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BANACH-SAKS THEOREM FOR L1
REVISITED

GUY FOGHEM†

Abstract. The Banach-Saks property is an important tool in analysis with applications ranging from partial
differential equations (PDEs) to calculus of variations and probability theory. We survey the Banach-Saks property

for Lp-spaces, with a particular emphasis on the case where p = 1. In other words, we revisit the celebrated result by
W. Szlenk (1965) in a more general context, demonstrating that L1-spaces possess the weak Banach-Saks property.

1. Introduction

A Banach space X satisfies the Banach-Saks property (resp. the weak Banach-Saks property) if every bounded
sequence (xn)n ⊂ X (resp. weakly converging to x in X) admits a subsequence (xnj

)j strongly converging in the

Cesáro sense, that is, ‖xnj
− x‖X

j→∞
−−−→ 0, x ∈ X where

xnj
=

1

j

j
∑

k=1

xnk
.

This variation in the definition irrelevant if X is reflexive. Namely, in a reflexive Banach space the Banach-Saks
property and the weak Banach-Saks property are equivalent. For a general Banach space, because weak converging
sequence are bounded, the weak Banach-Saks property is implied by the Banach-Saks property but the converse is
not always true. Notable examples of Banach spaces not satisfying the Banach-Saks property include L1−spaces,
this is because they are not reflexive. Indeed, a result of T. Nishiura and D. Waterman [NW63] asserts that a
Banach space satisfying the Banach-Saks property is automatically reflexive (interestingly, the converse is not true,
as constructions of reflexive Banach spaces not satisfying the Banach-Saks property are provided by B. Beauzamy
and A. Baernstein in [Bae72,Bea79]). However, it was recognized by Szlenk [Szl65] that L1(0, 1) enjoys the weak
Banach-Saks property. It turns out that L1−spaces are perfect examples of a non-reflexive Banach space satisfying
the weak Banach-Saks property. The aim of this note is to address the weak Banach Saks property of L1−spaces in
the general context. From now on, we write Lp(X), 1 ≤ p ≤ ∞ in the sequel to tacitly denote the usual Lebesgue
spaces associated with on a measure space (X,A, µ), i.e., A is a σ-algebra on a set X and µ is a positive measure
on A. We say that a sequence (un)n ⊂ L1(X) converges weakly to u in L1(X) and we write un ⇀ u if

(v, un − u)(L1(X))′,L1(X)
n→∞
−−−−→ 0 for all v ∈ (L1(X))′,

where (·, ·)(L1(X))′,L1(X) is the dual paring between L1(X) and its dual (L1(X))′. In passing, we recall the well-

known fact from the Riesz representation for L1(X) (see for instance [FL07, Corollary 2.41 & Remark 2.42] or the
more recent proof in [Shi18]), viz., if µ is σ-finite then we can identify (L1(X))′ ≡ L∞(X). In the latter case, the
aforementioned weak convergence L1(X) boils down to the following condition

ˆ

X

un(x)v(x)dµ(x)
n→∞
−−−−→

ˆ

X

u(x)v(x)dµ(x) for all v ∈ L∞(X).

Theorem 1.1. The space L1(X) enjoys the weak Banach-Saks property, i.e., for any sequence un ⇀ u weakly in

L1(X), there is a subsequence (unj
)j such that ‖unj

− u‖L1(X)
j→∞
−−−→ 0.

Interestingly, Theorem 1.1 is reminiscent of the renowned result by W. Szlenk [Szl65], who originally established
Theorem 1.1 for the space L1(0, 1) endowed with the Lebesgue measure. Notably, the argument of W. Szlenk [Szl65]
carries out to the space L1(X) when the measure µ is finite, i.e., µ(X) < ∞. It is worth emphasizing, however,
that we do not impose any restrictions on the measure µ. In fact, Theorem 1.1 is a straightforward consequence of
the following Theorem 1.2 which is more general.
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Theorem 1.2. Assume un ⇀ u weakly in L1(X). There is a subsequence (unj
)j such that

sup
θ:N→N, s.t.

θ(τ)<θ(τ+1)

∥

∥

∥

1

j

j
∑

k=1

unθ(k)
− u

∥

∥

∥

L1(X)

j→∞
−−−→ 0.

The supremum is performed over all strictly increasing mapping θ : N → N.

Our proof of the theorem 1.2 is based on the Dunford-Pettis characterization of the weak convergence in L1(X)
and a refinement of the arguments of Szlenk’s proof [Szl65]. Let us comment on some related works in the
literature. The Banach-Saks phenomenon was first established by S. Banach and S. Saks [BS30] for the space
Lp(0, 1), 1 < p < ∞. For the convenience of the reader, we present their proof for Lp(X), 1 < p < ∞, in Appendix
A (Theorem A.3). This result was subsequently extended to a uniform convex space by S. Kakutani [Kak39]
(see the proof in [Die84, P.124]) and N. Okada [Oka84] who proved that a Banach space whose dual is uniformly
convex also features the Banach-Saks property (see Theorem A.2 and its proof below). As mentioned earlier, due
to the lack of reflexivity, the Banach-Saks property fails in general1 for the space L1(X), but it was shown by
W. Szlenk [Szl65] that L1(0, 1) rather satisfies the weak Banach-Saks property. As a matter of fact, an intriguing
anecdote concerning the Banach-Saks phenomenon is related to the original work of Banach and Saks [BS30].
Indeed, Banach and Saks claimed the failure of the weak Banach property for L1(0, 1) and also claimed to have
generated a weakly null sequence in L1(0, 1) without any subsequences having strongly converging in the Cesáro
sense. Later, the proof of W. Szlenk [Szl65] however, revealed the error in the assertion of Banach and Saks [BS30].
For the sake of completeness, it is important to mention that in the case p = ∞, even the weak Banach-Saks
property fails in general for the space L∞(X) and especially for the space C[0, 1]. This was first established by J.
Schreier in [Sch30] and later extended by N. Farnum in [Far74] for general spaces C(S) where S is a metric space.
The result by W. Szlenk [Szl65] sparkled significant interests in the area of probability theory, where one sometime
wishes to have the pointwise convergence almost everywhere of random variables instead of strong convergence.
The first step in this direction, attributed to J. Komlós [Kom67] (see a recent proof in [Bog07, Theorem 4.7.24])
infers that if µ(X) < ∞, then a bounded sequence (un)n in L1(X) admits a subsequence (unj

)j and u ∈ L1(X) such
that for all strictly increasing mapping θ : N → N, the sequence (unθ(j)

)j converges to u almost everywhere in the

Cesàro sense, that is, unθ(j)
→ u almost everywhere in X . This result was improved by D. Aldous in [Ald77]. Much

later, I. Berkes [Ber90] extended the result of J. Komlós [Kom67] and D. Aldous in [Ald77] to the space Lp(X),
1 ≤ p < ∞ with µ(X) < ∞; see [Woj91, Theorem 29, P. 102] for a detailed proof. Last but certainly not least, the
weak Banach-Saks property represents an enhancement of the sequential Mazu’s lemma [ET76, P. 6], which asserts
that any weakly convergent sequence in a normed space admits a sequence of convex combinations of its members
that converges strongly to the same limit. However, the major limitation of this result is that, because it uses the
Hahn-Banach theorem, the convex combinations are not explicitly determined.

2. Proof of the main result

Analogously to Theorem 1.2, Hilbert spaces satisfy a stronger notion called the uniform Banach-Saks property.
The proof is adapted from those of [Szl65,RSN90].

Theorem 2.1. A Hilbert space (H, (·, ·)H) satisfies the uniform Banach-Saks property, i.e., every bounded sequence

(xn)n ⊂ H admits a subsequence (xnj
)j and x ∈ H such that

lim
j→∞

sup
θ:N→N, s.t.

θ(τ)<θ(τ+1)

∥

∥

∥

1

j

j
∑

k=1

xnθ(k)
− x

∥

∥

∥

H
= 0.

In particular, we have ‖xnj
− x‖H

j→∞
−−−→ 0.

Proof. A bounded sequence (xn)n ⊂ H say supn≥1 ‖xn‖H ≤ r, for some r > 0, has a weak converging subsequence.
Without loss of generality, we assume that (xn)n ⊂ H weakly converges to x in H and that x = 0. Put xn1 = x1

assume xnj−1 is given, j ≥ 2. Since (xn)n converges weakly to x = 0, we choose nj > nj−1 such that

|(xnk
, xnj

)H | ≤
1

j + 1
for every k = 1, 2, · · · , j − 1.

A strictly increasing θ : N → N satisfies θ(j) ≥ j. By construction, the sequence (xnθ(j)
)j satisfies

1In some pathological cases L1(X) might be reflexive and enjoy the Banach-Saks property as well. A blatant instance is obtained

by considering L1(Xd, µ) ≡ R
d where µ is the counting measure on Xd = {1, 2, · · · , d} and obviously ‖u‖L1(Xd,µ)

=
∑d

i=1 |u(i)|.
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∥

∥

∥

j
∑

k=1

xnθ(k)

∥

∥

∥

2

H
=

j
∑

k=1

‖xnθ(k)
‖2H + 2

j
∑

i=2

i−1
∑

k=1

(xnθ(k)
, xnθ(i)

)H

≤ jr2 + 2

j
∑

i=2

i− 1

θ(i) + 1
≤ jr2 + 2j.

Finally, the sought result follows since we obtain

sup
θ:N→N, s.t.

θ(τ)<θ(τ+1)

∥

∥

∥

1

j

j
∑

k=1

xnθ(k)

∥

∥

∥

2

H
≤

r2 + 2

j

j→∞
−−−→ 0.

�

Next, we need the Dunford-Pettis criterion for weak compactness in L1(X). This criterion was originally established
by N. Dunford and B. Pettis in [Dun39, DP40]. A more contemporary version of the Dunford-Pettis theorem,
credited to L. Ambrosio, N. Fusco and D. Pallara [AFP00] with a meticulous proof can be found in [FL07, Theorem
2.54]; see also the versions in [Bog07, Theorem 4.7.18 & 4.7.20]. To facilitate the statement of the result, it is
convenient to recall the notions of tightness and uniform integrability. Let F ⊂ L1(X) be a subset. The set F is
uniformly integrable (or equiintegrable) if

lim
µ(E)→0

sup
u∈F

ˆ

E

|u(x)| dµ(x) = 0.

That is, to be strict, for every ε > 0 there is δ > 0 such that for a measurable set E ∈ A with µ(E) < δ,
ˆ

E

|u(x)| dµ(x) < ε for all u ∈ F .

The set F is tight if

inf
µ(E)<∞

sup
u∈F

ˆ

X\E

|u(x)| dµ(x) = 0.

That is, for every ε > 0 there exists a measurable set E such that 0 < µ(E) < ∞ and
ˆ

X\E

|u(x)| dµ(x) < ε for all u ∈ F .

Theorem 2.2 (Dunford-Pettis). For sequence (un)n ⊂ L1(X), the following assertions are equivalent.

(i) The sequence (un)n is relatively weakly compact in L1(X).
(ii) The sequence (un)n is bounded in L1(X), uniformly integrable and tight.

A fundamental consequence of Theorem 2.2 is that (see [FL07, Corollary 2.58]) a bounded sequence (un)n ⊂ L1(X)
weakly converges to u ∈ L1(X) if and only if

ˆ

A

un(x)dµ(x)
n→∞
−−−−→

ˆ

A

u(x)dµ(x) for every measurable set A ∈ A.

In order to proof the main Theorem 1.2 we need the following ancillary result.

Theorem 2.3. Let un ⇀ 0 in L1(X) then for ε > 0 there is a subsequence (nε,j)j ≡ (nj)j such that

lim sup
j→∞

sup
θ:N→N, s.t.

θ(τ)<θ(τ+1)

∥

∥

∥

1

j

j
∑

k=1

unθ(k)

∥

∥

∥

L1(X)
≤ ε.

Proof. The weak convergence (un)n is bounded say supn≥1 ‖un‖L1(X) ≤ r. By tightness and uniform-integrability(see
Theorem 2.2), consider X0 ⊂ X with µ(X0) < ∞ and δ > 0 so that we have

sup
n≥1

ˆ

X\X0

|un(x)|dµ(x) ≤
ε

6
,

sup
n≥1

ˆ

A

|un(x)|dµ(x) ≤
ε

6
whenever µ(A) ≤ δ.
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Define An,m = {x ∈ X0 : |un(x)| ≥ m} so that

sup
n≥1

|An,m| ≤
1

m
sup
n≥1

‖un‖L1(X) ≤
r

m

m→∞
−−−−→ 0.

Next, choose m0 such that supn≥1 |An,m| ≤ δ whenever m ≥ m0 so that

sup
n≥1

ˆ

An,m0

|un(x)|dµ(x) ≤
ε

6
.

Consider the sequence (vn)n defined as follows

vn(x) =

{

un(x) x ∈ An,m0 ∪X \X0,

0 x ∈ X0 \An,m0 .

On the one hand, the sequence (vn)n verifies the estimate

sup
n≥1

‖vn‖L1(X) ≤ sup
n≥1

ˆ

X\X0

|vn(x)|dµ(x) + sup
n≥1

ˆ

An,m0

|vn(x)|dµ(x) <
ε

3
. (1)

On the other hand, it follows from the definition of An,m0 that

sup
n≥1

ˆ

X

|un(x)− vn(x)|
2dµ(x) = sup

n≥1

ˆ

X0\An,m0

|un(x)|
2dµ(x) ≤ µ(X0 \An,m0)m

2
0.

That is the sequence (un − vn)n is bounded in L2(X). In view of Theorem 2.1, there is a subsequence (nj)j and
such that (unj

− vnj
)j converges in the weak sense in L2(X) to some w and we also have

lim
j→∞

sup
θ:N→N, s.t.

θ(τ)<θ(τ+1)

∥

∥

∥

1

j

j
∑

k=1

(unθ(k)
− vnθ(k)

)− w
∥

∥

∥

L2(X)
= 0.

From the latter we find that (unθ(k)
− vnθ(k)

) = w = 0 a.e. on X \X0 and we deduce

sup
θ:N→N, s.t.

θ(τ)<θ(τ+1)

∥

∥

∥

1

j

j
∑

k=1

(unθ(k)
− vnθ(k)

)− w
∥

∥

∥

L1(X)
≤ µ(X0)

1/2 sup
θ:N→N, s.t.

θ(τ)<θ(τ+1)

∥

∥

∥

1

j

j
∑

k=1

(unθ(k)
− vnθ(k)

)− w
∥

∥

∥

L2(X)
→ 0.

Note that w ∈ L1(X) since ‖w‖L1(X) ≤ µ(X0)
1/2‖w‖L2(X). Therefore, there is j0 ≥ 1 such that

sup
θ:N→N, s.t.

θ(τ)<θ(τ+1)

∥

∥

∥

1

j

j
∑

k=1

(unθ(k)
− vnθ(k)

)− w
∥

∥

∥

L1(X)
≤

ε

3
for every j ≥ j0. (2)

Furthermore, for g ∈ L∞(X) (in particular g = 1A, A ∈ A) we have ‖1X0g‖
2
L2(X) ≤ µ(X0)‖g‖

2
L∞(X) < ∞ so that

1X0g ∈ L2(X). The weak convergence of the sequence (unj
− vnj

)j in L2(X) implies
ˆ

X

(unj
− vnj

− w)(x)g(x)dµ(x) =

ˆ

X0

(unj
− vnj

− w)(x)g(x)dµ(x)

=

ˆ

X

(unj
− vnj

− w)(x)(1X0g)(x)dµ(x)
j→∞
−−−→ 0.

Therefore, unj
− vnj

⇀ w and unj
⇀ 0 weakly in L1(X) and hence vnj

⇀ −w weakly in L1(X). The weak

convergence in L1(X) and the estimate (1) yield

‖w‖L1(X) = ‖w‖L1(X0) ≤ lim inf
j→∞

‖vnj
‖L1(X) <

ε

3
.

Altogether with the estimate (2), for every j ≥ j0 we arrive at the following estimate

sup
θ:N→N, s.t.

θ(τ)<θ(τ+1)

∥

∥

∥

1

j

j
∑

k=1

unθ(k)

∥

∥

∥

L1(X)
≤ sup

θ:N→N, s.t.

θ(τ)<θ(τ+1)

∥

∥

∥

1

j

j
∑

k=1

(unθ(k)
− vnθ(k)

)− w
∥

∥

∥

L1(X)

+ sup
θ:N→N, s.t.

θ(τ)<θ(τ+1)

1

j

j
∑

k=1

(‖vnθ(k)
‖L1(X) + ‖w‖L1(X)) < ε.

4



We finally obtain the sought estimate

lim sup
j→∞

sup
θ:N→N, s.t.

θ(τ)<θ(τ+1)

∥

∥

∥

1

j

j
∑

k=1

unθ(k)

∥

∥

∥

L1(X)
≤ ε.

�

Proof of Theorem 1.2. We can assume u = 0. By Theorem 2.3, one can iteratively find a nested family of subse-
quences (ni,j)j , i ≥ 1 with the property that (ni+1,j)j is a subsequence of (ni,j)j and there holds

sup
θ:N→N, s.t.

θ(τ)<θ(τ+1)

∥

∥

∥

1

j

j
∑

k=1

uni,θ(k)

∥

∥

∥

L1(X)
≤

1

i
. (3)

In particular if we fix ℓ ≥ 1 and a map θ : N → N strictly increasing, it is clear that for each k ≥ 1, (nθ(k+ℓ),θ(j))j is

a subsequence of (nθ(ℓ),j)j , namely there is θℓk : N → N strictly increasing such that nθ(k+ℓ),θ(j) = nθ(ℓ),θℓ
k
(j), j ≥ 1.

Observing that

nℓ,θℓ
k+1(j)

= nθ(k+ℓ+1),θ(j) = nθ(k+ℓ),θk+ℓ
1 (θ(j)) = nℓ,θℓ

k
◦θk+ℓ

1 (j),

we can legitimately identify θℓk+1(j) = θℓk(θ
k+ℓ
k (j)). We have θℓk+1(j) = θℓk(θ

k+ℓ
1 (j)) ≥ θℓk(j), since θk+ℓ

1 (j) ≥ j.

Hence, taking j = k + ℓ+ 1 then as θℓk is strictly increasing, we get

θℓk+1(k + ℓ+ 1) ≥ θℓk(k + ℓ+ 1) > θℓk(k + ℓ)

In other words the mapping θ∗ : N → N with θ∗(k) = θℓk(k + ℓ) is strictly increasing. As a result, taking into
account nθ(k+ℓ),θ(k+ℓ) = nθ(ℓ),θℓ

k
(k+ℓ) = nθ(ℓ),θ∗(k) and the estimate (3) one deduces the following

lim sup
j→∞

∥

∥

∥

1

j

j
∑

k=1

unθ(k+ℓ),θ(k+ℓ)

∥

∥

∥

L1(X)
= lim sup

j→∞

∥

∥

∥

1

j

j
∑

k=1

unθ(ℓ),θ∗(k)

∥

∥

∥

L1(X)

≤ lim sup
j→∞

sup
θ:N→N, s.t.

θ(τ)<θ(τ+1)

∥

∥

∥

1

j

j
∑

k=1

unθ(ℓ),θ(k)

∥

∥

∥

L1(X)
<

1

θ(ℓ)
≤

1

ℓ
,

where recall that θ(j) ≥ j, j ≥ 1. On the other hand, we have

∥

∥

∥

1

j

j
∑

k=1

unθ(k),θ(k)

∥

∥

∥

L1(X)
≤

∥

∥

∥

1

j

ℓ
∑

k=1

unθ(k),θ(k)

∥

∥

∥

L1(X)
+
∥

∥

∥

1

j − ℓ

j
∑

k=ℓ+1

unθ(k),θ(k)

∥

∥

∥

L1(X)

=
∥

∥

∥

1

j

ℓ
∑

k=1

unθ(k),θ(k)

∥

∥

∥

L1(X)
+
∥

∥

∥

1

j − ℓ

j−ℓ
∑

k=1

unθ(k+ℓ),θ(k+ℓ)

∥

∥

∥

L1(X)
.

Using this and the fact that
∑ℓ

k=1 ‖unθ(k),θ(k)
‖L1(X) ≤ ℓ supn≥1 ‖un‖L1(X) ≤ ℓr we get

lim sup
j→∞

sup
θ:N→N, s.t.

θ(τ)<θ(τ+1)

∥

∥

∥

1

j

j
∑

k=1

unθ(k),θ(k)

∥

∥

∥

L1(X)
≤ lim sup

j→∞
sup

θ:N→N, s.t.

θ(τ)<θ(τ+1)

∥

∥

∥

1

j − ℓ

j−ℓ
∑

k=1

unθ(k+ℓ),θ(k+ℓ)

∥

∥

∥

L1(X)

= lim sup
j→∞

sup
θ:N→N, s.t.

θ(τ)<θ(τ+1)

∥

∥

∥

1

j

j
∑

k=1

unθ(k+ℓ),θ(k+ℓ)

∥

∥

∥

L1(X)
≤

1

ℓ
.

Given that ℓ ≥ 1 is arbitrary, letting ℓ → ∞ yields

lim
j→∞

sup
θ:N→N, s.t.

θ(τ)<θ(τ+1)

∥

∥

∥

1

j

j
∑

k=1

unθ(k),θ(k)

∥

∥

∥

L1(X)
= lim sup

j→∞
sup

θ:N→N, s.t.

θ(τ)<θ(τ+1)

∥

∥

∥

1

j

j
∑

k=1

unθ(k),θ(k)

∥

∥

∥

L1(X)
= 0.

Finally the desired subsequence (unj
)j is obtained by taking that diagonal sequence unj

= unj,j
. �
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Appendix A.

Theorem A.1 (S. Kakutani [Kak39]). A uniformly convex Banach space X has Banach-Saks property.

The result by P. Enflo [Enf72, Corollary 4] implies that a Banach space is uniformly convexfiable2 if and only if its
dual is uniformly convexifiable. Thus Theorem A.1 can be recast as the following Theorem A.2.

Theorem A.2 (N. Okada [Oka84]). A Banach space X whose dual X ′ is uniformly convex has the Banach-Saks

property.

We present an elegant proof of Theorem A.2 due to N. Okada [Oka84] based on the duality mapping of X , viz.,
the map ϕ : X → X ′ verifying ϕ(0) = 0 and

(ϕ(x), x) = ‖x‖X‖ϕ(x)‖X′ = ‖x‖2X ,

where (·, ·) is the dual pairing of X and X ′. The existence of ϕ(x) ∈ X ′ is a consequence of the Hahn-Banach
theorem, whereas since X ′ is uniformly convex, it can be readily shown that the uniqueness follows from the strict
convexity of X ′. Furthermore, the uniqueness implies that ϕ(λx) = λϕ(x), λ ∈ R, while uniform convexity of X ′

implies that ϕ : X → X ′ is uniformly continuous on bounded sets; see for instance [Chi09, Section 5.4] or [Kat67].

Proof. As X ′ uniform convex implies X ′ is reflexive which is equivalent to says X . I t suffices to prove the weak
Banach-Saks property. A sequence (xn)n ⊂ weakly converging to x in X is bounded, say (xn)n ⊂ BX(0, r) :=
{x ∈ X : ‖x‖X ≤ r} for some r > 0. Without loss of generality, assume x = 0. Put xn1 = x1 assume xnj−1 is

given, j ≥ 2, and put Sj−1 =
∑j−1

k=1 xnk
. Since ϕ(Sj−1) ∈ X ′ and (xn)n converges weakly to x = 0, we choose

nj > nj−1 and hence construct the sequence (xnj
)j such that |(ϕ(Sj−1), xnj

)| ≤ 1. Since ϕ is uniformly continuous
on BX(0, r) for ε > 0 there is δ > 0 such that ‖ϕ(x)− ϕ(y)‖X′ < ε/r wherever x, y ∈ BX(0, r) and ‖x− y‖X ≤ δ.
Fix j > j0 with j0 ≥ r/δ, then 1

j ‖Sj − Sj−1‖X ≤ r
j0

≤ δ. Whence, we have

∣

∣

(

ϕ
(Sj

j

)

− ϕ
(Sj−1

j

)

, Sj − Sj−1

)∣

∣ ≤ ‖xnj
‖X

∥

∥ϕ
(Sj

j

)

− ϕ
(Sj−1

j

)∥

∥

X′
≤

rε

r
= ε.

That is, using the formula ϕ(λx) = λϕ(x) we obtain
∣

∣

(

ϕ(Sj)− ϕ(Sj−1), Sj − Sj−1

)
∣

∣ ≤ jε.

The relations (ϕ(x), x) = ‖x‖X‖ϕ(x)‖X′ and ‖x‖X = ‖ϕ(x)‖X′ yield
(

ϕ(x) − ϕ(y), x− y
)

=
(

‖x‖X − ‖y‖X
)2

X
+
[

‖x‖X‖y‖X − (ϕ(x), y)
]

+
[

‖x‖X‖y‖X − (ϕ(y), x)
]

.

Taking into account the fact that, (ϕ(x), y) ≤ ‖ϕ(x)‖X′‖y‖X = ‖x‖X‖y‖X , it follows that
(

ϕ(x) − ϕ(y), x− y
)

≥
[

‖x‖X‖y‖X − (ϕ(y), x)
]

≥ 0.

Accordingly, since Sj − Sj−1 = xnj
we find that

0 ≤ ‖Sj‖X‖Sj−1‖X − ‖Sj−1‖
2
X − (ϕ(Sj−1), xnj

) ≤
(

ϕ(Sj)− ϕ(Sj−1), Sj − Sj−1

)

≤ jε.

Given that (ϕ(Sj−1), xnj
) ≤ 1, by definition of xnj

we get

‖Sj‖X‖Sj−1‖X − ‖Sj−1‖
2
X ≤ jε+ (ϕ(Sj−1), xnj

) ≤ jε+ 1.

It follows that, for all j > j0 we have

‖Sj‖
2
X − ‖Sj−1‖

2
X =

(

‖Sj‖X − ‖Sj−1‖X
)2

+ 2
(

‖Sj‖X‖Sj−1‖X − ‖Sj−1‖
2
X

)

≤ ‖xnj
‖2X + 2(jε+ 1) ≤ r2 + 2(jε+ 1).

Whence, summing both side gives

‖Sj‖
2
X − ‖Sj0‖

2
X =

j
∑

k=j0+1

‖Sk‖
2
X − ‖Sk−1‖

2
X ≤ jr2 + 2j(jε+ 1).

This implies that

lim sup
j→∞

1

j2
‖Sj‖

2
X ≤ lim sup

j→∞

1

j2
‖Sj0‖

2
X +

r2

j
+ 2ε+

2

j
≤ 2ε.

2A Banach space is uniformly convexifiable if it can be equipped with an equivalent norm that renders it uniformly convex.
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Finally, as ε > 0 is arbitrarily chosen we get

lim
j→∞

‖
Sj

j
‖2X = lim sup

j→∞
‖
Sj

j
‖2X = 0.

�

It is well-known that [Cla36] both Lp(X) and its dual space (Lp(X))′ ≡ Lp′

(X) with p′ = p
p−1 are uniformly convex

when 1 < p < ∞. A proof of the uniform convexity of Lp(X), 1 < p < ∞ can be found in [Wil13, Theorem 5.4.2.]
or see also [Shi18] for a short proof. Hence both Theorem A.1 and Theorem A.2 imply that Lp(X), 1 < p < ∞
satisfies the Banach-Saks property. However we present here a simple proof due to Banach and Saks.

Theorem A.3 (Banach-Saks [BS30]). The space Lp(X), 1 < p < ∞ satisfies the Banach-Saks property.

Proof. Since Lp(X) is reflexive, it suffices to prove the weak Banach-Saks property. Let (un)n ⊂ Lp(X) a bounded
sequence, say supn≥1 ‖un‖Lp(X) ≤ r, r > 0, weakly converging to u ∈ Lp(X) that is

ˆ

X

(un(x) − u(x))v(x)dµ(x)
n→∞
−−−−→ 0 for all v ∈ Lp′

(X).

Without loss of generality, assume u = 0. Put un1 = x1 assume unj−1 is given, j ≥ 2. Define Sj−1 =
∑j−1

k=1 unk
∈

Lp(X) so that |Sj−1|
p−2Sj−1 ∈ Lp′

(X). Since (un)n converges weakly to u = 0, we choose nj > nj−1 and hence
construct the sequence (unj

)j such that
ˆ

X

|Sj−1(x)|
p−2Sj−1(x)unj

(x)dµ(x) ≤ 1.

Next, consider the continuous function ζ : R → R,

ζ(t) =
|1 + t|p −

∑⌊p⌋
k=0

(

p
k

)

tk

|t|p

where ⌊p⌋ = max{m ∈ N : m ≤ p} and
(

p
k

)

= Γ(p+1)
k!Γ(p−k+1) . Note that, if ⌊p⌋ < p then ζ(t)

|t|→∞
−−−−→ 1 and if p = ⌊p⌋

then ζ(t)
|t|→∞
−−−−→ 0, whereas, using Taylor’s expansion for |t| < 1 we deduce

ζ(t) =
(1 + t)p −

∑⌊p⌋
k=0

(

p
k

)

tk

|t|p
=

∑∞
k=⌊p⌋+1

(

p
k

)

tk

|t|p
|t|→0
−−−→ 0.

Therefore, the map t 7→ ζ(t) is bounded say |ζ(t)| ≤ C for some C > 1, yielding

|1 + t|p ≤ C|t|p +

⌊p⌋
∑

k=0

(

p

k

)

tk.

This implies that for all a, b ∈ R, we have

|a+ b|p ≤

{

|a|p + pb|a|p−2a+ C|b|p +
∑⌊p⌋

k=2

(

p
k

)

|a|p−k|b|k if p ≥ 2

|a|p + pb|a|p−2a+ C|b|p if 1 < p < 2.

The foregoing inequality with a = Sj−1 and b = unj
yields

‖Sj‖
p
Lp(X) − ‖Sj−1‖

p
Lp(X) ≤ p

ˆ

X

|Sj−1(x)|
p−2Sj−1(x)unj

(x)dµ(x) + C‖unj
‖pLp(X) +Rj

≤ p+ Crp +Rj ,

where we define the remainder

Rj =

{

∑⌊p⌋
k=2

(

p
k

) ´

X |Sj−1(x)|
p−k|unj

(x)|kdµ(x) if p ≥ 2

0 if 1 < p < 2.

In such a way that

‖Sj‖
p
Lp(X) − ‖S1‖

p
Lp(X) =

j
∑

k=2

‖Sk‖
p
Lp(X) − ‖Sk−1‖

p
Lp(X) < (j − 1)(p+ Crp) +

j
∑

k=2

Rk. (4)
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Using ‖un‖Lp(X) ≤ r and Hölder inequality, we obtain for 2 ≤ k ≤ p,

ˆ

X

|Sj−1(x)|
p−k|unj

(x)|kdµ(x) ≤ ‖unj
‖kLp(X)

∥

∥

j−1
∑

i=1

uni

∥

∥

p−k

Lp(X)
< jp−2rp.

Summing up both sides gives, for p ≥ 2,

Rj =

⌊p⌋
∑

k=2

(

p

k

)
ˆ

X

|Sj−1(x)|
p−k|unj

(x)|kdµ(x) ≤

⌊p⌋
∑

k=2

(

p

k

)

jp−2rp = Bjp−2rp,

wherefrom we deduce that
∑j

k=2 Rk < Brpjp−1 with B =
∑⌊p⌋

k=2

(

p
k

)

. Inserting this in (4) gives

‖
1

j
Sj‖

p
Lp(X) < ‖

1

j
S1‖

p
Lp(X) +

j − 1

jp
(p+ Crp) +

j
∑

k=2

Rk

<

{

rp

jp + 1
jp−1 (p+ Crp) + 1

jBrp if p ≥ 2
rp

jp + 1
jp−1 (p+ Crp) if 1 < p < 2.

Whence, this implies that limj→∞ ‖ 1
jSj‖Lp(X) = 0. �
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