of finite tournaments.

6.1 The Standard Case

We begin by considering the case where Aut(HF ) = Aut(DF ).

Proposition 38. Let F be a finite set of finite tournaments with nF ≥ 3. If Aut(HF ) = Aut(DF),
then the relation E has a primitive positive definition in HF .

Proof. Note that E consists of one orbit of pairs in Aut(HF ). Since HF is a model-complete
core by Theorem 36, it follows that the relation E has a primitive positive definition in HF by
Lemma 37.
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Corollary 39. Let F be a finite set of finite tournaments with nF ≥ 3. If Aut(HF ) = Aut(DF),
then there exists a primitive positive interpretation of BF in HF , and there exists a polynomial-time
reduction from CSP(BF ) to the F-free orientation problem.

Proof. Since E has a primitive positive definition in HF by Proposition 38, the statement is an
immediate consequence of Lemma 21. The polynomial-time reduction follows from Lemma 10.

6.2 The Flipping Case

We write N for the binary relation on V defined as

N := {(x, y) ∈ V 2 | ¬U(x, y) ∧ x 6= y}.

Let O be the arity four relation on V defined as

O := {(x, y, u, v) ∈ V 2 | S4(x, y, u, v) ∧N(x, u) ∧N(x, v) ∧N(y, u) ∧N(y, v)}

where S4 is the relation defined in Eq. (1).

Lemma 40. Let F be a finite set of finite tournaments with nF ≥ 3. If Aut(HF) = 〈Aut(DF ) ∪
{−}〉, then the relation S4 has a primitive positive definition in HF .

Proof. Note that the relation O consists of one orbit of pairs in Aut(HF ). Since HF is a model-
complete core by Theorem 36, the relation O has a primitive positive definition in HF by Lemma 37.
We claim that S4 has the following primitive positive definition.

∃a, b
(

O(x, y, a, b) ∧O(a, b, u, v)
)

If (x, y, u, v) satisfies this formula and a, b are witnesses for the existentially quantified variables,
then (x, y) ∈ E if and only if (a, b) ∈ E, which in turn is the case if and only if (u, v) ∈ E. Hence,
the given formula implies S4(x, y, u, v). Conversely, if (x, y) ∈ E and (u, v) ∈ E, then we may pick
(a, b) ∈ E such that (p, q) ∈ N for all p ∈ {x, y, u, v} and q ∈ {a, b}, and hence (x, y, u, v) satisfies
the given formula.

Corollary 41. Let F be a finite set of finite tournaments with nF ≥ 3. If Aut(HF) = 〈Aut(DF )∪
{−}〉, then BF has a primitive positive interpretation in HF , and there exists a polynomial-time
reduction from CSP(BF ) to the F-free orientation problem.

Proof. The first statement follows directly from Lemma 40 via Lemma 21. The second statement
then follows via Lemma 10.

6.3 The Switching Case

So far, we have solely worked with the Boolean structure BF . Now, when Aut(HF ) contains sw,
we consider an auxiliary Boolean structure which we define in the following paragraphs. If T is a

tournament with vertex set {1, . . . , n}, then cT ∈ {0, 1}(
k

3) is defined as follows. The entries of cT will

be indexed by 3-element subsets {i, j, k} of {1, . . . , n}, written as (cT )ijk. For all {i, j, k} ∈
(

V (T )
3

)

with i < j < k we have that (cT )ijk = 0 if and only if |{(i, j), (j, k), (i, k)} ∩ E(T )| is even.
Equivalently, cT is defined by the following equation over Z2

(cT )ijk = (bT )ij + (bT )ik + (bT )jk. (2)
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Recall that the tuples bT fully determines the labeled tournament T . Note that there can be
different tournaments T and T ′ such that cT = cT ′ . Nonetheless, we argue that the tuples cT
determine whether T is F -free whenever F is preserved by switch.

Observation 42. Let F be a finite set of tournaments preserved by switch, and T, T ′ a pair of
tournaments. If cT = cT ′ , then T is F-free if and only if T ′ is F-free.

Proof. This is a consequence of Lemma 32 and Theorem 35.

Definition 1. The structure CF has domain {0, 1} and the signature which contains for every
k ≤ mF the relation symbol Qk of arity

(

k
3

)

which denotes in CF the relation consisting of all

c ∈ {0, 1}(
k

3) such that there exists an F-free tournament T with cT = c.

We proceed to observe that BF and CF are mutually pp-definable. To do so, we will use the
following lemma which is similar to Lemma 27.

Lemma 43. Let F be a finite set of finite tournaments with sw ∈ Aut(HF ). If CF does not
interpret K3 primitively positively, then CF is preserved by the Boolean minority operation or a
constant operation.

Proof. If CF is not NP-hard, it falls into one of the Schaefer’s cases [40]: CF is preserved by a
constant operation, by min, by max, by majority, or by minority. If the first or last case holds,
then there is nothing to be shown. We show that if CF is preserved by min, by max, or by
majority, then CF is also preserved by the constant 0 operation. It suffices to show that for
every n ≤ mF , the relation Qn is either empty or contains the tuple with all entries 0. For each
t ∈ Qn, define a tournament T (t) on {1, . . . ,m} by setting (i, j) ∈ E(T (t)) if (ti, tj , tm+1) ∈ P ,
and setting (j, i) ∈ E(T (t)) if (ti, tj , tm+1) 6∈ P . Denote by T the set of all tournaments on
{1, . . . ,m} obtained in this way, and notice that Pn−1(BT ) is preserved by min, max, or majority,
because Qn is preserved by min, max, or majority. Thus, by Lemma 26, either Pn−1(BT ) = ∅ or

Pn−1(BT ) = {0, 1}(
n−1

2 ). If the former case holds, then Qn is empty and the claim follows; if the
latter holds, then Pn−1(BT ) contains both constant tuples, i.e., Tn−1 ∈ T . Let t ∈ Qn be such
that T (t) = Tn−1, i.e., tijn = 0 for all 1 ≤ i < j ≤ n− 1. Since t = cT for some F -free tournament
T , we have that tijk = tijn + tikn + tjkn = 0 for all 1 ≤ i ≤ j ≤ k ≤ n− 1. Hence, t is the constant
0-tuple, and t ∈ Qn. The claim now follows.

Let R4 ⊆ {0, 1}4 be the 4-ary Boolean relation consisting of all the tuples (i, j, k, l) such that
i+ j + k + l = 0 mod 2.

Lemma 44. Let F be a finite set of finite tournaments. If F is preserved by switch, then each pair
of the following structures are mutually primitively positively definable

BF , (BF , R4), (CF , R4), CF .

Proof. We first see that BF and (BF , R4) are mutually pp-definable, and we only argue the non-
trivial direction. By Theorem 9, it suffices to show that R4 is preserved by all polymorphisms ofBF .
By Lemma 27, if BF has a polymorphism f which is not a projection, then it is generated by the
minority, or by constant operations, i.e., f is obtained by composing projections with the minority
or the constant operation (see e.g., [38]). Since R4 is preserved by projections, by the minority,
and by the constant operation, it follows inductively that R4 is preserved by compositions of these
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operations. Therefore, R4 is preserved by all polymorphisms of BF and thus, it has a pp-definition
in BF . With similar arguments, and using Lemma 43, one can prove that CF and (CF , R4) are
mutually pp-definable. To conclude the proof we show that (BF , R4) and (CF , R4) pp-define one
another. It follows immediately from Eq. (2) that QBF

n is primitively positively defined in (BF , R4)
by

∃b12, . . . , bn−1,n



Pn(b12, . . . , bn−1,n) ∧
∧

1≤i<j<k≤n

R4(bij , bil, bjk, cijk)



 .

Finally, consider the
(

k
2

)

-ary relation P ′
n(b12, . . . , bn−1,n) defined by the formula

∃c123, . . . , cn−2,n−1,n



Qn(c123, . . . , cn−2,n−1,n) ∧
∧

1≤i<j<k≤n

R4(bij , bik, bjk, cijk)



 .

Notice that, for a tournament T the formula bT ∈ P ′
n if and only if there is an F -free tournament T ′

such that cT = cT ′ . Since sw ∈ Aut(HF ), by Observation 42 we conclude that T is also F -free, and
so bT ∈ PBF

n . Conversely, if bT ∈ PBF
n , then the tuple cT is a witness to the fact that bT ∈ P ′

n.

The following statement is an immediate implication of this lemma, Lemma 10, and Theorem 17.

Proposition 45. Let F be a finite set of finite tournaments. If sw ∈ Aut(HF ), then there is a
polynomial-time reduction from the F-free orientation problem to CSP(CF ).

The proof of the following theorem is similar to the proof of Lemma 20. We use the ternary
relation P introduced before Theorem 35 to now define

S6 :=
{

(a, b, c, u, v, w) ∈ V 6 | U(a, b) ∧ U(b, c) ∧ U(a, c) ∧ U(u, v) ∧ U(v, w) ∧ U(u,w)

and P (a, b, c) ⇔ P (u, v, w)
}

.

Lemma 46. For every finite set of finite tournaments F , the Boolean structure CF has a primitive
positive interpretation in (HF , S6).

Proof. Our interpretation I has dimension three, is defined on all triples (a, b, c) that induce a K3 in
HF , and is given by I(a, b, c) := 0 if (a, b, c) ∈ P , and I(a, b, c) := 1 otherwise. The domain formula
⊤I(a, b, c) is U(a, b) ∧ U(b, c) ∧ U(a, c). The interpreting formula =I(a, b, c, u, v, w) for equality is
S6(a, b, c, u, v, w). For n ≤ kF , the interpreting formula

(Rn)I(a123, b123, c123, . . . , an−2,n−1,n, bn−2,n−1,n, cn−2,n−1,n)

for Rn is

∃x1, . . . , xn
∧

{i,j}∈({1,...,n}
2 )

U(xi, xj) ∧
∧

{i,j,k}∈({1,...,n}
3 )

S6(aijk, bijk, cijk, xi, xj , xk).

It is straightforward to verify that S6(a, b, c, u, v, w) if and only if I(a, b, c) = I(u, v, w). Now
suppose that (HF , S6) |= (Rn)I(a123, . . . , cn−2,n−1,n), and let d1, . . . , dn be witnesses for the exis-
tentially quantified variables in this formula. Note that d1, . . . , dn must induce a Kn in HF ; let
T be the tournament induced in DF . Then cT ∈ Rn by the definition of Rn, which means that
(I(a123, b123, c123), . . . , I(an−2,n−1,n, bn−2,n−1,n, cn−2,n−1,n)) ∈ Rn by the properties of S6. All of
the implications in this argument can be reserved, which completes the proof.
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To conclude the proof, it now suffices to show that S6 has a primitive positive definition in HF

when sw ∈ Aut(HF ). Again, we consider the cases − ∈ Aut(HF ) and − 6∈ Aut(HF ) separately.

Lemma 47. Let F be a finite set of finite tournaments. If Aut(HF ) = 〈Aut(DF )∪ {−, sw}〉, then
there exists a primitive positive definition of S6 in HF .

Proof. Notice that if nF = 3, then T3 ∈ F , and since
−→
C3 can be obtained as a switch of T3, the

triangle does not admit an F -free orientation. The latter claims holds trivially if nF ≤ 2. So, if
nF ≤ 3, then S6 = ∅, and thus it is primitive positive defined by formula ⊥. Otherwise, if nF ≥ 4,
we proceed similarly to Lemma 40, but instead of O using the relation

(P (x1, x2, x3) ⇔ (P (y1, y2, y3)) ∧
∧

i,j∈{1,2,3}

N(xi, yj)

∧ U(x1, x2) ∧ U(x2, x3) ∧ U(x1, x3)

∧ U(y1, y2) ∧ U(y2, y3) ∧ U(y1, y3)

which consists of just one orbit of 6-tuples in the group Aut(HF ), and hence has a primitive positive
definition in the model-complete core structure HF .

Finally, we consider the most technical case, namely, when Aut(HF ) = 〈Aut(DF ) ∪ {sw}〉.

Lemma 48. Let F be a finite set of finite tournaments. If Aut(HF) = 〈Aut(DF )∪{sw}〉, then S6

has a primitive positive definition in HF .

Proof. With the same arguments as in the proof of Lemma 47, we see that if if nF ≤ 3, then S6

is primitive positive defined by formula ⊥. Suppose that nF ≥ 4, and notice that in this case, any
orientation of K3 is F -free, fact which we use below. Now, since Aut(HF ) = 〈Aut(DF ) ∪ {sw}〉, it
follows from Theorem 35 that the relation P consists of one orbit of triples of Aut(HF ). Hence, P
has a primitive positive definition in HF , because HF is a model-complete core and by Lemma 37.
The same holds for

Q :=
{

(a, b, c) ∈ V 3 | U(a, b) ∧ U(b, c) ∧ U(a, c) ∧ ¬P (a, b, c)
}

instead of P . Therefore, it suffices to prove that S6 is primitive positive definable in (V ;P,Q).
Let T ∈ F , and φ be a conjunction of all atomic {P,Q}-formulas of the form P (i, j, k) for

{i, j, k} ∈
(

{1,...,k}
3

)

such that (cT )ijk = 0, and of the form Q(i, j, k) such that (cT )ijk = 1. Clearly,
φ is unsatisfiable in (V ;P,Q). Let ψ be a maximal satisfiable subset of the conjuncts of φ. Since

T3 and
−→
C3 are F -free, each conjunct of φ is satisfiable and so ψ has at least one conjunct χ1. Let

ψ′ be the remaining conjuncts of ψ, i.e., ψ′ := ψ \ {χ1}. Let χ2 be any conjunct of φ which is not
in ψ. Note that ψ′ implies χ1 ⇒ ¬χ2. We may assume that χ1 is of the form P (i, j, k) and χ2

is of the form Q(i, j, k). To see that this is without loss of generality, first suppose that otherwise
all conjuncts in φ \ ψ are of the form P (i, j, k). Clearly, we may assume that two of the variables
a, b ∈ {1, . . . , k} of χ2 are smallest among all the variables of ψ. Let T̃ be an isomorphic copy
obtained from T by exchanging the labels a and b; then the construction of φ above, carried out
with T̃ instead of T , has the desired property. The case that all conjuncts of ψ are of the form
Q(i, j, k) can be treated similarly.

Note that χ1 and of χ2 cannot have the same set of variables; so we may assume without loss of
generality that χ1 ⇒ χ2 is of the form P (a, b, c) ⇒ P (a′, b′, c′) where a might be the same variable
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as a′, and b might be the same variable as b′, but c and c′ are different variables. Let ψ′′ be the
primitive positive formula obtained from ψ′ by existentially quantifying all variables except for
a, b, c, a′, b′, c′, and let η be the formula

∃a′, b′, c′, u′, v′, w′
(

ψ′′(a, b, c, a′, b′, c′) ∧ ψ′′(b′, c′, a′, v′, w′, u′) ∧ ψ′′(w′, u′, v′, w, u, v)
)

.

First note that if (a, b, c) ∈ P , then the first conjunct of η implies that (a′, b′, c′) ∈ P , the second
that (u′, v′, w′) ∈ P , and the third that (u, v, w) ∈ P . Conversely, η(a, b, c, u, v, w) implies that if
(u, v, w) ∈ P , then (a, b, c) ∈ P .

We claim that the following formula ν(a, b, c, u, v, w) defines S6:

∃a′, b′, c′, u′, v′, w′
(

η(a, b, c, a′, b′, c′) ∧ η(a′, b′, c′, u′, v′, w′) ∧ η(u′, v′, w′, u, v, w)
)

.

It is easy to see that ν(a, b, c, u, v, w) implies S6(a, b, c, u, v, w).
Now suppose that (a, b, c, u, v, w) ∈ S6. First consider the case that (a, b, c) ∈ P and (u, v, w) ∈

P . The case that (a, b, c) ∈ Q and (u, v, w) ∈ Q can be treated similarly. Let G be the canon-
ical database of the primitive positive {E}-formula obtained from replacing the {P,Q}-atoms of
ν(a, b, c, u, v, w) by their primitive positive definition in HF . Let D be an F -free orientation of
G. We assume that the tournament {a, b, c} induces the same tournament in DF and in D, and
that {u, v, w} induces the same tournament in DF and in D. This is without loss of generality,
because otherwise we may repeatedly compose e with swa for a ∈ {a, b, c, u, v, w} to obtain such an
orientation.

We now add directed edges to D such that {a, b, c, u, v, w} induces the same digraph in DF and
in D. Note that the resulting digraph is still F -free, because every tournament that embeds into
D must either embed into {a, b, c, u, v, w}, into {a, b, c, a′, b′, c′}, into {a′, b′, c′, u′, v′, w′}, or into
{u′, v′, w′, u, v, w}, because all edges of D are covered by one of these subsets. Hence, D has an
embedding e into DF , and by homogeneity we may assume that e(a) = a, e(b) = b, and e(c) = c,
e(u) = u, e(v) = v, and e(w) = w. This shows that ν(a, b, c, u, v, w) holds in HF .

Corollary 49. Let F be a finite set of finite tournaments. If Aut(HF ) ∈ [〈Aut(DF ) ∪ {sw}〉,
〈Aut(DF )∪ {−, sw}〉], then there exists a primitive positive interpretation of BF in HF , and there
exists a polynomial-time reduction from CSP(BF ) to the F-free orientation problem.

Proof. By Theorem 33, either Aut(HF ) = 〈Aut(DF ) ∪ {−, sw}〉 or Aut(HF ) = 〈Aut(DF) ∪ {sw}〉;
the primitive positive definition of S6 in HF now follows by Lemmas 47 and 48, respectively. Thus,
by Lemma 46, CF has a primitive positive interpretation in HF and so, by Lemma 44 and composing
interpretations, we conclude that BF has a primitive positive interpretation in HF . Finally, the
polynomial time reduction follows from from Lemma 10.

6.4 Complexity Classification

Finally, we put all these cases together and obtain the following result.

Theorem 50. Let F be a finite set of finite tournaments. Then exactly one of the following two
cases applies.

• K3 has a primitive positive interpretation in BF and in HF . In this case, CSP(HF ) and the
F-free orientation problem are NP-complete.
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• BF has a constant operation or the minority operation as a polymorphism, and HF has a
ternary pseudo near unanimity polymorphism. In this case, CSP(HF ) and the F-free orien-
tation problem are in P.

Proof. It is well-known that the two cases are mutually disjoint: if HF has a ternary pseudo near
unanimity polymorphism, then every structure with a first-order interpretation in HF has such a
polymorphism as well (see, e.g., Corollary 6.5.16 in [9]), but K3 does not have such a polymorphism
(see, e.g., Proposition 6.1.43 in [9]).

We prove that one of the two cases applies by a case distinction on HF and on Aut(HF ) accord-
ing to Theorem 33. If HF is the Rado graph (in particular, if F is empty), then, by Lemma 34, F
contains no transitive tournament, so for all n ∈ {2, . . . ,mF} we have that PBF

n contains both con-
stant

(

n
2

)

-tuples and so, BF has a constant polymorphism. Moreover, the Rado graph (Example 2)
clearly has a pseudo near unanimity polymorphism (Example 15) and the statement is trivial.

If HF is a Henson graph Hm, then, by Lemma 34, F contains a transitive tournament, there
is no F -free tournament on nF vertices, and m = nF . So, PBF

n = ∅ for all n ∈ {nF , . . . ,mF},
and PBF

n contains both constant
(

n
2

)

-tuples for all other n < nF . Hence, BF again has a constant
polymorphism. Moreover, since HF is the Henson graphHnF (Example 3), it also has a pseudo near
unanimity polymorphism as was mentioned earlier (Example 15). The F -free orientation problem
is in P, because it suffices to check whether the give input graph contains KnF .

Otherwise, if HF is not the Rado graph, nor a Henson graph, then Theorem 33 implies that
Aut(HF ) ∈ [Aut(DF), 〈Aut(DF ) ∪ {−, sw}〉], and Lemma 34 implies that F contains a transi-
tive tournament, and that there is at least one F -free oriented tournament on nF vertices. In
particular, this implies that BF does not have a constant polymorphism, since PBF

nF
is neither

empty, nor contains constant tuples. Hence, by Lemma 27, BF either has the minority oper-
ation as polymorphism, or it pp-interprets K3. If the former holds, then the minority opera-
tion is a polymorphism of (BF ,0,1) as well, and thus, (DF , U) has a pseudo near unanimity
polymorphism f by Theorem 28. Clearly, f is also a pseudo near unanimity polymorphism of
HF . The fact that the F -free orientation problem and CSP(HF ) are in P follows from the
polynomial-time tractability of CSP(BF ) and Theorem 17. Finally, suppose that BF primi-
tively positively interprets K3. Since Aut(HF ) ∈ [Aut(DF ), 〈Aut(DF) ∪ {−, sw}〉], then, by The-
orem 33, it must be the case that either Aut(HF ) = Aut(DF), Aut(HF ) = 〈Aut(DF) ∪ {−}〉, or
Aut(HF ) ∈ [〈Aut(DF )∪{sw}〉, 〈Aut(DF )∪{−, sw}〉]. So, in each case by Corollaries 39, 41, and 49,
respectively, there is a primitive positive interpretation of BF in HF . Finally, by the well-known
fact that pp-interpretations compose, we conclude that K3 has a primitive positive interpretation
in HF , and CSP(HF ) and the F -free orientation problem are NP-complete by Lemma 10.

7 Examples and Applications

If the reader is not familiar with constraint satisfaction theory, they might find Theorems 28 and 50
not transparent enough. In order to address a broader audience, we first describe the minority
operation in terms of tournaments, and then, using this description, we propose simpler versions
of Theorems 28 and 50. Some readers might find these versions more natural, and others might
find it redundant; the latter can skip the following subsection.

We conclude this section by providing some examples and applications of Theorems 28 and 50
to certain natural instances of the F -free orientation and orientation completion problems.
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7.1 Minority and Tournaments

Consider three tournaments T 1, T 2, and T 3 with vertex set [n]. The minority operation maps the
triple (T 1, T 2, T 3) to a tournament with vertex set [n] which we denote by minority(T 1, T 2, T 3) and
the edge set is defined as follows. For 1 ≤ i < j ≤ n there is an edge (i, j) in minority(T 1, T 2, T 3)
if either (i, j) ∈ E(T 1)∩E(T 2)∩E(T 3) or if (i, j) is an edge in exactly one of the tournaments T 1,
T 2, and T 3. Intuitively, when deciding whether there is an edge (i, j) in minority(T 1, T 2, T 3), we
first check if the three tournaments agree on (i, j), and otherwise, we take the minority vote. We
extend these operation to take as input triples of tournaments (T 1, T 2, T 3) with different sizes of
vertex sets. Suppose that V (T 1) = [n1], V (T 2) = [n2], and V (T 3) = [n3], where n1 ≤ n2 ≤ n3. We
define minority(T 1, T 2, T 3) := minority(T 1, T 2[n1], T

3[n1]).

1

2

3

4

T 1

1

2

3

4

T 2

1

2

3

4

T 3

1

2

3

4

minority

Figure 4: An illustration of the minority operation acting on a triple (T 1, T 2, T 3) of tournaments
isomorphic to TC4, which yields a tournament isomorphic T4.

We say that a set of tournaments T is preserved by the minority operation if for every three
tournaments T 1, T 2, T 3 with vertex set [n1], [n2], and [n3], respectively, whenever each T i, with
i ∈ {1, 2, 3}, is isomorphic to some tournament in T , then minority(T 1, T 2, T 3) is isomorphic to
some tournament in T . For instance, the illustration of this operation in Fig. 4 shows if a set T
contains TC4, but not T4, then it is not preserved by the minority operation.

Clearly, the previously defined operation on tournaments is a translation of the minority oper-
ation on Boolean relational structures (Theorem 12). We will use these translations to propose a
classification of the complexity of the F -free orientation completion problem. Given a non-empty
finite set of finite tournaments F , we denote by Ff the set of F -free tournaments on at most mF

vertices.

Lemma 51. Let F be a finite set of finite tournaments. The Boolean structure BF is preserved
by the minority Boolean operation if and only if Ff is preserved by the minority operation.

Proof. By definition of Pn(BF ), it follows that for each n ≤ mF the relation Pn is preserved by
the minority operation if and only if for any three F -free tournaments T 1, T 2, T 3 with vertex set
[n], it is the case that minority(T 1, T 2, T 3) is F -free. Thus, it suffices to prove that the latter
condition holds if and only if Ff is preserved by the minority operation. One implication is trivial,
we prove the remaining one by contraposition. Suppose Ff is not preserved by minority, and
let T 1, T 2, T 3 ∈ Ff such that majority(T 1, T 2, T 3) 6∈ Ff . Without loss of generality, assume
that T 1 has the minimum number of vertices n amongst these three tournaments. Since Ff is
closed under taking subtournaments, then T 2[n] and T 3[n] belong to Ff . The claim follows since
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minority(T 1, T 2[n], T 3[n]) is equal (by definition) to minority(T 1, T 2, T 3) which does not belong to
Ff .

Now, we translate Theorems 28 and 50 in terms of the minority operation and tournaments.

Corollary 52. For every finite set of finite tournaments F one of the following cases holds.

1. Ff is preserved by the minority operation. In this case, the Ff -free orientation completions
of a digraph D correspond to the solution space of a system of linear equations over Z2

(constructed from D and F).

2. Otherwise, F-free orientation completion problem is NP-complete.

In the first case, the F-free orientation completion problem is in P.

Proof. It follows directly from Theorem 28 and Lemma 51.

Corollary 53. For every finite set of finite tournaments F one of the following cases holds.

1. F contains no transitive tournament. In this case, every graph admits an F-free orientation.

2. Ff is preserved by the minority operation. In this case, the Ff -free orientations of a graph G
correspond to the solution space of a system of linear equations over Z2 (constructed from G
and F).

3. Otherwise, the F-free orientation completion problem is NP-complete.

In cases 1 and 2, the F-free orientation problem is in P.

Proof. Immediate implication of Theorem 50 and Lemma 51.

We can already illustrate these corollaries using Fig. 3.

Example 54. Notice that by the minority operation depicted in Fig. 3, if F contains T4 and TC4

if F-free, then Ff is not preserved by the minority operation. Thus, in any such case, the F-free
orientation and the F-free orientation completion problems are NP-complete.

7.2 Sets with T3 or
−→
C3

Now, we consider the special cases when F contains some small tournament. Specifically, when F
contains at least one tournament on at most 3 vertices. The cases when F contains T1 is trivial,
and it is also not hard to settle the case when F contains T2.

Recall that given a digraph D, we write U to denoted the symmetric closure of E. It is not hard
to notice that an oriented graph D can be described as a Z2-colouring c : U → Z2 such that for
every pair ij ∈ U the equality c(i, j) + c(j, i) = 1 is satisfied. Equivalently, orientation completions
of a digraph D are in one to one correspondence with solutions to the linear equation xij + xji = 1
over Z2, where i, j ranges over adjacent vertices of G, and xij = 1 for each (i, j) ∈ E such that

(j, i) 6∈ E. Now, notice that every hamiltonian oriented path of
−→
C3 has an even number of forward

edges, but there are hamiltonian oriented paths of T3 with different parity. Thus, the T3-free
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orientation completions of D are in one-to-one correspondence to the solutions of the system with
variables xij for ij ∈ U and linear equations

xij = 1 where (i, j) ∈ E and (j, i) 6∈ E,

xij + xji = 1 where ij ∈ U,

xij + xjk = 0 where ij, jk, ik ∈ U.

We denote by Sys3(D) the previously described system of linear equations. For the following
statement, we assume that the input digraph of the F -free orientation problem is given with vertex
set [n] for n = |V (D)|. Clearly, this assumption is done without loss of generality.

Corollary 55. Let F be a finite set of finite tournaments. If the smallest tournament in F has
exactly three vertices, then one of the following holds.

1. F contains both T3 and
−→
C3. In this case, a digraph D admits an F-free orientation completion

if and only if the D contains no semicomplete digraph on 3 vertices.

2. F contains a T3 but not
−→
C3 . In this case, the F-free orientations of a digraph D correspond

to the solution space of Sys3(D).

3. F contains a
−→
C3 but not T3. In this case, the F-free orientation completion problem is NP-

complete.

In cases 1 and 2, the F-free orientation completion problem is in P.

Proof. The first case is immediate to see. To prove the second case, notice that every tournament
on 4 vertices contains a transitive triangle and so, an orientation completion D′ of D is F -free if
and only if it is T3-free. Thus, the second case follows from the two paragraphs preceding this

corollary. Finally, the case when
−→
C3 ∈ F but T3 6∈ F follows by noticing that PBF

3 is not preserved
by minority: the tuples (1, 1, 0), (0, 1, 1), and (1, 1, 1) correspond to three permutations of T3 (i.e.,
three F -free tournaments), while minority((1, 1, 0), (0, 1, 1), (1, 1, 1)) = (0, 1, 0) which corresponds
to a directed triangle (i.e., a non-F -free tournament). Thus, the F -free orientation completion
problem in NP-complete by Theorem 28.

Notice that if G is a graph with vertex set [n], then Sys3(G) does not contain equations of the
form xij = 1.

Corollary 56. Let F be a finite set of finite tournaments. If the smallest tournament in F has
exactly three vertices, then one of the following holds.

1. F contains both T3 and
−→
C3. In this case, a graph G admits an F-free orientation if and only

if the G is K3-free.

2. F contains a T3 but not
−→
C3 . In this case, the F-free orientations of a graph G correspond to

the solution space of Sys3(G).

3. F contains
−→
C3 but not T3. In this case, every graph admits an F-free orientation.

In each of these cases, the F-free orientation completion problem is in P.
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Proof. Cases 1 and 3 are trivial, and case 2 follows as a particular instance of the second case in
Corollary 55.

It is also possible to have an ad-hoc reduction from an NP-complete problem to the
−→
C3-

orientation completion problem. The most natural problem in this scenario is not-all-equal 3-SAT:
the input is a 3-SAT instance; and a solution is where at least one variable per clause is false,
and one is true. As a sanity check, one can easily verify that the gadget (D, x0, x1, y0, y1, z0, z1) in

Fig. 5 yields a reduction from not-all-equal 3-SAT to the
−→
C3-free orientation. To see this, simply

notice that (x0, x1) and (a, b) force each other, and symmetrically, (y0, y1) and (b, c) force each
other, and (z0, z1) and (c, a) force each other. Since the triangle abc must be oriented transitively,
it must be the case that at least one of the edge x0x1, y0y1, z0z1 is oriented from 0 to 1, but not

the three of them. Moreover, any transitive orientation of abc extends to a
−→
C3-free orientation of

D. With these arguments, one can notice that given a instance φ of not-all-equal 3-SAT, there is

a digraph D such that D admits a
−→
C3-free orientation completion if and only if φ is a yes instance

to not-all-equal 3-sat (and D can be constructed in polynomial time with respect to D). Actually,
the reader familiar with pp-interpretations, can notice that the gadget (D, x0, x1, y0, y1, z0, z1) can
be translated into a primitive positive interpretation of ({0, 1}, {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}) in DF

— which is guaranteed to exist by Theorem 28 and the well-known fact that K3 pp-interprets any
finite structure [9], and that pp-interpretations compose.

a b

c

x0 x1

z0

z1 y0

y1

(D, x0, x1, y0, y1, z0, z1)

Figure 5: A gadget for reducing not-all-equal 3-Sat to the
−→
C3-free orientation completion. Equiv-

alently, the interpreting formula for the primitive positive interpretation of ({0, 1}, {0, 1}3 \

{(0, 0, 0), (1, 1, 1)}) in (DF , U) for F = {
−→
C3}.
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7.3 Tournaments on four vertices

In the previous subsection we considered all cases where F contains at least one tournament on
at most 3 vertices. In this subsection, we apply our main results to classify the complexity of
the F -free orientation and orientation completion problem if all tournaments in F have exactly 4
vertices. Similarly as in the previous subsection, we introduce three families of systems of linear
equations over Z2, whose solution space will encode F -free orientation completions for certain sets
F .

Recall that in Fig. 3 we depicted all four tournaments on 4 vertices, up to isomorphism. Notice
that if T4 is described by the linear ordering of [4], then the cycle 1342 has 3 forward edges and 1
backward edge, i.e., x12 + x23 + x34 + x41 = 1 according to the coding described in the previous
subsection. Similarly, it is not hard to find a hamiltonian oriented cycle ijkl in TC4 such that
xij +xjk +xkl+xli = 1. On the contrary, it is evident that every hamiltonian cycle ijkl of C+

3 and
of C−

3 have an even number of forward edges, i.e., xij + xjk + xkl + xli = 0. Thus, similar as the
set up of Sys3(D), there is a system of linear equations Sys4(D) whose solution space correspond
to the {T4, TC4}-free orientation completions of a digraph D.

It is even simpler to verify that each vertex in C+
3 has an even number of outneighbours, while

for T4, TC4, and C
−
3 , there is at least one vertex with an odd number of outneighours. Again, this

leads to a system of linear equations Sys+(D) with variables xij where ij ∈ U(D), such that the
solution space (over Z2) of Sys+(D) corresponds to the {T4, TC4, C

−
3 }-free orientation completions

of D. Moreover, notice that C−
3 is the flip of C+

3 , thus an oriented graph D′ is {T4, TC4, C
−
3 }-free if

and only −D is {T4, TC4, C
+
3 }-free. This means that if x is a solution to Sys+(D) and we interpret

xij = 1 as an edge (j, i) (instead of (i, j)), we see that the solution space of Sys+(D) also encondes
the {T4, TC4, C

+
3 }-free orientation completions of D.

Corollary 57. If F is a non-empty set of tournaments on 4 vertices, then one of the following
holds.

1. F contains all tournaments on 4 vertices, up to isomorphism. In this case, a digraph D admits
an F-free orientation completion if and only if it does not contain a semicomplete digraph on
4 vertices.

2. F contains both T4 and TC4. In this case, the F-free orientation completions of a digraph D
correspond to the solution space of Sys4(D) or of Sys+(D).

3. F contains at most one of T4 or TC4. In this case, the F-free orientation completion is
NP-complete.

In cases 1 and 2, the F-free orientation completion problem is in P.

Proof. The first case is immediate, and the second one is argued in the paragraph preceding this
statement. To prove item 3, first notice that the case when T4 ∈ F and TC4 6∈ F , follows from
Example 54. Otherwise, suppose that T4 6∈ F , and so, T4 is F -free. Since F contains at least one
tournament on 4 vertices, and T4 is F -free, it follows from Lemma 25, that Pn is not preserved by
the Boolean minority operation. The hardness of the F -free orientation completion problem now
follows from Theorem 28.

Corollary 58. If F is a set of tournaments on 4 vertices, then one of the following holds.
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1. F contains all tournaments on 4 vertices, up to isomorphism. In this case, a graph G admits
an F-free orientation if and only if G is K4-free.

2. F contains both T4 and TC4. In this case, the F-free orientations of a graph G correspond to
the solution space of Sys4(G) or of Sys+(G).

3. F does not contain T4. In this case, every graph admits an F-free orientation.

4. F contains T4 but not TC4. In this case, the F-free orientation problem is NP-complete.

In cases 1-3, the F-free orientation completion problem is in P.

Proof. Cases 1 and 2 follow as particular instances of cases 1 and 2 from Corollary 57. Case 3 is
trivial, and the fourth one follows from Example 54.

7.4 Transitive Tournaments

We conclude our series of examples by considering the cases where F does not contain a transitive
tournament, and where F only contains transitive tournaments.

Proposition 59. Let F be a non-empty finite set of finite tournaments. If F does not contain any
transitive tournament, then the following statements hold.

1. The F-free orientation completion problem is NP-complete. Moreover, this problem remains
NP-hard even when the input is restricted to digraphs with no semicomplete subdigraph with
mF + 1 vertices.

2. The F-free orientation problem is trivial and in P.

Proof. We only prove the first statement as the second one is evident. Let F ′ be the set obtained
from F by adding all tournament on mF + 1 vertices. It is not hard to notice that the F -free
orientation completion problem restricted to digraphs no semicomplete digraph on mF +1 vertices
is polynomial time equivalent to the F ′-free orientation completion problem: on the one hand, if
D is a digraph with no semicomplete graph on mF + 1 vertices, then an orientation completion
D′ of D is F -free if and only if D′ is F ′-free; on the other one, if D is an input to the F ′-free
orientation completion, then one can first verify (in polynomial-time) if D contains a semicomplete
digraph on mF + 1-vertices (if it does, reject), and the solve the F -free orientation completion
problem. Finally, the fact that the F ′-free orientation completion problem is NP-complete, follows
from the observation that TmF is F ′-free, but since F is non-empty, there must be at lest one
tournament T on mF vertices that is no F -free. Thus, T is not F ′-free but TmF is F ′-free, hence,
by Lemma 26 we conclude that Pm′

F
cannot be preserved by the minority operation. The hardness

of the F ′-free orientation completion problem now follows from Theorem 28, and so, the F -free
orientation completion problem is NP-complete even when the input is restricted so digraphs with
no semicomplete digraph on mF + 1 vertices.

We highlight that Proposition 59 provides several instances of sets F such that the F -free
orientation problem is in P , while the F -free orientation completion problem is NP-complete. It
turns out that in “almost” any other case, the orientation and orientation completion problems are
equivalent.
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Theorem 60. For a finite set of non-empty finite tournament F one of the following statements
holds.

1. F contains a transitive tournament and at least one tournament with nF vertices is F-free.
In this case, the F-free orientation and the F-free orientation completion problems are poly-
nomial time equivalent.

2. F contains a transitive tournament and all tournaments in F have at least nF vertices. In this
case, the F-free orientation and the F-free orientation completion problems are polynomial
time equivalent.

3. Otherwise, the F-free orientation completion problem is NP-complete, and the F-free orien-
tation problem is in P.

Proof. In case 1, it follows from Corollary 24, that the F -free orientation completion problem an
CSP(BF ) are polynomial time equivalent. And thus, since CSP(BF ) and the F -free orientation
completion problem are polynomial-time equivalent, the claim follows. To prove the second state-
ment, notice that if F does not contain all tournaments on nF vertices, then we are in case 1. Now,
if F contains all tournaments on nF vertices, then the F -free orientation corresponds to finding nF

complete graphs in an input graph G, and the F -free orientation completion problem corresponds
to finding semicomplete graphs on nF vertices in the input digraph D. Thus, both problems are in
P, and we conclude that the second statement holds.

Now we prove the third statement. If F does not contain a transitive tournament, the claim
follows from Proposition 59. Otherwise, F contains a transitive tournament, there is no F -free
tournament on nF vertices, and F contains some tournament on less than nF vertices. On the one
hand, this means that the F -free orientation problem reduces to determining if the input graph is
KnF -free, and thus it is in P. On the other one, if F ′ is obtained from F by removing all tournament
on nF vertices, then the F ′-free orientation completion problem in NP-complete by Proposition 59.
Moreover, it reaming NP-complete when restricted to input digraphs with no semicomplete digraph
on mF ′ + 1 vertices. This problem is clearly equivalent to the restriction of the F -free orientation
completion problem to digraphs with no semicomplete digraph on mF ′ + 1 vertices. Thus, the
(general) F -free orientation completion problem must be NP-complete as well.

On the opposite side of the cases consider in Proposition 59, is the case when F only contains
transitive tournaments. In this case, by Theorem 60, the F -free orientation completion and the F -
free orientation problems are polynomial-time equivalent. Also, notice that these cases boil down to
the case when F = {Tk} for some integer k (larger forbidden transitive tournaments are redundant).

Theorem 61. The following statements hold for a positive integer k ≥ 4.

1. The Tk-free orientation completion problem is NP-complete. This problem remains NP-
complete when the input is restricted to digraphs with no semicomplete subdigraph with k + 1
vertices.

2. The Tk-free orientation problem is NP-complete. This problem remains NP-complete when
the input is restricted to Kk+1-free graphs.

Proof. Clearly, it suffices to prove the second part of statements 1 and 2. Let Fk be the set of
tournaments that contains Tk and all tournaments on k+1 vertices. With similar arguments as in
the proof of Proposition 59, one can notice that the Fk-free orientation (resp. completion) problem is
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polynomial-time equivalent to the Tk-free orientation (resp. completion) problem when the input is
restricted to Kk+1-free graphs (resp. digraphs with no subdigraph with k+1 vertices). Moreover, by
the second statement of Theorem 60, the Fk-free orientation and the Fk-free orientation completion
problems are polynomial-time equivalent. Therefore, to prove the whole theorem, if suffices to prove
the Fk-free orientation completion problem is NP-complete for k ≥ 4. To do so, notice that if D is a
digraph and D′ is obtained from D by adding a universal sink, then D can be completed to a Fk-free
oriented graph if and only if D′ can be completed to a Fk+1-free oriented graph. Thus, the Fk-free
orientation completion problem reduces in polynomial-time to the Fk+1-free orientation completion
problem. Hence, we conclude the proof by showing that the F4-free orientation completion problem
is NP-complete. Clearly, T4 ∈ F4 and TC4 is F4-free so, it follows from Example 54 that the F4-free
orientation completion problem is NP-complete. Both statements now follow.

8 Conclusion and Outlook

From a structural perspective, a family of graph obstructions to the class of graphs that admit a
T3-free orientation was described in [31]. In light of the hardness of the T4-free orientation problem
(Corollary 58), it might be hard to extend such a description for the class of graphs that admit a
T4-free orientation, but it could be interesting to understand the structure of graphs that admit a
{T4, TC4}-free orientation, and of those that admit a {T4, TC4, C

+
3 }-free orientation.

From a computational complexity point of view, a first natural extension of this work would
be to classify the complexity of the F -free orientation (completion) problem if F is any finite set
of oriented graphs. In general, this might not be equivalent to a (possibly infinite) CSP, but if
F consists of connected oriented graphs, and it is closed under homomorphisms, then the class of
graphs that admit an F -free orientation corresponds to the CSP of some (possibly infinite) graph
G (see e.g., [9]). Such a restriction on the forbidden set F , is also a particular instance of the larger
class of problems that can be expressed in the logic MMSNP2. Some of the techniques we used to
classify the computational complexity of the F -free orientation problem might be useful to prove a
complexity dichotomy MMSNP2. One would have to overcome the following obstacles.

• For general problems expressible in MMSNP2, the finite structures we work with instead of
BF and CF will in general have more than two elements, which means that we cannot use
lemmata that explicitly rely on the Schaefer’s cases, such as Lemma 26.

• For the F -free orientation problem, the concept of force that we introduced in Section 4 is
particularly pleasant, since flipping arguments corresponds to Boolean complementation. The
combinatorics of forcing will be more involved in the general case.

• For the structures needed to formulate problems MMSNP2 as CSPs, there is no known gen-
eralisation of the result of Kompatscher and Agarval [1], which was crucial in our proof.

However, our hope is that a combination of ideas from the present paper with more recent results
in the theory of constraint satisfaction, e.g., from [10, 12, 35, 36] can eventually lead to a proof of a
complexity dichotomy for all of MMSNP2.
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