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NONLOCAL GAGLIARDO-NIRENBERG-SOBOLEV TYPE INEQUALITY

GUY FOGHEM

Abstract. We establish Gagliardo-Nirenberg-Sobolev type inequalities on nonlocal Sobolev spaces
driven by p-Lévy integrable functions, by imposing some appropriate growth conditions on the
associated critical function. This gives rise to the embedding of the local and the nonlocal Sobolev
spaces into Orlicz type spaces. The Gagliardo-Nirenberg-Sobolev type inequalities, as in the classical
context, turn out to have some reciprocity with Poincaré and Poincaré-Sobolev type inequalities.
The classical fractional Sobolev inequality is also derived as a direct consequence.

1. Introduction

Classical Sobolev inequalities are ubiquitous within the area of partial differential equations and
calculus of variations, and have been investigated by a numerous number of authors. They play
crucial roles in existence theory and regularity theory. The Gagliardo-Nirenberg-Sobolev inequality,
amongst many others, is certainly the most significant and influential Sobolev inequality. It is the
aim of this work to establish analogous of such an inequality on nonlocal Sobolev spaces generated
by p-Lévy integrable kernels, that can be seen as a genius generalization of fractional Sobolev-
Slobodeckij spaces. Note that our exposition also aims to be as self-contained as possible. We
define a nonlocal Sobolev space as follows.

Let ν : Rd \{0} → [0,∞], d ≥ 1, be the density of a symmetric p-Lévy measure with 1 ≤ p <∞
that is ν is symmetric, i.e., ν(h) = ν(−h) for h ∈ R

d \{0} and ν is p-Lévy integrable, i.e.,
ˆ

R
d
(1 ∧ |h|p)ν(h) dh <∞. (1.1)

Hereafter, we write |h| = (h21 + h22 + · · · + h2d)
1/2 and a ∧ b = min(a, b) for a, b ∈ R. The nonlocal

Sobolev space associated with ν is defined as W p
ν (R

d) =
{
u ∈ Lp(Rd) : |u|W p

ν (R
d) <∞

}
where

|u|W p
ν (R

d) =
( ¨

R
d
R
d

|u(x) − u(y)|pν(x− y) dy dx
)1/p

. (1.2)

The space W p
ν (R

d) amounts to a Banach space under the norm

‖u‖W p
ν (R

d) =
(
‖u‖p

Lp(Rd)
+ |u|p

W p
ν (R

d)

)1/p
.

It is noteworthy mentioning that the terminology nonlocal Sobolev space to designate the space
W p
ν (R

d) is justified as the latter appears as the natural energy space associated with a nonlocal
operator, which is a (non)linear p-Lévy integrodifferential operator generated by ν, of the form

Lu(x) := p. v.

ˆ

R
d
|u(x)− u(y)|p−2(u(x) − u(y))ν(x− y) dy, (x ∈ R

d).

Recent studies regarding function spaces of type W p
ν (R

d) and the analysis of related integrodif-
ferential equations on domains can be found in [FG20]. The class of p-Lévy integrable kernels
includes not only integrable functions, but also functions with heavy singularities at the origin A
prototypical example is obtained by taking ν(h) = s(1− s)|h|−d−sp, with s ∈ (0, 1). The resulting

space is thus the well-known fractional Sobolev-Slobodeckij spaceW s,p(Rd) of order s. Just like the
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latter, the nonlocal Sobolev spaceW p
ν (R

d) also appears as refinement space between Lp(Rd) and the
classical Sobolev space W 1,p(Rd), the space of functions in Lp(Rd) whose first order distributional

derivatives also lie in Lp(Rd). Furthermore, note that as s→ 1−, [BBM01,FG21] W s,p(Rd) reduces
to the classical Sobolev space W 1,p(Rd). Rigorously speaking, if |u|W s,p(Rd) is given by (1.2) for

ν(h) = s(1− s)|h|−d−sp, ∇u denotes the distributional gradient of u and |u|W 1,p(Rd) = ‖∇u‖Lp(Rd)
denotes the Lp-norm of |∇u|, then asymptotically we have

lim
s→1−

|u|p
W s,p(Rd)

=
|Sd−1|

p
Kd,p|u|

p

W 1,p(Rd)
. (1.3)

Here, Kd,p is a universal constant given for any unit vector e ∈ S
d−1 by

Kd,p =

 

Sd−1

|w · e|pσd−1(w).

A side motivation to studying the class of nonlocal Sobolev spaces under consideration is that, the
asymptotic convergence in (1.3) remains true for the lager family (νε)ε>0 of radial p-Lévy integrable

kernels νε : R
d \{0} → [0,∞] satisfying

ˆ

R
d
(1 ∧ |h|p)νε(h) dh = 1 and for all δ > 0, lim

ε→0+

ˆ

|h|>δ
(1 ∧ |h|p)νε(h) dh = 0.

In fact, as a result, see [FG21,BBM01,FKV20] one finds that

lim
ε→0+

¨

R
d
R
d

|u(x)− u(y)|pνε(x− y) dy dx = Kd,p|u|
p

W 1,p(Rd)
.

The most important inequality in the theory Sobolev spaces is the Gagliardo-Nirenberg-Sobolev
and reads as follows; for 0 ≤ s ≤ 1 and 1 ≤ p < ∞, if the critical Sobolev exponent p∗s also called
the Sobolev conjugate of p satisfies

1

p∗s
:=

1

p
−
s

d
> 0,

then there exists a constant Cs = C(d, s, p) > 0 such that

(ˆ

R
d
|u(x)|p

∗
s dx

)1/p∗s
≤ Cs|u|W s,p(Rd) for all u ∈ Lp

∗
s(Rd). (1.4)

The fractional Gagliardo-Nirenberg-Sobolev inequality (1.4) is trivial for s = 0, with the convention

that W 0,p(Rd) = Lp(Rd) and the proof for s = 1 can be found in any classical book on Sobolev,
e.g., [AF03,Bre10,Eva10]. For s ∈ (0, 1), the straightforward proof that we present in Theorem 3.10,
for the convenience of the reader, is apparently due to Haim Brezis [Pon16, Proposition 15.5] from
a personal communication. It is important to highlight that earlier proofs of the inequality (1.4)
exist in the literature as well. For instance a proof using basic analysis tools is well incorporated
in [NPV12, Section 6] which, originally springs from [SV11]. See also [BBM02,MS02] where the
fractional inequality is established with a robust constant, i.e., with a constant Cs that stays
asymptotically equivalent to s(1− s) as s→ 1−. The best constant of the Sobolev inequality, when
s = 1, is exhibited in [Tal76]. For the special case p = 2 and s ∈ (0, 1), the fractional Sobolev
inequality is established with best constant in [CT04].

In view of the aforementioned classical (fractional) Gagliardo-Nirenberg-Sobolev inequality (1.4),

it is a legitimate right to seek for the analog inequality for the nonlocal Sobolev space W p
ν (R

d).
Accordingly, we need to enforce adequate assumptions regarding the p-Lévy kernel ν. First and
foremost, for r > 0, consider η(r) = ( rcd )

1/d with cd = |B(0, 1)| and define w : [0,∞] → [0,∞] by

w(r) =
(
|B(0, η(r))|

ˆ

Bc(0,η(r))
ν(h) dh

)1/p
equally

wp(r)

r
=

ˆ

Bc(0,η(r))
ν(h) dh. (1.5)
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For the sake of the reader convenience, we momentarily consider the following standing assumptions
on ν, that we improve later on. In what follows, the notation v−1 stands for the reciprocal inverse
of a bijective function v and should not be confused the fractional inverse 1/v.

Assumption A : The function ν satisfies the p-Lévy integrability condition (1.1), is radial and is
almost decreasing, i.e., there is 0 < κ ≤ 1 such that

κν(|x|) ≤ ν(|y|) for all |x| ≥ |y|. (A)

Assumption B : The mapping t 7→ 1/w(1/t) is invertible from [0,∞] to [0,∞], whose inverse
φ is a Young function (see below for more details) and will be called the critical Young function

associated with ν. To be more precise, φ is defined by

φ(t) =
( 1

w(1/t)

)−1
equivalenty w(t) =

1

φ−1(1/t)
. (B)

Assumption C : The function φp : [0,∞] → [0,∞] with φp(t) = φ(t1/p) is convex, hence a Young
function, and satisfies the growth condition: there is θ > 0, such that

φp
(
θp
s

t

)
≤
φp(s)

φp(t)
for all s ≤ t. (C)

It worth highlighting that φ only depends on ν, p and d but, to alleviate the notations, we keep
this implicit.

Let us now provide basics notions on Young functions and associated Orlicz spaces. A thorough
and extensive study of Orlicz spaces are carried out in the seminal textbooks [RR91,RR02]. See also
the traditional references [AF03,HH19,KR61] and the monographs [RGMP16,DHHR11], where the
latter offers a treatise on generalized Orlicz spaces, also known as Musielak-Orlicz spaces, including
Lebesgue and Sobolev spaces with variable exponents. Recall that a function φ : [0,∞] → [0,∞] is
convex if, φ(s+ τ(t− s)) ≤ φ(s) + τ(φ(t)− φ(s)) for all s, t ≥ 0 and τ ∈ [0, 1].

Young function: A convex function φ : [0,∞] → [0,∞] such that φ(0) = 0 is termed a Young

function. Consequently, as a Young function, φ is nondecreasing, the mapping t 7→ φ(t)
t is nonde-

creasing on (0,∞), and, either φ is identically zero or φ(∞) = ∞. Moreover, it is well known that
φ is continuous on its effective domain, i.e., on the set of elements in t ∈ [0,∞) where φ(t) < ∞.
A more advanced calculus, e.g., Jensen’s theorem [RR91, Theorem 1.3.1], yields the existence of
another nondecreasing and right continuous function b : [0,∞) → [0,∞) called the density of φ,
such that

φ(t) =

ˆ t

0
b(s) ds.

This implies that φ has left and right derivatives that coincide except possibly on a countable set.
To avoid unnecessary pathologies, it is custom to also to assume that φ is neither identically zero
nor identically infinite on (0,∞).

Convex conjugate: To a Young function φ one associates the convex complementary, also called

the convex conjugate, φ̃ : [0,∞] → [0,∞], which is simultaneously defined as follows

φ̃(t) = sup
{
ts− φ(s) : s > 0

}
=

ˆ t

0
b̃(s) ds.

Here, b̃(t) = sup{s > 0 : b(s) < t} is the right inverse of b. Clearly, φ̃ is also a Young function,

i.e., convex and φ̃(0) = 0. Note that, in virtue of the Fenchel-Moreau theorem, the couple (φ, φ̃) is
uniquely defined provided that φ is lower semi-continuous and additionally φ we have

φ(t) = sup
{
ts− φ̃(s) : s > 0

}
=

ˆ t

0
b(s) ds.

Analogously, the couple (b, b̃) is uniquely determined and b is also the right inverse of b̃, i.e.,

b(t) = sup{s > 0 : b̃(s) < t}. Furthermore, if b is strictly increasing then b̃ = b−1,the inverse of b.

3



N-function: A Young function φ : [0,∞] → [0,∞] is called a N−function (Nice Young function)
if its density b : [0,∞) → [0,∞) is nondecreasing, right continuous and satisfies 0 < b(t) < ∞ for
t > 0, lim

t→0+
b(t) = 0 and lim

t→∞
b(t) = ∞. This is equivalent to say that φ is continuous, increasing,

convex and in addition the mapping t 7→ φ(t)
t , t > 0 is increasing and satisfies

lim
t→0+

φ(t)

t
= lim

t→∞

t

φ(t)
= 0. (1.6)

Orlicz space: Next, we write Kφ(Rd) and Lφ(Rd) respectively to denote the Orlicz class and the
Orlicz space with respect to the Young function φ defined by

Kφ(Rd) =
{
u : Rd → R meas. :

ˆ

R
d
φ
(
|u(x)|

)
dx <∞

}
,

Lφ(Rd) =
{
u : Rd → R meas. :

ˆ

R
d
φ
( |u(x)|

λ

)
dx <∞ for some λ > 0

}
.

It is worthwhile noticing that the Orlicz class Kφ(Rd) is a convex set of functions and that Lφ(Rd)
is the linear hull of Kφ(Rd). In addition, u ∈ Lφ(Rd) if and only if u ∈ λKφ(Rd) for some λ > 0.

The space Lφ(Rd) is a Banach space furnished with the Luxemburg norm ‖ · ‖Lφ(Rd) defined as the

Minkowski functional or gauge of Kφ(Rd) by

‖u‖Lφ(Rd) = inf
{
λ > 0 :

ˆ

R
d
φ
( |u(x)|

λ

)
dx ≤ 1

}
. (1.7)

Obviously, by Fatou’s lemma we have
ˆ

R
d
φ
( |u(x)|

‖u‖Lφ(Rd)

)
dx ≤ 1. (1.8)

Beside the Luxemburg norm ‖ · ‖Lφ(Rd), an equivalence is the Orlicz norm | · |Lφ(Rd), with

|u|Lφ(Rd) = sup
{ ˆ

R
d
u(x)v(x) dx :

ˆ

R
d
φ̃(|v(x)|) dx ≤ 1

}
.

Moreover, the following comparison holds for all u ∈ Lφ(Rd),

‖u‖Lφ(Rd) ≤ |u|Lφ(Rd) ≤ 2‖u‖Lφ(Rd).

For the particular Young function φL(t) = tp/p with 1 < p < ∞, the Orlicz space LφL(Rd)

coincides with the well-known Lebesgue space Lp(Rd). In addition we have φ̃L(t) = tp
′
/p′ with

p′ satisfying the relation pp′ = p + p′. Another example of Young function is t 7→ max(tp1 , tp2)

with 1 ≤ p1, p2 < ∞ whose associated Orlicz space is Lp1(Rd) ∩ Lp2(Rd). Note in passing that
t 7→ min(tp1 , tp2) is not convex unless p1 = p2. One can however check that Lp1(Rd) + Lp2(Rd) is
the Orlicz space associated with the Young function given by

t 7→

ˆ t

0

min(sp1 , sp2)

s
ds.

The computation of the Luxemburg norm is not often straightforward. To illustrate this, let E ⊂ R
d

be a measurable set with finite Lebesgue measure, i.e., |E| <∞ and consider 1E be its characteristic
function, i.e., 1E(x) = 1 if x ∈ E and 1E(x) = 0 elsewhere, then

‖1E‖Lφ(Rd) =
1

φ−1(1/|E|)
. (1.9)

Indeed, for λ > 0 we have
´

R
d φ(

1E
λ )(x) dx = |E|φ( 1λ ) which is less than 1 if and only if

1

φ−1(1/|E|)
≤ λ and hence

1

φ−1(1/|E|)
≤ ‖1E‖Lφ(Rd).
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Therefore, the formula (1.9) holds as it suffices to choose λ = 1
φ−1(1/|E|) to have the reverse inequality.

In the same spirit, using Jensen’s inequality one establishes that

|1E |Lφ(Rd) = |E|φ̃−1(1/|E|).

Throughout this note, we only use the Luxemburg norm ‖ ·‖Lφ(Rd) defined as in (1.7). Assuming

the Orlicz space Lφ(Rd) associated with the critical function φ is equipped with the norm ‖·‖Lφ(Rd),

our main result (see Theorem 3.7 for a general version) reads as follows.

Theorem 1.1. Let Assumption A, Assumption B and Assumption C be in force. For t ≥ 2,
define Θt = t[2κ2Cp(t)φ(

θ
t )]

−1/p with Cp(t) =
tp−2
tp−1 . The following inequality holds

‖u‖Lφ(Rd) ≤ Θt

( ¨

R
d
R
d

|u(x)− u(y)|pν(x− y) dy dx
)1/p

for all u ∈ Lφ(Rd). (1.10)

Accordingly, the embeddings W p
ν (R

d) →֒ Lφ(Rd) and W 1,p(Rd) →֒ Lφ(Rd) are continuous.

The embeddingW 1,p(Rd) →֒ Lφ(Rd) reminisces the so called Trudinger inequality [Mos71,Tru67]

which implies that, for a smooth set Ω ⊂ R
d and the Young function ψ(t) = et

d/d−1
− 1, p = d > 1,

the embedding W 1,p(Ω) →֒ Lψ(Ω) is continuous; Lψ(Ω) is the Orlicz space on Ω associated with
ψ. A substantial amount of results appeared in the wake of [Tru67], dealing with embedding of
Sobolev spaces (eventually of Orlicz-Sobolev Spaces) into Orlicz spaces. A non-exhaustive list of
reference on this and related topics includes [Cia96,Cia04,Cia05, Iul17,PR18,CPS20].

Of course, in accordance to the fractional Sobolev inequality (1.4), we show later in Example
2.5 that taking the fractional kernel ν(h) = |h|−d−sp with sp < d, which fits the requirements of
Theorem 1.1, gives φ(t) = ctp

∗
s whose corresponding Orlicz space is Lp

∗
s (Rd). See also [ACPS21]

for embeddings of Fractional Orlicz-Sobolev spaces into Orlicz type spaces. Let us mention that,
in this particular case, the critical exponent p∗s (or the critical Young function φ(t) = ctp

∗
s ) can be

anticipated using an elementary scaling argument. Unfortunately it is not possible to forecast the
critical Young function φ associated with a general kernel ν, using a scaling argument. For instance,
if 0 < s1 < s2 < 1, the kernel ν(h) = max(|h|−d−s1p, |h|−d−s2p) or ν(h) = min(|h|−d−s1p, |h|−d−s2p),
does not permit the use of a scaling argument. Observe however that we obtain the critical Young
function φ in a more constructive, but still less explicit, manner. The abstract aspect of the kernel
ν under consideration forces a more general setting. Therefore, we will see later in Theorem 3.7
that, Theorem 1.1 still holds under weakened assumptions on ν. For instance, it appears that the
decaying condition (A) can be completely dropped.

It appears as a natural question to know if it is possible to obtain the analog of the Gagliardo-
Nirenberg-Sobolev inequality for functions restricted on an open set Ω different from R

d. The
answer to this important question turns out to be strongly related to the so called Poincaré-Sobolev
type inequality. Indeed, as a second main result of this note, we formulate some interplay between
Gagliardo-Nirenberg-Sobolev type inequalities, Poincaré-Sobolev type inequalities and Poincaré
type inequalities. The global idea here, summarizes as follows, under that assumption of Theorem
1.1, if Ω ⊂ R

d is sufficiently smooth then there is a constant also depending on Ω such that,

‖u−
ffl

Ω u ‖Lφ(Ω) ≤ C
(¨

ΩΩ

|u(x)− u(y)|pν(x− y) dy dx
)1/p

for all u ∈ Lφ(Ω).

The rest of the paper is structured as follows. In Section 2, we comment in details our standing
Assumption A, Assumption B and Assumption C by explaining their needfulness or not, and
additionally providing some illustrative examples. Section 3 is dedicated to the proof of the main
result Theorem 1.1 and its generalization in Theorem 3.7 with relaxed assumptions. This gives us an
opportunity to revisit fractional Gagliardo-Nirenberg-Sobolev inequality with an alternative proof.
Finally, Section 4 we establish some reciprocity relations between Gagliardo-Nirenberg-Sobolev
type inequalities, Poincaré-Sobolev type inequalities and Poincaré type inequalities.
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Through out, B(x, r) := {y ∈ R
d : |y − x| < r} denotes the open ball with radius r > 0 and

centered at x ∈ R
d and its closure is denoted by B(x, r). On many estimates, C > 0 is a generic

constant depending on the local inputs.

2. Miscellaneous

In this section we discuss Assumption A, Assumption B and Assumption C and provide
at the end, some examples of kernels. We also collect some useful basics results on Orlicz spaces
needed in the sequel. Let us first comment on the aforementioned assumptions and explain their
necessity.

Assumption A: Although, the class of radial and almost decreasing p-Lévy integrable kernels
is fairly large, we will see later that this assumption can be completely dropped by the mean
of the Schwarz symmetrization rearrangement see for instance Theorem 3.6. Rather, having an
almost decreasing p-Lévy integrable kernels, allows us to get a quicker constructive approach of
the critical Young function φ as given in (B). Beside this, the p-Lévy integrability condition,

i.e., ν ∈ L1(Rd, 1 ∧ |h|p dh), though does not really play any role in the proof Theorem 1.1, can
neither be improved nor completely dropped. Indeed, this condition renders the space W p

ν (R
d)

more consistent, in a sense that it warrants the space W p
ν (R

d) to contain at least smooth functions
of compact support. The p-Lévy integrability draws a borderline for which a space of type W p

ν (R
d)

is trivial or not. This is illustrated by the next proposition, see [FG21, Proposition 2.14].

Proposition 2.1. Let ν : Rd \{0} → [0,∞] be symmetric. The following assertions hold true.

(i) If ν ∈ L1(Rd), then W p
ν (R

d) = Lp(Rd) with equivalence in norm.

(ii) If ν is radial and
´

B(0,δ) |h|
pν(h) dh = ∞ for some δ > 0, and thus ν 6∈ L1(Rd, 1 ∧ |h|p dh),

then the only smooth functions contained in W p
ν (R

d) are constants.

(iii) If ν ∈ L1(Rd, 1 ∧ |h|p dh) then the embedding W 1,p(Rd) →֒ W p
ν (R

d) is continuous and hence

C∞
c (Rd) ⊂W p

ν (R
d). In addition, if ν is radial then for some constants C1, C2 > 0, we have

C1‖u‖W 1,p(Rd) ≤ ‖u‖W p
ν (R

d) ≤ C2‖u‖W 1,p(Rd) for all u ∈W 1,p(Rd). (2.1)

Warning! The equivalence (2.1) does not imply that W 1,p(Rd) =W p
ν (R

d).

Assumption B: The Assumption B turns out to be weaker than Assumption C. Indeed, the
function t 7→ φp(t) = φ(t1/p) being a Young function and hence convex and nondecreasing implies
that φ(t) = φp(t

p) is also convex and hence a Young function. Furthermore, it is natural to require
the function φ to be invertible as it rules out pathological functions. Note that, assuming φ is a
Young function, one views from (B) that φ(0) = 0 = w(0) and φ(∞) = ∞ = w(∞) and hence that
t 7→ φ(t) is invertible from [0,∞] to [0,∞] if and only if r 7→ wp(r) is. Therefore, Assumption B
is somewhat superfluous and is simply an accessory to define the critical Young function φ and the
associated Orlicz space Lφ(Rd).

Assumption C: The Assumption C essentially constitutes the most fundamental and quite
vital property needed on φ in order to establishing our main result. Next, we explain how the
Assumption C globally infers certain growth conditions on φ. First of all, the growth condition
(C) is clearly equivalent to say that

φ
(
θ
s

t

)
≤
φ(s)

φ(t)
for all s ≤ t or equaly θ ≤ φ−1

(s
t

)φ−1(t)

φ−1(s)
for all s ≤ t. (2.2)

The latter suggests that the growth behavior of φ is not far from that of a polynomial growth
[Mal85]; see for instance Proposition 2.2 below. This behavior can be expected, since regarding
the inequality of interest (1.10) in Theorem 1.1. Since at the first glance, in comparison with the
fractional Sobolev space W s,p(Rd), one can expect that the space W p

ν (R
d) is embedded in another

Lebesgue space. Nevertheless, it is worth noticing that fractional kernels of the form ν(h) =
|h|−d−sp with s ∈ (0, 1) are the only radial functions satisfying Assumption A, Assumption B
and Assumption C that can produce polynomial critical Young functions of the form φ(t) = ctq;
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see Example 2.5 and Theorem 2.6 below. Observe that letting s = tτ with 0 ≤ τ ≤ 1 then the
condition (C) (see also (2.2)) is also to equivalent to say that φ satisfies sup-multiplicative condition

φ(θτ)φ(t) ≤ φ(tτ) for all t ≥ 0 and τ ∈ [0, 1]

or that φ−1 satisfies the sub-multiplicative condition

θφ−1(τt) ≤ φ−1(τ)φ−1(t) for all t ≥ 0 and τ ∈ [0, 1].

Let us now highlight some consequences of the fact φp(t) = φ(t1/p) is a Young function. Before
let us observe that if φ is exists, i.e., as given in (B) then taking r = φ(t) for t > 0, in virtue of
(1.5) and (B) we obtain

φ(t)

tp
=

r

[φ−1(r)]p
= rwp(1/r) =

ˆ

|h|d≥ 1
cdφ(t)

ν(h) dh. (2.3)

In particular, if lim
t→0+

φ(t) = 0 and lim
t→∞

φ(t) = ∞ then

lim
t→∞

φ(t)

tp
=

ˆ

R
d
ν(h) dh and lim

t→0+

φ(t)

tp
= lim

r→∞

ˆ

|h|≥r
ν(h) dh. (2.4)

The next proposition shows that the convexity of φp(t) = φ(t1/p) induces via the ratio φ(t)
tp certain

geometry growth comparisons between φ(t) and tp at both near the origin and the infinity.

Proposition 2.2. Assuming t 7→ φp(t) = φ(t1/p) is an invertible Young function, the following

assertions are true.

(i) φ is also a Young function.

(ii) The mappings t 7→ φ(t) and t 7→ φ(t)
tp are increasing.

(iii) If 1 < p <∞ then φ is an N -function.

(iv) Let δ0 =
φ(t0)
tp0

for fixed t0 > 0 then we have

φ(t) ≤ δ0t
p if 0 ≤ t ≤ t0 and φ(t) ≥ δ0t

p if t ≥ t0.

(v) Let δ′0 =
wp(r0)
r0

for fixed r0 > 0 then we have
ˆ

Bc(0,η(r))
ν(h) dh =

wp(r)

r
≥ δ′0 if 0 ≤ r ≤ r0 and

ˆ

Bc(0,η(r))
ν(h) dh =

wp(r)

r
≤ δ′0 if r ≥ r0.

(vi) If ν ∈ L1(Rd, 1 ∧ |h|p dh) and ν 6∈ L1(Rd) then φp is an N -function, equally we have

lim
t→0+

φ(t)

tp
= lim

t→∞

tp

φ(t)
= 0.

(vii) If ν ∈ L1(Rd, 1∧ |h|p dh) is radial, then r 7→ d
dr

(
wp(r)
r

)
solve the ordinary differential equation

ν(η(r)) = −
d

dr

(wp(r)
r

)
and lim

r→∞

wp(r)

r
= 0. (2.5)

Proof. As an invertible Young function t 7→ φp(t) is increasing and hence the assertion (i) is clear
since φ(t) = φp(t

p) and t 7→ tp is also convex. In view of proving (ii), observe that φ is increasing
as it is an invertible Young function. Since φp is convex and invertible with φp(0) = 0, we get

φp(s
p) = φp(

sp

tp
tp) <

sp

tp
φp(t

p) that is
φ(s)

sp
<
φ(t)

tp
, for all s < t.

The assertion (iii) follows from (i) and (ii). The assertions (iv) and (v) are consequences of (ii).
Whereas, (vi) clearly follows from (2.4). Differentiating the relation (1.5) gives (vii) since by change
of variables we get

wp(r)

r
=

ˆ

Bc(0,η(r))
ν(h) dh = dcd

ˆ ∞

η(r)
ν(τ)τd−1 dτ =

ˆ ∞

r
ν(η(τ ′)) dτ ′.

�
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Next, we need the following result owed to [RR91, Theorem 5.1.3].

Theorem 2.3. Let D ⊂ R
d be measurable and let φi, i = 1, 2 be a pair of Young functions. If

|D| <∞ (resp. |D| = ∞) and φ1(t) ≤ φ2(ct) for all t ≥ t0 for some c > 0 and t0 > 0 (resp. t0 = 0)
then the embedding Lφ2(D) →֒ Lφ1(D) is continuous. The converse holds true as well.

Proof. The case |D| = ∞ and t0 = 0 is straightforward and one has ‖u‖Lφ1 (D) ≤ c‖u‖Lφ2 (D).

Now, assume |D| < ∞, for u ∈ Lφ2(D), consider A = {x ∈ D : |u(x)| ≤ ct0‖u‖Lφ2 (D)} and put

T = φ1(t0)|D|+ 1. Since φ1(
t
T ) ≤

1
T φ1(t) for t > 0, recalling (1.8), one gets

ˆ

D
φ1

( |u(x)|

Tc‖u‖Lφ2 (D)

)
dx =

ˆ

A
φ1

( |u(x)|

Tc‖u‖Lφ2 (D)

)
dx+

ˆ

D\A
φ1

( |u(x)|

Tc‖u‖Lφ2 (D)

)
dx

≤
1

T

(
φ1(t0)|A|+

ˆ

D\A
φ2

( |u(x)|

‖u‖Lφ2 (D)

)
dx

)

≤
1

T

(
φ1(t0)|D|+ 1

)
= 1.

Accordingly, this implies that

‖u‖Lφ1 (D) ≤ cT‖u‖Lφ2 (D). (2.6)

Conversely, assume there is no constant c > 0 such that φ1(t) ≤ φ2(ct) for all t > t0 > 0. Then one
can construct an increasing sequence 0 < t0 < · · · < tk < tk+1 · · · such that φ1(tk) > φ2(2

kk2tk).
In particular, φ2(tk) > 0 and the convexity implies φ1(tk) > 2kφ2(k

2tk). Fix D0 ⊂ D such that
0 < |D0| <∞ and let Dk ⊂ D0 be disjoint measurable sets such that |Dk| > 0 and

|Dk| =
φ2(t1)|D0|

2kφ2(k2tk)
, and hence

∞∑

k=1

|Dk| < |D0|.

To conclude, we show that the function u =
∑∞

k=1 ktk1Dk (which is supported in D0) belongs in

Lφ2(Rd) but not in Lφ1(Rd). Indeed, for any integer n ≥ 1 we have
ˆ

D
φ2(nu(x)) dx =

∞∑

k=1

φ2(nktk)|Dk| ≤

n∑

k=1

φ2(nktk)|Dk|+
∑

k≥n+1

φ2(k
2tk)|Dk|

=
n∑

k=1

φ2(nktk)|Dk|+ φ2(t1)|D0|
∑

k≥n+1

1

2k
<∞.

This shows that u ∈ Lφ1(Rd). However, for any ε > 0, recalling that φ1(tk) > 2kφ2(k
2tk) we have

ˆ

D
φ1(εu(x)) dx ≥

∑

k≥ 1
ε

φ1(εktk)|Dk| ≥
∑

k≥ 1
ε

φ1(tk)|Dk| (since εk ≥ 1)

≥
∑

k≥ 1
ε

2kφ2(k
2tk)|Dk| = φ2(t1)|D0|

∑

k≥ 1
ε

1 = ∞.

This implies u 6∈ Lφ1(Rd) and hence that Lφ2(Rd) 6⊂ Lφ1(Rd). The proof is complete. �

Corollary 2.4. Assume t 7→ φp(t) = φ(t1/p) is an invertible Young function, then the embedding

Lφ(Rd) →֒ Lploc(R
d) is continuous.

Proof. According to Proposition 2.2, φ(t) ≥ δ0t
p for all t ≥ t0 with t0 > 0 fixed. The claim follows

since for a compact set D ⊂ R
d, Theorem 2.3 implies ‖u‖Lp(D) ≤ C‖u‖Lφ(D) ≤ C‖u‖Lφ(Rd). �

Let us provide examples for which the main inequality (1.10) holds. First of all, we deal with
the classical fractional Sobolev space W s,p(Rd).
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Example 2.5. For s ∈ (0, 1), consider the kernel ν(h) = |h|−d−sp, h 6= 0 so that W p
ν (R

d) =
W s,p(Rd). A painless computation through polar coordinates in (1.5) and (B) yields that

w(r) = γ1/ps r1/p
∗
s and φ(t) = γp

∗
s/p
s tp

∗
s , (2.7)

where, recalling cd = |B(0, 1)|, we set

1

p∗s
=

1

p
−
s

d
and γs =

dc
1+ sp

d
d

sp
.

Observe that 1/p∗s > 0 if and if p∗s ≥ p ≥ 1 and, hence if and only if φp(t) = φ(t1/p) = γ
p∗s/p
s tp

∗
s/p is

convex. Moreover, for all s, t > 0 we have

φp
(
θp
s

t

)
=
φp(s)

φp(t)
with θ =

1

γ
1/p
s

.

Whence, Assumption A, Assumption B and Assumption C are fulfilled provided that 1/p∗s >
0.

In connection with Example 2.5, the next result shows that, for ν radial, the Orlicz space Lφ(Rd)

is a Lebesgue space, i.e., φ(t) = ctq if and only if the space W p
ν (R

d) is a fractional Sobolev space.

Theorem 2.6. Let ν : Rd \{0} → [0,∞] be radial. Assume that ν, associated with φ(t) = ctq for

some q, c > 0, satisfies Assumption A, Assumption B and Assumption C. Then necessarily
1
p −

1
d <

1
q <

1
p and there exists s ∈ (0, 1), in fact, s = d

p −
d
q , such that ν(h) = Cp,q,d|h|

−d−sp, for

some constant Cp,q,d > 0 depending on c, p, q and d.

Proof. First of all, in virtue of Assumption C, observe that φp(t) = ctq/p with c > 0 is convex if

and only if q ≥ p ≥ 1. The relation (B) implies that w(r) = c1/qr1/q and hence (1.5) amounts to

cp/qrp/q−1 =

ˆ

Bc(0,η(r))
ν(h) dh = dcd

ˆ ∞

η(r)
ν(τ)τd−1 dτ =

ˆ ∞

r
ν(η(τ ′)) dτ ′.

Differentiating both sides and letting ρ = η(r) =
(
r
cd

)1/d
yields

ν(ρ) = cp/q(1−
p

q
)c
p/q−2
d ρ−d+dp/q−d = Cp,q,d ρ

−d−sp with s =
d

p
−
d

q
∈ [0, d].

In short, ν(h) = Cp,q,d |h|
−d−sp. Finally observe that, by Assumption A, ν ∈ L1(Rd, 1∧ |h|p dh) if

and only if s ∈ (0, 1) that is 1
p −

1
d <

1
q and q > p. This ends the proof. �

Remark 2.7. Theorem 2.6 implies that we always have Lφ(Rd) 6⊂ Lp(Rd). Furthermore, there is
no radial kernel ν for which one has φ(t) = ctp.

Example 2.8. Assume ν ∈ L1(Rd) is radial and has full support so that φ exists. As explained
previously, in this situation W p

ν (R
d) = Lp(Rd) with equivalence in norm. Moreover, the relation

(2.3) implies φ(t) ≤ ‖ν‖L1(Rd)t
p for all t > 0. Whence, according to Theorem 2.3 we get the

continuous embedding Lp(Rd) →֒ Lφ(Rd) and we have

‖u‖Lφ(Rd) ≤ ‖ν‖
1/p

L1(Rd)
‖u‖Lp(Rd) for all u ∈ Lφ(Rd).

Together with Corollary 2.4, we get the continuous embeddings Lp(Rd) →֒ Lφ(Rd) →֒ Lploc(R
d).

For a concrete example, let us define the family of Young functions φa(t) = ln(a+ et
p
)− ln(a+ 1)

here a > 0 is a fixed parameter. Note that φ(t) ≤ tp, for all t > 0. Clearly φap(t) = φa(t1/p) =

ln(a+ et)− ln(a+ 1) also a Young function. Moreover, each φa satisfies (C) with θ = 1. Last one

defines the kernel νa ∈ L1(Rd) associated with φa through the relation

νa(η(r)) = −
d

dr

( 1

rξa(r)

)
with ξa(r) := [φap]

−1(1/r) = ln((a+ 1)e1/r − a).

We leave all computational details to the interested reader; who should also checks that, each νa

fulfills Assumption A, Assumption B and Assumption C.
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Before giving additional examples, let us recall without proof the following basic result character-
izing the intersection and the sum of Orlicz spaces.

Theorem 2.9. Let φi, i = 1, 2 be a pair of Young functions. For the Young function φ(t) =
max(φ1(t), φ2(t)) we have Lφ1(Rd) ∩ Lφ2(Rd) = Lφ(Rd) and

1

2
‖u‖Lφ(Rd) ≤ max(‖u‖Lφ1 (Rd), ‖u‖Lφ2 (Rd)) ≤ ‖u‖Lφ(Rd).

In addition, for any Young function ψ such that ψ(t) ≤ φ(ct) for some c > 0, then we have the

continuous embedding Lφ1(Rd) ∩ Lφ2(Rd) →֒ Lψ(Rd).

Analogously, for the function φ(t) = min(φ1(t), φ2(t)) we have Lφ1(Rd) +Lφ2(Rd) = Lφ(Rd). Note

that here φ is not necessarily convex and thus, is identified with its greatest convex minorant φmin

defined by

φmin(t) =

ˆ t

0

min(φ1(s), φ2(s))

s
ds.

So that we have, φmin(t) ≤ φ(t) ≤ φmin(2t) and hence 1
2‖u‖Lφ(Rd) ≤ ‖u‖Lφmin (Rd) ≤ ‖u‖Lφ(Rd).

Moreover, if ‖ · ‖Lφ1 (Rd)+Lφ2 (Rd) denotes the natural norm on Lφ1(Rd) + Lφ2(Rd) then

1

4
‖u‖Lφ(Rd) ≤ ‖u‖Lφ1 (Rd)+Lφ2 (Rd) ≤ 2‖u‖Lφ(Rd).

Recall that ‖u‖Lφ1 (Rd)+Lφ2 (Rd) = inf
{
‖u1‖Lφ1 (Rd) + ‖u2‖Lφ2 (Rd) : u = u1 + u2, ui ∈ Lφ1(Rd)

}
.

In particular case of Lebesgue spaces, if 1 ≤ p1 ≤ p2 and q ∈ [p1, p2] then t
q ≤ max(tp1 , tp2) for all

t > 0 and hence Lp1(Rd) ∩ Lp2(Rd) →֒ Lq(Rd) as Lp1(Rd) ∩ Lp2(Rd) is the Orlicz space associated
with the Young function t 7→ max(tp1 , tp2).
The next example exhibits a situation where the growth condition (C) fails but still the inequality
(1.10) holds true with a possibly different constant.

Example 2.10. Fix 0 < s1 < s2 < 1, following the notations of Example 2.5, we define the Young

function φ(t) = max(tp
∗
s1 , tp

∗
s2 ), with 1/p∗si > 0, i = 1, 2 so that Lφ(Rd) = Lp

∗
s1 (Rd) ∩ Lp

∗
s2 (Rd).

Clearly, φp(t) = φ(t1/p) is convex since p∗s2 > p∗s1 ≥ p. Moreover, the relationB gives

wp(r) =
1

φ−1
p (1/r)

= max(rp/p
∗
s1 , rp/p

∗
s2 ).

Now, we differentiate the relation (1.5) and put ρ = η(r), equally r = cdρ
d to obtain that

ν(ρ) = ν(η(r)) = −
d

dr

(wp(r)
r

)
=

{
s2p
d r

−1−
s2p
d if r < 1,

s1p
d r

−1−
s1p
d if r ≥ 1

=

{
1
γs2
ρ−d−s2p if ρ < η(1),

1
γs1
ρ−d−s1p if ρ ≥ η(1).

Whence, the kernel ν is given by

ν(h) =
1

γs2
1B(0, η(1))(h) |h|

−d−s2p +
1

γs1
1Bc(0, η(1))(h) |h|

−d−s1p.

One easily finds that c1ν(h) ≤ max(|h|−d−s1p, |h|−d−s2p) ≤ |h|−d−s1p + |h|−d−s2p ≤ c2ν(h) for some

constants c1, c2 > 0 and hence that W p
ν (R

d) =W s1,p(Rd)∩W s2,p(Rd) =W s2,p(Rd). Note however,
that the growth condition (C) cannot hold here, i.e., there is no constant θ > 0 such that

φ
(
θ
s

t

)
≤
φ(s)

φ(t)
for all s ≤ t.

It suffices to take s = 1 and tend t → ∞ to observe a contradiction. Nevertheless, according to
Example 2.5, Theorem 1.1 applies on the kernels |h|−d−sip ≤ c2ν(h), i = 1, 2 and since by Theorem

2.9, Lφ(Rd) = Lp
∗
s1 (Rd) ∩ Lp

∗
s2 (Rd) and ‖u‖Lφ(Rd) ≤ 2max

(
‖u‖

L
p∗s1 (Rd)

, ‖u‖
L
p∗s2 (Rd)

)
, we get

‖u‖Lφ(Rd) ≤ C
( ¨

R
d
R
d

|u(x)− u(y)|pν(x− y) dy dx
)1/p

for all u ∈ Lφ(Rd).
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In other words, inequality (1.10) still holds despite the failure of the growth condition (C).

The next example shows that the lack of convexity can sometime be rectified.

Example 2.11. Fix 0 < s1 < s2 < 1, considering the notations of Example 2.5 define φ(t) =

min(tp
∗
s1 , tp

∗
s2 ), with p∗si > 0, i = 1, 2. Note that φp(t) = φ(t1/p) is not necessarily convex. However

one rectifies this deficiency by defining

φmin(t) =

ˆ t

0

min(sp
∗
s1 , sp

∗
s2 )

s
ds so that φmin(t

1/p) =
1

p

ˆ t

0

min(sp
∗
s1
/p, sp

∗
s2
/p)

s
ds.

Since, p∗s2 ≥ p∗s1 ≥ p, one readily obtains that t 7→ φmin(t
1/p) is convex. Furthermore,

φ
(s
t

)
≤
φ(s)

φ(t)
for all s ≤ t and φmin(t) ≤ φ(t) ≤ φmin(2t) for all t ≥ 0.

Combining altogether implies that

φmin

( s
2t

)
≤ φ

( s
2t

)
≤
φ(s/2)

φ(t)
≤
φmin(s)

φmin(t)
for s ≤ t.

It turns out that, φmin satisfies (C) with θ = 1
2 and thus the Assumption C. Therefore, it is fair to

identify φ with φmin so that Lφ(Rd) = Lφmin(Rd) = Lp
∗
s1 (Rd) + Lp

∗
s2 (Rd). Next, we find the kernel

associated with φ(t) = min(tp
∗
s1 , tp

∗
s2 ). The relation (B) yields

wp(r) =
1

φ−1
p (1/r)

= min(rp/p
∗
s1 , rp/p

∗
s2 ).

Using the relation (2.5) and put ρ = η(r), equally r = cdρ
d to obtain

ν(ρ) = ν(η(r)) = −
d

dr

(wp(r)
r

)
=

{
s2p
d r

−1−
s2p

d if r ≥ 1,
s1p
d r

−1−
s1p
d if r < 1

=

{
1
γs2
ρ−d−s2p if ρ ≥ η(1),

1
γs1
ρ−d−s1p if ρ < η(1).

Whence, the kernel ν is given by

ν(h) =
1

γs1
1B(0, η(1))(h) |h|

−d−s1p +
1

γs2
1Bc(0, η(1))(h) |h|

−d−s2p.

One easily finds that c1ν(h) ≤ min(|h|−d−s1p, |h|−d−s2p) ≤ c2ν(h) for some constants c1, c2 > 0
and hence that W s1,p(Rd) + W s2,p(Rd) = W p

ν (R
d) = W s1,p(Rd). Thus, identifying φ and φmin

Assumption A , Assumption B and Assumption C are satisfied.

Remark 2.12. There are two keys geometric observations emanating from Example 2.5, Example
2.10 and Example 2.11. Firstly, modifying the p-Lévy integrable kernel ν at the origin or at the
infinity may not change the topology of the nonlocal Sobolev space W p

ν (R
d).

Secondly, the geometric behavior of the kernel ν at the origin or at the infinity truly governs that
of the associated critical function φ and hence influences the topology of the Orlicz space Lφ(Rd).
In other words a perturbation of the kernel ν at the origin or at the infinity can drastically change
the resulting associated Orlicz space (or associated critical function). This geometric behavior also
reads the through the relation (2.3) which implies that

lim
t→∞

φ(t)

tp
=

ˆ

|h|≥η( 1
φ(∞)

)
ν(h) dh and lim

t→0+

φ(t)

tp
=

ˆ

|h|≥η( 1
φ(0)

)
ν(h) dh.

3. Main results

With a view to establish our main result, we need auxiliary results that are the milestones to prove
Theorem 1.1. We begin with the following important lemma.
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Lemma 3.1. Assume ν is almost decreasing, i.e., satisfies (A). For a measurable set E ⊂ R
d such

that |E| <∞ the following estimate is true
ˆ

Ec
ν(x− y) dy ≥ κ2

wp(|E|)

|E|
for all x ∈ R

d.

Proof. Let the ball B(0, rE) centered at the origin with radius rE, be the symmetric rearrangement

of E that is |E| = |B(0, rE)|, equally we have the radius rE = ( |E|
cd

)1/d = η(|E|) where cd = |B(0, 1)|.

Noticing that A \B = A \ (A ∩B), one gets
∣∣B(x, rE) \ E

∣∣ =
∣∣B(x, rE)

∣∣−
∣∣E ∩B(x, rE)

∣∣ =
∣∣E

∣∣−
∣∣E ∩B(x, rE)

∣∣ =
∣∣E \B(x, rE)

∣∣.

Accordingly, using the fact that ν is almost decreasing, we get the sought estimate as follow
ˆ

Ec
ν(x− y) dy =

ˆ

Ec∩B(x,rE)
ν(x− y) dy +

ˆ

Ec∩Bc(x,rE)
ν(x− y) dy

≥ κν(rE)|E
c ∩B(0, rE)|+

ˆ

Ec∩Bc(x,rE)
ν(x− y) dy

= κν(rE)|E ∩Bc(0, rE)|+

ˆ

Ec∩Bc(x,rE)
ν(x− y) dy

≥ κ2
ˆ

E∩Bc(x,rE)
ν(x− y) dy +

ˆ

Ec∩Bc(x,rE)
ν(x− y) dy

≥ κ2
ˆ

Bc(x,rE)
ν(x− y) dy = κ2

wp(|E|)

|E|
.

�

We also need the following lemma dealing with convexity of the critical function φ.

Lemma 3.2. Assume that Assumption C is satisfied. Let (ak)k∈Z be a nonincreasing nonnegative

sequence, i.e., 0 ≤ ak+1 ≤ ak, and T > 0. Then the following estimate holds true

φp(
θp

T
)
∑

k∈Z

( 1

φ−1(1/ak)

)p
T k ≤

∑

k∈Z

ak+1

ak

( 1

φ−1(1/ak)

)p
T k. (3.1)

Proof. First, taking s = φ−1(1/t′) and t = φ−1(1/s′) the growth condition in (C) becomes

φ−1
p (

s′

t′
)wp(t′) ≥ θpwp(s′) for all s′ ≤ t′. (3.2)

There is no loss of generality if we assume that the right hand side of (3.1) is finite and that,for
n ≥ 1 sufficiently large, λn > 0 with λn =

∑
|k|≤n, w

p(ak)T
k =

∑
k∈Zw

p(a′k)T
k where here, a′k = ak

if |k| ≤ n and 0 if |k| > n. This makes sense as w(0) = φp(0) = 0. In virtue of the Jensen inequality
and the estimate (3.2) we obtain the following estimates,

∑

k∈Z

ak+1

ak
wp(ak)T

k ≥ λn
∑

k∈Z

φp
(
φ−1
p

(a′k+1

ak

)) 1

λn
wp(ak)T

k

≥ λnφp

( 1

λn

∑

k∈Z

φ−1
p

(a′k+1

ak

)
wp(ak)T

k
)

≥ λnφp

( θp

λnT

∑

k∈Z

wp(a′k)T
k
)
= φp

(θp
T

) ∑

|k|≤n

wp(ak)T
k.

Letting n→ ∞ gives the sought inequality since w(t) = 1
φ−1(1/t) as in (B). �

In connection with Lemma 3.2, we take φ(t) = tq, q ≥ 1 to obtain the following particular result.
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Lemma 3.3. For a nonnegative sequence (ak)k∈Z, T > 0 and q ≥ 1 we have

∑

k∈Z

a
1/q
k T k ≤ T q

∑

k∈Z

ak+1

ak
a
1/q
k T k. (3.3)

Proof. It suffices to assume that 0 <
∑

k∈Z a
1/q
k T k <∞. Let the counting measure dµ(k) = a

1/q
k T k

so that dµ(k + 1) = T
(
ak+1

ak

)1/q
dµ(k). Jensen’s inequality yields the sought inequality since

1 =
( 

Z

dµ(k)
)q

=
(  

Z

T
(ak+1

ak

)1/q
dµ(k)

)q
≤

 

Z

T q
ak+1

ak
dµ(k).

�

Consequently, taking q = p∗s/p ≥ 1 in Lemma 3.3 results with the following inequality; compare
with [NPV12, Lemma 6.2] or [SV11, Lemma 5].

Corollary 3.4. Let s ∈ (0, 1) and p ≥ 1 be such that p∗s > 0, and T > 0. For every nonnegative

sequence (ak)k∈Z the following estimate holds

∑

k∈Z

a
(d−sp)/d
k T k ≤ T d/(d−sp)

∑

k∈Z

ak+1a
−sp/d
k T k.

The next lemma is an immediate consequence of the relation in (1.7) and provides an interplay
between a Luxemburg norm associated with a function ψ and that of the mapping t 7→ ψ(tq).

Lemma 3.5. Let ψ : [0,∞] → [0,∞] be a Young function and q > 0. Assume ψq(t) = ψ(tq) is also

a Young function then u ∈ Lψq (Rd) if and only if uq ∈ Lψ(Rd). Moreover, we have

‖u‖
Lψq (Rd)

= ‖uq‖
1/q

Lψ(Rd)
.

We are now in position to prove Theorem 1.1. Our approach uses the measure theoretic decompo-
sition of functions by level sets.

Proof of Theorem 1.1. Without loss of the generality assume that u ≥ 0 and |u|W p
ν (R

d) < ∞.

For each k ∈ Z define

Ak =
{
u > 2k

}
and Dk = Ak \ Ak+1 =

{
2k < u ≤ 2k+1

}
,

ak =
∣∣{u > 2k}

∣∣ and dk =
∣∣Dk

∣∣ = ak − ak+1.

Note that Ak+1 ⊂ Ak and hence ak+1 ≤ ak. Moreover, Dk
′s are disjoints, cover Rd and we get

Ack+1 =
⋃

ℓ≤k

Dℓ and Ak =
⋃

ℓ≥k

Dℓ. (3.4)

Accordingly we find that

ak =
∑

ℓ≥k

dℓ and dk = ak −
∑

ℓ≥k+1

dℓ. (3.5)
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Given x ∈ Di and y ∈ Dj with j ≤ i − 2, we have |u(x) − u(y)| ≥ 2i − 2j+1 ≥ 2i−1. Therefore,
according to (3.4) and Lemma 3.1, one deduces the following

¨

R
d
R
d

|u(x)− u(y)|pν(x− y) dy dx =
∑

i∈Z

∑

j∈Z

¨

DiDj

|u(x)− u(y)|pν(x− y) dy dx

≥ 2
∑

i∈Z

∑

j∈Z

i≤j−2

¨

DiDj

2p(i−1)ν(x− y) dy dx

= 2
∑

i∈Z

2p(i−1)

ˆ

Di

ˆ

Aci−1

ν(x− y) dy dx

≥ 2κ2
∑

i∈Z

2p(i−1)di
wp(ai−1)

ai−1
.

In short, using the relation (B) we have

|u|p
W p
ν (R

d)
≥ 2κ2

∑

k∈Z

2pk
dk+1

ak

( 1

φ−1(1/ak)

)p
. (3.6)

Recalling (3.5) and that di = ai − ai+1, we get

|u|p
W p
ν (R

d)
≥ 2κ2

∑

i∈Z

ai−1 6=0

2p(i−1)ai
wp(ai−1)

ai−1
− 2κ2

∑

i∈Z

ai−1 6=0

∑

i∈Z

j≥i+1

2p(i−1)dj
wp(ai−1)

ai−1
. (3.7)

Given that dj ≤ aj, using Fubini’s theorem and the formula
∑

i∈Z

i≤j−1
ci−1 = cj−1

c−1 for c > 1 implies

∑

i∈Z

ai−1 6=0

∑

j∈Z

i+1≤j

2p(i−1)dj
wp(ai−1)

ai−1
=

∑

j∈Z

aj−1 6=0

∑

i∈Z

i≤j−1

2p(i−1)dj
wp(ai−1)

ai−1

≤
1

2p − 1

∑

j∈Z

aj−1 6=0

2p(j−1)aj
wp(aj−1)

aj−1
.

Combining this together with (3.6) and (3.7), recalling Cp(t) = 2κ2 t
p−2
tp−1 , t > 1 yields

|u|p
W p
ν (R

d)
≥ Cp(2)

∑

k∈Z

2pk
ak+1

ak
wp(ak) = Cp(2)

∑

k∈Z

2pk
ak+1

ak

( 1

φ−1(1/ak)

)p
(3.8)

In order to employ Assumption C, we emphasize that dk+1 ≤ ak+1 ≤ ak. So that in virtue of
Lemma 3.2 with T = 2p and the fact that φ−1 is nondecreasing, the following estimates hold true

∑

k∈Z

2pk
ak+1

ak

( 1

φ−1(1/ak)

)p
≥ φ(

θ

2
)
∑

k∈Z

2pk
( 1

φ−1(1/ak)

)p
≥ φ(

θ

2
)
∑

k∈Z

2pk
( 1

φ−1(1/dk)

)p
. (3.9)

Finally, since up =
∑

k∈Z u
p
1Dk , in view of Lemma 3.5 and the relation (1.9) we find that

‖u‖p
Lφ(Rd)

= ‖up‖Lφp (Rd) ≤
∑

k∈Z

‖up1Dk‖Lφp (Rd) ≤ 2p
∑

k∈Z

2pk
( 1

φ−1(1/dk)

)p
. (3.10)

Merging together (3.8), (3.9) and (3.10) gives the desired inequality for t = 2

|u|p
W p
ν (R

d)
≥

1

Θp
2

‖u‖p
Lφ(Rd)

, Θp
2 = 2p−1[κ2Cp(2)φ(

θ

2
)]−1.

More generally, using the level sets decomposition Ak(t) = {u > tk} and Dk(t) = {tk < u ≤ tk+1},
for t ≥ 2, in place of Ak andDk and repeating with a close look at the proof of the previous case, t=2,
reveals the desired estimate (1.10). It immediately follows that the embedding W p

ν (R
d) →֒ Lφ(Rd)

is continuous while the continuity of the embeddingW 1,p(Rd) →֒ Lφ(Rd) stems from the continuous
embedding W 1,p(Rd) →֒ W p

ν (R
d); see the relation (2.1). This ends the proof of Theorem 1.1. �
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In view of generalizing Theorem 1.1 we need to bring into play the symmetric rearrangement.

Symmetric rearrangement: Next, we want to weaken the assumptions on ν, by possibly enlarg-
ing them to the class of non-radial kernels. Ultimately, we recall some essential notions of symmetric
decreasing rearrangement; see for instance [Bae19,Gra08,LL01] for more details. Let E ⊂ R

d be a
measurable set with |E| < ∞. The symmetric rearrangement of E denoted E∗ = B(0, rE) is the

open ball having the same volume with E, i.e., rE = η(|E|) =
( |E|
cd

)1/d
. The symmetric rearrange-

ment of a measurable function u : Rd → R, is the measurable function denoted u∗ : Rd → [0,∞]
and defined by

u∗(x) = u∗(|x|) =

ˆ ∞

0
1{|u|>s}∗(x) ds = inf{s > 0 : |{|u| > s}| ≤ cd|x|

d}. (3.11)

It is a routine to check that the identity in (3.11) holds true. Obviously the function u∗ is radial and
radially nonincreasing, i.e., u∗(x) ≤ u∗(y) whenever |x| ≥ |y|. Furthermore, {|u| > s}∗ = {u∗ > s},
for all s > 0. This implies that u∗ and u are equimeasurables, i.e., |{|u| > s}| = |{u∗ > s}| for all
s > 0 and that u∗ is lower semi-continuous. Next, assume u∗(r) <∞, r > 0 and let sn = u∗(r)− 1

n ,

for n ≥ 1 large. The inf characterization in (3.11) implies sn 6∈ {s > 0 : |{|u| > s}| ≤ cdr
d}. Thus,

|{|u| > u∗(r)− 1
n}| > cdr

d and hence letting n→ ∞ we get

|{|u| ≥ u∗(r)}| ≥ cdr
d = |B(0, r)|.

Since u∗ is radially nonincreasing, {u∗ > u∗(r)} ⊂ B(0, r) ⊂ {u∗ ≥ u∗(r)} ⊂ B(0, r) . Hence we get

|{|u| > u∗(r)}| = |{u∗ > u∗(r)}| ≤ |B(0, r)| = |{u∗ ≥ u∗(r)}|.

This combined with the previous inequality yields

|{|u| > u∗(r)}| ≤ |B(0, r)| ≤ |{|u| ≥ u∗(r)}|. (3.12)

The equalities hold if u∗ is decreasing. The next result, compare with [JW19, Lemma 3.1], is a fair
generalization of Lemma 3.1.

Theorem 3.6. Let ν : Rd \{0} → [0,∞] be measurable and note ν∗ be its symmetric rearrangement.

For x ∈ R
d and a measurable E ⊂ R

d such that |E| <∞, the following inequality holds
ˆ

Ec
ν(x− y) dy ≥ ν#(|E|), with ν#(|E|) =

ˆ

{ν<ν∗(rE)}
ν(h) dh. (3.13)

Recall that rE = η(|E|) =
( |E|
cd

)1/d
. Moreover, ν#(|E|) →

´

R
d ν(h) dh as |E| → 0 and if ν ∈

L1(Rd \B(0, δ)) for some δ > 0 then ν#(|E|) → 0 as |E| → ∞.

Proof. It is sufficient to assume
´

Ec ν(x− y) dy <∞. Let Ex = x+ E so that |Ex| = |E|. We get
ˆ

Ec
ν(x− y) dy =

ˆ

Ecx

ν(h) dh =
[ˆ

{ν<ν∗(rE)}
−

ˆ

Ex∩{ν<ν∗(rE)}
+

ˆ

Ecx∩{ν≥ν
∗(rE)}

]
ν(h) dh

≥

ˆ

{ν<ν∗(rE)}
ν(h) dh− ν∗(rE)|Ex ∩ {ν < ν∗(rE)}|+ ν∗(rE)|E

c
x ∩ {ν ≥ ν∗(rE)}|

=

ˆ

{ν<ν∗(rE)}
ν(h) dh+ ν∗(rE)

(
|Ecx ∩ {ν ≥ ν∗(rE)}| − |Ex ∩ {ν < ν∗(rE)}|

)

≥

ˆ

{ν<ν∗(rE)}
ν(h) dh.

The last inequality follows since, as inequality (3.12) implies |{ν ≥ ν∗(rE)}| ≥ |E|, we have

|Ecx ∩ {ν ≥ ν∗(rE)}| − |Ex ∩ {ν < ν∗(rE)}|

= (|{ν ≥ ν∗(rE)}| − |Ex ∩ {ν ≥ ν∗(rE)}|) − (|E| − |Ex ∩ {ν ≥ ν∗(rE)}|)

= |{ν ≥ ν∗(rE)}| − |E| ≥ |B(0, rE)| − |E| = 0.
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Meanwhile, ν∗(0) = inf{s > 0 : |{ν > s}| = 0} = ess sup ν = ‖ν‖L∞(Rd), hence we find that

ν#(|E|) →
´

R
d ν(h) dh as |E| → 0. If ∈ L1(Rd \B(0, δ)), then a convergence argument implies

ν#(|E|) → 0 as |E| → ∞. �

We mention in passing that Lemma 3.1 or Theorem 3.6 generalizes [NPV12, Lemma 6.1] focusing
on the particular kernel, ν(h) = |h|−d−sp, h 6= 0 and s ∈ (0, 1). Indeed, in this case ν = ν∗ and

hence for all x ∈ R
d

ˆ

Ec

dy

|x− y|d+sp
≥ ν#(|E|) = γs|E|−sp/d, with γs =

dc
1+ sp

d
d

sp
. (3.14)

We are now ready to state a refined version of Theorem 1.1 under weaker assumptions.

Theorem 3.7. Let ν : Rd \{0} → [0,∞] be measurable and note ν∗ its symmetric rearrangement.

Assume that w : [0,∞] → [0,∞] with w(r) = (rν#(r))1/p is invertible. We emphasize that

w(r) =
(
|B(0, η(r))|

ˆ

{ν<ν∗(η(r))}
ν(h) dh

)1/p
, η(r) =

( r
cd

)1/d
.

Moreover, denote the critical function by φ(t) = 1/w−1(1/t) and assume that t 7→ φp(t) = φ(t1/p)
is a Young function and there is θ > 0 such that

φ
(
θ
s

t

)
≤
φ(s)

φ(t)
for all 0 ≤ s ≤ t.

For t ≥ 2, define Θt = t[2Cp(t)φ(
θ
t )]

−1/p with Cp(t) =
tp−2
tp−1 . Then the following inequality holds

‖u‖Lφ(Rd) ≤ Θt

( ¨

R
d
R
d

|u(x)− u(y)|pν(x− y) dy dx
)1/p

for all u ∈ Lφ(Rd).

Proof. The proof follows exactly the lines of the proof of Theorem 1.1, as the only major change is
the analog of the estimate (3.6) which easily derives from Theorem 3.6. �

Remark 3.8. The assertions (i)− (vii) of Proposition 2.2 remain true for a general kernel ν such

that w(r) = (rν#(r))1/p and φ(t) = 1/w−1(1/t) exist.

We now present two contexts in which, it is possible to eschew the lack of certain assumptions of
Theorem 3.7 with a similar conclusion. The first context implies that lack of growth condition (C)
may sometime not be a direct obstacle in order to the Sobolev inequality and the second context
implies that one can correct the lack of convexity. This is goal of the next result.

Theorem 3.9. Let ν : Rd \{0} → [0,∞] be measurable and φ be the corresponding critical function.

Then the following inequality remains valid

‖u‖Lφ(Rd) ≤ C
( ¨

R
d
R
d

|u(x) − u(y)|pν(x− y) dy dx
)1/p

for all u ∈ Lφ(Rd),

if there exist νi : R
d \{0} → [0,∞] associated with φi, i = 1, 2, each t 7→ φi(t

1/p) is convex and

satisfies the growth condition: φi(t)φi
(
θi
s
t

)
≤ φi(s) for all s ≤ t; such that (i) or (ii) below holds.

(i) The function φ(t) = max(φ1(t), φ2(t)), i.e. does not necessarily satisfy the growth condition

(C), and there are constants c2 ≥ c1 > 0 such that c1ν(h) ≤ max(ν1(h), ν2(h)) ≤ c2ν(h).

(ii) The function φ(t) = min(φ1(t), φ2(t)), i.e. φ might not be convex, is identified φmin with

φmin(t) =

ˆ t

0

min(φ1(s), φ2(s)

s
ds.
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Proof. To prove (i) assume φ(t) = max(φ1(t), φ2(t)), which, for instance as in Example 2.10 t 7→

max(tp
∗
s1 , tp

∗
s2 ) with p∗s2 > p∗s1 ≥ p does not necessarily satisfy the growth condition (C). As Theorem

3.7 is true for each kernel νi, the desired inequality follows since by Theorem 2.9 ‖u‖Lφ(Rd) ≤

2max(‖u‖Lφ1 (Rd), ‖u‖Lφ2 (Rd)) and then for u ∈ Lφ(Rd) = Lφ1(Rd) ∩ Lφ2(Rd) we get

‖u‖Lφi (Rd) ≤ Ci

( ¨

R
d
R
d

|u(x) − u(y)|pνi(x− y) dy dx
)1/p

≤ C
( ¨

R
d
R
d

|u(x)− u(y)|pν(x− y) dy dx
)1/p

, C = max(C1, C2)c
1/p
2 .

Next, to prove (ii) assume φ(t) = min(φ1(t), φ2(t)), which, for instance as in Example 2.11 t 7→

min(tp
∗
s1 , tp

∗
s2 ) with p∗s2 > p∗s1 ≥ p, is not necessarily convex. In virtue of Proposition 2.2 each

mapping t 7→ φi(t
1/p)
t , i = 1, 2 is increasing and hence, t 7→ φmin(t

1/p) is convex since

φmin(t
1/p) =

1

p

ˆ t

0

min(φ1(s
1/p), φ2(s

1/p))

s
ds.

Moreover, putting θ′ = min(θ1, θ2) one easily checks that

φ
(
θ′
s

t

)
≤
φ(s)

φ(t)
for all s ≤ t and φmin(t) ≤ φ(t) ≤ φmin(2t) for all t > 0.

Altogether, this implies that φmin satisfies the growth condition (C) with θ = 1
2 min(θ1, θ2). Indeed,

φmin

(θ′s
2t

)
≤ φ

(θ′s
2t

)
≤
φ(s/2)

φ(t)
≤
φmin(s)

φmin(t)
for s ≤ t.

It turns out that Lemma 3.2 applies to φmin and hence, since φ−1(1/r) ≤ φ−1
min(1/r) ≤ 2φ−1(1/r),

as a substitute for the inequality(3.1) one readily obtains that

φmin(
θ

T 1/p
)
∑

k∈Z

( 1

φ−1(1/dk)

)p
T k ≤ 2p

∑

k∈Z

dk+1

ak

( 1

φ−1(1/ak)

)p
T k. (3.1’)

Therefore, a mere adaptation of the proof Theorem 1.1 provides the desired inequality. �

It is worth recalling that by Example 2.5, the fractional Gagliardo-Nirenberg-Sobolev inequality
(1.4) is a direct consequence of Theorem 1.1, where, ν(h) = |h|−d−sp is associated with the critical

Young function φ(t) = γ
p∗s/p
s tp

∗
s . For the reader convenience we however offer an alternative proof

incorporated in [Pon16, Proposition 15.5].

Theorem 3.10 (Gagliardo-Nirenberg-Sobolev). Let s ∈ (0, 1) such that 1
p∗s

= 1
p −

s
d > 0 then

‖u‖Lp∗s (Rd) ≤ 2p
∗
s/p|B(0, 1)|−1/p−s/d

( ¨

R
d
R
d

|u(x)− u(y)|p

|x− y|d+sp
dxdy

)1/p
for all u ∈ Lp

∗
s(Rd).

Proof. Fix x ∈ R
d and r > 0. Integrating the inequality |u(x)| ≤ |u(y)| + |u(x) − u(y)| over

y ∈ B(x, r) and using Jensen’s inequality implies

|u(x)| ≤

 

B(x,r)
|u(y)|dy +

 

B(x,r)
|u(x) − u(y)|dy

≤
(  

B(x,r)
|u(y)|p

∗
s dy

)1/p∗s
+

( 

B(x,r)
|u(x)− u(y)|p dy

)1/p

≤
(  

B(x,r)
|u(y)|p

∗
s dy

)1/p∗s
+

(
rd+sp

 

B(x,r)

|u(x)− u(y)|p

|x− y|d+sp
dy

)1/p

≤ r−d/p
∗
s |B(0, 1)|−1/p∗s

(ˆ

R
d
|u(y)|p

∗
s dy

)1/p∗s
+ rs|B(0, 1)|−1/p

(ˆ

R
d

|u(x)− u(y)|p

|x− y|d+sp
dy

)1/p
.
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Now we choose r such that both summands of the last inequality are equals. To more be precised,

r(x) = r = |B(0, 1)|1/d−p/dp
∗
s

(ˆ

R
d
|u(y)|p

∗
s dy

)p/dp∗s(ˆ

R
d

|u(x)− u(y)|p

|x− y|d+sp
dy

)−1/d
.

Substituting this specific r(x) in the preceding estimate leads to

|u(x)|p
∗
s ≤ 2p

∗
sr−d(x)|B(0, 1)|−1

( ˆ

R
d
|u(y)|p

∗
s dy

)

= 2p
∗
s |B(0, 1)|−2+p/p∗s

(ˆ

R
d
|u(y)|p

∗
s dy

)1−p/p∗s
( ˆ

R
d

|u(x)− u(y)|p

|x− y|d+sp
dy

)
.

This implies an equivalent of the sought inequality, as integrating with respect to x yields,
ˆ

R
d
|u(x)|p

∗
s dx ≤ 2p

∗
s |B(0, 1)|−1−sp/d

( ˆ

R
d
|u(y)|p

∗
s dy

)1−p/p∗s
( ¨

R
d
R
d

|u(x)− u(y)|p

|x− y|d+sp
dy dx

)
.

�

An immediate consequence of Theorem 3.7 is given by the following Sobolev type embeddings.

Corollary 3.11. Assume the assumptions of Theorem 3.7 are in force, with ν ∈ L1(Rd, 1∧|h|p dh).
Let ψ be a Young function such that ψ(ct) ≤ max(tp, φ(t)) for all t > 0 and for some constant c > 0.
The embeddings W p

ν (R
d) →֒ Lψ(Rd) and W 1,p(Rd) →֒ Lψ(Rd) are continuous.

In particular, we obtain the classical fractional Sobolev embedding, that is for s ∈ (0, 1), if p∗s > 0

then for every q ∈ [p, p∗s] the embedding W s,p(Rd) →֒ Lq(Rd) is continuous.

More generally, in order to capture the above embeddings in Corollary 3.11 on arbitrarily open
sets, we need to introduce extension domain with respect to the kernel ν.

Definition 3.12. An open set Ω ⊂ R
d will be called an W p

ν -extension domain if there exists a
linear operator E :W p

ν (Ω) →W p
ν (Rd) and a constant C := C(Ω, ν, d, p) such that

Eu |Ω = u and ‖Eu‖W p
ν (Rd) ≤ C‖u‖W p

ν (Ω), for all u ∈W p
ν (Ω).

According to [Zho15], an open set Ω ⊂ R
d is an W s,p-extension domain if and only if Ω satisfies

the measure density condition, i.e., there is c > 0 such that for every x ∈ Ω and r > 0 we
have |Ω ∩ B(x, r)| > crd. For some authors this condition also means that Ω is a d-set. If ν
is radially decreasing then bounded bi-Lipschitz domain Ω ⊂ R

d is an W p
ν -extension domain;

see [FG20, Theorem 3.78].

Corollary 3.13. Let the assumptions of Theorem 3.7 be in force. Assume Ω ⊂ R
d is an W p

ν -

extension domain. Let ψ be a Young function such that ψ(ct) ≤ max(tp, φ(t)) for all t > 0 and

for some constant c > 0. The embeddings W p
ν (Ω) →֒ Lψ(Ω) is continuous. Moreover, if |Ω| < ∞,

then W p
ν (Ω) →֒ Lψ(Ω) is continuous when ψ(ct) ≤ max(t, φ(t)) for all t ≥ 1. In particular, if

ν(h) = |h|−d−sp, s ∈ (0, 1) with p∗s > 0 then W s,p(Ω) →֒ Lq(Ω) is continuous for every q ∈ [p, p∗s]
and for every q ∈ [1, p∗s] if |Ω| <∞.

Proof. Clearly, Theorem 3.7 and the extension property of Ω imply W p
ν (Ω) →֒ Lφ(Ω) and we

naturally have W p
ν (Ω) →֒ Lp(Ω). Hence W p

ν (Ω) →֒ Lp(Ω) ∩ Lφ(Ω) = Lmax(tp,φ(t))(Ω), by Theorem
2.3. Since ψ(ct) ≤ max(tp, φ(t)), Theorem 2.9 implies that W p

ν (Ω) →֒ Lψ(Rd). Analogously, if

|Ω| <∞, then we have Lp(Ω) →֒ L1(Ω) so that we have W p
ν (Ω) →֒ Lp(Ω)∩Lφ(Ω) = Lmax(t,φ(t))(Ω)

and if then by Theorem 2.3 we get W p
ν (Ω) →֒ Lp(Ω) ∩ Lφ(Ω) = Lψ(t)(Ω). Last, noting, q ∈ [p, p∗s]

if and only if tq ≤ max(tp, tp
∗
s ), it follows that W s,p(Rd) →֒ Lq(Rd) for every q ∈ [p, p∗s]. The case

|Ω| <∞ and q ∈ [1, p∗s] follows analogously. �
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4. Poincaré-Sobolev inequality

In this section, we wish to establish Gagliardo-Nirenberg-Sobolev inequality for functions re-
stricted on a domain Ω ⊂ R

d. First and foremost, observe that the inequality

‖u‖Lφ(Ω) ≤ C
(¨

ΩΩ

|u(x)− u(y)|pν(x− y) dy dx
)1/p

for all u ∈ Lφ(Ω),

cannot hold for an arbitrary bounded Ω ⊂ R
d. In fact, if u is a nonzero constant, then the right-

hand side is zero but the left-hand side is not. Accordingly, we need to rule out the constant
functions in this context. For instance, if we replace the integrand on the left-hand side by u−

ffl

Ω u
then it fully makes sense to think of an inequality of the form

∥∥u−
ffl

Ω u
∥∥
Lφ(Ω)

≤ C
(¨

ΩΩ

|u(x)− u(y)|pν(x− y) dy dx
)1/p

for all u ∈ Lφ(Ω),

where we write
ffl

Ω u = 1
|Ω|

´

Ω u(x) dx to denote the mean value of u over Ω. This particular type of

inequality is customarily well known as a Sobolev-Poincaré type inequality and turns out to have
a strong reciprocity with the Poincare type inequalities. To be more precise, see Theorem 4.3, the
validity of Sobolev-Poincaré type inequality implies that of Poincaré type inequality vice versa. Let
us recall some Poincaré type inequalities of interest here. Another consequence of Theorem 3.6 is
given by the Poincaré-Friedrichs type inequality.

Theorem 4.1 (Poincaré type inequality). Let Ω ⊂ R
d be measurable with |Ω| < ∞ and let ν :

R
d \{0} → [0,∞] be measurable with full support.

Poincaré-Friedrichs inequality: Let LpΩ(R
d) = {u ∈ Lp(Rd) : u = 0, a.e on Ωc} and let ν# be

defined as in (3.13). Letting C = [2ν#(|Ω|)]−1/p, the following inequality holds

‖u‖Lp(Ω) ≤ C
( ¨

R
d
R
d

|u(x)− u(y)|pν(x− y) dy dx
)1/p

for all u ∈ LpΩ(R
d).

Poincaré inequality: Assume ν is radially almost decreasing, i.e. κν(|x|) ≤ ν(|y|) if |x| ≥ |y|,

then letting C = [κ|Ω|ν(R)]−1/p where R = diam(Ω) is the diameter of Ω, we have

∥∥u−
ffl

Ω u
∥∥
Lp(Ω)

≤ C
(¨

ΩΩ

|u(x)− u(y)|pν(x− y) dy dx
)1/p

for all u ∈ Lp(Ω).

Proof. If u = 0 a.e. on Ωc, the Theorem 3.6 yields the Poincaré-Friedrichs inequality as follows

|u|p
W p
ν (R

d)
≥ 2

ˆ

Ω
|u(x)|p dx

ˆ

Ωc
ν(x− y) dy ≥ 2ν#(|Ω|)‖u‖pLp(Ω).

Next let R = diam(Ω) and assume ν is almost decreasing, so that we get ν(x− y) ≥ κν(R) for all
x, y ∈ Ω. Set Cp = κ|Ω|ν(R). For u ∈ Lp(Ω), Jensen’s inequality yields,

¨

ΩΩ

|u(x)− u(y)|pν(x− y) dy dx ≥ Cp
ˆ

Ω

 

Ω
|u(x)− u(y)|p dy dx ≥ Cp

∥∥u−
ffl

Ω u
∥∥p
Lp(Ω)

.

�

It is still possible to obtain the Poincaré inequality if the almost decreasing condition on ν is
dropped, by requiring the embedding W p

ν (Ω) →֒ Lp(Ω) to be compact. The latter holds when
certain compatibility regularity conditions are imposed on both kernel ν and domain Ω. See for
instance [FG20] for more on this topics. First, we immediately the following from Theorem 3.7
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Corollary 4.2 (Poincaré-Friedrichs-Sobolev type inequality). Let Ω ⊂ R
d be open and define

LφΩ(R
d) = {u ∈ Lφ(Rd) : u = 0, a.e on Ωc}. Under the assumptions of Theorem 3.7 we get that

‖u‖Lφ(Ω) ≤ Θt

( ¨

R
d
R
d

|u(x)− u(y)|pν(x− y) dy dx
)1/p

for all u ∈ LφΩ(R
d).

The next result, which is somewhat a side consequence of the definition of φ, shows the equivalence
between the Sobolev inequality and the Poincaré-Sobolev inequality.

Theorem 4.3 (Poincaré-Sobolev inequality). Assume assumptions of Theorem 3.7 hold true. Let

Ω ⊂ R
d be measurable such that 0 < |Ω| <∞. If the Poincaré-Sobolev inequality holds true Ω, i.e.,

∥∥u−
ffl

Ω u
∥∥
Lφ(Ω)

≤ C
(¨

ΩΩ

|u(x) − u(y)|pν(x− y) dy dx
)1/p

for all u ∈ Lφ(Ω), (4.1)

then the Poincaré inequality is also holds true, i.e.,

∥∥u−
ffl

Ω u
∥∥
Lp(Ω)

≤ C
(¨

ΩΩ

|u(x)− u(y)|pν(x− y) dy dx
)1/p

for all u ∈ Lp(Ω). (4.2)

The converse holds true if in addition, Ω is an W p
ν -extension domain.

Proof. Proposition 2.2 implies that φ(t) ≥ δ0t
p for all t ≥ t0 with fixed t0 > 0. Thus, it follows

from Theorem 2.3 that Lφ(Ω) →֒ Lp(Ω) is a continuous embedding by (2.6). Together with the
Poincaré inequality we get

∥∥u−
ffl

Ω u
∥∥
Lp(Ω)

≤ C
∥∥u−

ffl

Ω u
∥∥
Lφ(Ω)

≤ C
(¨

ΩΩ

|u(x) − u(y)|pν(x− y) dy dx
)1/p

.

Conversely assume, the Poincaré inequality holds and Ω is an W p
ν -extension domain. Let u ∈

W p
ν (R

d) be an extension of u0 = u −
ffl

Ω u with u ∈ W p
ν (Ω). Applying Theorem 3.7 reveals that

u ∈ Lφ(Rd) and we deduce the Poincaré-Sobolev inequality as follows

∥∥u−
ffl

Ω u
∥∥
Lφ(Ω)

≤ ‖u‖Lφ(Rd) ≤ C
( ¨

R
d
R
d

|u(x)− u(y)|pν(x− y) dy dx
)1/p

≤ C
(ˆ

Ω
|u(x)−

ffl

Ω u|
p dx+

¨

ΩΩ

|u0(x)− u0(y)|
pν(x− y) dy dx

)1/p

≤ C
(¨

ΩΩ

|u(x)− u(y)|pν(x− y) dy dx
)1/p

.

�

As a direct consequence of Theorem 3.7 and Theorem 4.3 combined with Theorem 4.1 we get.

Corollary 4.4. Let the assumptions of Theorem 3.7 be in force. If ν : Rd \{0} → [0,∞] is almost

decreasing and Ω ⊂ R
d is an W p

ν -extension domain then Poincaré-Sobolev inequality holds, that is,

there is a the constant C = C(Ω, ν, p, d) > 0 only depends on Ω, ν, d and p such that

∥∥u−
ffl

Ω u
∥∥
Lφ(Ω)

≤ C
(¨

ΩΩ

|u(x)− u(y)|pν(x− y) dy dx
)1/p

for all u ∈ Lφ(Ω).

In particular, if s ∈ (0, 1) and p∗s > 0 then

∥∥u−
ffl

Ω u
∥∥
Lp

∗
s (Ω)

≤ C
(¨

ΩΩ

|u(x)− u(y)|p

|x− y|d+sp
dy dx

)1/p
for all u ∈ Lp

∗
s (Ω).
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It turns out that, for the case of the fractional using a straightforwards scaling argument, there is
constant C = C(d, p, s) such that for all balls Br = B(0, r), r > 0 we have

∥∥u−
ffl

Br
u
∥∥
Lp

∗
s (Br)

≤ C
( ¨

BrBr

|u(x) − u(y)|p

|x− y|d+sp
dy dx

)1/p
for all u ∈ Lp

∗
s (Br). (4.3)

In fact, letting r → ∞, one can check that the uniform estimate in (4.3) implies the Gagliardo-
Nirenberg-Sobolev inequality given in Theorem 3.10. More generally, we prove that the uniform
Poincaré-Sobolev inequality on balls implies the nonlocal Gagliardo-Nirenberg-Sobolev inequality.

Theorem 4.5. Let ν ∈ L1(Rd, 1 ∧ |h|p dh) be nonnegative and let φ(t) = 1/w−1(1/t) be defined as

in Theorem 3.7, with w(r) = (rν#(r))1/p. Assume there is a universal constant Θ > 0 such that

for all balls B ⊂ R
d, the following Poincaré-Sobolev inequality holds true,

∥∥u−
ffl

B u
∥∥
Lφ(B)

≤ Θ
(¨

BB

|u(x)− u(y)|pν(x− y) dy dx
)1/p

for all u ∈ Lφ(B). (4.4)

Then following inequality holds true as well

‖u‖Lφ(Rd) ≤ Θ
( ¨

R
d
R
d

|u(x)− u(y)|pν(x− y) dy dx
)1/p

for all u ∈ Lφ(Rd). (4.5)

Proof. Let Br = B(0, r), r > 0 and recall that (1.9) implies ‖1Br‖Lφ(Rd) = 1/φ−1(1/|Br|) then by

assumption we have

‖u‖Lφ(Br) ≤
∥∥u−

ffl

Br
u
∥∥
Lφ(Br)

+ ‖1Br‖Lφ(Rd)

∣∣∣
 

Br

u
∣∣∣

≤ Θ
( ¨

BrBr

|u(x)− u(y)|pν(x− y) dy dx
)1/p

+ ‖1Br‖Lφ(Rd)|Br|
−1/p

( ˆ

Br

|u(x)|p dx
)1/p

≤ Θ
( ¨

R
d
R
d

|u(x)− u(y)|pν(x− y) dy dx
)1/p

+
|Br|

−1/p

φ−1(1/|Br|)

(ˆ

R
d
|u(x)|p dx

)1/p
.

In virtue of Theorem 3.6, we know that ν#(r) → 0 as r → ∞ so, by the definition of φ we obtain

|Br|
−1/p

φ−1(1/|Br|)
= |Br|

−1/pw(|Br|) = (ν#(r))1/p → 0 as r → ∞.

Since Θ > 0 is independent of r, tending r → ∞ in the foregoing yields the desired inequality. �

Open Questions: (i) Regarding Theorem 3.9, can the growth condition (C) be improved?
(ii) Is the critical function φ optimal? In a sense, if ψ is another Young function satisfying the
inequality (1.10), then it also holds true for the Young function t 7→ max(φ(t), ψ(t)). Are φ and ψ
then comparable? Note that we call φ optimal if there is c > 0 such that ψ(ct) ≤ φ(t) for all t > 0.
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