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A GENERAL FRAMEWORK FOR NONLOCAL NEUMANN PROBLEMS

GUY FOGHEM AND MORITZ KASSMANN

Abstract. Within the framework of Hilbert spaces, we solve nonlocal problems in bounded
domains with prescribed conditions on the complement of the domain. Our main focus is
on the inhomogeneous Neumann problem in a rather general setting. We also study the
transition from complement value problems to local boundary value problems. Several
results are new even for the fractional Laplace operator. The setting also covers relevant
models in the framework of peridynamics.

1. Introduction

1.1. Main Results. Over the last years, there have been several studies of nonlocal Neu-
mann problems of the following type: Given a bounded open set Ω ⊂ R

d, one is interested
in well-posedness for

Lu = f in Ω, Nu = g on R
d \Ω , (N)

where L is an integral or integro-differential operator and N is a related integral operator,
which plays the role of some kind of normal derivative on R

d \Ω. The main goal of this
article is to prove well-posedness results for (N) in a general setting. We assume:

Lu(x) = p.v.

ˆ

Rd

(
u(x)− u(y)

)
k(x, y)dy (x ∈ R

d) ,

Nu(y) =

ˆ

Ω

(u(y)− u(x))k(x, y)dx (y ∈ Ωc) .

Here, k : Rd×R
d \ diag → [0,∞) is measurable and satisfies

Λ−1ν(y − x) ≤ k(x, y) ≤ Λν(y − x) (x, y ∈ R
d) , (E)

where ν : Rd \{0} → [0,∞) is the density of a symmetric Lévy measure, i.e., ν satisfies

ν(h) = ν(−h) for all h 6= 0 and

ˆ

Rd

(
1 ∧ |h|2

)
ν(h)dh <∞ . (L)

The main new contributions of the present article include the following:

(a) Extending previous results, e.g. from [DROV17], [MPL19], [DTZ22], we treat the
inhomogeneous problem for natural choices of data g. The corresponding results are
new for the fractional Laplace Operator.

(b) We provide a general framework that includes integral and singular kernels at the
same time.
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(c) We show that the trace spaces introduced in [DK20] and [BGPR20] coincide.
(d) We introduce a new Dirichlet-to-Neumann operator based on the operator N.
(e) Our well-posedness results are in align with classical results for second order partial

differential operators. We show convergence of nonlocal to local problems, where we
treat singular and bounded kernels together.

Let us explain condition (E). We denote a ∧ b = min(a, b) for a, b ∈ R. In the case
k(x, y) = ν(y − x) with ν as above, the operator L is translation invariant and generates
a symmetric Lévy process. The density ν defines the “order” of the operator L, which
becomes apparent in the case of ν(h) = Cd,α|h|−d−α for h 6= 0 where α ∈ (0, 2) is fixed and
Cd,α is an appropriate constant. The resulting operator is the so called fractional Laplace

operator (−∆)α/2. The choice of Cd,α ensures the relation ̂(−∆)α/2u(ξ) = |ξ|αû(ξ) for all

functions u in C∞
c (Rd). Let us mention that asymptotically one has Cd,α ≍ α(2 − α). This

will play an important role for our analysis. Further details about the fractional Laplacian
(−∆)α/2 and the constant Cd,α can be found in [NPV12, FG20]. Finally, let us mention
that, the assumptions (E) and (L) are not sufficient in order to guarantee the existence of
the pointwise expression Lu(x) in the general case, even if u is smooth. The Hilbert space
approach used in Section 4 avoids this issue because we only deal with the corresponding
quadratic forms. It is worth to mention that the nonlocal operatorN was initially introduced
by [DROV17] and is called the nonlocal normal derivative operator across the boundary of
Ω with respect to ν. Another type of such an operator appeared earlier in literature see for
instance [DGLZ12].

Let us quickly review the classical Neumann problem, for the reader’s convenience. Let Ω ⊂
R

d be a bounded open subset whose boundary ∂Ω is sufficiently regular. Given f : Ω → R

and g : ∂Ω → R measurable, the classical inhomogeneous Neumann problem associated to
the data f and g consists in finding a function u : Ω → R satisfying

−∆u = f in Ω and
∂u

∂n
= g on ∂Ω. (1.1)

Here ∂u
∂n

denotes the outward normal derivative of u on ∂Ω. It is interesting to note that
the Neumann boundary problem has received considerably less attention in the literature
when compared with the Dirichlet boundary problems. Classical textbooks like [Mik78]
treat the basic aspects. A rigorous treatment including regularity up to the boundary,
Schauder estimates, Lp estimates and the variational formulation can be found in the lecture
notes [Leo13]. A recent article covering classical results for elliptic equations in divergence
form is [DV09].

Following [FKV15,SV14] we introduce a bilinear form E by

E(u, v) = 1

2

¨

(Ωc×Ωc)c

(
u(x)− u(y)

)(
v(x)− v(y)

)
ν(x−y)dx dy (1.2)

for all smooth functions with compact support. As in the local case, a main tool in the study
of Neumann problems, is a Gauss-Green type formula for u, v ∈ C∞

c (Rd), see Proposition A.5:
ˆ

Ω

Lu(x)v(x)dx = E(u, v)−
ˆ

Ωc

Nu(y)v(y)dy. (1.3)
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Relation (1.3) motivates us to introduce an energy space Vν(Ω|Rd) as the vector space of
all measurable functions u : Rd → R such that the restriction u|Ω belongs to L2(Ω) and
E(u, u) is finite. See Section 2.2 for more details. The energy space Vν(Ω|Rd) can be seen
as a nonlocal analog of H1(Ω). Let us make an interesting observation. Let f ∈ L2(Ω)
and u ∈ Vν(Ω|Rd) be a minimizer of the functional v 7→ 1

2
E(v, v) −

´

Ω
fv in the space

Vν(Ω|Rd). Then E(u, v) = 0 for all smooth functions with compact support in R
d \Ω. Since

u, v ∈ Vν(Ω|Rd), the Fubini theorem implies
ˆ

Ωc

Nu(y)v(y)dy = E(u, v) = 0 ,

which implies Nu = 0 in Ωc, see Corollary 4.8. On the one hand, this observation is in align
with the classical theory where the normal derivative appears naturally when minimizing
the energy. On the other hand, and this is interesting, here we do not need to assume any
regularity of the kernel k(x, y) and the boundary ∂Ω.

Let us summarize the main results of this work.

(i) The first step is to define a base space L2(Rd; ν̃), in which we can define the comple-
ment value problems. We define ν̃ and two altervative options ν, ν∗ in Definition 2.14.
In Section 2.2 we study embedding results of corresponding function spaces.

(ii) The next step is to introduce Tν(Ω
c) as the trace space of Vν(Ω|Rd) in Section 2.6.

In this section, we study equivalent norms of the trace space and a density result.
(iii) An important tool in the proof of well-posedness results is the compact embedding

Vν(Ω|Rd) →֒ L2(Ω), which is a core result in Section 3, see Theorem 3.10.
(iv) Section 4 is dedicated to well-posedness results. We focus on the Neumann problem

in Section 4.1. An existence result for problem (N) is given in Theorem 4.11. We
also discuss a more general Robin-type complement value problem.

(v) The setup of this work allows to define a fully nonlocal Dirichlet-to-Neumann map
with the help of the nonlocal Neumann-type derivative N. For Ω ⊂ R

d, the Dirichlet
data are given on Ωc and mapped to Nu on Ωc, where u satisfies the nonlocal equation
in Ω. Thus, this map is a nonlocal analog of the well-known Dirichlet-to-Neumann
operator given in [CS07]. Basic properties are formulated in Theorem 4.19 together
with spectral properties in Theorem 4.22.

(vi) The analogy between the classical Neumann problem and problem (N) leads to a
convergence result when considering a sequence of complement value problems for
the fractional Laplace operator (−∆)

αn
2 where αn → 2. Theorem 5.4 establishes the

convergence of the corresponding sequence of solutions uαn .

1.2. Related literature. Nonlocal complements value problems have been studied in sev-
eral works. In particular, the Dirichlet problem is studied in many articles. For transla-
tion invariant problems, see the survey [RO16, AFNRO20] for fine regularity results and
[FKV15,BV16] for the Hilbert space approach in a similar setting as in this work.

An early contribution to nonlocal Neumann problems is [DROV17], where also the Gauss-
Green formula appears for a special case. There is a difference between our approach and
the one in [DROV17], which explains why we are able to study the inhomogeneous Neumann
problem. Let us explain our approach for the simplest setup of the fractional Laplace operator
(−∆)α/2, i.e., ν(h) = Cd,α|h|−d−α. Given f ∈ L2(Ω) and g ∈ L2(Ωc; (1+|x|)d+αdx), motivated
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by the Gauss-Green formula (1.3) we say that u ∈ Vν(Ω|Rd) is a weak solution or a variational
solution of the inhomogeneous Neumann problem (N) if

E(u, v) =
ˆ

Ω

f(x)v(x)dx+

ˆ

Ωc

g(y)v(y)dy for all v ∈ Vν(Ω|Rd) . (V )

By testing (V ) with v = 1 gives the following necessary compatibility condition
ˆ

Ω

f(x)dx+

ˆ

Ωc

g(y)dy = 0 . (C)

Equality (V ) should be contrasted with the variational formulation of (1.1) in the classical
case: Given f ∈ L2(Ω) and g ∈ L2(∂Ω), find u ∈ H1(Ω) such that

ˆ

Ω

∇u(x) · ∇v(x)dx =

ˆ

Ω

f(x)v(x)dx+

ˆ

∂Ω

g(y)v(y)dσ(y) for all v ∈ H1(Ω) .

Note that [DROV17, Def. 3.6] and subsequent definitions like [MPL19, Definition 2.7] look
very similar to (V ) at first glance. However, the norm of the test space defined in [DROV17,
Eq. (3.1)], [MPL19, Section 2] depends on the Neumann data g, which is not natural. Our
test space Vν(Ω|Rd) in the weak formulation (V ) does not depend on the Neumann data g.
For the general case, we refer the reader to Definition 4.3.

The aforementioned issue does not show up for homogeneous nonlocal Neumann problems.
For such problems, several results have been proved, e.g., regularity up to a boundary of a
domain for the fractional Laplace operator in [AFNRO20]. An particular observation linking
the homogeneous Neumann problem to the regional fractional Laplace operator is provided
in [Aba20]. Eigenvalues of nonlocal mixed problems are studied in [LMP+18]. Various
nonlinear Neumann problems are studied in [Che18,MPL19, CC20, ATL20,MPL21, BS21].
Some higher order nonlocal Neumann problems are treated in [BMPS18]. The classical
Neumann problem is closely linked to reflected diffusions. It turns out to be a challenging
problem to establish a similar link between the nonlocal Neumann problem and a Markov
jump process together with its reflection. An attempt is made in [Von21], which we comment
on in detail in Remark 2.37.

1.3. Peridynamics and volume constraints on bounded sets.

In the literature, several nonlocal problems are studied in the area of peridynamics. Most
of these models require complement conditions (a.k.a. volume constraints) not necessarily
on the whole complement of the domain Ω but only often on a part of the complement.
Here, we would like to point out that our setting can be adapted to fit such requirements.
Let us exemplify this with a simple model. Consider the symmetric kernel of the form
k(x, y) = ν(x− y) with ν supported around the origin, say supp ν ⊂ Bδ(0) for some δ > 0.
A popular example of a kernel in peridynamic models is given by ν(h) = 1Bδ

(h). In this case
it is natural to assume the complement condition not on the whole complement R

d \Ω but
only on Ω(δ) = {x ∈ R

d \Ω : dist(x, ∂Ω) < δ}. A nonlocal problem of the form Lu = f in
Ω is then supplemented with a complement condition prescribed on the volume constraint
Ω(δ), e.g., u = g on Ω(δ) for a Dirichlet problem or Nu = g on Ω(δ) for a Neumann problem.
Here, f : Ω → R and g : Ω(δ) → R are given data. Our approach can easily be adopted
to cover this case. In comparison to the weak formulation (V ), one would need to replace
Vν(Ω|Rd) by the space Vν(Ω|E) defined as in (2.3), with E = Ω ∪ Ω(δ) and recall that
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ν(h) = 1Bδ
(h). Indeed, assuming for simplicity that Ω is bounded Lipschitz and connected,

the well-posedness of the Neumann and the Dirichlet problem can be formulated as follows.

Corollary 1.1. Let f ∈ L2(Ω) and g ∈ L2(Ω(δ)). Then there is a unique variational solution
u ∈ Vν(Ω|E)⊥ = Vν(Ω|E)∩{

´

Ω
udx = 0} to the Neumann problem Lu = f in Ω and Nu = g

on Ω(δ), i.e.,

E(u, v) =
ˆ

Ω

f(x)v(x)dx+

ˆ

Ω(δ)

g(y)v(y)dy for all v ∈ Vν(Ω|E)⊥ . (1.4)

Moreover, there is a constant C > 0 independent on f and g such that

‖u‖Vν(Ω|E) ≤ C
(
‖f‖L2(Ω) + ‖g‖L2(Ω(δ))

)
.

Corollary 1.2. Let f ∈ L2(Ω) and g ∈ Vν(Ω|E). Then there is a unique variational solution
u ∈ Vν(Ω|E) to the Dirichlet problem Lu = f in Ω and u = g on Ω(δ), i.e.,

u− g ∈ Vν,0(Ω|E) and E(u, v) =
ˆ

Ω

f(x)v(x)dx for all v ∈ Vν,0(Ω|Rd) . (1.5)

Here we denote Vν,0(Ω|E) = Vν(Ω|E) ∩ {u|Ω(δ) = 0}. Moreover, there is a constant C > 0
independent on f and g such that

‖u‖Vν(Ω|E) ≤ C
(
‖f‖L2(Ω) + ‖g‖Vν(Ω|E)

)
.

The proofs of Corollary 1.1 and Corollary 1.2 are analogous to the ones of Theorem 4.11 and
Theorem 4.17. Both results are well known for special cases of ν in the area of peridynamics,
see [DTZ22, Section 3.2] and [KMS19]. We refer the reader to the exposition and the refer-
ences in [Du19]. Let us mention some related results. An early work is [BT10] where several
nonlocal complement value problems are studied for integrable kernels with fixed support
(horizon). Problems for nonlocal nonlinear problems involving nonlocal operators of regional
type are studied in [BM14,BMCP15]. Nonlocal Dirichlet problems driven by nonsymmetric
singular kernels are considered in [FKV15] for scalar functions and in [KMS19] for vector-
valued functions. The vanishing-horizon limit has been considered in several works, see
Section 5. For references related to numerical results see [DY21]. We provide Γ-convergence
results for vanishing horizons in Example 5.2 and mention related results from peridynamics.
Our systematic approach in terms of functional analysis allows to treat general cases of ν
resp. general data g in comparison with [DTZ22].

The paper is organized as follows. In Section 2 we introduce some nonlocal function spaces
and the corresponding trace spaces that will be used in the sequel. In Section 3 we establish
global compact embedding of nonlocal Sobolev spaces in to L2-spaces. This allows us to prove
Poincaré type inequalities for various ranges of Lévy integrable kernel ν. The Section 4 is
devoted to the study of the well-posedness of nonlocal problems with Dirichlet, Neumann
and Robin conditions associated with the Lévy operator L. Afterwards, we investigate the
Dirichlet-to-Neumann map for the Lévy operator L. In Section 5 we show local elliptic
problems can be viewed as the limit of the nonlocal ones. Last, in Appendix A we highlight
some elementary properties of the Lévy operator L.

Acknowledgment: During his PhD studies Guy Foghem has spent a research stay at Seoul
National University in the framework of the International Research Training Group 2235
“Searching for the regular in the irregular: Analysis of random and singular systems” between
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Bielefeld University and Seoul National University. The authors thank his host, Prof. Ki-
Ahm Lee, for helpful discussions on trace spaces.

Further remarks: Several results of this work are based on the PhD thesis of the first author
[FG20]. Related research questions are subject to an ongoing PhD project of Michael Vu
from Trier University. Equivalent norms of the trace space Tν(Ω

c) in case of the fractional
Laplace operator have recently been identified by F. Grube and Th. Hensiek together with
convergence results that recover H1/2(∂Ω) in the limit α→ 2−.

2. Lévy measures and nonlocal function spaces

In this section we introduce generalized Sobolev-Slobodeckij-like function spaces with re-
spect to a Lévy measure ν and an open subset Ω ⊂ R

d, in particular Vν(Ω|Rd) and nonlocal
trace spaces Tν(Ω

c). The function spaces are tailor-made for nonlocal elliptic complement
value problems including the Neumann problem. We prove the existence of an embedding
of Vν(Ω|Rd) into weighted spaces L2(Rd; ν ′) for different measures ν ′ and into the non-
local trace space Tν(Ω

c). We are able to compare Tν(Ω
c) with known trace spaces, see

Proposition 2.31. A main result of this section is Theorem 2.25, which proves that the bi-
linear form (E , Vν(Ω|Rd)) is a regular Dirichlet form on L2(Rd; ν ′). This result allows to
construct jump processes with some sort of reflection.

Throughout this work, let ν be a Lévy measure whose density is a measurable symmetric
function ν : Rd \{0} → [0,∞) satisfying (L). We will impose further conditions on ν where
needed. For simplicity, we assume in our main results that ν has full support. See Section 1.3
for a discussion on how this can be relaxed.

2.1. Lévy condition and energy forms. Before we begin, let us make an observation
that nicely links (L) with nonlocal energies.

Theorem 2.1. Assume ν : Rd \ {0} → [0,∞) is measurable and radial. Then the energy
¨

Rd Rd

(
u(y)−u(x)

)2
ν(x−y) dydx

is finite for every u ∈ C∞
c (Rd) if and only if ν satisfies (L).

Proof. It is easy to see that condition (L) implies finiteness of the energy for u ∈ C∞
c (Rd).

For the converse, let u ∈ C∞
c (Rd) be nontrivial and ε > 0, then there is δ > 0 such that

‖∇u(·+ h)−∇u‖2
L2(Rd)

< ε if |h| ≤ δ .

The fundamental theorem of calculus, 1
2
b2 ≤ a2+(b−a)2 and integration in polar coordinates

yield
¨

Rd Rd

(
u(y)−u(x)

)2
ν(x−y) dydx ≥

ˆ

Rd

ˆ

Bδ(0)

∣∣∣
ˆ 1

0

∇u(x+ th) · hdt
∣∣∣
2

ν(h)dh dx

≥ 1

2

ˆ

Rd

ˆ

Sd−1

|∇u(x) · w|2dσd−1(w)
(ˆ δ

0

rd+1ν(r)dr
)
dx− ε

ˆ

Bδ(0)

|h|2ν(h)dh

≥
(1
2
Kd,2‖∇u‖2L2(Rd)

− ε
)ˆ

Bδ(0)

|h|2ν(h)dh.

6



Recall that, invariance of the Lebesgue measure under rotations implies for all z ∈ R
d

 

Sd−1

|w · z|2dσd−1(w) = Kd,2|z|2 with Kd,2 =

 

Sd−1

|w · e|2dσd−1(w) =
1

d
.

Therefore, choosing ε = 1
4
Kd,2‖∇u‖2L2(Rd)

, we obtain
¨

Rd Rd

(
u(y)−u(x)

)2
ν(x−y) dydx ≥ 1

4
Kd,2‖∇u‖2L2(Rd)

ˆ

Bδ(0)

|h|2ν(h)dh.

It remains to show that ν is integrable away from the origin. Assume u ∈ C∞
c (Rd) with

supp u ⊂ Bτ (0) and 0 < τ < δ/2. For all x ∈ Bτ we have Bτ (0) ⊂ Bδ(x) and hence
¨

Rd Rd

(
u(y)−u(x)

)2
ν(x−y) dydx ≥ 2

ˆ

Bτ (0)

|u(x)|2dx
ˆ

Rd \Bτ (0)

ν(x− y)dy

≥ 2

ˆ

Bτ (0)

|u(x)|2dx
ˆ

Rd \Bδ(0)

ν(h)dh.

Hence, this together with the previous estimate imply that ν satisfies condition (L). �

2.2. Sobolev-Slobodeckij-like spaces. Let Ω ⊂ R
d be open. We define the space Hν(Ω)

by

Hν(Ω) =
{
u ∈ L2(Ω)| EΩ(u, u) <∞

}
,

equipped with the norm ‖u‖2Hν(Ω) = ‖u‖2L2(Ω) + EΩ(u, u), where

EΩ(u, v) =

¨

ΩΩ

(
u(x)− u(y)

)(
v(x)− v(y)

)
ν(x−y)dxdy . (2.1)

When the function ν is bounded, e.g., in the case ν(h) = 1B1
(h), the space Hν(Ω) equals

L2(Ω).
Following [FKV15] we introduce the vector space Vν(Ω|Rd) as follows:

Vν(Ω|Rd) =
{
u : Rd → R meas. : u|Ω ∈ L2(Ω), |u|2

Vν(Ω|Rd)
<∞

}
,

where the seminorm is defined by

|u|2
Vν(Ω|Rd)

=

¨

ΩRd

(
u(x)− u(y)

)2
ν(x−y)dx dy <∞ .

We endow the vector space Vν(Ω|Rd) with the norm ‖ · ‖Vν(Ω|Rd) given by

‖u‖2
Vν(Ω|Rd)

= ‖u‖2L2(Ω) + |u|2
Vν(Ω|Rd)

.

Given functions u, v ∈ Vν(Ω|Rd), we define a bilinear form E by

E(u, v) = 1

2

¨

(Ωc×Ωc)c

(
u(x)− u(y)

)(
v(x)− v(y)

)
ν(x−y)dx dy .

Lemma 2.2. We have |u|2
Vν(Ω|Rd)

≤ E(u, u) ≤ 2|u|2
Vν(Ω|Rd)

for any measurable function u.
7



Proof. On the one hand, the inequality
¨

ΩRd

(
u(x)− u(y)

)2
ν(x−y)dy dx ≤

¨

(Ωc×Ωc)c

(
u(x)− u(y)

)2
ν(x−y)dy dx = 2 E(u, u)

holds trivially true. On the other hand,

E(u, u) = 1

2

¨

Rd Rd

(
u(x)− u(y)

)2 [
1Ω(x) ∨ 1Ω(y)

]
ν(x−y)dy dx

≤ 1

2

¨

Rd Rd

(
u(x)− u(y)

)2 [
1Ω(x) + 1Ω(y)

]
ν(x−y)dy dx

=

¨

ΩRd

(
u(x)− u(y)

)2
ν(x−y)dy dx ,

which completes the proof. �

Some authors find it convenient to work with the smaller space Vν(Ω|Rd)∩L2(Rd) equipped
with its corresponding norm. For the study of nonlocal Dirichlet problems this restriction is
not necessary, though. On the other hand, the requirement u|Ω ∈ L2(Ω) for u ∈ Vν(Ω|Rd)
is natural as shown by the following observation.

Proposition 2.3. Let ν be a unimodal Lévy measure and Ω ⊂ R
d be a bounded open set.

Assume Ω ⊂ BR/2(0) for some R ≥ 1 with ν(R) 6= 0. Then E(u, u) <∞ implies u|Ω ∈ L2(Ω).

The condition that ν is unimodal is not restrictive at all and we recall its definition for the
readers’ convenience.

Definition 2.4. A Lévy density ν is called unimodal if it radial with an almost decreasing
profile, i.e., there is a constant c ≥ 1 such that ν(r) ≤ c ν(s) for all r, s > 0 with s ≤ r.

Remark 2.5. There are radial Lévy measures, which are not almost decreasing such as

ν(x) = |x|−d−1
(
2+cos(|x|)

3

)|x|4
.

Proof of Proposition 2.3. First, since Ω ⊂ BR/2(0), then for all x, y ∈ Ω we have ν(x−y) ≥ c′

with c′ = cν(R) > 0. By Jensen’s inequality, we have

¨

(Ωc×Ωc)c

(
u(x)− u(y)

)2
ν(x−y)dx dy ≥ c′

¨

ΩΩ

(|u(x)| − |u(y)|)2dx dy

≥ c′|Ω|
ˆ

Ω

(
|u(x)| −

ffl

Ω
|u|

)2

dx.

This shows that the mean value
ffl

Ω
|u| is finite. We conclude u ∈ L2(Ω) because of

ˆ

Ω

|u(x)|2dx ≤ 2

ˆ

Ω

(
|u(x)| −

ffl

Ω
|u|

)2

dx+ 2|Ω|
(
ffl

Ω
|u|

)2

.

�
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Definition 2.6. We define Vν,0(Ω|Rd) as follows:

Vν,0(Ω|Rd) = {u ∈ Vν(Ω|Rd) | u = 0 a.e. on R
d \Ω}

= {u ∈ Hν(R
d) | u = 0 a.e. on R

d \Ω} .
(2.2)

Remark 2.7. The function space
(
Hν(Ω), ‖·‖Hν(Ω)

)
is a separable Hilbert space, see [FKV15,

FKV20]. The norms ‖·‖Vν(Ω|Rd) and ‖·‖Hν(Rd) agree on Vν,0(Ω|Rd) and Vν,0(Ω|Rd) is a closed

subspace of Hν(R
d), hence a Hilbert space.

Proposition 2.8. If ν has full support, then
(
Vν(Ω|Rd), ‖ · ‖Vν(Ω|Rd)

)
is a separable Hilbert

space.

We refer the reader to [FKV15,DROV17] for a proof in a special setting and to [FG20, Thm
3.46] for the general case.

It is worthwhile noticing that ‖ · ‖Vν(Ω|Rd) is always a norm on Vν,0(Ω|Rd), but not in general

a norm on Vν(Ω|Rd) if ν is not fully supported. A simple counterexample is given by
ν(h) = 1B1(0)(h) and Ω = B1(0). For the function u(x) = 1Bc

2
(0)(x) we have ‖u‖Vν(Ω|Rd) = 0

whereas u 6= 0. With regard to this comment and the discussion in Section 1.3 let us define
Vν,0(Ω|E) for Ω ⊂ E ⊂ R

d:

V (Ω|E) =
{
u : E → R meas. : u|Ω ∈ L2(Ω), |u|2Vν(Ω|E) <∞

}
, (2.3)

where the seminorm is defined by

|u|2Vν(Ω|E) =

¨

ΩE

(
u(x)− u(y)

)2
ν(x−y)dx dy <∞ .

Vν(Ω|E) is normed space with respect to the norm ‖u‖2Vν(Ω|E) = ‖u‖2L2(Ω) + |u|2Vν(Ω|E).

Proposition 2.9. If E = Ω + supp(ν) and 0 ∈ supp(ν), then
(
Vν(Ω|E), ‖ · ‖Vν(Ω|E)

)
is a

separable Hilbert space.

As already seen in Theorem 2.1, the condition (L) is important for the properties of the
spaces Hν(Ω) and Vν(Ω|Rd).

Proposition 2.10. Let ν : Rd → [0,∞] be symmetric. The following assertions hold true.

(i) If ν ∈ L1(Rd), then Hν(R
d) = L2(Rd) with equivalence in norm.

(ii) If ν ∈ L1(Rd, 1 ∧ |h|2dh) and Ω is bounded, then Hν(Ω) and Vν(Ω|Rd) contain all
bounded Lipschitz functions.

(iii) If ν is radial and
´

B1
|h|2ν(h)dh = ∞ and

´

B1\Bδ
ν(h)dh < ∞ for every δ > 0, then

u ∈ C1(Rd) ∩Hν(R
d) implies that u is constant.

(iv) If ν is radial, then for every u ∈ H1(Rd) there is δ = δ(u) > 0, such that

1

4d

(ˆ

Bδ(0)

|h|2ν(h)dh
)
‖∇u‖2

L2(Rd)
≤ |u|2

Hν(Rd)
≤ 4‖ν‖L1(Rd,1∧|h|2dh)‖u‖2H1(Rd)

. (2.4)

The proof is analogous to the one of Theorem 2.1. See also [Fog21b, Proposition 2.14]
or [FG20, Proposition 3.46] for a general setting.
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For many results it is crucial that smooth functions with compact support are dense in
the function space under consideration. Let us summarize some important results in this
direction.

Theorem 2.11. Let ν satisfy (L) with full support and let Ω ⊂ R
d be open.

(i) C∞(Ω) ∩Hν(Ω) is dense in Hν(Ω).
(ii) If Ω has a compact continuous boundary ∂Ω, then C∞

c (Ω) is dense in Hν(Ω).
(iii) If Ω has a compact continuous boundary ∂Ω, then C∞

c (Ω) is dense in Vν,0(Ω|Rd).

(iv) If Ω has a compact Lipschitz boundary ∂Ω, then C∞
c (Rd) is dense in Vν(Ω|Rd) with

respect to the norms ‖ · ‖Vν(Ω|Rd) and |||·|||Vν(Ω|Rd) with |||u|||2Vν(Ω|Rd) = ‖u‖2
L2(Rd)

+

|u|2
Vν(Ω|Rd)

.

The proofs of the first and second statement can be found in [FG20] and [DK21b]. The first
statement is similar to a Meyers-Serrin density type result. Note that C∞

c (Ω) is defined as
{v|Ω : v ∈ C∞

c (Rd)}. The proof of the third statement is given in [FSV15,Gri11] for a special
choice of ν and in [FG20], [BGPR20] for the general case. The proof of the fourth assertion
is given in [FKV20].

Remark 2.12. Concerning the question, whether is is necessary to assume the continuity
of ∂Ω for the density of C∞

c (Ω) in Vν,0(Ω|Rd) or not, it is interesting to compare [FKV15,
Remark 7] with [CF12, Theorem 3.3.9].

Remark 2.13. For the kernel ν(h) = |h|−d−α, α ∈ (0, 2), let V α/2(Ω|Rd), V
α/2
0 (Ω|Rd) and

Hα/2(Ω) be the spaces Vν(Ω|Rd), Vν,0(Ω|Rd) and Hν(Ω) respectively. It is worth nothing
that, see [Gri11], if Ω has a compact Lipschitz boundary and α 6= 1 then

V
α/2
0 (Ω|Rd) = C∞

c (Ω)
V α/2(Ω|Rd)

= C∞
c (Ω)

Hα/2(Rd)
= C∞

c (Ω)
Hα/2(Ω)

,

where the first and the second equality follow from Theorem 2.11 (ii). Furthermore, if

0 < α < 1 then we also have Hα/2(Ω) = C∞
c (Ω)

Hα/2(Ω)
.

2.3. Weighted L2-spaces. In order to set up the Dirichlet problem in L2-spaces over Rd,
we define a measure on the Borel sets of Rd that captures the behavior of ν at infinity. There
are several possibilities.

Definition 2.14. Let ν satisfy (L) with full support and B ⊂ R
d be open and bounded.

Define the weights ν, ν̃ : Rd → [0,∞] by

ν̃(x) =

ˆ

B

(1 ∧ ν(x− y)) dy,

ν(x) = ess inf
y∈B

ν(x− y) .

If ν is a unimodal Lévy measure, then we define the Borel measure ν∗ : Rd → [0,∞] by

ν∗(x) = ν(R(1 + |x|)) ,
where R > 1 is an arbitrary fixed number.

Example 2.15. Let 0 < α < 2 and ν(h) = |h|−d−α for h 6= 0. Let B ⊂ R
d be open and

bounded, and R > 1. Then

ν̃(x) ≍ ν(x) ≍ ν∗(x) ≍ (1 + |x|)−d−α ,

10



where the constants behind the relation≍ depend on the choice ofB andR. See Theorem 2.21
for the general case.

Let us discuss important properties of the three measures ν̃, ν, and ν∗. The following lemmas
show that it is possible to define certain norms on Vν(Ω|Rd) (with nice properties), which
are equivalent to the norm ‖ · ‖Vν(Ω|Rd).

Lemma 2.16 (Properties of ν̃). Let Ω ⊂ R
d be open and ν satisfy (L) with full support.

Assume B ⊂ Ω.

(i) We have ν̃ ∈ L∞(Rd). Moreover, if |B| <∞, then ν̃ ∈ L1(Rd).
(ii) The embedding Vν(Ω|Rd) →֒ L2(Rd, ν̃) is continuous. If |B| <∞, then L2(Rd, ν̃) →֒

L1(Rd, ν̃) is continuous.

(iii) If ν is unimodal and B is bounded, then on Vν(Ω|Rd), the norms ‖ · ‖#
Vν(Ω|Rd)

and

‖ · ‖∗
Vν(Ω|Rd)

are equivalent, where

‖u‖∗2
Vν(Ω|Rd)

=

ˆ

Rd

|u(x)|2ν̃(x)dx+
¨

(Ωc×Ωc)c

(u(x)− u(y))2ν(x−y)dxdy ,

‖u‖#2

Vν(Ω|Rd)
=

ˆ

Ω

|u(x)|2ν̃(x)dx+
¨

(Ωc×Ωc)c

(u(x)− u(y))2ν(x−y)dxdy .

Furthermore, if Ω is bounded then the norms ‖ · ‖Vν(Ω|Rd) and ‖ · ‖∗
Vν(Ω|Rd)

are also equivalent.

Proof. Firstly, we observe 1 ∧ ν ∈ L1(Rd). It follows ν̃(x) ≤ ‖1 ∧ ν‖L1(Rd) for almost every

x ∈ R
d. If |B| <∞, then Fubini’s theorem implies

ˆ

Rd

ν̃(x)dx ≤ |B|‖1 ∧ ν‖L1(Rd) <∞ .

The continuous embedding L2(Rd, ν̃) →֒ L1(Rd, ν̃) follows directly. The continuity of the
embedding Vν(Ω|Rd) →֒ L2(Rd, ν̃) is obtained as follows

ˆ

Rd

|u(x)|2ν̃(x)dx ≤ 2

ˆ

B

|u(y)|2
(
ˆ

Rd

1 ∧ ν(x− y)dx

)
dy + 2

¨

B Rd

(u(x)− u(y))21 ∧ ν(x− y)dxdy

≤ C1

ˆ

Ω

|u(y)|2dy + C1

¨

ΩRd

(u(x)− u(y))2ν(x− y)dx dy = C1‖u‖2Vν(Ω|Rd)
.

Here C1 = 2‖1 ∧ ν‖L1(Rd) + 2. The following inequalities obviously hold

√
C1 + 1 ‖u‖Vν(Ω|Rd) ≥ ‖u‖∗

Vν(Ω|Rd)
≥ ‖u‖#

Vν(Ω|Rd)
.

11



Next if ν is unimodal and B is bounded, then there is a constant c′ > 0 such that ν̃(x) ≥ c′

for all x ∈ B. The following estimates hold
ˆ

Ω

|u(x)|2ν̃(x)dx+
¨

ΩΩc

(u(x)− u(y))2ν(x− y)dydx

≥ c′
ˆ

B

|u(x)|2dx+
¨

ΩΩc

(u(x)− u(y))2ν(x− y)dydx

≥ c′‖1 ∧ ν‖−1
L1(Rd)

¨

BΩc

|u(x)|21 ∧ ν(x− y)dydx+

¨

BΩc

(u(x)− u(y))2ν(x− y)dydx

≥ (1 ∧ c′‖1 ∧ ν‖−1
L1(Rd)

)

¨

ΩcB

[
|u(x)|2 + (u(x)− u(y))2

]
1 ∧ ν(x− y)dxdy

≥ 1

2
(1 ∧ c′‖1 ∧ ν‖−1

L1(Rd)
)

ˆ

Ωc

u2(y)ν̃(y)dy .

The first and the last line imply that ‖u‖∗
Vν(Ω|Rd)

≤ C‖u‖#
Vν(Ω|Rd)

for some constant C > 0.

Thus the norms ‖ · ‖∗
Vν(Ω|Rd)

and ‖ · ‖#
Vν(Ω|Rd)

are equivalent. If in addition Ω is bounded, then

ν̃(x) ≥ c′ for all x ∈ Ω for some c′ ∈ (0, 1) so that ‖u‖#
Vν(Ω|Rd)

≥ c′‖u‖Vν(Ω|Rd) since
ˆ

Ω

|u(x)|2ν̃(x)dx ≥ c′
ˆ

Ω

|u(x)|2dx.

The equivalence of the norms ‖u‖Vν(Ω|Rd)and ‖u‖#
Vν(Ω|Rd)

is thus proved. �

Lemma 2.17 (Properties of ν). Assume Ω ⊂ R
d is open. Let ν satisfy (L) with full support.

Assume B ⊂ Ω be open and nonempty.

(i) ν ∈ L1(Rd) and, if ν is unimodal, then ν ∈ L∞(Rd).
(ii) The embeddings Vν(Ω|Rd) →֒ L2(Rd, ν) →֒ L1(Rd, ν) are continuous.

(iii) If ν is unimodal and B is bounded then the norms ‖ · ‖#
Vν(Ω|Rd)

and ‖ · ‖∗
Vν(Ω|Rd)

are

equivalent, where ‖u‖∗
Vν(Ω|Rd)

and ‖u‖#
Vν(Ω|Rd)

are defined as in Lemma 2.16(iii) with

ν̃ replaced by ν.

Furthermore, if Ω is bounded then the norms ‖ · ‖Vν(Ω|Rd) and ‖ · ‖∗
Vν(Ω|Rd)

are equivalent.

Proof. To prove (i), select x0 ∈ B and r > 0 such that B8r(x0) ⊂ B. Note that, for
x ∈ B2r(x0) and y ∈ Bc

4r(x0) ∩ B or for x ∈ Bc
2r(x0) and y ∈ B2r(x0) we have |h| ≥ r where

h = x− y. Moreover, for almost all y ∈ Bc
4r(x0) and z ∈ Br(x0) we have

ˆ

B2r(x0)

ess inf
y∈Bc

4r(x0)∩B
ν(x− y)dx ≤

ˆ

|h|≥r

ν(h)dh,

ˆ

Bc
2r(x0)

ess inf
y∈Br(x0)

ν(x− y)dx ≤
ˆ

|h|≥r

ν(h)dh.

The integrability of ν follows since
ˆ

Rd

ν(x)dx ≤
ˆ

B2r(x0)

ess inf
y∈Bc

4r(x0)∩B
ν(x− y)dx+

ˆ

Bc
2r(x0)

ess inf
y∈Br(x0)

ν(x− y)dx ≤ 2

ˆ

|h|≥r

ν(h)dh <∞.
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Analogously, if ν is unimodal then for x ∈ B2r(x0) and y ∈ Bc
4r(x0) ∩ B or for x ∈ Bc

2r(x0)
and y ∈ B2r(x0) we have |x − y| ≥ r. In both cases, ν(x) ≤ ν(x − y) ≤ cν(r). Next, we fix
y ∈ K ′ ⊂ B where K ′ is a measurable subset such that 0 < |K ′| <∞.
ˆ

Rd

|u(x)|2ν(x)dx ≤ 2|K ′|−1‖ν‖L1(Rd)

ˆ

K ′

|u(y)|2dy + 2|K ′|−1

¨

K ′ Rd

(u(x)− u(y))2ν(x−y)dxdy

≤ C‖u‖2
Vν(Ω|Rd)

,

where C = 2|K ′|−1(‖ν‖L1(Rd)+1). This together with the previous step imply the continuity

of the embeddings Vν(Ω|Rd) →֒ L2(Rd, ν) →֒ L1(Rd, ν). The rest of the proof is analogous
to that of Lemma 2.16. �

Lemma 2.18 (Properties of ν∗). Assume Ω ⊂ R
d is open and R > 1 satisfies |BR(0)∩Ω| > 0

and |BR(0) ∩ Ωc| > 0. Let ν satisfy (L) with full support.

(i) ν∗ ∈ L1(Rd) ∩ L∞(Rd).
(ii) The embeddings Vν(Ω|Rd) →֒ L2(Rd, ν∗) →֒ L1(Rd, ν∗) are continuous.

(iii) On Vν(Ω|Rd), the norms ‖·‖#
Vν(Ω|Rd)

and ‖·‖∗
Vν(Ω|Rd)

are equivalent, where ‖u‖∗
Vν(Ω|Rd)

and ‖u‖#
Vν(Ω|Rd)

are defined as in Lemma 2.16(iii) with ν̃ replaced by ν∗.

Furthermore, if Ω is bounded then the norms ‖ · ‖Vν(Ω|Rd) and ‖ · ‖∗
Vν(Ω|Rd)

are equivalent.

The proof of Lemma 2.18 is analogous to that of Lemma 2.16 and can be found in [FKV20]
or [FG20, Lemma 3.24]. In order to show ν∗ ∈ L1(Rd) ∩ L∞(Rd), one notes that for all
h ∈ R

d we have R ≤ R(1 + |h|) and |h| ≤ R(1 + |h|) and hence ν∗(h) ≤ C(1 ∧ ν(h)). This
implies the claim because of 1 ∧ ν ∈ L1(Rd) ∩ L∞(Rd).

The measures ν∗, ν and ν̃ turn out to be comparable if ν satisfies a certain doubling condition
at infinity.

Definition 2.19. A radial Lévy density ν satisfies a doubling condition at infinity if:

For every θ ≥ 1 there exist c1, c2 > 0 with c1ν(r) ≤ ν(θr) ≤ c2ν(r) for all r ≥ 1 . (2.5)

Not that the property (2.5) is indeed equivalent to say that

There exist c1, c2 > 0 with c1ν(r) ≤ ν(2r) ≤ c2ν(r) for all r ≥ 1. (2.6)

Remark 2.20. The doubling condition at infinity imposes some decay of ν at infinity. The
example ν(h) = |h|−d−1

1{|h|≤7} satisfies Definition 2.4 but not (2.5). Unimodality bounds
one-sided oscillations of ν for all values of |x|. Fix 0 < α < β < 2. Define ν1(r) = r−d−α for
r ≥ 1. Define ν1(r) = r−d−β for 1

2k+1
≤ r < 1

2k
and ν1(r) = r−d−α for 1

2k+2
≤ r < 1

2k+1
for

k ∈ N. Then ν1 is not unimodal but it trivially does satisfy (2.5).

Theorem 2.21. Assume that ν is unimodal and satisfies (2.5). Then for every open bounded
set B ⊂ R

d and every R ≥ 1 we have ν̃(x) ≍ ν(x) ≍ ν∗(x) ≍ 1 ∧ ν(x).
Proof. Let us observe that, ν̃, ν, ν∗ and 1 ∧ ν are all bounded above. Indeed, for x ∈ R

d we
have R ≤ R(1 + |x|) and |x| ≤ R(1 + |x|) and hence ν∗(x) ≤ C(1 ∧ ν(x)) ≤ C. Obviously,
ν̃(x) ≤ ‖1 ∧ ν‖L1(Rd). Now, let r > 0 sufficiently small and x0 ∈ B such that B8r(x0) ⊂ B.

If x ∈ B2r(x0) and y ∈ Bc
4r(x0) ∩ B or if x ∈ Bc

2r(x0) and y ∈ B2r(x0) then |x − y| ≥ r. In
both cases, ν(x) ≤ ν(x− y) ≤ cν(r).
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Next, there is no lost of generality if we assume that B ⊂ BR. Assume |x| ≤ 4R then
|x − y| ≤ 5R for all y ∈ B. The unimodality and the foregoing boundedness imply that
c−1ν(R(1 +R)) ≤ ν(R(1 + |x|)) ≤ C, c−1ν(5R) ≤ ν(x), 1∧ ν(4R) ≤ c1∧ ν(x) ≤ C and that
1 ∧ ν(5R) ≤ c1 ∧ ν(x − y) that is |B|1 ∧ ν(5R) ≤ cν̃(x) ≤ C. Thus ν̃(x) ≍ ν(x) ≍ ν∗(x) ≍
1 ∧ ν(x) for |x| ≤ 4R.

Now assume that |x| ≥ 4R, then we have 1 ≤ |x|
2

≤ |x − y| ≤ 2|x| for all y ∈ B and
|x| ≤ R(1 + |x|) ≤ 2R|x|. The doubling condition (2.5) implies that for some constants
0 < c1 < 1 < c2, we have c1ν(x) ≤ ν(R(1+ |x|)) ≤ c2ν(x) and c1ν(x) ≤ ν(x−y) ≤ c2ν(x) for
all y ∈ B. We get c1ν(x) ≤ ν(x) ≤ c2ν(x) and integrating over B implies that c1|B|1∧ν(x) ≤
cν̃(x) ≤ c2|B|1∧ν(x). Together with the boundedness implies ν̃(x) ≍ ν(x) ≍ ν∗(x) ≍ 1∧ν(x)
for |x| ≥ 4R.

�

Example 2.22. As in Example 2.15, let 0 < α < 2 and ν(h) = |h|−d−α for h 6= 0. Then
ν̃(x) ≍ 1∧ν(x) ≍ (1+ |h|)−d−α and the space Hν(Ω) equals the classical Sobolev-Slobodeckij
space Hα/2(Ω). In this case, we denote the space Vν(Ω|Rd) by V α/2(Ω|Rd). We have
V α/2(Ω|Rd) →֒ L2(Rd, (1 + |h|)−d−α).

Remark 2.23. Note that Lemma 2.16 (i), Lemma 2.17 (i) and Lemma 2.18 (i) imply that
the weights ν̃, ν∗, ν respectively define Radon measures on R

d.

2.4. Dirichlet forms. The discussion of the L2-spaces related to ν̃, ν∗, ν together with
density results in Theorem 2.11 allows us to define a new interesting Dirichlet form. We
refer to [FOT11] for the general theory of Dirichlet forms and their corresponding Markov
processes.

The following well-known result is a direct consequence of Theorem 2.11, (ii) and (iii) .

Proposition 2.24. Let Ω be open and bounded with a continuous boundary. Let ν be any

Lévy measure. Then each of the three bilinear forms (E , Vν,0(Ω|Rd)), (EΩ, C∞
c (Ω)

Hν(Ω)
) and

(EΩ, Hν(Ω)) is a regular Dirichlet form on L2(Ω). The corresponding Markov processes are
often called killed, censored resp. reflected Lévy process.

An important side result of our work is the following theorem, which implies the existence of
a strong Markov process, which can be seen as another kind of reflected jump process with
regards to Ω. The theorem is an improvement over [Von21, Theorem 4.4], see Remark 2.37.
Its proof follows from Theorem 2.11, (iv).

Theorem 2.25. Let ν be unimodal with full support and Ω ⊂ R
d be open and bounded

with a Lipschitz-continuous boundary. Let ν ′ be any of the measures ν̃, ν∗, ν on R
d. Then

the bilinear form (E , Vν(Ω|Rd)) is a regular Dirichlet form on L2(Rd; ν ′).

2.5. Classical Sobolev spaces. Let us comment on the connection of the spaces under
consideration with classical Sobolev spaces. Recall that for an open set Ω ⊂ R

d, H1(Ω)
denotes the classical Sobolev space endowed with the norm

‖u‖2H1(Ω) = ‖u‖2L2(Ω) + ‖∇u‖2L2(Ω) .

Proposition 2.26. The following embeddings hold true:

H1(Rd) →֒ Hν(R
d) →֒ Vν(Ω|Rd) →֒ Hν(Ω) →֒ L2(Ω) .

Here we equip Vν(Ω|Rd) with the norm ‖ · ‖Vν(Ω|Rd).
14



Proof. The proof is standard. For u ∈ H1(Rd) and h ∈ R
d we have

ˆ

Rd

(u(x+ h)− u(x))2dx = ‖u(·+ h)− u(·)‖2
L2(Rd)

≤ 4(1 ∧ |h|2)‖u‖2
H1(Rd)

.

Integrating both sides over Rd with respect to the measure ν(h)dh yields
¨

Rd Rd

(u(x)− u(y))2ν(x−y)dxdy ≤ 4‖ν‖L1(Rd,1∧|h|2dh)‖u‖2H1(Rd)
. (2.7)

This proves the first embedding, the remaining ones are trivial. �

Recall that H1
0 (Ω) is the closure of C∞

c (Ω) with respect to the H1(Ω). H1
0 (Ω) also coincides

with the closure of C∞
c (Ω) in H1(Rd). Recall the definition of Vν,0(Ω|Rd) from (2.2). Note

that, the zero extension to R
d of any function in H1

0 (Ω) belongs to H
1(Rd).

Proposition 2.27. Let Ω ⊂ R
d be open. The following embeddings hold true:

H1
0 (Ω) →֒ Vν,0(Ω|Rd) →֒ Hν(Ω)

where elements of H1
0 (Ω) are extended by zero off Ω. If additionally ∂Ω is continuous,

Vν,0(Ω|Rd) →֒ C∞
c (Ω)

Hν(Ω) →֒ L2(Ω) .

It is worth noticing that not every function u ∈ C∞
c (Ω)

Hν(Ω)
has its extension by zero in

Hν(R
d). Indeed for this to hold, one would need

ˆ

Ω

|u(x)|2dx
ˆ

Ωc

ν(x−y)dy <∞.

This condition is not always true since the measure ν might be very singular at the origin.
This observation shows that for some appropriate domain Ω and for some appropriate mea-

sure ν, e.g. ν(h) = |h|−d−3/2, the spaces C∞
c (Ω)

Hν(Ω)
and Vν,0(Ω|Rd) are strictly different

although they both possess C∞
c (Ω) as dense subspace. This effect is purely nonlocal. Recall

that elements of H1
0 (Ω) can be isometrically extended by zero on R

d as functions of H1(Rd).

Now assume Ω is a Lipschitz domain (or more generally an H1-extension domain). Let
u ∈ H1(Rd) be an extension of a function u ∈ H1(Ω) with ‖u‖H1(Rd) ≤ C‖u‖H1(Ω) for some

constant C depending only on Ω and d. Within the estimate (2.7) we easily get the following
continuous embedding

Proposition 2.28. Assume Ω ⊂ R
d is an H1-extension domain then

H1(Ω) →֒ Hν(Ω) .

The latter embedding may fails when Ω is not an extension domain (see [Fog21b, Counterex-
ample 3.8] or [NPV12, Example 9.1]). H1(Ω) can be viewed as limiting space of a sequence
of nonlocal spaces of type Hν(Ω) and Vν(Ω|Rd), see [Fog21b,FG20] and [FG20,Fog21a] for
additional results.
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2.6. Trace space of Vν(Ω|Rd). The main goal of this subsection is to discuss the trace
space for Vν(Ω|Rd) similarly as one does for the classical Sobolev space H1(Ω). Note that
elements of Vν(Ω|Rd) are defined on the whole of Rd, thus the trace space consists of functions
defined on Ωc. This contrasts with the local situation, where the trace space of H1(Ω)
consists of functions defined on the boundary ∂Ω. Unless otherwise stated, we assume that
ν is fully supported on R

d and Vν(Ω|Rd) is endowed with the norm ‖ · ‖Vν(Ω|Rd). Note

that, when studying the fractional Laplace Operator, trace spaces related to Vν(Ω|Rd) when
ν(h) = |h|−d−α for h 6= 0 and 0 < α < 2, have already been considered in [DK20], [BGPR20]
and [DTWY21]. Below, we comment on how our general approach relates to these studies.

Definition 2.29. We define Tν(Ω
c) as the vector space of restrictions to R

d \Ω of functions
of Vν(Ω|Rd), i.e.,

Tν(Ω
c) = {v : Ωc → R measurable | v = u|Ωc with u ∈ Vν(Ω|Rd)}.

We endow Tν(Ω
c) with its natural norm,

‖v‖Tν(Ωc) = inf{‖u‖Vν(Ω|Rd) : u ∈ Vν(Ω|Rd) with v = u|Ωc}.
Theorem 2.30. The space Tν(Ω

c) is a separable Hilbert space with the scalar product

(u, v)Tν(Ωc) =
1

4

(
‖u+ v‖2Tν(Ωc) − ‖u− v‖2Tν(Ωc)

)
.

Proof. Since the norm ‖ · ‖Vν(Ω|Rd) verifies the parallelogram law so does ‖ · ‖Tν(Ωc). Thus(
·, ·

)
Tν(Ωc)

is a scalar product on Tν(Ω
c) with associated norm ‖ · ‖Tν(Ωc). Noting that Tν(Ω

c)

and the quotient space Vν(Ω|Rd)/Vν,0(Ω|Rd) are identical with equal norm in space and that
Vν,0(Ω|Rd) is a closed subspace of Vν(Ω|Rd), one concludes that Tν(Ω

c) is complete. �

The main question now is whether the same space Tν(Ω
c) can be defined intrinsically. In

other words, given a measurable function v : Ωc → R, how can one decide whether the
function belongs to Tν(Ω

c) or not. In the local situation, it is possible to define a scalar
product on the space H1/2(∂Ω) when Ω is a Lipschitz domain, see [Din96] for a proof.

We study this question in two settings, the one of [DK20] and the one of [BGPR20]. For
the special case ν(h) = |h|−d−α for h 6= 0 with 0 < α < 2, it is proved in [DK20, Theorem 3]
that for v ∈ Vν(Ω|Rd) it holds

¨

ΩcΩc

(
v(x)− v(y)

)2

(|x− y|+ δx + δy)d+α
dxdy <∞ . (2.8)

Moreover, it is shown that, if (2.8) holds true for v = g on Ωc, there exists ug ∈ Vν(Ω|Rd)
such that ug|Ωc = g and

¨

(Ωc×Ωc)c

(
ug(x)− ug(y)

)2

|x− y|d+α
dxdy ≍

¨

ΩcΩc

(
v(x)− v(y)

)2

(|x− y|+ δx + δy)d+α
dxdy (2.9)

with the constants independent on g and ug. Therefore we obtain in this case

Tν(Ω
c) =

{
v : Ωc → R meas.

∣∣
¨

ΩcΩc

(
v(x)− v(y)

)2

(|x− y|+ δx + δy)d+α
dx dy <∞

}
, (2.10)
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which we will make use of in Proposition 2.31.

Next, let us summarize the results of [BGPR20], which are established under the following
condition: One assumes that ν is radial and its profile ν ∈ C2((0,∞)) satisfies for some
C1, C2 > 0 and β ∈ (0, 2)

|ν ′(r)|+ |ν ′′(r)| ≤ C1ν(r) (r > 1) ,

ν(λr) ≤ C2λ
d−βν(r) (0 < r, λ ≤ 1),

ν(r) ≤ C2ν(r + 1) (r ≥ 1) .

(Aν)

Assume Ωc satisfies the volume density condition ( in some literatures, Ωc is called to be a
d-set), i.e., there exists a constant c > 0 such that |Ωc ∩ Br(x)| ≥ crd for all x ∈ ∂Ω and
all r > 0. By the Lebesgue density theorem, the latter condition automatically implies that
|∂Ω| = 0. Then under (Aν) [BGPR20, Theorem 2.3] proves that, for any g ∈ Tν(Ω

c) there
exists a unique ug ∈ Vν(Ω|Rd) such that ug|Ωc = g with

HΩ(g, g) :=

¨

ΩcΩc

(
g(x)− g(y)

)2
γΩ(x, y)dx dy =

¨

(Ωc×Ωc)c

(
ug(x)− ug(y)

)2
ν(x−y)dx dy. (2.11)

The function ug satisfies the weak formulation
¨

(Ωc×Ωc)c

(
ug(x)− ug(y)

)
(φ(x)− φ(y)) ν(x−y)dx dy = 0 for all φ ∈ Vν,0(Ω|Rd) (2.12)

and the interaction kernel γΩ(x, y) is given via the Poisson kernel of Ω by the formula

γΩ(x, y) =

ˆ

Ω

PΩ(x, z)ν(z − y)dz x, y ∈ Ωc .

Furthermore, a precise formula for ug in Ω is given by the Poisson integral

ug(x) = PΩ[g](x) =

ˆ

Ωc

g(y)PΩ(x, y)dy x ∈ Ω .

From this, it is easy to show that

Tν(Ω
c) =

{
v : Ωc → R meas. HΩ(v, v) =

¨

ΩcΩc

(
v(x)− v(y)

)2
γΩ(x, y)dx dy <∞

}

which is precisely the exterior space introduced in [BGPR20]. With this definition, the
connection between Tν(Ω

c) and Vν(Ω|Rd) is less visible. For v ∈ Tν(Ω
c), by definition of

‖ · ‖Tν(Ωc), we have

‖v‖2Tν(Ωc) = inf{‖u‖2
Vν(Ω|Rd)

: u ∈ Vν(Ω|Rd) with v = u|Ωc}

≥ inf
{ ˆ

Ω

|u(x)|2dx : u ∈ Vν(Ω|Rd) with v = u|Ωc

}
+HΩ(v, v) .

It is rather challenging to find or to estimate the quantity

inf
{ ˆ

Ω

|u(x)|2dx : u ∈ Vν(Ω|Rd) with v = u|Ωc

}
.
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Remind that our goal here is to explicitly define a norm which is equivalent to ‖ · ‖Tν(Ωc) and

has less visible connection to Vν(Ω|Rd). To this end, we bring into play the norm ‖ ·‖∗
Vν(Ω|Rd)

defined in Lemma 2.16.

Proposition 2.31. Assume Ω is open and bounded, such that Ωc satisfies the volume density
condition. Assume ν satisfies (Aν). Let ν̃ and ‖ · ‖∗

Vν(Ω|Rd)
be respectively the measure and

the norm given in Lemma 2.16. Then

Tν(Ω
c) =

{
v : Ωc → R meas. HΩ(v, v) =

¨

ΩcΩc

(
v(x)− v(y)

)2
γΩ(x, y)dx dy <∞

}

and the norms ‖ · ‖Tν(Ωc), ‖ · ‖∗Tν(Ωc) and ‖ · ‖†Tν(Ωc) are all equivalent, where

‖v‖∗Tν(Ωc) = inf{‖u‖∗
Vν(Ω|Rd)

: u ∈ Vν(Ω|Rd) with v = u|Ωc}

‖v‖†2Tν(Ωc) =

ˆ

Ωc

|v(x)|2ν̃(x)dx+
¨

ΩcΩc

(
v(x)− v(y)

)2
γΩ(x, y)dx dy .

Next, consider ν(h) = (2 − α)|h|−d−α for h 6= 0 with 0 < α < 2 fixed and ν̃(h) = 1
(1+|h|)d+α .

Set δz = dist(z, ∂Ω). Then

Tν(Ω
c) =

{
v : Ωc → R meas.

∣∣
¨

ΩcΩc

(
v(x)− v(y)

)2

(|x− y|+ δx + δy)d+α
dx dy <∞

}

and the aforementioned norms are equivalent to the norm

‖v‖′2
Tν(Ωc) =

ˆ

Ωc

|v(x)|2
(1 + |x|)d+α

dx+

¨

ΩcΩc

(
v(x)− v(y)

)2

(|x− y|+ δx + δy)d+α
dxdy .

Remark 2.32. In the case να(h) = (2 − α)|h|−d−α for h 6= 0 with given α ∈ (0, 2), it is
interesting to understand the limiting behaviour of the comparability estimate for ‖v‖′

Tνα(Ωc)

and ‖v‖∗Tνα(Ωc) as α → 2−. Recent upcoming results of Th. Hensiek and F. Grube show

that one can modify the norm ‖v‖′

Tν(Ωc) so that ‖v‖′

Tνα(Ω
c) would converge to ‖v‖H1/2(∂Ω) as

α→ 2−.

Proof. The equivalence between ‖ · ‖Tν(Ωc) and ‖ · ‖∗Tν(Ωc) is an immediate consequence of

Lemma 2.16. By (2.11) it follows that,

‖v‖∗2Tν(Ωc) = inf{‖u‖∗2
Vν(Ω|Rd)

: u ∈ Vν(Ω|Rd) with v = u|Ωc}

≥ inf
{ ˆ

Rd

|u(x)|2ν̃(x)dx : u ∈ Vν(Ω|Rd) with v = u|Ωc

}
+HΩ(v, v)

≥
ˆ

Ωc

|v(x)|2ν̃(x)dx+HΩ(v, v) ,

which establishes ‖v‖†Tν(Ωc) ≤ ‖v‖∗Tν(Ωc). Hence the identity id : (Tν(Ω
c), ‖ · ‖∗Tν(Ωc)) →

(Tν(Ω
c), ‖ · ‖†Tν(Ωc)) is continuous. The space (Tν(Ω

c), ‖ · ‖∗Tν(Ωc)) is a Hilbert space since

‖ · ‖Tν(Ωc) and ‖ · ‖∗2Tν(Ωc) are equivalent. Also, using the Fatou lemma one can easily show
18



that (Tν(Ω
c), ‖ · ‖†Tν(Ωc)) is a Hilbert space. As consequence of the open mapping theorem

the norms ‖ · ‖†Tν(Ωc) and ‖ · ‖∗Tν(Ωc) are equivalent.

Next, let us consider ν(h) = (2 − α)|h|−d−α for h 6= 0 with 0 < α < 2 fixed. From [DK20,
Theorem 3], see (2.9) and (2.10), we conclude that there exists a constant C > 0 such that
for all v ∈ Tν(Ω

c), ‖v‖∗Tν(Ωc) ≤ C‖v‖′

Tν(Ωc). The equivalence between ‖ · ‖∗Tν(Ωc) and ‖ · ‖′

Tν(Ωc)

follows once again by the open mapping theorem. �

Remark 2.33. We emphasize that the nonlocal trace does not need any special construction
via functional analysis or density arguments. Since Ωc is a d-dimensional manifold, it makes
sense to consider the restriction of a measurable function on Ωc. No regularity of Ω resp. ∂Ω
is required. In the classical local situation, the definition of a trace of a Sobolev function u
on the boundary ∂Ω requires some smoothness of both, u and ∂Ω.

Let us collect some basics results results concerning the trace space Tν(Ω
c). With the aid of

Lemma 2.16 we get the following.

Proposition 2.34. The trace map Tr : Vν(Ω|Rd) → L2(Ωc, ν̃) with u 7→ Tr(u) = u |Ωc has
the following properties: (a) Tr(Vν(Ω|Rd)) = Tν(Ω

c), (b) ker(Tr) = Vν,0(Ω|Rd) and (c) Tr is
linear and continuous. Moreover, Tν(Ω

c) is dense in L2(Ωc, ν̃).

Proof. This is indeed, is a direct consequence of Lemma 2.16 since u ∈ L2(Rd; ν̃) for all
u ∈ Vν(Ω|Rd) so that Tr(u) ∈ L2(Ωc, ν̃) in particular Tr is well defined. Moreover, by
Lemma 2.16 there exists a constant C > 0 such that,

‖Tr(u)‖L2(Ωc,ν̃) ≤ ‖u‖L2(Rd,ν̃) ≤ C‖u‖Vν(Ω|Rd) for all u ∈ Vν(Ω|Rd). (2.13)

The zero extension to Ω of elements C∞
c (Ω

c
) are in Vν(Ω|Rd). Thus C∞

c (Ω
c
) is contained in

Tν(Ω
c) which implies that Tν(Ω

c) is dense in L2(Ωc, ν̃) since C∞
c (Ω

c
) is dense in L2(Ωc, ν̃) �

Remark 2.35. One may view the objects L2(Ωc, ν̃), Tν(Ω
c), Vν(Ω|Rd) and Vν,0(Ω|Rd) re-

spectively as the nonlocal counterpart of L2(∂Ω), H1/2(∂Ω), H1(Ω) and H1
0 (Ω). Indeed, (i)

the classical trace operator γ0 : H
1(Ω) → L2(∂Ω) whenever it exists is linear continuous, (ii)

γ0(H
1(Ω)) = H1/2(∂Ω) and (iii) ker(γ0) = H1

0 (Ω).

Proposition 2.36. Let C∞
c (Ωc) = C∞

c (Rd)|Ωc be set of restrictions on Ωc of C∞ functions
on R

d with compact support. Then C∞
c (Ωc) is dense in Tν(Ω

c).

Proof. For v ∈ Tν(Ω
c) we write v = u|Ωc with u ∈ Vν(Ω|Rd). From [FKV20] we know that

there exists un ∈ C∞
c (Rd) such that, ‖un − u‖Vν(Ω|Rd) → 0. Put, vn = un|Ωc by (2.13) we get

‖vn − v‖Tν(Ωc) ≤ ‖un − u‖Vν(Ω|Rd) → 0.

�

Remark 2.37. Let us comment on certain function spaces that are introduced in [Von21]
in order to study some reflected jump Markov processes. Instead of the natural energy space
Vν(Ω|Rd) from [FKV15], the author considers Vν(Ω|Rd) ∩ L2(Rd, m) with m(x) = 1Ω(x) +
µ(x)1Ωc(x) and µ(x) =

´

Ω
ν(x − y)dy for x ∈ Ωc. It is proved in [Von21, Lemma 2.2 (iii)]

that L2(Ωc, µ) is the trace space of Vν(Ω|Rd) ∩ L2(Rd, m). Note that Vν(Ω|Rd) ∩ L2(Rd, m)
and its trace space L2(Ωc, µ) are much smaller than Vν(Ω|Rd) resp. Tν(Ω

c), which leads to
the following issues.
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• When Ω is bounded, constants functions belong to Vν(Ω|Rd) and do not belong to
Vν(Ω|Rd) ∩ L2(Rd, m) in general. Thus in term of trace, x 7→ 1Ωc(x) belongs to
Tν(Ω

c) but not necessarily to L2(Ωc, µ). Several natural Dirichlet problems, e.g. for
the fractional Laplace operator, cannot be formulated with the help of L2(Ωc, µ).

• See Theorem 2.25 for a regular Dirichlet form leading to the existence of reflected
jump processes.

• Given a function v ∈ L2(Ωc, µ), its extension by zero v0 = v1Ωc belongs to Vν(Ω|Rd)∩
L2(Rd, m) because of

¨

(Ωc×Ωc)c

(
v0(x)− v0(y)

)2
ν(x−y)dx dy = 2

ˆ

Ωc

|v(x)|2µ(x)dx.

Moreover, the space L2(Ωc, µ) is continuously embedded in Tν(Ω
c), indeed,

‖v‖Tν(Ωc) ≤ ‖v0‖Vν(Ω|Rd) ≤
√
2‖v‖L2(Ωc,µ).

The fact that the extension by zero belongs to the energy space for any given function
in the trace space, is rather particular.

Since Vν(Ω|Rd)∩L2(Rd, m) resp. its trace space L2(Ωc, µ) are small compared to the spaces
Vν(Ω|Rd) resp. Tν(Ω

c), the range of possible nonlocal Dirichlet and Neumann problems is
rather small.

3. Compact embeddings and Poincaré inequality

In this section we prove compact embeddings of the spaces Hν(Ω), Vν(Ω|Rd) and Vν,0(Ω|Rd)
into L2(Ω). Our result on global compactness, Theorem 3.10, requires some regularity as-
sumptions on Ω and ν, which we introduce and discuss in Section 3.1. In Section 3.2 we estab-
lish global compactness using ideas from [JW19] and [DMT18]. Note that [CDP18, Theorem
2.2] is a related result. However, the proof therein seems to be valid only for domains that
can be decomposed as a finite union of cubes. We circumvent this issue by an approximation
argument near the boundary of Ω.

3.1. Assumptions on the Lévy measure. The definitions and most of the results of
Section 2.2 do not require assumptions on the Lévy measure ν beyond the classical Lévy
condition (L). In this subsection we collect further conditions on ν required for the com-
pactness results in Section 3.2. Recall the concept of unimodality from Definition 2.4. We
will prove a Poincaré-inequality in Theorem 3.12 for unimodal Lévy measures with full sup-
port.

Definition 3.1. Assume Ω ⊂ R
d is open and bounded, and ν : Rd \{0} → [0,∞) satisfies

(L). We say that (ν,Ω) is in the class A0 if

(A0) ν is unimodal and has full support.

Note that, in the class A0, ν is not necessarily singular near 0. In order to establish com-
pactness results in Section 3.2 we will discuss different assumptions. Note that (L) and
unimodality do not imply any lower bound on ν, even ν = 0 would be allowed. Furthermore,
if ν ∈ L1(Rd), then the spaces Vν(Ω|Rd) ∩ L2(Rd) and Hν(R

d) coincide with L2(Rd), which
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is not locally compactly embedded into L2(Ω). For the remainder of this section, we assume
that ν satisfies (L) and

ˆ

Rd

ν(h)dh = ∞. (I)

Under (L), condition (I) obviously follows from |h|dν(h) → ∞ as |h| → 0. As explained in
Corollary 3.7, (L) and (I) imply local compactness of Hν(Ω) and Vν(Ω|Rd) in L2(Ω). Let us
introduce conditions on Ω and ν under which we are able to establish global compactness
results.

Definition 3.2. Assume Ω ⊂ R
d is open and bounded, and ν : Rd \{0} → [0,∞) satisfies

(L) and (I). We say that (ν,Ω) is in the class Ai (i = 1, 2, 3), if

(A1) . . . there exists an Hν(Ω)-extension operator E : Hν(Ω) → Hν(R
d), i.e., there is

C(ν,Ω, d) > 0 such that for every u ∈ Hν(Ω), ‖u‖Hν(R
d) ≤ C‖u‖Hν(Ω) and Eu|Ω = u.

(A2) . . . ∂Ω is Lipschitz-continuous, ν is radial and q(δ)
δ→0−−→ ∞ where

q(δ) :=
1

δ2

ˆ

Bδ(0)

|h|2ν(h)dh . (3.1)

(A3) . . . the following condition holds true: q̃(δ)
δ→0−−→ ∞ where

q̃(δ) := inf
a∈∂Ω

ˆ

Ωδ

ν(h− a)dh (3.2)

with Ωδ = {x ∈ Ω : dist(x, ∂Ω) > δ}.
Note that monotonicity of ν is not required by any of the conditions above. The class A1 is
well studied in the literature for the case of the fractional Laplace operator. For example, it
is shown in [Zho15] that Ω is an extension domain for Hα/2(Ω), α ∈ (0, 2), if and only if Ω
is a d-set and thus, (| · |−d−α,Ω) is an element of A1.

The class A2 is easy to understand because the conditions on Ω and ν do no interact. If Ω
is a bounded Lipschitz domain and ν satisfies (L) and

lim
|h|→0

|h|dν(h) = ∞ , (I ′)

then (ν,Ω) is in the class A2. Indeed, for R > 0 sufficiently large there is δ0 > 0 such that
|h|dν(h) ≥ 2R whenever |h| ≤ δ0. Thus q(δ) ≥ |Sd−1|R if 0 < δ < δ0. This shows that (3.1)
is verified.

The class A3 and condition (3.2) are more involved due to a certain correlation between Ω
and the singularity of ν near the origin. Let us first provide an example of ν and Ω such
that A3 fails. In the Euclidean plane consider ν(h) = |h|−2−α

1V (h) with V = {(x1, x2) ∈
R2 : |x1| < |x2|} and Ω = {(x1, x2) ∈ R2 : 4|x2 − 6| < x1, 0 < x1 < 4} whose boundary
is continuous. Considering a = (0, 6) ∈ ∂Ω one has V ∩ (Ωδ − a) = ∅ for every δ > 0, see
Figure 1. Therefore q̃(δ) ≤

´

Ωδ
ν(h− a)dh = 0 and the condition (3.2) fails.

Next, let us provide a positive result. Note that for every domain Ω and every δ > 0 we
know q̃(δ) <∞ because, for each a ∈ ∂Ω and each δ > 0, Ωδ ⊂ Bc

δ(a), which implies by (L)
q̃(δ) ≤

´

Bc
δ(0)

ν(h)dh < ∞. We will show that ∂Ω ∈ C1,1 is sufficient. Recall that Ω is of

class C1,1 if for every a ∈ ∂Ω there is r > 0 for which Br(a) ∩ ∂Ω = {x = (x′, xd) ∈ Br(a) :
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Ω

Ωδ − a

V

V

(0, 0)

a

v

Figure 1. Example of (ν,Ω) /∈ A3

xd = γ(x′)} represents the graph of a C1,1 function γ : Rd−1 → R. That is to say γ is a C1

function whose gradient is Lipschitz. The main result in [Bar09] shows that an open set Ω
is C1,1 if and only if Ω satisfies the interior and exterior sphere condition. We say that Ω
satisfies the interior and exterior sphere condition at some scale r > 0 if for every a ∈ ∂Ω one
can find a′ ∈ Ω and a′′ ∈ Ω

c
for which Br(a

′) ⊂ Ω, Br(a
′′) ⊂ Ω

c
and Br(a′) ∩ Br(a′′) = {a}.

Note that, the interior and exterior sphere condition holds for every scale r ∈ (0, r0) once
it holds for r0. This characterization entails that a C1,1 set Ω is a d-set (or volume density
condition according to some authors ): that is, there exist two positive constants c > 0 and
r0 > 0 such that for every r ∈ (0, r0) and every a ∈ ∂Ω

|Ω ∩Br(a)| ≥ crd.

Proposition 3.3. Assume ν satisfies (L) and (I ′). Assume that Ω satisfies the following
strong volume density condition: there exist positive constants τ > 1, δ0 > 0 and c > 0 such
that for all δ ∈ (0, δ0) and a ∈ ∂Ω

|Ωδ ∩ Bτδ(a)| ≥ cδd.

Then (ν,Ω) ∈ A3.

Remark 3.4.

(i) Any bounded C1,1-domain Ω ⊂ R
d satisfies the aforementioned strong volume density

condition. Fix a ∈ ∂Ω, by the interior sphere condition, consider δ ∈ (0, δ0/4) for
some δ0 sufficiently small. Let x ∈ Ω depending on a and δ such that B2δ(x) ⊂ Ω,

dist(x, ∂Ω) = |x − a| = 2δ and B2δ(x) ∩ ∂Ω = {a} then obviously, Bδ(x) ⊂ Ωδ ∩
B2δ(x) ⊂ Ωδ ∩ B4δ(a). This yields

|Ωδ ∩ B4δ(a)| ≥ cdδ
d, with cd = |B1(0)|. (3.3)

(ii) It is interesting to know whether for small δ > 0, Ωδ inherits the regularity of Ω. As
proven in [GT15, Section 6.14] if Ω is of class Ck with k ≥ 2 then so is Ωδ.
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Proof. Let R > 0 and consider τ > 1, δ0 > 0 as above such that if 0 < δ < δ0 then
|h|dν(h) ≥ R for |h| < δ. Fix a ∈ ∂Ω, since |Ωδ ∩Bτδ(a)| ≥ cδd for all 0 < δ < δ0. Therefore,
recalling that ν(h− a) ≥ R|h− a|−d ≥ R

τdδd
when h ∈ Bτδ(a) we have

ˆ

Ωδ

ν(h− a)dh ≥ R

τdδd

ˆ

Ωδ∩Bτδ(a)

dh =
R

τdδd
|Ωδ ∩ Bτδ(a)| ≥

c

τd
R.

Finally,

q̃(δ) ≥ c

τd
R

which means that (3.2) is verified since R can be arbitrarily large. �

3.2. Local and global compactness results. Before citing a result on local compactness,
we recall a well-known result about convolutions.

Lemma 3.5 (Corollary 4.28 of [Bre10]). Let w ∈ L1(Rd). Then the convolution operator

Tw : L2(Rd) → L2(Rd), Twu = w ∗ u

is continuous with ‖Tw‖L(L2(Rd),L2(Rd)) ≤ ‖w‖L1(Rd). Moreover, Tw : L2(Rd) → L2(K) is

compact for any compact subset K ⊂ R
d.

We present the local compactness result [JW19] that we are going to use in the sequel.

Theorem 3.6. Let ν : Rd \{0} → [0,∞) be a measurable symmetric function such that (I)
holds and

ˆ

Rd \Bδ(0)

ν(h)dh <∞ for every δ > 0. (3.4)

Then the embedding Hν(R
d) →֒ L2(Rd) is locally compact. Moreover, for Ω ⊂ R

d open and
bounded, the embedding Vν,0(Ω|Rd) →֒ L2(Ω) is compact.

It is worth mentioning that an earlier analogous result is provided in [PZ17, Proposition 6] for
periodic functions on the torus. The assertion of Theorem 3.6 is proved in [JW19, Theorem
1.1] under the additional assumption that ν satisfies (L). Looking at the proof carefully one
sees that conditions (I) and (3.4) is sufficient. This would allow to consider densities ν with
a very strong singularity at the origin, e.g., ν(h) = |h|−d−β for h 6= 0 with any β > 0.

As a straightforward consequence of Theorem 3.6 we have the following local compactness
of Hν(Ω) in L

2(Ω).

Corollary 3.7. Let Ω ⊂ R
d be open but not necessarily bounded. Assume ν : Rd \{0} → R

fulfills conditions (L) and (I). The embedding Hν(Ω) →֒ L2(Ω) is locally compact. Fur-
thermore, for every bounded sequence (un)n there exists u ∈ Hν(Ω) and subsequence (unj

)j
converging to u in L2

loc(Ω).

Proof. There is no lost of generality if we assume that a function u ∈ Hν(Ω) is extended
by zero outside of Ω. For ϕ ∈ C∞

c (Rd), with suppϕ ⊂ Ω, the map Jϕ : Hν(Ω) → Hν(R
d),
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with Jϕu = uϕ is continuous and is thus locally compact by Theorem 3.6. Therefore the
embedding Hν(Ω) →֒ L2(Ω) is locally compact. Indeed, for u ∈ Hν(Ω) we have
[
u(x)ϕ(x)− u(y)ϕ(y)

]2
=

[
u(x)(ϕ(x)− ϕ(y)) + ϕ(y)(u(x)− u(y))

]2

≤ 2‖ϕ‖2
W 1,∞(Rd)

[
|u(x)|2(1 ∧ |x− y|2) + 1suppϕ(y)(u(x)− u(y))2

]
.

As suppϕ ⊂ Ω is compact, consider 0 < r ≤ dist(suppϕ, ∂Ω). Then integrating both side
of the above estimate over Ω × R

d with respect to the measure ν(x−y)dydx, yields the
continuity of Jϕ as follows

¨

Rd Rd

[
u(x)ϕ(x)− u(y)ϕ(y)

]2
ν(x−y)dydx

≤ 2‖ϕ‖2
W 1,∞(Rd)

ˆ

Ω

|u(x)|2dx
ˆ

Rd

(1 ∧ |h|2)ν(h)dh

+

¨

ΩΩ

(u(x)− u(y))2ν(x−y)dydx+
ˆ

Ω

|u(x)|2dx
ˆ

Br(0)

ν(h)dh

≤ Cϕ‖u‖2Hν(Ω) .

Next, we prove the second statement. Consider Ω′
δ =

{
x ∈ Ω : |x| < 1

δ
, dist(x, ∂Ω) > δ

}
=

Ωδ ∩ B 1

δ
(0) and define ϕδ(x) = ηδ/4 ∗ 1Ω′

δ/2
(x) for δ > 0 small enough, where ηδ(x) =

1
δd
η(x

δ
)

with η ∈ C∞
c (Rd) is supported in the unit ball B1(0), η ≥ 0 and

´

Rd φ(x)dx = 1. So that
ϕδ ∈ C∞

c (Ω), ϕδ = 1 on Ω′
δ, 0 ≤ ϕδ ≤ 1 and |∇ϕδ| ≤ c/δ. Given a sequence (un)n that

is bounded in Hν(Ω), the previous observation entails that for each δ > 0 the sequence
(unϕδ)n there exist a subsequence nj = nj(δ), j ≥ 1, and uδ ∈ L2(Ω′

δ) such that the sequence
(un)n, (as unϕδ = un in Ω′

δ) converges to some uδ in L2(Ω′
δ) and almost everywhere in

Ω′
δ. Employing the standard the Cantor’s diagonalization procedure with δ = 1

2k
, one can

construct a subsequence (unj
)j converging subsequence in L2

loc(Ω) and almost everywhere in
Ω to some function u. Fatou’s lemma implies that u ∈ Hν(Ω) since

‖u‖Hν(Ω) ≤ lim inf
j→∞

‖unj
‖Hν(Ω) <∞.

�

Let us turn to the result on global compactness. We will need some estimates near the
boundary ∂Ω. We begin with the following estimate involving cut-off functions.

Lemma 3.8. Let Ω ⊂ R
d be open and bounded. Assume ν : Rd \{0} → [0,∞) is even and

measurable. Let 0 < δ < 1
3
diam(Ω). Let ϕ ∈ C∞

c (Ω) be such that 1 ϕ = 0 on Ωδ, ϕ = 1 on
Ω \Ωδ/2, 0 ≤ ϕ ≤ 1 and |∇ϕ| ≤ c/δ. For every u ∈ Hν(Ω), the following estimate holds true
¨

ΩΩ

([uϕ](x)− [uϕ](y))2ν(x−y)dxdy ≤ C

δ2

ˆ

Ωδ/2

|u(x)|2dx+ 8

¨

ΩΩ

(u(x)− u(y))2ν(x−y)dxdy

(3.5)

1Take ϕ = 1 − ϕδ with ϕδ = ηδ/4 ∗ 1Ω′

δ/2
as in the proof of Corollary 3.7.
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where, C = 8c2
´

BR(0)
|h|2ν(h)dh and R = diam(Ω).

Proof. Firstly, since ϕ = 1 on Ω \ Ωδ/2 we have

¨

Ω\Ωδ/2 Ω\Ωδ/2

([uϕ](x)− [uϕ](y))2ν(x−y)dxdy =

¨

Ω\Ωδ/2 Ω\Ωδ/2

(u(x)− u(y))2ν(x−y)dxdy

≤
¨

ΩΩ

(u(x)− u(y))2ν(x−y)dxdy .

In view of the fact that 0 ≤ ϕ ≤ 1 and |ϕ(x)−ϕ(y)| ≤ c/δ|x− y| for every x, y ∈ Ω, we have

([uϕ](x)− [uϕ](y))2 =
(
ϕ(y)(u(x)− u(y)) + u(x)(ϕ(x)− ϕ(y))

)2

≤ 2(u(x)− u(y))2 +
2c2

δ2
|u(x)|2|x− y|2 . (3.6)

Secondly, noticing that Ω ⊂ BR(x) for all x ∈ Ω where R = diam(Ω) and integrating both
sides of (3.6) over Ωδ/2 × Ωδ/2 we obtain the following estimate

¨

Ωδ/2Ωδ/2

([uϕ](x)− [uϕ](y))2ν(x−y)dxdy

≤ 2

¨

ΩΩ

(u(x)− u(y))2ν(x−y)dxdy + 2c2

δ2

ˆ

Ωδ/2

|u(x)|2dx
ˆ

BR(x)

|x− y|2ν(x−y)dy

= 2

¨

ΩΩ

(u(x)− u(y))2ν(x−y)dxdy + 2c2

δ2

( ˆ

BR(0)

|h|2ν(h)dh
) ˆ

Ωδ/2

|u(x)|2dx .

Likewise to the previous estimate, using (3.6) we get
¨

Ωδ/2×Ω\Ωδ/2

([uϕ](x)− [uϕ](y))2ν(x−y)dxdy

≤ 2

¨

ΩΩ

(u(x)− u(y))2ν(x−y)dxdy + 2c2

δ2

( ˆ

BR(0)

|h|2ν(h)dh
) ˆ

Ωδ/2

|u(x)|2dx .

Altogether, the desired estimate follows as claimed since by symmetry we can use the split

¨

Ω×Ω

=

¨

Ωδ/2×Ωδ/2

+2

¨

Ωδ/2×Ω\Ωδ/2

+

¨

Ω\Ωδ/2×Ω\Ωδ/2

.

�

The next lemma plays a crucial role in the sequel.
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Lemma 3.9. Assume that Ω ⊂ R
d is open and bounded, and ν : Rd \{0} → [0,∞) is radial.

There exists C > 0 such that for every u ∈ L2(Ω) and every positive δ < 1
3
diam(Ω)

ˆ

Ω

|u(x)|2dx ≤ C

δ2q̃(2δ)

ˆ

Ωδ/2

|u(x)|2dx+ 8

q̃(2δ)

¨

ΩΩ

(u(x)− u(y))2ν(x−y)dxdy , (3.7)

with q̃ as is (3.2). Moreover, if Ω has a Lipschitz boundary, then
ˆ

Ω

|u(x)|2dx ≤ C

δ2q(2δ)

ˆ

Ωδ/2

|u(x)|2dx+ 8

q(2δ)

¨

ΩΩ

(u(x)− u(y))2ν(x−y)dxdy , (3.8)

with q as in (3.1).

Proof. Let ϕ be as in Lemma 3.8 and fix a ∈ ∂Ω. A routine check reveals that Ω2δ−a ⊂ Ωδ−x
for every x ∈ Ω ∩ Bδ(a) which yields,

ˆ

Ω∩Bδ(a)

[ϕu]2(x)dx

ˆ

Ωδ

ν(x−y)dy ≥
ˆ

Ω∩Bδ(a)

[ϕu]2(x)dx

ˆ

Ωδ−x

ν(h)dh

≥
ˆ

Ω∩Bδ(a)

[ϕu]2(x)dx

ˆ

Ω2δ−a

ν(h)dh ≥ q̃(2δ)

ˆ

Ω∩Bδ(a)

[ϕu]2(x)dx.

By a compactness argument there exist a1, a2, · · ·an ∈ ∂Ω such that ∂Ω ⊂
n⋃

i=1

Bδ/2(a
i). So

that, Ω \ Ωδ/2 ⊂
n⋃

i=1

Ω ∩ Bδ(a
i) ⊂ Ω \ Ωδ. ϕu = 0 on Ωδ/2 trivially implies ϕu = 0 on Ωδ.

Therefore with the aid of the above estimate we obtain the following estimate
¨

ΩΩ

(
[ϕu](x)− [ϕu](y)

)2
ν(x−y)dxdy ≥ 2

¨

Ω\Ωδ Ωδ

[ϕu]2(x)ν(x−y)dxdy

≥
ˆ

n⋃
i=1

Ω∩Bδ(ai)

[ϕu]2(x)dx

ˆ

Ωδ

ν(x−y)dy ≥ 2q̃(2δ)

ˆ

n⋃
i=1

Ω∩Bδ(ai)

[ϕu]2(x)dx

≥ 2q̃(2δ)

ˆ

Ω\Ωδ/2

[ϕu]2(x)dx = 2q̃(2δ)

ˆ

Ω\Ωδ/2

|u(x)|2(x)dx .

This combined with (3.5) gives (3.7). Next, let us assume that Ω is a Lipschitz domain.
Following the same procedure as in [Pon04, Eq. (22) and Eq. (23)] one arrives at

2δ2
¨

ΩΩ

(
[ϕu](x)− [ϕu](y)

)2
ν(x−y)dxdy ≥

( ˆ

B2δ(0)

|h|2ν(h)dh
) ˆ

Ω\Ωδ/2

[ϕu]2(x)dx.

that is,
¨

ΩΩ

(
[ϕu](x)− [ϕu](y)

)2
ν(x−y)dxdy ≥ 2q(2δ)

ˆ

Ω\Ωδ/2

[ϕu]2(x)dx.

which combined with (3.5) implies (3.8). �
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Here is our global compactness result.

Theorem 3.10. Let Ω be an open bounded subset of R
d and ν : R

d \{0} → [0,∞] be
a measurable function. If the couple (ν,Ω) belongs to the class Ai, i = 1, 2, 3 then the
embedding Hν(Ω) →֒ L2(Ω) is compact. In particular, the embedding Vν(Ω|Rd) →֒ L2(Ω) is
compact.

Proof of Theorem 3.10. Given the continuous embedding Vν(Ω|Rd) →֒ Hν(Ω), it will be
sufficient only to prove that the embedding Hν(Ω) →֒ L2(Ω) is compact. For (ν,Ω) belonging
to the class A1 the result is a direct consequence of Theorem 3.6. Now assume (ν,Ω) belongs
to the class A2 (resp. A3) then for ε > 0 there is δ > 0 small enough such that 8q−1(2δ) < ε
(resp. 8q̃−1(2δ) < ε) If (un)n is a bounded sequence of Hν(Ω) then Corollary 3.7 infers the
existence of a subsequence (unj

)j of (un)n converging to some u ∈ Hν(Ω) in L2(Ωδ/2) i.e
‖unj

− u‖L2(Ωδ/2) → 0 as j → ∞. In any case, in view of Lemma 3.9, passing to the limsup

in (3.7) or in (3.8) applied to unj
− u we get

lim sup
j→∞

ˆ

Ω

|unj
(x)− u(x)|2dx ≤Mε

where

M = 2‖u‖2Hν(Ω) + 2 sup
n

‖un‖2Hν(Ω) <∞.

Finally, lim sup
j→∞

‖unj
− u‖L2(Ω) = 0 since ε > 0 is arbitrarily chosen. Which achieves the

proof. �

Remark 3.11. A noteworthy consequence of what we have obtained so far is that, for an
appropriate choice of ν, the well-known Rellich-Kondrachev compact embeddings H1

0 (Ω) →֒
L2(Ω) and H1(Ω) →֒ L2(Ω) when Ω is Lipschitz, respectively derive from Theorem 3.6
combined with the continuous embedding H1

0 (Ω) →֒ Vν,0(Ω|Rd) and from Theorem 3.10
combined with the continuous embedding H1(Ω) →֒ Hν(Ω) when Ω is Lipschitz.

The efforts made to establish Theorem 3.10 will be rewarded for the elaboration of the
Poincaré type inequality which will be useful in the forthcoming section.

Theorem 3.12 (Poincaré inequality). Let Ω be an open bounded subset of R
d and ν :

R
d \{0} → [0,∞] be a measurable function with full support. Assume the couple (ν,Ω) belongs

to one of the class Ai, i = 0, 1, 2, 3. Then there is exists a positive constant C = C(d,Ω, ν)
depending only on d, Ω and ν such that

∥∥u−
ffl

Ω
u
∥∥2

L2(Ω)
≤ C

¨

ΩΩ

(u(x)− u(y))2ν(x−y)dxdy for all u ∈ L2(Ω) , (3.9)

and hence
∥∥u−

ffl

Ω
u
∥∥2

L2(Ω)
≤ CE(u, u) for all u ∈ Vν(Ω|Rd) . (3.10)

Proof. Assume such constant does not exist then we can find a sequence (un)n elements of
Hν(Ω) such that for every n,

ffl

Ω
un = 0, ‖un‖L2(Ω) = 1 and
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¨

ΩΩ

(un(x)− un(y))
2ν(x−y)dxdy ≤ 1

2n
.

The sequence (un)n is thus bounded inHν(Ω) which by Theorem 3.10 is compactly embedded
in L2(Ω) whenever (ν,Ω) is in the class Ai, i = 1, 2, 3. Therefore, if it is the case, passing
through a subsequence, (un)n converges in L2(Ω) to some function u. Clearly it follows that
ffl

Ω
u = 0 and ‖u‖L2(Ω) = 1. Moreover, by Fatou’s Lemma we have

¨

ΩΩ

(u(x)− u(y))2ν(x−y)dxdy ≤ lim inf
n→∞

¨

ΩΩ

(un(x)− un(y))
2ν(x−y)dxdy = 0

which implies that u equals the constant function x 7→
ffl

Ω
u = 0 almost everywhere on Ω.

This goes against the fact that ‖u‖L2(Ω) = 1 hereby showing that our initial assumption was
wrong.

Next assume (ν,Ω) belongs to the class A0 then, as ν has full a support, is unimodal and Ω
is bounded, there is a constant c > 0 such that ν(x−y) ≥ c for all x, y ∈ Ω. Using this and
Jensen’s inequality we obtain the desired inequality as follows:

¨

ΩΩ

(u(x)− u(y))2ν(x−y)dxdy ≥ c|Ω|
ˆ

Ω

 

Ω

(u(x)− u(y))2dxdy

≥ c|Ω|‖u−
ffl

Ω
u‖2L2(Ω) .

The proof is complete because (3.10) is a consequence of (3.9). �

The above Poincaré inequality (3.9)-(3.10) can be seen has the nonlocal counterpart of the
classical Poincaré inequality which state that, for a connected bounded Lipschitz domain Ω,
there is C > 0 for which∥∥u−

ffl

Ω
u
∥∥
L2(Ω)

≤ C‖∇u‖L2(Ω) , for all u ∈ L2(Ω)

where by convention we assume ‖∇u‖L2(Ω) = ∞ if |∇u| is not in L2(Ω). Along side to this
we also recall the classical Poincaré-Friedrichs inequality: there is C > 0 such that

‖u‖L2(Ω) ≤ C‖∇u‖L2(Ω) for all u ∈ H1
0 (Ω) .

In the same spirit, as we will see below the corresponding nonlocal Poincaré-Friedrichs in-
equality Vν,0(Ω|Rd) (which we recall is the closure of the C∞

c (Ω) in Vν(Ω|Rd)) is much more
easier to obtain and no compactness argument is required. This provides an easier alternative
proof to the Poincaré-Friedrichs inequality from [FKV15, Lemma 2.7]. Furthermore, under
the condition that the embedding is Vν,0(Ω|Rd) →֒ L2(Ω) is compact, a similar inequality is
proved in [JW19] wherein the authors only assume Ω to be bounded in one direction.

Theorem 3.13 (Poincaré-Friedrichs inequality). Let Ω ⊂ R
d be open and bounded. Let

ν : Rd \{0} → [0,∞) be a symmetric function such that one of the two conditions holds true:

(i) ν1Rd \BR
is nontrivial and integrable for R = diam(Ω) ,

(ii) ν ∈ L1(Rd) and |{ν > 0}| > 0.

Then for some constant C = C(d,Ω, ν) > 0

‖u‖2L2(Ω) ≤ CE(u, u) for all u ∈ Vν,0(Ω|Rd). (3.11)
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Proof. Set R = diam(Ω). Then for all x ∈ Ω we have Bc
R(x) ⊂ Ωc. For u ∈ Vν,0(Ω|Rd) we

recall that u = 0 a.e on Ωc. Thus,

E(u, u) = 1

2

¨

ΩΩ

(u(x)− u(y))2ν(x−y)dxdy +
ˆ

Ω

|u(x)|2dx
ˆ

Ωc

ν(x−y)dy

≥ 2

ˆ

Ω

|u(x)|2dx
ˆ

Bc
R(x)

ν(x−y)dy = 2‖νR‖L1(Rd)‖u‖2L2(Ω).

Take C= (2‖νR‖L1(Rd))
−1 with νR = ν1Rd \BR(0). This settles the first case. The second case

is treated in [FKV15, Lemma 2.7]. �

Remark 3.14. Note that a Poincaré-Friedrichs inequality of the form

‖u‖2L2(Ω) ≤ C

¨

ΩΩ

(u(x)− u(y))2ν(x−y)dxdy (u ∈ C∞
c (Ω)) . (3.12)

does not hold in general, independently of whether the embedding Hν(Ω) →֒ L2(Ω) is com-
pact or not. For example, consider ν(h) = |h|−d−α with 0 < α < 1. Then, C∞

c (Ω) is dense
in Hα/2(Ω) but Hα/2(Ω) contains all constant functions. Thus (3.12) fails. Note that, in the
case ν(h) = |h|−d−α, α ∈ (0, 2), a necessary and sufficient condition on Ω for (3.12) to hold
is provided in [DK21a].

4. Existence of weak solutions and spectral decomposition

This section is devoted to the following results: well-posedness of the Neumann problem in
Theorem 4.11, the spectral decomposition of the corresponding operator in Theorem 4.14,
the Robin problem in Theorem 4.15, and the definition of the nonlocal Dirichlet-to-Neumann
map in Theorem 4.19 together with its spectral decomposition in Theorem 4.22. We refer
the reader to Section 1 for comments about related expositions in the literature.

Throughout this section, Ω ⊂ R
d is assumed to be open. We recall that the function

ν : R
d \{0} → [0,∞] is assumed to be symmetric and to satisfy the Lévy integrability

condition (L). Le k : Rd×R
d \ diag → [0,∞) be symmetric and measurable such that for

some Λ ≥ 1

Λ−1ν(y − x) ≤ k(x, y) ≤ Λν(y − x) (x, y ∈ R
d) (E)

We will formulate well-posedness results for equations Lu = f in Ω, where

Lu(x) = p.v.

ˆ

Rd

(
u(y)− u(x)

)
k(x, y)dy . (4.1)

Note that the expression Lu(x) does not exist in general if u is smooth. One would require ad-
ditional assumptions on k. Note that L can be understood as an integro-differential operator.
The aforementioned phenomenon is similar to the fact that expressions like div

(
A(x)∇u(x)

)

do not exist in general for smooth functions u without further assumptions on the matrix
A(x). Given functions u, v ∈ Vν(Ω|Rd), we define a bilinear form E by

E(u, v) = 1

2

¨

(Ωc×Ωc)c

(
u(x)− u(y)

)(
v(x)− v(y)

)
k(x, y)dx dy . (4.2)

Note that under the condition (E) the expression E(u, v) is well defined for u, v ∈ Vν(Ω|Rd).
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Definition 4.1. We define a nonlocal operator Nacting on functions v : Rd → R by

N v(y) =

ˆ

Ω

(v(y)− v(x))k(x, y)dx (y ∈ Ωc). (4.3)

Note that (4.3) requires some integrability condition of v. If ν is a unimodal Lévy mea-
sure, then N v(y) is well defined for v ∈ L1(Rd; ν̂), see the beginning of the proof of
Proposition A.2. Furthermore, the definition of N v(y), y ∈ Ωc, does not require any princi-
pal value integral, because there is a positive distance between y and Ω.

Remark 4.2. (i) We work under the assumption (E) in order to establish well-posedness
for complement value problem. One could replace this assumption by the assumption

Λ−1

¨

(Ωc×Ωc)c

(
u(x)− u(y)

)2
ν(x−y)dx dy ≤ E(u, u) ≤ Λ

¨

(Ωc×Ωc)c

(
u(x)− u(y)

)2
ν(x−y)dx dy

(E’)

for all functions u ∈ L2
loc(R

d). This assumptions allows for many more general cases of k, see
the discussions in [DK20,CS20] (ii) Throughout this section we will work with the weight ν̃.
Analogous results hold true when choosing ν or ν∗ from Definition 2.14.

4.1. Neumann boundary condition. In light of the Gauss-Green formula (A.5) it is rea-
sonable to define weak solutions of the Neumann problem under consideration as follows.
Assume Ω ⊂ R

d is an open set. Let f : Ω → R and g : Rd \Ω → R be two measurable
functions. The Neumann problem for the operator L associate to the data f and g is to find
a measurable function u : Rd → R such that

Lu = f in Ω and Nu = g on R
d \Ω. (N)

Definition 4.3. Let f ∈ Vν(Ω|Rd)′ and g ∈ Tν(Ω
c)′. We say that u ∈ Vν(Ω|Rd) is a weak

solution or a variational solution of the inhomogeneous Neumann problem (N) if

E(u, v) = 〈f, v〉+ 〈g, v〉 for all v ∈ Vν(Ω|Rd) , (V ′)

where we use the natural embedding Vν(Ω|Rd) →֒ Tν(Ω
c). Note that the existence of a

solution u ∈ Vν(Ω|Rd) implies the compatibility condition 〈f, 1〉+ 〈g, 1〉 = 0.

If, in particular, f ∈ L2(Ω) and g ∈ L2(Ωc, ν̃−1), then u ∈ Vν(Ω|Rd) is a weak solution of
(N) if

E(u, v) =
ˆ

Ω

f(x)v(x)dx+

ˆ

Ωc

g(y)v(y)dy, for all v ∈ Vν(Ω|Rd) . (V )

In this case, the compatibility condition reads
ˆ

Ω

f(x)dx+

ˆ

Ωc

g(y)dy = 0 . (C)

Remark 4.4. The compatibility condition (C) is an implicit necessary requirement. The
local counterpart of this compatibility condition, where g is defined on ∂Ω, is given by

ˆ

Ω

f(x)dx+

ˆ

∂Ω

g(y)dσ(y) = 0. (4.4)
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Let us recall that the variational formulation of (1.1) consists of finding u ∈ H1(Ω) such that
ˆ

Ω

∇u(x) · ∇v(x)dx =

ˆ

Ω

f(x)v(x)dx+

ˆ

∂Ω

g(y)v(y)dσ(y), for all v ∈ H1(Ω) .

Remark 4.5. (i) Note that [DROV17, Def. 3.6] looks very similar to (V ) at first glance.
However, the norm of the test space defined in [DROV17, Eq. (3.1)] depends on the Neumann
data g, which is not natural. Our test space Vν(Ω|Rd) in the weak formulation (V ) does not
depend on the Neumann data g. Moreover for the existence of weak solutions to (N), it is
sufficient to choose f ∈ L2(Ω) and g ∈ L2(Ωc, ν̃−1), see Theorem 4.12. (ii) For non-singular
kernels, Definition 4.3 coincides with the definition in [DTZ22, Section 3.2].

The next result shows that both problems (N) and (V ) are related under additional regularity
assumption.

Proposition 4.6. Let Ω be an open bounded subset of Rd with Lipschitz boundary. Assume
k(x, y) = ν(y − x), i.e., Λ = 1. Let u ∈ C2

b (R
d), f ∈ L2(Ω) and g ∈ L2(Ωc, ν̃−1). Then u

satisfies (N) if and only if f and g are compatible in the sense of (C) and u satisfies (V ).

Proof. If u solves (N) i.e. Lu = f in Ω and Nu = g on Ωc, then by the Gauss-Green formula
(A.5) we obtain the following

E(u, v) =
ˆ

Ω

f(x)v(x)dx+

ˆ

Ωc

g(y)v(y)dy, for all v ∈ C1
b (R

d). (4.5)

As shown in (4.9)-(4.10) below, all terms involve in (4.5) are linear and continuous on
Vν(Ω|Rd) with respect to the variable v. Moreover smooth functions of compact support are
dense in Vν(Ω|Rd) hence the relation in (4.5) remains true for functions v in Vν(Ω|Rd) that
is (V ) is satisfied. In particular taking v = 1 one gets the condition (C).
Conversely, assume u solves (V ) then inserting the Gauss-Green formula (A.5) with v ∈
C1

b (R
d) ⊂ Vν(Ω|Rd) in (4.5) yields

ˆ

Ω
Lu(x)v(x)dx−

ˆ

Ω
f(x)v(x)dx =

ˆ

Ωc

g(y)v(y)dy −
ˆ

Ωc

Nu(y)v(y)dy, for all v ∈ C1
b (Rd).

Specializing this relation for v ∈ C∞
c (Ω) and v ∈ C∞

c (Rd \Ω) respectively we end up with
ˆ

Ω

Lu(x)v(x)dx−
ˆ

Ω

f(x)v(x)dx = 0 for all v ∈ C∞
c (Ω),

ˆ

Ωc

g(y)v(y)dy −
ˆ

Ωc

Nu(y)v(y)dy = 0 for all v ∈ C∞
c (Rd \Ω).

Recall that, by Proposition A.1, Lu is well defined and bounded. Hence, Lu belongs to
L2(Ω). Similarly Nu is well defined and bounded, i.e., it belongs to L∞(Ωc). Thus, up to
null sets, we conclude from the above equations Lu = f in Ω and Nu = g on R

d \Ω, which
proves (N). �

Both integrodifferential operators L and N annihilate additive constants. Whence as long
as u is a solution to the system (N) or to the variational problem (V ) so does the function
ũ = u+ c for any c ∈ R. Accordingly, both problems are ill-posed in the sense of Hadamard.
The situation is likewise in the local setting with the operators L and N respectively replaced
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by the operators −∆ and ∂
∂n
. In order to overcome this issue, it is common to introduce an

appropriate function space Vν(Ω|Rd)⊥ as follows:

Vν(Ω|Rd)⊥ :=
{
u ∈ Vν(Ω|Rd) :

ˆ

Ω

u(x)dx = 0
}
.

Assuming that Ω is bounded, the space Vν(Ω|Rd)⊥ endowed with the scalar product of
Vν(Ω|Rd) is Hilbert space as well. Instead of (V ) we need to consider the following weak
formulations:

E(u, v) = 〈f, v〉+ 〈g, v〉 for all v ∈ Vν(Ω|Rd)⊥ , (V
′⊥)

E(u, v) =
ˆ

Ω

f(x)v(x)dx+

ˆ

Ωc

g(y)v(y)dy for all v ∈ Vν(Ω|Rd)⊥ . (V ⊥)

In contrast to (V ), the variational problem (V ⊥) possesses at most one solution since E(·, ·)
defines a scalar product on Vν(Ω|Rd)⊥. Analogous observations can be made in the local
setting by introducing the space H1(Ω)⊥ =

{
u ∈ H1(Ω) :

´

Ω
u(x)dx = 0

}
.

By standard procedure, a solution of the variational problem (V ) is characterized as a critical
point (a minimizer) of the functional

J (v) =
1

2
E(v, v)−

ˆ

Ω

fv dx−
ˆ

Ωc

gvdx (4.6)

=
1

4

¨

(Ωc×Ωc)c

(v(x)− v(y))2ν(x−y) dx dy −
ˆ

Ω

fv dx−
ˆ

Ωc

gvdx.

Proposition 4.7. Let Ω ⊂ R
d be a open set. Then a function u ∈ Vν(Ω|Rd)⊥ is a solution

to (V ⊥) if and only if u is a solution of the minimization problem

J (u) = min
v∈Vν (Ω|Rd)⊥

J (v) (M⊥)

Moreover, if f : Ω → R and g : Ωc → R are compatible in the sense of (C), u ∈ Vν(Ω|Rd)⊥

solves (V ⊥) if and only if for any c ∈ R, u + c solves the variational problem (V ) and the
latter problem is equivalent to the minimization problem

J (u) = min
v∈Vν(Ω|Rd)

J (v). (M)

Proof. Let u ∈ Vν(Ω|Rd)⊥ so that (V ⊥) holds true for all v ∈ Vν(Ω|Rd)⊥. Employing,
Cauchy-Schwartz inequality yields

E(u, v) ≤ 1

2
E(u, u) + 1

2
E(v, v) = E(u, u)− 1

2
E(u, u) + 1

2
E(v, v).

In virtue of (V ⊥) we get J (u) ≤ J (v) and thus u solves (M⊥).
Conversely assume that u satisfies (M⊥) which means that J (u) ≤ J (v) for all v ∈
Vν(Ω|Rd)⊥. For fixed v ∈ Vν(Ω|Rd)⊥ the mapping J (u+ ·v) : R → R,

t 7→ J (u+ tv) = J (u) + t

[
E(u, v)−

ˆ

Ω

f(x)v(x)dx−
ˆ

Ωc

g(y)v(y)dy

]
+
t2

2
E(v, v)
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is a polynomial of second order. For all t ∈ R, u+ tv ∈ Vν(Ω|Rd) and since u minimizes J
we get that J (u) ≤ J (u+ tv) for all t ∈ R. Thus J (u+ ·v) : R → R has a critical point at
t = 0 which implies that

0 = lim
t→0

J (u+ tv)− J (u)

t
= lim

t→0

[
E(u, v)−

ˆ

Ω

f(x)v(x)dx−
ˆ

Ωc

g(y)v(y)dy +
t

2
E(v, v)

]

equivalently

E(u, v) =
ˆ

Ω

f(x)v(x)dx+

ˆ

Ωc

g(y)v(y)dy .

This shows the equivalence between variational problem (V ⊥) and the minimization problem
(M⊥). Meanwhile, if the compatibility condition (C) holds, then it is easy to observe that
the relation in (V ⊥) remains unchanged under additive constant and J (v + c) = J (v) for
all v ∈ Vν(Ω|Rd) and all c ∈ R. Accordingly, if u ∈ Vν(Ω|Rd)⊥ solves (V ⊥) then we have
J (u+ c) = min

v∈Vν(Ω|Rd)
J (v) which, by similar arguments as above, is equivalent to (V ). �

From Proposition 4.6 and Proposition 4.7 we deduce that, analogous to the case of the
Laplace operator, the complement condition Nu = 0 turns out to be a natural condition in
the variational context:

Corollary 4.8. Let f ∈ L2(Ω). Assume u ∈ Vν(Ω|Rd) minimizes the functional v 7→
1
2
E(v, v)−

´

Ω
fv in the space Vν(Ω|Rd). Then Nu = 0 in Ωc.

A different version of this observation is given in [DLV21, Theorem 2.1]. [MPL19, Theorem
2.8] is similar in the translation invariant case. We are now in position to state the existence
and the uniqueness of a solution to (V ⊥) and hence to (V ) up to additive constant. A direct
application of the Lax-Milgram lemma leads to the following observation.

Theorem 4.9. We assume that Ω ⊂ R
d is open and bounded. Let ν : Rd → [0,∞] be the

density of a symmetric Lévy measure with full support. We further assume that the couple
(ν,Ω) belongs to one of the class Ai, i = 0, 1, 2, 3. Let f ∈ Vν(Ω|Rd)′ and g ∈ Tν(Ω

c)′.

(i) There exists a unique solution u ∈ Vν(Ω|Rd)⊥ to the problem (V
′⊥) satisfying

‖u‖Vν(Ω|Rd) ≤ C
(
‖f‖Vν(Ω|Rd)′ + ‖g‖Tν(Ωc)′

)

with a positive constant C, which depends only on d,Ω,Λ and ν.
(ii) Problem (V ′) is solvable if and only if 〈f, 1〉+ 〈g, 1〉 = 0. All solutions w are of the

form w = u+ c with c ∈ R and satisfy

‖w −
ffl

Ω
w‖Vν(Ω|Rd) ≤ C

(
‖f‖Vν(Ω|Rd)′ + ‖g‖Tν(Ωc)′

)
.

Proof. The existence and the uniqueness of solutions of (V
′⊥) follow from the Lax-Milgram

lemma. The bilinear form E(·, ·) is continuous on Vν(Ω|Rd)⊥. From the Poincaré inequality
(3.10) we conclude

‖v‖2L2(Ω) ≤ CE(v, v) for all v ∈ Vν(Ω|Rd)⊥

for some positive constant C. This implies coercivity of E(·, ·) on Vν(Ω|Rd)⊥ and we obtain

E(v, v) ≥
(
1 + C

)−1‖v‖2
Vν(Ω|Rd)

. (4.7)
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Note that, due to the continuity of the continuity of the trace operator Tr : Vν(Ω|Rd) →
Tν(Ω

c), the mapping v 7→ 〈f, v〉 + 〈g, v〉 is linear and continuous on Vν(Ω|Rd)⊥. The Lax-
Milgram lemma implies (i).
For v ∈ Vν(Ω|Rd) set v = ṽ + c′ with c′ =

ffl

Ω
vdx so that ṽ ∈ Vν(Ω|Rd)⊥. In addition, every

constant function w = c belongs to Vν(Ω|Rd) for every c ∈ R
d because Ω is bounded. Hence,

Vν(Ω|Rd) = Vν(Ω|Rd)⊥⊕R. With this observation along with the identity E(u+ c, v+ c′) =
E(u, v) for all c, c′ ∈ R and the uniqueness of u ∈ Vν(Ω|Rd)⊥ solving (V

′⊥) it becomes easy
to check that under the compatibility condition 〈f, 1〉 + 〈g, 1〉 = 0, all solutions of (V ′) are
of the form u+ c.

�

Remark 4.10. It worth to mention that, Theorem 4.9 (i) implies that the operator Φ :
Vν(Ω|Rd)′ × Tν(Ω

c)′ → Vν(Ω|Rd)⊥ mapping (f, g) to the unique solution u ∈ Vν(Ω|Rd)⊥ of
the variational problem (V

′⊥) is linear, one-to-one, continuous with

‖Φ(f, g)‖Vν(Ω|Rd) ≤ C‖(f, g)‖Vν(Ω|Rd)′×Tν(Ωc)′ .

Let us apply Theorem 4.9 in order to prove our main existence result.

Theorem 4.11. Under the assumptions of Theorem 4.9 with f ∈ L2(Ω) and g ∈ L2(Ωc, ν̃−1)
the following holds true:

(i) There exists a unique solution u ∈ Vν(Ω|Rd)⊥ to the problem (V ⊥) satisfying

‖u‖Vν(Ω|Rd) ≤ C
(
‖f‖L2(Ω) + ‖g‖L2(Ωc,ν̃−1)

)

with a positive constant C, which depends only on d,Ω,Λ and ν.
(ii) Problem (V ) is solvable if and only if (C) holds true. All solutions w are of the form

w = u+ c with c ∈ R and satisfy

‖w −
ffl

Ω
w‖Vν(Ω|Rd) ≤ C

(
‖f‖L2(Ω) + ‖g‖L2(Ωc,ν̃−1)

)
. (4.8)

Proof. It suffices to show the continuity of the associated linear forms. For v ∈ Vν(Ω|Rd)⊥

∣∣∣
ˆ

Ω

fvdx
∣∣∣ ≤ ‖f‖L2(Ω)‖v‖L2(Ω) ≤ ‖f‖L2(Ω)‖v‖Vν(Ω|Rd) . (4.9)

From g ∈ L2(Ωc, ν̃−1) and the continuity of Tr : Vν(Ω|Rd) →֒ Tν(Ω
c), we obtain

∣∣∣
ˆ

Ωc

g(x)v(x)dx
∣∣∣ ≤ ‖g‖L2(Ωc,ν̃−1)‖v‖L2(Ωc,ν̃) ≤ ‖g‖L2(Ωc,ν̃−1)‖v‖Vν(Ω|Rd). (4.10)

Application of Theorem 4.9 completes the proof. �

There is an alternative formulation of Theorem 4.11, which allows for more general inhomo-
geneities g. Let us define a modified Neumann problem for the operator L associated to the
data f and g as follows:

Lu = f in Ω and Nu = gν̃ on R
d \Ω. (N∗)

Theorem 4.12. Under the assumptions of Theorem 4.9 with f ∈ L2(Ω) and g ∈ L2(Ωc, ν̃),
then the following holds true:
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(i) There exists a unique weak solution u∗ ∈ Vν(Ω|Rd)⊥ to the problem (N∗), that is

E(u∗, v) =
ˆ

Ω

f(x)v(x)dx+

ˆ

Ωc

g(y)v(y)ν̃(y)dy for all v ∈ Vν(Ω|Rd)⊥ . (V ⊥
∗ )

satisfying

‖u∗‖Vν(Ω|Rd) ≤ C
(
‖f‖L2(Ω) + ‖g‖L2(Ωc,ν̃)

)

with a positive constant C, which depends only on d,Ω,Λ and ν.
(ii) Problem (V∗) is solvable if and only if (C∗) holds true, where

E(u, v) =
ˆ

Ω

f(x)v(x)dx+

ˆ

Ωc

g(y)v(y)ν̃(y)dy for all v ∈ Vν(Ω|Rd) , (V∗)

ˆ

Ω

f(x)dx+

ˆ

Ωc

g(y)ν̃(y)dy = 0 . (C∗)

All solutions w∗ are of the form w = u∗ + c with c ∈ R and satisfy

‖w −
ffl

Ω
w‖Vν(Ω|Rd) ≤ C

(
‖f‖L2(Ω) + ‖g‖L2(Ωc,ν̃)

)
.

The proof of Theorem 4.12 is analogous to the one of Theorem 4.11. Note that, if g ∈
L2(Ωc, ν̃), then

∣∣∣
ˆ

Ωc

g(x)v(x)ν̃(x)dx
∣∣∣ ≤ ‖g‖L2(Ωc,ν̃)‖v‖Vν(Ω|Rd) .

4.2. Neumann eigenvalues of L. Let f ∈ L2(Ω), for g = 0 it is worthwhile to see that the
variational problem (V ) coincides with (V∗) and both correspond to the variational(weak)
formulation of the homogeneous Neumann problem Lu = f in Ω and Nu = 0 on Ωc.

Definition 4.13 (Neumann eigenvalue of L). A non-zero function u ∈ Vν(Ω|Rd) is called a
Neumann eigenfunction of the operator L on Ω if there exists a real number µ, which is the
eigenvalue associated to u, such that for all v ∈ Vν(Ω|Rd)

E(u, v) = µ

ˆ

Ω

u(x)v(x)dx.

One formally writes Lu = µu in Ω and Nu = 0 on Ωc, which corresponds to the aforemen-
tioned weak formulation provided that u is sufficiently regular.

It is worth noticing that, if u is a Neumann eigenfunction of L with associated eigenvalue
µ, then either u ∈ Vν(Ω|Rd)⊥ when µ 6= 0 or else, µ = 0 and the constant functions
u = c, c ∈ R \ {0}, are the related eigenfunctions.

Theorem 4.14. Assume Ω ⊂ R
d is bounded and open and ν : Rd \{0} → [0,∞) is the

density of a symmetric Lévy measure with full support. Assume that the couple (ν,Ω) belongs
to one of the classes Ai, i = 1, 2, 3. Then there exist a sequence (φn)∈N0

in Vν(Ω|Rd),
which forms an orthonormal basis of L2(Ω), and an increasing sequence of real numbers
0 = µ0 < µ1 ≤ · · · ≤ µn ≤ · · · . such that µn → ∞ as n → ∞ and each φn is a Neumann
eigenfunction of L with corresponding eigenvalue µn. The number of each eigenvalue is given
by its geometrical multiplicity.
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Proof. For f1, f2 ∈ L2(Ω) let us denote ufk = Φ0(fk) = Φ(fk, 0) ∈ Vν(Ω|Rd)⊥, k = 1, 2 the
unique solution of (V ⊥) with Neumann data f = fk and g = 0. Precisely,

E(Φ0(fk), v) =

ˆ

Ω

fk(x)v(x)dx for all v ∈ Vν(Ω|Rd)⊥ . (4.11)

Testing (4.11) against v = Φ0(f2) and v = Φ0(f1) successively when k = 1 and k = 2 yields
(
f1,Φ0(f2)

)
L2(Ω)

= E(Φ0(f1),Φ0(f2)) = E(Φ0(f2),Φ0(f1)) =
(
f2,Φ0(f1)

)
L2(Ω)

.

Therefore, the operator RΩ ◦ Φ0 : L2(Ω)
Φ0−→ Vν(Ω|Rd)⊥

RΩ−−→ L2(Ω)⊥ is compact (by
Theorem 3.10) and symmetric hence self-adjoint. It is a fact from the spectral theory
of compact self-adjoint operators that L2(Ω)⊥ has an orthonormal basis (en)n whose el-
ements are eigenfunctions of RΩ ◦ Φ0 and the sequence of the corresponding eigenvalues
are non-negative real numbers (rn)n which we assume ordered in the decreasing order,
r1 ≥ r2 ≥ · · · ≥ rn ≥ · · · 0 such that rn → 0 as n → ∞. Precisely, for each n ≥ 1,
RΩ ◦ Φ0(en) = rnen or simply write Φ0(en) = rnen a.e in Ω. Combining the latter relation
with definition of Φ0(en) we get

E(Φ0(en), v) =

ˆ

Ω

en(x)v(x)dx = r−1
n

ˆ

Ω

Φ0(en)(x)v(x)dx for all v ∈ Vν(Ω|Rd)⊥ .

Equivalently, setting µn = r−1
n and φn = Φ0(en)/‖Φ0(en)‖L2(Ω) = r−1

n Φ0(en) which is clearly

an element of ∈ Vν(Ω|Rd)⊥ yields

E(φn, v) = µn

ˆ

Ω

φn(x)v(x)dx for all v ∈ Vν(Ω|Rd)⊥ .

Hereby, along with µ0 = 0 and φ0 = |Ω|−1 provides the sequences sought for. Now if we
assume µ1 = 0 then we have φ1 ∈ Vν(Ω|Rd)⊥ and E(φ1, v) = 0 for all v ∈ Vν(Ω|Rd)⊥ in
particular E(φ1, φ1) = 0 i.e φ1 is a constant function in Vν(Ω|Rd)⊥ necessarily φ1 = 0 since
u1 has zero mean over Ω. We have therefore reached a contradiction as φ1 is supposed to be
an eigenfunction i.e φ1 6= 0. Thus, µ1 > 0 and the proof is complete.

�

4.3. Robin boundary condition. In this section we treat a Robin-type problem with
respect to the nonlocal operator L on Ω. In the classical setting for the Laplace operator,
the Robin boundary problem – also known as Fourier boundary problem or third boundary
problem – is a combination of the Dirichlet and Neumann boundary problem in the form2

−∆u = f in Ω and
∂u

∂n
+ βu = g on ∂Ω. (4.12)

Here f ∈ L2(Ω) and the measurable functions β, g : ∂Ω → R are given. Analogously, in
the nonlocal set up, we assume that β, g : Ωc → R are measurable functions. The Robin
problem consists in finding a measurable function u : Rd → R such that

Lu = f in Ω and Nu+ βu = g on Ωc. (4.13)

2According to the over 20 years survey work [GA98], there is no historical evidence why the problem
(4.12) is termed after Robin’s name. The survey [GA98, p.69] also points out that the first mathematical
appearance of the problem (4.12) goes back at least to the works on cooling law by Fourier(1822) and/or
Newton (1701, but mathematical contribution by Newton is uncertain).
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Note that, for β = 0 one recovers the inhomogeneous Neumann problem. Informally, for
β → ∞ it leads to the homogeneous Dirichlet problem. Define the quadratic form

Qβ(u, v) = E(u, v) +
ˆ

Ωc

u(y)v(y)β(y)dy.

A function u ∈ Vν(Ω|Rd) is called a weak solution of the Robin problem (4.13) if

Qβ(u, v) =

ˆ

Ω

f(x)v(x)dx+

ˆ

Ωc

g(y)v(y)dy for all v ∈ Vν(Ω|Rd). (4.14)

Theorem 4.15. Let ν and Ω be as in Theorem 4.14. Assume that βν̃−1 : Ωc → [0,∞) is
essentially bounded and β is non-trivial that is, |Ωc ∩ {β > 0}| > 0. Let f ∈ L2(Ω) and
g ∈ L2(Ωc; ν̃−1). There exists a unique function u ∈ Vν(Ω|Rd) solution to (4.14) satisfying

‖u‖Vν(Ω|Rd) ≤ C
(
‖f‖L2(Ω) + ‖g‖L2(Ωc,ν̃−1)

)
, (4.15)

where C := C(d,Ω,Λ, ν, β) > 0 can be chosen independently of u, f and g.

Remark 4.16. The operator Ψ : L2(Ω)× L2(Ωc, ν̃−1) → Vν(Ω|Rd) mapping the data (f, g)
to the unique solution u ∈ Vν(Ω|Rd) of the variational problem (4.14) is linear, one-to-one,
and continuous. Moreover, with C as above,

‖Ψ(f, g)‖Vν(Ω|Rd) ≤ C‖(f, g)‖L2(Ω)×L2(Ωc,ν̃−1).

Proof. First of all, we claim that the form Qβ(·, ·) is coercive on Vν(Ω|Rd). Assume it is not

true. Then for each n ≥ 1 there exists un ∈ Vν(Ω|Rd) with ‖un‖Vν(Ω|Rd) = 1 such that

Qβ(un, un) <
1

2n
.

In virtue of our compactness result, Theorem 3.10, (un)n converges up to a subsequence

in L2(Ω) to some u. We deduce ‖u‖L2(Ω) = 1, since E(un, un) n→∞−−−→ 0 and for all n ≥ 1,

‖un‖Vν(Ω|Rd) = 1. From E(un, un) n→∞−−−→ 0 and ‖un − u‖L2(Ω)
n→∞−−−→ 0 we obtain that un

converges to u in Vν(Ω|Rd) with E(u, u) = 0. Thus u is constant almost everywhere in
R

d. On the other hand, since β is bounded and the embedding Vν(Ω|Rd) →֒ L2(Ωc, ν̃), see
Lemma 2.16, is continuous, we have

ˆ

Ωc

u2(y)β(y)dy ≤ 2

ˆ

Ωc

u2n(y)β(y)dy + 2‖βν̃−1‖L∞(Ωc)

ˆ

Ωc

(un(y)− u(y))2ν̃(y)dy

≤ 2Qβ(un, un) + C‖un − u‖2
Vν(Ω|Rd)

n→∞−−−→ 0 .

From this, we conclude u = 0 since we know that u is a constant function and β > 0 almost
everywhere on a set of positive measure U ⊂ Ωc on which u vanishes. This contradicts
‖u‖L2(Ω) = 1 and hence our initial assumption was wrong. Therefore there exists a constant
C = C(d,Ω, ν, β) > 0 such that

Qβ(u, u) ≥ C‖u‖2
Vν(Ω|Rd)

for all u ∈ Vν(Ω|Rd). (4.16)

The remaining requirements for the application of the Lax-Milgram lemma can be checked
easily. Existence of a unique solution to (4.14) follows. The estimate (4.15) is a direct
consequence of (4.16). �
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4.4. Dirichlet-to-Neumann map. .

Let us first review the nonlocal Dirichlet problem. In the spirit of [FKV15] one can easily
prove the following

Theorem 4.17. Let Ω ⊂ R
d be open and bounded. Given f ∈ L2(Ω) and g ∈ Tν(Ω

c), there
exists a unique function u ∈ Vν(Ω|Rd) with u = g a.e. on Ωc and

E(u, v) =
ˆ

Ω

f(x)v(x)dx for all v ∈ Vν,0(Ω|Rd). (4.17)

In fact, u is the weak solution to the nonlocal Dirichlet problem Lu = f in Ω and u = g on
Ωc. Moreover, there exists C = C(Ω, d,Λ, ν) > 0 independent of f and g,

‖u‖Vν(Ω|Rd) ≤ C(‖f‖L2(Ω) + ‖g‖Tν(Ωc)). (4.18)

The result follows from the Lax-Milgram lemma because the linear form v 7→
´

Ω
fv is

continuous on Vν,0(Ω|Rd) and the bilinear form E(·, ·) bounded and coercive on Vν,0(Ω|Rd)
(see Theorem 3.13). It is noteworthy to recall that under the non-integrability condition
(I) and the Lévy integrability condition (L), Vν,0(Ω|Rd) is compactly embedded in L2(Ω).
With this at hand, analogously to Theorem 4.14 there exist of a family (ψn)n elements of
Vν,0(Ω|Rd), orthonormal basis of L2(Ω) and an increasing sequence of real number 0 < λ1 ≤
· · · ≤ λn ≤ · · · . such that λn → ∞ as n→ ∞ and each ψn is a Dirichlet eigenfunction of L
whose corresponding eigenvalue is λn namely

E(ψn, v) = λn

ˆ

Ω

ψn(x)v(x)dx for all v ∈ Vν,0(Ω|Rd).

Note that the constants µ1 > 0 and λ1 > 0 respectively satisfy the Poincaré inequalities

E(u, u) ≥ µ1‖u‖2L2(Ω), for all u ∈ Vν(Ω|Rd)⊥,

E(u, u) ≥ λ1‖u‖2L2(Ω), for all u ∈ Vν,0(Ω|Rd).

Before we formally define the Dirichlet-to-Neumann map, some prerequisites are required.
Let f ∈ L2(Ω) and g ∈ Tν(Ω

c). Assume, λ < λ1, then the bilinear form E−λ(u, u) =
E(u, u) − λ‖u‖2L2(Ω) is coercive on Vν,0(Ω|Rd). Thus there exists a function u ∈ Vν(Ω|Rd)

unique weak solution to the Dirichlet problem Lu−λu = f in Ω and u = g on Ωc. Explicitly,
u = g on Ωc and

E(u, v)− λ

ˆ

Ω

u(x)v(x)dx =

ˆ

Ω

f(x)v(x)dx for all v ∈ Vν,0(Ω|Rd). (4.19)

Moreover, the estimate (4.18) (with the estimating constant depending on λ) remains true.
More generally, by the mean of Fredholm alternative and the closed graph Theorem, the
preceding facts (4.19) and (4.18) respectively remain true for the operator L− λ, whenever
λ ∈ R \ {λn : n ≥ 1}.
From now on we suppose f = 0 and λ ∈ R \ {λn : n ≥ 1} and label the solution of (4.19) by
u = ug. Then the mapping g 7→ ug is linear and continuous from Tν(Ω

c) to Vν(Ω|Rd) since
by (4.18) we have

‖ug‖Vν(Ω|Rd) ≤ C‖g‖Tν(Ωc).

Given v ∈ Tν(Ω
c), put ṽ = ext(v) ∈ Vν(Ω|Rd) be an extension of v. Let 〈·, ·〉 be the dual

pairing between Tν(Ω
c) and Tν(Ω

c)′.
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Definition 4.18. Let λ ∈ R \ {λn : n ≥ 1}. We call the mapping Dλ : Tν(Ω
c) → Tν(Ω

c)′

with g 7→ Dλg = E−λ(ug, ·̃) such that 〈Dλg, v〉 = E−λ(ug, ṽ), the Dirichlet-to-Neumann map
with respect to the operator L− λ.

Theorem 4.19. The Dirichlet-to-Neumann operator Dλ : Tν(Ω
c) → Tν(Ω

c)′ with g 7→
Dλg = E−λ(ug, ·̃) is well defined, linearly bounded and self-adjoint. Moreover there exists
c ∈ R such that for all g ∈ Tν(Ω

c)

〈Dλg, g〉 ≥ c‖ug‖2Vν(Ω|Rd)
.

Proof. Consider v′ ∈ Vν(Ω|Rd) another extension of v then v′ − ṽ ∈ Vν,0(Ω|Rd) and by
definition of ug we have

E−λ(ug, v
′ − ṽ) = 0 that is E−λ(ug, ṽ) = E−λ(ug, v

′).

Therefore the mapping v 7→ E−λ(ug, ṽ) is well defined, linear and bounded on Tν(Ω
c). Indeed,

|E−λ(ug, ṽ)| ≤ (|λ|+ 1)‖ug‖Vν(Ω|Rd)‖ṽ‖Vν(Ω|Rd).

Since the extension ṽ of v is arbitrarily chosen, upon the estimate (4.19) we obtain

|E−λ(ug, ṽ)| ≤ C‖g‖Tν(Ωc)‖v‖Tν(Ωc).

This shows that, E−λ(ug, ·̃) belongs Tν(Ωc)′. Subsequently it also follows this estimate that
the mapping Dλ : Tν(Ω

c) → Tν(Ω
c)′ with g 7→ Dλg = E−λ(ug, ·̃) is linearly bounded. Now let

g, h ∈ Tν(Ω
c) specializing the definition of Dλ with g̃ = ug and h̃ = uh the self-adjointness is

obtained as follows

〈Dλg, h〉 = E−λ(ug, uh) = E−λ(uh, ug) = 〈Dλh, g〉.
The choice c = min(1,−λ) leads to 〈Dλg, g〉 = E−λ(ug, ug) ≥ c‖ug‖2Vν(Ω|Rd)

. �

Remark 4.20. The above definition is motivated by the following observation. Assume ug
is as before and ϕ ∈ C∞

c (Rd). The Gauss-Green formula (A.5) gives

〈Dλg, ϕ〉 = E−λ(ug, ϕ) =

ˆ

Ωc

Nug(y)ϕ(y)dy. (4.20)

From the second equality we can identify Dλg = Nug ∈ L2(Ωc, ν̃−1) ⊂ Tν(Ω
c)′. Hence

Dλ : g 7→ Nug, which agrees with conceptual idea behind the Dirichlet-to-Neumann map in
the classical case.

Theorem 4.21. Let the assumptions of Theorem 4.15 be in force. Denote by Lβ the operator
L subject to the Robin boundary condition Nu+ βu = 0. Then the point spectrum σp(Lβ) =
(γn(β))n of Lβ is infinitely countable say 0 < γ1(β) ≤ γ2(β) ≤ · · · ≤ γn(β) ≤ · · · and the
corresponding eigenfunctions belong to Vν(Ω|Rd) and form an orthonormal basis of L2(Ω).

Proof. It suffices to proceed as the in proof of Theorem 4.14. �

Next, we see the relation between the spectrum of the operator L subject to Robin boundary
condition and that of Dirichlet-to-Neumann operator.
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Theorem 4.22. Let λ ∈ R \ {λn : n ≥ 1} and β : Ωc → R be measurable. Consider the
Dirichlet-to-Neumann map Dλ : Tν(Ω

c) → Tν(Ω
c)′, Dλg = Nug. Then, 0 ∈ σp(Dλ + β) if

and only if λ ∈ σp(Lβ). In addition, dimker(Lβ − λ) = dimker(Dλ + β).

Proof. Let u ∈ ker(Lβ − λ) then for all v ∈ Vν(Ω|Rd),

Qβ(u, v) = λ

ˆ

Ω

u(x)v(x)dx equivalently E−λ(u, v) = −
ˆ

Ωc

u(y)v(y)β(y)dy.

Set g = Tr(u) = u|Ωc , with the aid of (4.20) the above relation reduces to
ˆ

Ωc

Nug(y)v(y)dy = −
ˆ

Ωc

g(y)v(y)β(y)dy.

Thus g ∈ ker(Dλ+β). We have have shown that the mapping T : ker(Lβ−λ) → ker(Dλ+β)
with u 7→ Tr(u) is well defined and onto. Both assertions will follow once we show that
T defines a bijection in other words we only have to show that T is one-to-one. For u ∈
ker(Lβ−λ) if Tr(u) = 0 then from the first relation above, we have E(u, v) = λ

´

Ω
u(x)v(x)dx

for all v ∈ Vν,0(Ω|Rd). Necessarily, u = 0 otherwise λ is a Dirichlet eigenvalue which is not
the case by assumption. �

5. Transition from nonlocal to local

The main purpose of this section is to prove the convergence of a sequence of nonlocal
Neumann problems to a local Neumann problem, i.e., the corresponding solutions converge.
The main result of this section is Theorem 5.4. We consider the following set-up: Let
(να)α∈(0,2) be a family of Lévy radial functions approximating the Dirac measure at the
origin, i.e., for every α, δ > 0

να ≥ 0 is radial,

ˆ

Rd

(1 ∧ |h|2)να(h)dh = 1
d
, lim

α→2

ˆ

|h|>δ

να(h)dh = 0 . (5.1)

Note that there is no restriction on the support of να. The above definition of (να)0<α<2

generalizes the spectrum of possible approximative sequences in [FKV20,DTZ22]. Note that,
convergence of nonlocal variational structures including finite dimensional Galerkin methods
have already been considered in [MD15] and [BMCP15] for homogeneous nonlocal problems
of vanishing horizon-type.

We denote Lα and Nα be the nonlocal operators associated with να, i.e.,

Lαu(x) = 2 p.v.

ˆ

Rd

(u(x)− u(y))να(x− y) dy,

Nαu(x) = 2

ˆ

Ω

(u(x)− u(y))να(x− y) dy.

The associated energy forms are defined by

Eα
Ω(u, v) =

¨

ΩΩ

(
u(y)− u(x)

)(
v(y)− v(x)

)
να(x− y)dx dy ,

Eα(u, v) =

¨

(Ωc×Ωc)c

(
u(y)− u(x)

)(
v(y)− v(x)να(x− y)dx dy.
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Let us mention two prototypical examples of interest here. For more concrete examples we
refer the reader to [FKV20,FG20]

Example 5.1. Define να(h) = ad,α|h|−d−α with ad,α = α(2−α)
2d|Sd−1|

. Indeed, passing through polar

coordinates yields

d

ˆ

Rd

(1 ∧ |h|2)|h|−d−α dh = d|Sd−1|
(ˆ 1

0

r1−α dr +

ˆ ∞

1

r−1−α dr
)
=

2d|Sd−1|
α(2− α)

= a−1
α,d.

For δ > 0, a similar computation gives

ad,α

ˆ

|h|≥δ

(1 ∧ |h|2)|h|−d−α dh ≤ α(2− α)

2d

ˆ ∞

δ

r−1−α dr =
(2− α)δ−α

2d

α→2−−→ 0.

The choice of να(h) = ad,α|h|−d−α gives rise to a multiple of fractional Laplace operator, i.e.
Lα =

ad,α
Cd,α

(−∆)α/2, where we recall that Cd,α is the normalizing constant of (−∆)α/2. Note

however, that
ad,α
Cd,α

→ 1 as α→ 2 see [NPV12,FG20].

Example 5.2. Let ν ∈ L1(Rd, 1 ∧ |h|2) be any radial Lévy density that is normalized, i.e.,
ˆ

Rd

1 ∧ |h|2 ν(h)dh =
1

d
.

Let a family (να)α∈(0,2) be defined by να = ν2−α where νε is a rescaled version of ν in the
following sense:

νε(h) =





ε−d−2ν
(
h/ε

)
if |h| ≤ ε

ε−d|h|−2ν
(
h/ε

)
if ε < |h| ≤ 1

ε−dν
(
h/ε

)
if |h| > 1.

Then, as shown in [Fog21b, Proposition 2.2], (να)α∈(0,2) satisfies (5.1). Note that, as a possible
simple example, one could consider ν(h) = c1B1(0)(h), so that (να) would correspond to what
is known as vanishing horizon in peridynamics, see [DY21,DTZ22].

Lemma 5.3. Assume Ω ⊂ R
d is an open bounded set with Lipschitz boundary. Let ϕ ∈

C2
b (R

d) and v ∈ Vνα(Ω|Rd). The following assertions hold true.

(i) There is a constant C > 0 independent of α such that

sup
α∈(0,2)

∣∣∣
ˆ

Ωc

Nαϕ(y)v(y)dy
∣∣∣ ≤ C‖ϕ‖C2

b (R
d)‖v‖Vνα(Ω|Rd) .

(ii) Assume v ∈ H1(Rd) then

lim
α→2

ˆ

Ωc

Nαϕ(y)v(y)dy =

ˆ

∂Ω

∂ϕ

∂n
(x)v(x)dσ(x) .

Proof. In view of the estimates (A.1) and (A.4) respectively, we have

|Lαϕ| ≤
4

d
‖ϕ‖C2

b (R
d) and Eα(ϕ, ϕ) ≤ 4

d
‖ϕ‖C2

b (R
d) for all α ∈ (0, 2) .
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By the continuity of the linear mapping v 7→ Eα(ϕ, v)−
´

Ω
Lαϕ(x)v(x)dx, the Gauss-Green

formula (A.5) is applicable for ϕ ∈ C2
b (R

d) and v ∈ Vνα(Ω|Rd). Therefore, with the help of
the above estimates we get (i) as follows

∣∣∣
ˆ

Ωc

Nαϕ(y)v(y)dy
∣∣∣ =

∣∣∣Eα(ϕ, v)−
ˆ

Ω

Lαϕ(x)v(x)dx
∣∣∣

≤ Eα(ϕ, ϕ)1/2Eα(v, v)1/2 + ‖Lαϕ‖L2(Ω)‖v‖L2(Ω)

≤ C‖ϕ‖C2
b (R

d)‖v‖Vνα(Ω|Rd) .

Noting that Lαϕ(x)
α→2−−→ −∆ϕ(x) for all x ∈ R

d (see [Fog21b, Proposition 2.4]) and that
|Lαϕ| ≤ 4

d
‖ϕ‖C2

b (R
d), the Lebesgue dominated convergence Theorem yields

ˆ

Ω

Lαϕ(x)v(x)dx
α→2−−→

ˆ

Ω

−∆ϕ(x)v(x)dx .

On the other hand, according to [Fog21b] and [FKV20, Theorem 3.4], we have that
¨

ΩΩ

(v(x)− v(y))2να(x− y)dxdy
α→2−−→

ˆ

Ω

|∇v(x)|2dx

¨

ΩΩc

(v(x)− v(y))2να(x− y)dxdy
α→2−−→ 0.

(5.2)

So that, Eα(v, v)
α→2−−→

´

Ω
|∇v(x)|2dx. Thus we also have

Eα(ϕ, v)
α→2−−→

ˆ

Ω

∇ϕ(x) · ∇v(x)dx.

Finally from the foregoing and the local Gauss-Green formula we obtain (ii) as follows

lim
α→2

ˆ

Ωc

Nαϕ(y)v(y)dy = lim
α→2

Eα(ϕ, v)− lim
α→2

ˆ

Ω

Lαϕ(x)v(x)dx

=

ˆ

Ω

∇ϕ(x) · ∇v(x)dx−
ˆ

Ω

∆ϕ(x)v(x)dx

=

ˆ

∂Ω

∂ϕ

∂n
(x)v(x)dσ(x) .

�

Theorem 5.4 (Convergence of weak solution). Let Ω ⊂ R
d be an open bounded and

connected with Lipschitz boundary. Let (fα)α be functions converging in the weak sense to
another function f in L2(Ω) and let gα = Nαϕ and g = ∂ϕ

∂n
for some ϕ ∈ C2

b (R
d). Assume

uα ∈ Vνα(Ω|Rd)⊥ is a weak solution to Lαu = fα on Ω and Nαu = gα on Ωc that is,

Eα(uα, v) =

ˆ

Ω

fα(x)v(x) +

ˆ

Ωc

gα(x)v(x) for all v ∈ Vνα(Ω|Rd)⊥ .

Let u ∈ H1(Ω)⊥ be the unique weak solution in to the Neumann problem −∆u = f in Ω and
∂u
∂n

= g on ∂Ω i.e.
ˆ

Ω

∇u(x) · ∇v(x)dx =

ˆ

Ω

f(x)v(x)dx+

ˆ

∂Ω

g(x)v(x)dσ(x) for all u ∈ H1(Ω)⊥.
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Then (uα)α strongly converges to u in L2(Ω), i.e., ‖uα − u‖L2(Ω)
α→2−−→ 0. Moreover, the

following weak convergence of the energy forms holds true

Eα(uα, v)
α→2−−→

ˆ

Ω

∇u(x) · ∇v(x)dx for all v ∈ H1(Rd). (5.3)

Remark 5.5.

(i) In case of the homogeneous problem, i.e., for ϕ = 0 and fα = f , the corresponding
result is a direct consequence of the Mosco-convergence of (Eα(·, ·), Vνα(Ω|Rd))α to
the gradient form

´

Ω
|∇u(x)|2dx with domain H1(Ω), see [FKV20].

(ii) The convergence in result of Theorem 5.4 remains true if one replaces the Neumann
condition with the Dirichlet condition, see [FG20].

(iii) Examples of the type of Example 5.2 have been considered in relation to models in
peridynamics, see [DTZ22, Section 4.2] and [BMCP15] for a natural nonlinear setting.

(iv) The assertion of the theorem remains true under the weaker assumption that (gα, ψ)L2(Ωc)

convergences to (g, ψ)L2(∂Ω) for all ψ ∈ H1(Rd).
(v) It is desirable to study Theorem 5.4 under more general assumptions, e.g., under

a weaker assumption than ϕ ∈ C2
b (R

d). A sufficient condition to be expected is
g ∈ H1/2(∂Ω).

Proof. A compactness argument as in [Pon04, Corollary 2.1], see [FG20, Chapter 5], shows
that for certain α0 ∈ (0, 2) there exists a constant positive C > 0 depending only on α0,Ω
and d such that for all v ∈ L2(Ω)⊥ and all α ∈ (α0, 2)

‖v‖2
Vνα(Ω|Rd)

≤ CEα(v, v). (5.4)

In view of the weak convergence, we can assume without lost generality that supα∈(0,2) ‖fα‖L2(Ω) <
∞. This together with the definition of uα along with Lemma 5.3 (i) yields

Eα(uα, uα) =

ˆ

Ω

fα(x)uα(x)dx+

ˆ

Ωc

gα(y)uα(y)dy

≤ ‖uα‖Vνα (Ω|Rd)(‖fα‖L2(Ω) + ‖ϕ‖C2
b (R

d))

≤ C‖uα‖Vνα (Ω|Rd).

Combining this with (5.4), then for a generic constant C > 0 independent of α we have the
following uniform boundedness

‖uα‖Hνα (Ω) ≤ ‖uα‖Vνα(Ω|Rd) ≤ C for all α ∈ (α0, 2) . (5.5)

Recall that, see [Fog21b,FG20], ‖u‖Hνα(Ω)
α→2−−→ ‖u‖H1(Ω) for all u ∈ H1(Ω). Whence from

[KS03, Lemma 2.2] there exists u′ ∈ H1(Ω) and a subsequence αn
n→∞−−−→ 2 such that,

lim
n→∞

(
uαn , v

)
Hναn (Ω)

=
(
u′, v

)
H1(Ω)

.

Where, we recall that

(
w, v

)
Hνα(Ω)

=

ˆ

Ω

w(x)v(x)dx+

¨

ΩΩ

(w(x)− w(y))(v(x)− w(y))να(x− y)dxdy

(
w, v

)
H1(Ω)

=

ˆ

Ω

w(x)v(x)dx+

ˆ

Ω

∇w(x) · ∇v(x)dx .
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In virtue of the asymptotic compactness, see [BBM01, FG20, Pon04] there exists a further
subsequence that we still denote by (αn)n and a function u′′ ∈ H1(Ω) such that ‖uαn −
u′′‖L2(Ω)

n→∞−−−→ 0. It is not difficult to show that u′ = u′′ almost everywhere in Ω, u ∈ H1(Ω)⊥

where we let u = u′, and that for all v ∈ H1(Ω)
¨

ΩΩ

(uαn(x)− uαn(y))(v(x)− v(y))ναn(x− y)dxdy
n→∞−−−→

ˆ

Ω

∇u(x) · ∇v(x)dx . (5.6)

It remains to show that u is the weak solution of the corresponding local Neumann problem.
To this end, we fix v ∈ H1(Ω)⊥, given that Ω has a Lipschitz boundary we let v ∈ H1(Rd)
be an extension of v. The uniform boundedness in (5.5) and the convergence in (5.2) yield

¨

ΩΩc

∣∣(uαn(x)− uαn(y))(v(x)− v(y))
∣∣ναn(x− y)dxdy

≤ C

¨

ΩΩc

(v(x)− v(y))2ναn(x− y)dxdy
n→∞−−−→ 0 .

This combined with (5.6) gives

Eαn(uαn , v)
n→∞−−−→

ˆ

Ω

∇u(x) · ∇v(x)dx .

In particular, since v ∈ H1(Rd) can be arbitrarily chosen, we have the weak convergence

Eαn(uαn, v)
n→∞−−−→

ˆ

Ω

∇u(x) · ∇v(x)dx for all v ∈ H1(Rd).

We know that v ∈ Vνα(Ω|Rd)⊥ for all α ∈ (0, 2), thus by definition of uαn it follows that,

Eαn(uαn , v) =

ˆ

Ω

fαn(x)v(x)dx +

ˆ

Ωc

gαn(y)v(y)dy .

By Lemma 5.3 (ii) and the fact that fαn ⇀ f weakly in L2(Ω), letting n→ ∞ we obtain
ˆ

Ω

∇u(x) · ∇v(x)dx =

ˆ

Ω

f(x)v(x)dx+

ˆ

∂Ω

g(x)v(x)dσ(x) .

In virtue of the uniqueness of the limit u ∈ H1(Ω)⊥, the same reasoning can be applied to

any other subsequence (αn)n with αn
n→∞−−−→ 2 and hence the claimed convergences holds true

for the whole sequence as desired. �

Appendix A.

In this appendix we explain basic properties of translation-invariant nonlocal operators L
driven by the density of a Lévy measure ν : R

d \{0} → [0,∞) satisfying condition (L).
Throughout this section we assume k(x, y) = ν(x− y) for all x 6= y. The main goals include
a definition of Lu as a distribution in Proposition A.2 and the Gauss-Green formula for
nonlocal operators in Proposition A.5.
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A.1. Basics on the operator L. Given k ∈ N, denote Ck
b (R

d) the space of bounded func-
tions of class Ck whose derivatives up to order k are bounded. Recall that for a sufficiently
smooth function v : Rd → R, the operator L defined by

Lv(x) = p.v.

ˆ

Rd

(v(x)− v(y))ν(x−y)dy = lim
ε→0+

Lεv(x)

where

Lεv(x) =

ˆ

Rd \Bε(x)

(v(x)− v(y))ν(x−y)dy (x ∈ R
d; ε > 0).

Here are some basic properties of the operator L.

Proposition A.1. Let u ∈ C2
b (R

d). Then the following properties are satisfied.

(i) The map x 7→ Lu(x) is bounded and uniformly continuous. Moreover,

Lu(x) = −1

2

ˆ

Rd

(u(x+ h) + u(x− h)− 2u(x))ν(h) dh.

(ii) For each ε > 0, the map x 7→ Lεu(x) is uniformly continuous.
(iii) The family (Lεu(x))ε is uniformly bounded and uniformly converges to Lu, i.e.

‖Lεu− Lu‖L∞(Rd)
ε→0−−→ 0.

Proof. Let u ∈ C2
b (R

d). A simple change of variables implies

Lεu(x) = −1

2

ˆ

Rd \Bε(0)

(u(x+ h) + u(x− h)− 2u(x))ν(h) dh.

An application of the fundamental theorem of calculus yields

(u(x+ h) + u(x− h)− 2u(x)) =

ˆ 1

0

[
∇u(x+ th)−∇u(x− th)

]
· h dt

=

ˆ 1

0

ˆ 1

0

2t
[
D2u(x− th+ 2sth) · h

]
· h dsdt .

Since u and its Hessian D2u are bounded functions, we deduce

|u(x+ h) + u(x− h)− 2u(x)| ≤ 2‖u‖C2
b (R

d)(1 ∧ |h|2), x, h ∈ R
d . (A.1)

The integrability of the function h 7→ (1 ∧ |h|2)ν(h) entails the boundedness of x 7→ Lu(x)
and the uniform boundedness of x 7→ Lεu(x). It also allows us to get rid of the principal
value formulation. Furthermore, we can prove the uniform convergence of (Lεu)ε to Lu by

‖Lεu− Lu‖L∞(Rd) ≤ 2‖u‖C2
b (R

d)

ˆ

Bε(0)

(1 ∧ |h|2)ν(h)dh ε→0−−→ 0.

In order to prove the uniform continuity, we fix x, z ∈ R
d close enough, say |x− z| ≤ δ with

0 < δ < 1. Then for every h ∈ R
d, h 6= 0,

2|u(x)− u(z)|+ |u(x+ h)− u(z + h)|+ |u(x− h)− u(z − h)| ≤ 4δ‖u‖C2
b (R

d).
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This combined with (A.1) yields the uniform continuity via the integrability of h 7→ (1 ∧
|h|2)ν(h) as follows,

‖Lu(x)− Lu(z)‖L∞(Rd) ≤ 2‖u‖C2
b (R

d)

ˆ

Rd

(δ ∧ |h|2)ν(h)dh δ→0−−→ 0.

The uniform continuity of x 7→ Lεu(x) follows analogously. �

In order for Lu(x) to be defined, u needs to possess two properties: some regularity in the
neighborhood of the point x and some weighted integrability for |x| → ∞. As shown above,
being C2 in the neighborhood of x is more than sufficient as is boundedness for |x| → ∞.
Let us investigate some mild condition on u as |x| → ∞ that still allows a suitable definition
of Lu. In order to do so, we additionally assume that ν is unimodal.

Proposition A.2. Let ν be a unimodal Lévy measure. Define a weight ν̂ on R
d by ν̂(x) =

ν(1
2
(1 + |x|)).
(i) For u ∈ C2(Rd) ∩ L1(Rd; ν̂), the expression Lu(x) exists for every x ∈ R

d.
(ii) Assume that ν has full support. For u ∈ L1(Rd; ν̂) the expression Lu is defined in the

distributional sense via the mapping ϕ 7→ 〈Lu, ϕ〉 = (u, Lϕ)L2(Rd).

(iii) Assume that ν satisfies the scaling condition (2.5). Let Ω ⊂ R
d be open and bounded

and u ∈ Vν(Ω|Rd). Then Lu is defined in the distributional sense.

Remark A.3. Note that ν̂ ∈ L1(Rd) ∩ L∞(Rd) and that L1(Rd; ν̂) contains L∞(Rd).

Example A.4. If ν(h) = |h|−d−α for some α ∈ (0, 2), then ν̂(h) ≍ (1 + |h|)−d−α.

Proof. For the proof of (i) we decompose the integral in the definition of Lu(x) into the two
domains {|y| ≤ 2|x| + 1} and {|y| > 2|x| + 1}. In the first domain we employ the Taylor
formula as in the proof of Proposition A.1. For y in the second domain we observe

|x− y| ≥ |y| − |x| ≥ |y|
2

+
|y|
2

− |x| ≥ |y|+ 1

2
.

Thus, for y from the second domain, by property Definition 2.4 we conclude ν(x−y) ≤ cν̂(y)
and thus

ˆ

{|y|>2|x|+1}

|u(x)|ν(x−y)dy +
ˆ

{|y|>2|x|+1}

|u(y)|ν(x−y)dy ≤ Kν |u(x)|+ ‖u‖L1(Rd;ν̂)

For the proof of (ii), let ϕ ∈ C∞
c (Rd) be supported in BR(0) for some R ≥ 1. We claim

|Lϕ(x)| ≤ C‖ϕ‖C2
b (R

d)ν̂(x) for all x ∈ R
d . (A.2)

with some constant C = C(R, d, ν) depending only on R, d and ν. Indeed, suppose |x| ≥ 4R,

so that ϕ(x) = 0. Since |x−y| ≥ |x|
2
+R ≥ 1

2
(1+|x|) for y ∈ BR(0), the property Definition 2.4

implies ν(x−y) ≤ cν̂(x). Accordingly,

|Lϕ(x)| ≤
ˆ

BR(0)

|ϕ(y)|ν(x−y)dy ≤ c|BR(0)|‖ϕ‖C2(Rd)ν̂(x).

Whereas, if |x| ≤ 4R the proof of (A.2) is complete using (A.1) as follows. Since 1
2
(1+ |x|) ≤

4R we have ν̂(x) ≥ c1 for an appropriate constant c1 > 0 depending on R and ν. Thus we
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conclude

|Lϕ(x)| ≤ 4Θ‖ϕ‖C2
b (R

d) ≤ c−1
1 4Θ‖ϕ‖C2

b (R
d)ν̂(x)

with Θ =
´

Rd(1 ∧ |h|2)ν(h)dh. Note that in case of the fractional Laplace operator the
estimate (A.2) is analogous to [FW12, Lemma 2.1]. Finally, (A.2) yields

|(u, Lϕ)L2(Rd)| ≤ C‖ϕ‖C2
b (R

d)

ˆ

Rd

|u(x)|ν̂(x)dx

This shows that Lu is a distribution when u ∈ L1(Rd; ν̂). With regard to (iii) let Ω ⊂ R
d be

open and bounded. We show that the embedding Vν(Ω|Rd) →֒ L1(Rd; ν̂) is continuous under
the additional scaling assumption (2.5). Indeed, for u ∈ Vν(Ω|Rd) we assume Ω ⊂ BR(0) for
some R ≥ 1. Then |x − y| ≤ R(1 + |x|) for all x ∈ R

d and all y ∈ Ω so that by (2.5) and
Definition 2.4 we deduce ν̂(x) ≤ Cν(R(1 + |x|)) ≤ cCν(x−y). Here c, C > 0 are constants
independent of x and y. Proceeding as in Lemma 2.16, one arrives at the estimate

ˆ

Rd

|u(x)|ν̂(x)dx ≤ C‖u‖Vν(Ω|Rd).

Therefore, regarding the preceding arguments Lu is also a distribution whenever u ∈ Vν(Ω|Rd).
�

A.2. Gauss-Green type formula. Having at hand a nonlocal analog of the normal deriva-
tive as in Definition 4.1, it makes sense to study a formula that resembles the classical Gauss-
Green formula. Such formulas have been established in several contexts. See [DGLZ13]
for numerous identities of a nonlocal vector calculus in the case of bounded kernels and
[DROV17] for the case of the fractional Laplace operator. Recall the classical Gauss-Green
formula (see [Neč67, Chap 3], [Tri92, Appendix A.3] or [BF13, Theorem III.1.8]) says for all
u ∈ H2(Ω) and v ∈ H1(Ω),

ˆ

Ω

(−∆)u(x)v(x) dx =

ˆ

Ω

∇u(x) · ∇v(x) dx−
ˆ

∂Ω

γ1u(x)γ0v(x) dσ(x). (A.3)

A reasonable explanation to this terminology is given in the Lemma 5.3. For a function
u ∈ C1

b (R
d) we know

|u(x)− u(y)| ≤ 2‖u‖C1
b (R

d)(1 ∧ |x− y)|) (x, y ∈ R
d) , (A.4)

which implies
¨

(Ωc×Ωc)c

(
u(x)− u(y)

)2
ν(x−y)dx dy ≤ 8‖u‖2

C1
b (R

d)

¨

ΩRd

(1 ∧ |x− y|2) ν(x−y)dx dy <∞.

Proposition A.5 (Gauss-Green type formula). Let Ω be open and bounded. For u ∈
C2

b (R
d) and v ∈ C1

b (R
d)
ˆ

Ω

[Lu(x)]v(x)dx = E(u, v)−
ˆ

Ωc

Nu(y)v(y)dy. (A.5)

In particular, by choosing v = 1 one deduces
ˆ

Ω

Lu(x)dx = −
ˆ

Ωc

Nu(y)dy. (A.6)
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Proof. Let u ∈ C2
b (R

d) and v ∈ C1
b (R

d). With the aid of Proposition A.1 we can write
ˆ

Ω

[Lu(x)]v(x)dx = lim
ε→0

ˆ

Ω

v(x)dx

ˆ

Rd \Bε(x)

((u(x)− u(y))ν(x−y) dy

= lim
ε→0

ˆ

Ω

ˆ

Ω\Bε(x)

(u(x)− u(y))v(x)ν(x−y) dydx+
ˆ

Ω

ˆ

Ωc

(u(x)− u(y))v(x)ν(x−y) dydx

On one side, by a symmetry argument we have

lim
ε→0

ˆ

Ω

ˆ

Ω\Bε(x)

(u(x)− u(y))v(x)ν(x−y) dydx = lim
ε→0

¨

Ω×Ω∩{|x−y|>ε}

(u(x)− u(y))v(x)ν(x−y) dydx

= lim
ε→0

1

2

¨

Ω×Ω∩{|x−y|>ε}

(u(x)− u(y))(v(x)− v(y))ν(x−y) dydx

=
1

2

¨

ΩΩ

(u(x)− u(y))(v(x)− v(y))ν(x−y) dydx

where one gets rid of the principal value using the estimate (A.4) applied to u and v. On
the other side, with the help of Fubini’s Theorem we have
¨

ΩΩc

(u(x)− u(y))v(x)ν(x−y) dydx

=

¨

ΩΩc

(u(x)− u(y))(v(x)− v(y))ν(x−y) dydx+
ˆ

Ωc

v(y)dy

ˆ

Ω

(u(x)− u(y))ν(x−y) dx

=
1

2

¨

ΩΩc

(u(x)− u(y))(v(x)− v(y))ν(x−y) dydx+ 1

2

¨

ΩcΩ

(u(x)− u(y))(v(x)− v(y))ν(x−y) dydx

−
ˆ

Ωc

Nu(y)v(y)dy .

Altogether inserted in the initial relation provide the desired relation. �

As a direct consequence of Proposition A.5 we have the following.

Corollary A.6 (Second Gauss-Green identity). For all u, v ∈ C2
b (R

d) we have
ˆ

Ω

v(x)Lu(x)− u(x)Lv(x) dx =

ˆ

Ωc

u(y)N v(y)− v(y)Nu(y) dy. (A.7)

We now look at certain aspect of the dual of the trace space Tν(Ω
c) in relation with the

nonlocal normal derivative operator N .

Theorem A.7. For any linear continuous form ℓ : Tν(Ω
c) → R there exists a function

w ∈ Vν(Ω|Rd) such that for every v ∈ C∞
c (Ω

c
)

ℓ(v) =

ˆ

Ωc

Nw(y)v(y)dy.
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In particular, given a measurable function g : Ωc → R if the linear mapping ℓg : v 7→
´

Ωc g(y)v(y)dy is continuous on Tν(Ω
c) then, there exists w ∈ Vν(Ω|Rd) such that g = Nw

almost everywhere on Ωc.

Proof. Let ℓ ∈ Tν(Ω
c)′ then because of the continuity of the trace operator Tr, the linear

for ℓ ◦ Tr is also continuous on Vν(Ω|Rd). By Riesz’s representation theorem there exists
w ∈ Vν(Ω|Rd) such that ℓ ◦ Tr(v) = (v, w)(Vν(Ω|Rd) for each v ∈ Vν(Ω|Rd). In particular, for

v ∈ C∞
c (Ω

c
) identified with its zero extension on Ω so that Tr(v) = v, we remain with

ℓ(v) =

ˆ

Ω

w(x)v(x)dx+
1

2

¨

(Ωc×Ωc)c

(w(x)− w(y))(v(x)− v(y))ν(x−y) dx dy

=

ˆ

Ωc

v(y)dy

ˆ

Ω

(w(y)− w(x))ν(x−y) dx =

ˆ

Ωc

Nw(y)v(y)dy.

Furthermore, if g : Ωc → R is such that ℓg is continuous on Tν(Ω
c) then by the above

computation, it follows that g = Nw almost everywhere on Ωc since

ˆ

Ωc

g(y)v(y)dy =

ˆ

Ωc

Nw(y)v(y)dy for all v ∈ C∞
c (Ω

c
).

�

Remark A.8. The second statement of Theorem A.7 particularly suggests that the space
of all measurable functions g : Ωc → R for which linear the form v 7→

´

Ωc g(y)v(y)dy is

continuous on Tν(Ω
c) is contained in N (Vν(Ω|Rd)) (the range of N ).

Remark A.9. The nonlocal normal derivative Nu of a function measurable u : Rd → R

can be thought of as the restriction of the regional operator on Ω associated with k(x, y) =
ν(x − y) on R

d \Ω. It might be interesting to know some situations where the pointwise
definition Nu(x) makes sense at least almost everywhere. It is straightforwards to verify
the following: (i) if u ∈ L∞(Ω) then Nu(x) exists for almost every x ∈ R

d \Ω. (ii) if
u ∈ Vν(Ω|Rd) ∩ L2

loc(R
d) then u ∈ L2

loc(R
d \Ω), (iii) If u ∈ Vν(Ω|Rd) and ν is unimodal

with full support then u ∈ L2
loc(R

d \Ω) (in particular if ν(h) = |h|−d−α, α ∈ (0, 2)), (iv)
more generally, if u ∈ Vν(Ω|Rd) then u ∈ L2(Rd \Ω, w−1(x)dx) where w(x) =

´

Ω
ν(x− y)dy,

x ∈ R
d \Ω.
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