
Optimisation of the FPGA
Firmware Implementation of

Convolutional Neural Networks
for the ATLAS LAr Calorimeter

Signal Processing

Master-Arbeit
zur Erlangung des Hochschulgrades

Master of Science
im Master-Studiengang Physik

vorgelegt von

Johann Christoph Voigt
geboren am 15.07.1995 in Dresden

Institut für Kern- und Teilchenphysik
Fakultät Physik

Technische Universität Dresden
2021

Eingereicht am 28. April 2021

1. Gutachter: Prof. Dr. Arno Straessner
2. Gutachter: Prof. Dr. Kai Zuber

iii

Abstract

The planned Phase-II upgrade of the LHC will increase the number of proton-
proton collisions that happen simultaneously to improve the statistics for rare
events. The drastically increased pile-up poses new challenges to the readout elec-
tronics of the detectors. At the same time, new hardware components enable more
sophisticated real-time processing solutions. In this master’s thesis, convolutional
neural networks are implemented on FPGA firmware for the purposes of the signal
readout for the LAr calorimeter of the ATLAS detector.
The focus lies on the accurate reproduction of the reference results from the soft-
ware implementation in Keras and the performance optimisation of the firmware.
This will enable the transfer of the neural networks under development into de-
tector firmware with minimal effort, while fulfilling all hardware performance and
latency requirements.
The result is a firmware implementation based on fixed-point numbers with 18 bit
precision, that can run a convolutional neural network with around 100 parameters
in four layers at a latency of 125 ns and a clock frequency of 480 MHz on a Stratix
10 FPGA. Based on this, the energy reconstruction on a detector cell level is
possible in real-time for the trigger systems.

Zusammenfassung

Das geplante Phase-II Upgrade des LHC wird die Zahl der gleichzeitigen Proton-
Proton-Kollisionen erhöhen, um eine bessere Statistik für seltene Ereignisse zu
ermöglichen. Der damit verbundene starke Anstieg des Signal-Pileup stellt eine
neue Herausforderung für die Ausleseelektronik der Detektoren dar. Neue Hard-
warekomponenten ermöglichen aber zeitgleich die Nutzung von komplexeren Me-
thoden zur Echtzeitdatenverarbeitung. Diese Masterarbeit beschäftigt sich mit der
Implementierung von Convolutional Neural Networks in FPGA Firmware für die
Signalauslese des LAr-Kalorimeters des ATLAS Detektors.
Der Fokus liegt dabei auf der exakten Reproduktion der Ergebnisse der Software-
Referenzimplementierung in Keras, sowie der Performanceoptimierung der Firm-
ware. Dies soll den Transfer der in Entwicklung befindlichen Netzwerke in Detektor-
Firmware so einfach wie möglich machen und dabei alle Hardware- und Latenzan-
forderungen erfüllen.
Das Resultat ist eine Firmwareimplementierung, die unter Nutzung von Fixkom-
mazahlen mit einer Bitbreite von 18 bit, ein solches neuronales Netz mit etwa 100
Parametern auf vier Ebenen mit einer Latenz von 125 ns bei einer Frequenz von
480 MHz auf dem Stratix 10 FPGA ausführen kann. Damit ist eine Energiere-
konstruktion auf Detektorzellenlevel in Echtzeit für das Triggersystem möglich.

Contents
1 Introduction 1

1.1 The Standard Model of Particle Physics 1
1.2 Beyond Standard Model Physics 3
1.3 ATLAS and the LHC . 4
1.4 The LAr-Calorimeter . 6
1.5 Current Optimal Filter Approach 10
1.6 Phase-II Upgrade Plans . 11
1.7 FPGA and VHDL . 12
1.8 Artificial Neural Networks . 14

1.8.1 Overview of Network Types 14
1.8.2 Convolutional Neural Networks 16

1.9 Trigger Performance of the Convolutional Neural Networks 18
1.10 HLS4ML . 20

2 Trigger Networks 21
2.1 Previous Work . 21
2.2 Piecewise Linear Approximation of the Sigmoid Activation Function 22
2.3 Dilation Support . 24
2.4 Automatic Conversion of Keras Files to Configuration for VHDL

Implementation . 24
2.5 Comparison and Verification . 26
2.6 Integration into the LASP Framework 27
2.7 Trigger Network Performance . 28

3 Optimisation 31
3.1 Approaches in Optimisation . 31
3.2 Results of Optimisations . 33
3.3 Pipelining over Input Values . 37
3.4 Manual Assignment of DSPs . 39

4 Energy Reconstruction Networks 45
4.1 Network Architecture for Energy Reconstruction 45
4.2 Performance and Resource Usage of the Energy Reconstruction

Networks . 47
4.3 Comparison of VHDL Implementation Results to Keras Reference 48

vi Contents

4.4 Quality of the Energy Reconstruction 55

5 Summary 59

Bibliography 61

List of Figures 67

Glossary 69

1 Introduction
The Large Hadron Collider (LHC) [16] is the largest particle accelerator currently
in operation and will stay in this position for a while yet. Its biggest success so
far has been the discovery of the Higgs boson in 2012 by its experiments ATLAS
[51] [1] and CMS [52] [10]. Since then the focus has moved towards characterizing
the Higgs boson further and looking for signs of Beyond Standard Model physics.
Because the relevant events are very rare, a higher luminosity is required and a
better discrimination of background events. The planned Phase-II upgrade of the
ATLAS detector is aimed towards raising the luminosity and updating the relevant
systems to keep up with the higher rate of particles and reactions. A part of this
upgrade effort is the overhaul of the liquid argon (LAr) calorimeter readout. Here,
the higher luminosity introduces new challenges because of the increased signal
pile-up. This master’s thesis explores the feasibility of implementing machine
learning solutions for the energy reconstruction of the LAr calorimeters on field-
programmable gate arrays (FPGAs).
The real time energy reconstruction is used as input for the trigger system of AT-
LAS as well as later physics analysis. The LAr calorimeter systems in particular
are responsible for providing energy measurements of photons, electrons, tau lep-
ton decays, hadronic jets and general spatial resolution of the energy flow of the
collision events. Especially in regard to physics beyond the Standard Model, the
energy reconstruction is of high importance. Many of the predicted particles are
not directly detectable and can only be seen in the detector as missing energy.

1.1 The Standard Model of Particle Physics
The Standard Model [19] [54] [45] [48] [17] [44] [21] [55] is the current mathematical
description of elementary particles and their interactions. It evolved in the 1960s
and 1970s as the unification of different theories and can currently describe three
of the four fundamental interactions. The remaining force of gravity could not yet
be described on the level of quantum physics.
There are three main categories of particles in the Standard Model. The leptons
are fermions that interact with the weak and electromagnetic interaction. They
exist in three generations. The most well known is the electron, since it is a
component of normal matter. In each generation there is an electrically charged
and an uncharged particle. The uncharged particle, referred to as neutrino, only

2 1 Introduction

interacts through the weak interaction and is thus very hard to detect directly.
The equivalent to the electron for the second and third generation are the muon
and tau leptons.
Quarks are the fermions that interact through the strong, weak and electromag-
netic interactions. They also come in three generations. Each generation contains
a quark with positive and negative electric charge of +2

3 and −1
3 respectively.

They cannot exist individually due to the gluon self interaction and the coupling,
which increases at low energy scales. This is called confinement. Their most com-
mon bound states are the proton and neutron, which make up the main part of
normal matter and can be found in the nuclei of atoms. Both of them belong to
the group of baryons, which describes the particles consisting of three quarks. The
superordinate group of quark compounds are the hadrons, which also includes the
mesons consisting of two quarks. Exotic hadrons with more quarks are rare and
the subject of ongoing investigations.
The gauge bosons in the Standard Model are the particles responsible for the
interactions between other particles. All gauge bosons in the Standard Model
have spin one and are therefore vector bosons. The photon is responsible for the
electromagnetic interaction, the W and Z bosons belong to the weak interaction
and the gluons convey the strong interaction.
Separate from the gauge bosons is the only elementary spin zero boson, the Higgs
particle discovered in 2012 [1] [10]. It is an excitation of the Higgs field, which
gives mass to elementary particles through spontaneous electroweak symmetry
breaking [23] [24] [25] [15] [22].
An overview of all the particles of the Standard Model can be seen in figure 1.1.

1.2 Beyond Standard Model Physics 3

Standard Model of Elementary Particles
three generations of matter

(fermions)

I II III

interactions / force carriers
(bosons)

mass

charge

spin

Q
U

A
R

K
S

u
≃2.2 MeV/c²

⅔

½

up

d
≃4.7 MeV/c²

−⅓

½

down

c
≃1.28 GeV/c²

⅔

½

charm

s
≃96 MeV/c²

−⅓

½

strange

t
≃173.1 GeV/c²

⅔

½

top

b
≃4.18 GeV/c²

−⅓

½

bottom

L
E

P
T

O
N

S

e
≃0.511 MeV/c²

−1

½

electron

νe
<1.0 eV/c²

0

½

electron
neutrino

μ
≃105.66 MeV/c²

−1

½

muon

νμ
<0.17 MeV/c²

0

½

muon
neutrino

τ
≃1.7768 GeV/c²

−1

½

tau

ντ
<18.2 MeV/c²

0

½

tau
neutrino G

A
U

G
E

 B
O

S
O

N
S

V
E

C
T

O
R

 B
O

S
O

N
S

g
0

0

1

gluon

γ
0

0

1

photon

Z
≃91.19 GeV/c²

0

1

Z boson

W
≃80.39 GeV/c²

±1

1

W boson
S

C
A

L
A

R
 B

O
S

O
N

S

H
≃124.97 GeV/c²

0

0

higgs

Figure 1.1: Overview of the particles in the Standard Model [41]

1.2 Beyond Standard Model Physics

There are several limitations of the Standard Model which hint at physics beyond
this description. The most obvious problem is the exclusion of gravity, the fourth
fundamental interaction. However, it is not expected that this problem will be
solved at the LHC, since it becomes relevant at energies in the range of 1018 GeV
[39, p. 3].
Another limitation of the Standard Model is the lack of a first order electroweak
phase transition [34], which is required by the matter-antimatter asymmetry of
the universe. Further examples are the gauge coupling unification problem, the
lack of promising dark matter candidates and the fine-tuning problem [13, p. 5].

4 1 Introduction

A popular theory that may solve these issues is Supersymmetry (SUSY). It in-
troduces partners for all known particles with a spin of 1

2 different from their
Standard Model equivalent. Furthermore, the Higgs sector needs to be extended,
for example from one to two doublets. This leads to further new particles, like a
second scalar Higgs boson, a pseudoscalar A boson and two charged Higgs bosons.
[13, pp. 7 sq.] This may solve the gauge coupling problem, since the model influ-
ences the gauge couplings and may lead to a proper unification at high energies.
The 𝑅-parity commonly found in supersymmetric models leads to a stable light-
est supersymmetric particle, that is a candidate for dark matter. The fine-tuning
problem that leads to divergent terms in the Higgs mass is solved as well, since
the new particles introduce loop corrections, which directly cancel out the prob-
lematic terms of the Standard Model particles. [13, p. 6] The search for hints of
these new physics has been a major consideration in the design of the LHC and
its experiments [51, pp. 2 sq.].

1.3 ATLAS and the LHC

Figure 1.2: Overview of the LHC [8]

1.3 ATLAS and the LHC 5

The LHC is a proton-proton particle collider located at European Organization
for Nuclear Research (CERN) in Switzerland. The main ring with a length of
27 km allows the acceleration of two proton beams running in opposite directions
to a centre-of-mass energy of 13 TeV and a design energy of 14 TeV. [16, p. 1]
At four collision points the two beams are diverted to intercept. Around these
points, the four experiments ATLAS [51], CMS [52], ALICE [49] and LHCb [53]
are located.
Figure 1.2 shows an aerial view of the region above the LHC. The accelerator ring
is located underground and shown in the picture by the yellow circle. The main
experimentation sites are also marked. The accelerated beam is not continuous,
but split into bunches. This means, that at the interaction points, there will be
so-called bunch crossings at pre-defined times. At those times, the packets of
protons intercept and interactions happen. The frequency of bunch crossings is
40 MHz. At each bunch crossing there have been 𝜇 = 36 reactions on average in
the latest run in 2018 [50, p. 3]. Due to technical reasons, the real bunch train
structure is more complex. There is not a collision at each of these time steps,
which has implications for the background handling in the detectors.

Figure 1.3: Overview of the ATLAS detector [43]

Figure 1.3 shows a schema of the ATLAS detector. It is one of the two general-
purpose detectors located at the LHC. Therefore it consists of the main compo-
nents found in most particle detectors in an onion-like structure: an inner tracking

6 1 Introduction

system, electromagnetic and hadronic calorimeters and a muon spectrometer.

1.4 The LAr-Calorimeter

Figure 1.4: Overview of the LAr calorimeter [42]

An overview of the LAr calorimeter systems at ATLAS can be seen in figure 1.4.
The electromagnetic barrel part of the LAr calorimeter is of most interest for
this thesis, but the results obtained here can also be applied to the other LAr
calorimeter sections, like the electromagnetic and hadronic end-caps, as well as
the forward calorimeters.
The LAr calorimeter is a sampling calorimeter, where layers of absorber material
and active medium are alternated.
When an electrically charged particle passes through the detector material, it
looses energy through three main mechanisms: pair production, Bremsstrahlung
and Compton effect. This leads to the production of a shower of secondary electro-
magnetically interacting particles. The goal of a calorimeter is the full absorption
of the target particles. The amount of produced charges in the detector material

1.4 The LAr-Calorimeter 7

within this shower of secondary particles is then proportional to the deposited
energy.
Figure 1.6 shows the structure of the LAr calorimeter in the barrel region. The
absorber material is lead in a mantle of stainless steel for better structural integrity
[37, p. 161]. As the name of the system suggests, liquid argon is used as the active
medium.
Electrodes create an electric field across the thin LAr gaps. Therefore, the charged
particles begin to drift towards the electrodes and induce a triangular pulse in the
readout electronics depending on the voltage, active medium and detector layout.
The electronic pulse in the readout can be seen in figure 1.5. This is then formed
in an analogue pulse shaper into a bipolar pulse with a quickly rising peak and a
longer undershoot, which is shown in the same plot. The integral over this pulse
is zero, which means, that no net current is flowing.
This pulse is then digitized and a digital filter is used for the energy reconstruc-
tion. This is complicated by the fact, that there are a lot of low energy particles
being absorbed all the time, which produce the same signal shape, just with lower
amplitudes. Also, if a particle is absorbed during the undershoot of the previous
pulse, the amplitude will be reduced accordingly. As can be seen in the plot,
previous pulses influence the signal for a time much larger than the time between
bunch crossings (BCs). The amount of expected pile-up is driven by the number
of proton-proton collisions per BC. Therefore, its average ⟨𝜇⟩ is an important pa-
rameter that characterizes the pile-up background. In-time pile-up occurs in the
same BC as a high energy hit in a detector cell and can only be corrected on av-
erage, but not for an individual data sample. Out-of-time pile-up is the influence
of previous pile-up events on the measured hit energy in the detector cell. With
sufficient knowledge of the characteristics of the detector cell and its readout elec-
tronics this can be corrected, since there is separate information available about
the pile-up hits from the previous time step. Apart from this, normal thermal
noise of the electronics exists. To compensate these two main noise sources, a
combination of the analogue shaping and digital filtering as introduced here is
used.
In the current detector readout the analogue pulse shaper is a 𝐶𝑅−𝑅𝐶2 filter with
a shaping time of 13 ns. This is done for three different gains to get a total dynamic
range of 16 bit using 12 bit analog-to-digital converters (ADCs). [5, pp. 735 sq.]
The energy reconstruction through digital filtering is done by an Optimal Filter
(OF). Its coefficients are chosen using the characteristics of the expected noise
and pile-up for that detector region. This allows the filter to minimize the impact
of both random noise and out-of-time pileup.

8 1 Introduction

Figure 1.5: LAr detector signal shape before and after analogue pulse shaper
[4]

1.4 The LAr-Calorimeter 9

Figure 1.6: Structure of the LAr calorimeter [37, 5, Fig 1-2]

10 1 Introduction

1.5 Current Optimal Filter Approach

Currently, the energy from the LAr-Calorimeter is reconstructed using an OF as
described by Cleland and Stern in [12]. Its goal is to extract the signal amplitude
and time of a hit in a detector cell with the maximum signal-to-noise ratio in
an environment with random noise and pile-up. The filter itself uses a linear
combination of a certain number of consecutive input samples 𝑆𝑖 to reconstruct
the energy 𝐴 and time deviation of the hit [12, pp. 474 sq.]:

𝐴 =
∑︁

𝑖

𝑎𝑖 · 𝑆𝑖 (1.1)

𝐴𝜏 =
∑︁

𝑖

𝑏𝑖 · 𝑆𝑖 (1.2)

The filter depth is usually set to five. The weights �⃗� = 𝑎𝑖 and �⃗� = 𝑏𝑖 are defined
through

�⃗� = 𝜆𝑉 �⃗� + 𝜅𝑉 𝑔′ (1.3)
�⃗� = 𝜇𝑉 �⃗� + 𝜌𝑉 𝑔′ (1.4)

based on the unit amplitude shaper response �⃗� and its derivative 𝑔′. This is a
known property of the detector readout chain and the analogue pulse shaper in
particular. The helper variables can be calculated according to

𝜆 = 𝑄2

Δ (1.5)

𝜅 = −𝑄3

Δ (1.6)

𝜇 = 𝑄3

Δ (1.7)

𝜌 = −𝑄1

Δ (1.8)

Δ = 𝑄1𝑄2 − 𝑄2
3 (1.9)

𝑄1 = �⃗�T𝑉 �⃗� (1.10)

𝑄2 = 𝑔′T𝑉 𝑔′ (1.11)

𝑄3 = 𝑔′T𝑉 �⃗� (1.12)
𝑉 = 𝑅−1 (1.13)

𝑅 is the noise autocorrelation function and can be calculated as the sum of the
thermal electronic and pile-up noise autocorrelation functions. These values are
known from the expected pile-up in the detector cell as well as the characteristics

1.6 Phase-II Upgrade Plans 11

of the readout electronics.

1.6 Phase-II Upgrade Plans

5 to 7.5 x nominal Lumi

13 TeV

integrated
luminosity

2 x nominal Lumi2 x nominal Luminominal Lumi
75% nominal Lumi

cryolimit
interaction
regions

inner triplet
radiation limit

LHC HL-LHC

Run 4 - 5...Run 2Run 1

DESIGN STUDY PROTOTYPES CONSTRUCTION INSTALLATION & COMM. PHYSICS

DEFINITION EXCAVATION

HL-LHC CIVIL ENGINEERING:

HL-LHC TECHNICAL EQUIPMENT:

Run 3

ATLAS - CMS
upgrade phase 1

ALICE - LHCb
upgrade

Diodes Consolidation
LIU Installation

Civil Eng. P1-P5

experiment
beam pipes

splice consolidation
button collimators

R2E project

13 - 14 TeV 14 TeV

7 TeV 8 TeV

LS1 EYETS EYETS LS3

ATLAS - CMS
HL upgrade

HL-LHC
installation

LS2

30 fb-1 190 fb-1 350 fb-1 3000 fb-1

4000 fb-1

20402027

BUILDINGS

Figure 1.7: Current schedule for the Phase-II upgrade [9]

The LHC did not start in its final configuration right away. Both energy and
luminosity are being increased incrementally over the years. Especially during
the long shutdown periods, there are major upgrade works going on. The first
such period increased the centre of mass energy to 13 TeV and the luminosity to
the nominal values. At the time of this master’s thesis, the LHC is undergoing
modifications during the long shutdown 2, which is scheduled to end in early 2022.
Together with the LHC itself, the experiments have their own upgrade plans during
these phases. For example, the ATLAS detector is undergoing modifications under
the name of Phase-I upgrade. The next long shutdown is planned for 2025 and will
enable the Phase-II upgrade of ATLAS. Similar work is being done on CMS. An
overview of the LHC upgrade steps can be seen in figure 1.7. The Phase-II upgrade
will increase the expected total integrated luminosity to 10 times the predicted
value of the original design [6, p. 3]. The increase in luminosity leads to more
interactions per bunch crossing, which happen at same frequency of 40 MHz as
before. This means, that a lot more particles are produced at those time steps and
the detectors need to be able to handle this increased rate accordingly. Current
projections estimate the possible pile-up at around ⟨𝜇⟩ = 140 − 200, meaning the
average number of events per bunch crossing. This will allow the collection of an

12 1 Introduction

integrated luminosity of 300 fb−1 to 400 fb−1 per year. [6, p. 4] For comparison,
the 2018 run delivered an integrated luminosity of 63.4 fb−1 [50, p. 3].
The hardware and software algorithms developed in this master’s thesis are aimed
towards the Phase-II upgrade. This upgrade will replace the current readout
systems completely to make the front-end electronics more radiation hard and
make the readout compatible with the new trigger system. [36, p. 3] The new
system should also be able to handle signal pulses in consecutive or very close
BCs. The machine learning approach presented here is a promising alternative to
the traditional OF for the digital energy reconstruction to solve the arising issues.
The new readout system will enable the use of more complex digital filter systems
inside the Liquid Argon Signal Processor (LASP) component [36, p. 37]. This
module will be the framework for the firmware developed in this master’s thesis.
The detector readout will contain 1524 Front-End Board 2 (FEB2), which can
process 128 calorimeter readout channels each. Here, the analogue pulse shaping
is applied before the pulses are digitized at 40 MHz. To cover the desired dynamic
range of 16 bit, two separate gains will be used together with 14 bit ADCs. The
output is then converted into an optical signal, that can be transmitted via ap-
proximately 32 000 optical 10.24 Gbit s−1 links to the off-detector electronics. The
data is then processed on the FPGAs of the LASP system. Each FPGA has to
process the data received from up to four FEB2s, meaning a total of 512 detector
readout channels with two separate gains each. A total of 372 FPGAs will be
mounted on 186 boards. The processed data is sent to the Global Event Trigger
Processors and the Level-0 calorimeter trigger Feature Extractor (FEX), as well
as the data acquisition (DAQ) data readout. [36, pp. 77 sqq.]
While the total delay for signals sent to the L0Calo FEX can be up to 1.7 µs
[36, p. 85], the available time for the energy reconstruction via digital filtering on
the FPGAs is significantly shorter and budgeted at 125 ns [36, p. 163]. For the
purposes of this project it is assumed, that a moderate increase of the latency
budget for the energy reconstruction can be achieved through optimisation of
other steps and use of the available margins. A value of up to 150 ns is therefore
deemed acceptable at this stage of the project.

1.7 FPGA and VHDL
FPGAs are reconfigurable hardware chips, that can be used to represent different
digital circuits in firmware even after the initial hardware production is finished.
The layout of the digital circuit can be changed any time, like a software device
can be reprogrammed. This is possible through a programmable interconnect
matrix, that allows flexible connections between the internal logic elements. This
can be supported through programmable or configurable logic elements to gain
more flexibility.

1.7 FPGA and VHDL 13

Modern FPGAs use look-up tables (LUTs) as their main logic units with a bit
width of about 7 bit. For specialized purposes they also contain other elements
like clocks, phase-locked loops (PLLs), digital signal processors (DSPs) as native
multiplication units and dedicated faster long distance connections to distribute
key signals.
Their main advantages over the more common central processing units (CPUs)
and graphics processing units (GPUs) lies in their very high possible transfer rates
of input and output data and the extensive use of parallelisation and pipelining
in the data processing. Since the desired design is implemented in hardware, a
much more specialized circuit will be used to process the data. Instead of a fixed
general purpose circuit, that reads instructions at runtime to determine how to
process the data, here a circuit is produced, that is specifically tailored to the
desired application and cannot be used for anything else until it is reprogrammed.
While enabling the full flexibility to program any circuit design onto the FPGA,
the adopted firmware can only offer the runtime functionality it was designed for.
In this regard, FPGAs are similar to application-specific integrated circuits (ASICs).
Those, however, cannot be reconfigured after the manufacturing is complete. For
this reason, FPGAs are used during development and prototyping as well as in
small series productions. ASICs are better suited for large production series and
will be cheaper, more performant, need less power and be less susceptible to radia-
tion than FPGAs, since their design is less complex due to the missing interconnect
matrix, reprogrammable LUTs and connected circuitry. All this flexibility adds a
lot of potential failure points in the case of radiation exposure and also degrades
the performance, since it adds extra logic elements in comparison to a fixed ASIC.
However, this is not an issue in the context of this work, since the developed
firmware is targeted towards the off-detector electronics, which are not subjected
to high radiation doses.
The real time energy reconstruction for the LAr-Calorimeter has high bandwidth
requirements, since there are 182 468 [36, p. 9] readout channels. They all need to
be processed. This data rate cannot be channelled to a traditional software based
processing device like a CPU or GPU easily. An FPGA instead allows much higher
and more flexible connections to the data transfer lines from the detector.
This work will make use of an Intel Stratix 10 FPGA [31]. The available devel-
opment kit [30] can be seen in figure 1.8. This board contains the specific FPGA
model with the reference number 1SG280HU2F50E2VG. This is the GX 2800
version. Most relevant for the following considerations is, that the device con-
tains 5760 DSPs, which are specialized units used for multiplications, and 933 120
adaptive logic moduless (ALMs), which are the main logic units the FPGA uses
to represent different circuit layouts. The speed grade E2V determines the max-
imum frequency the DSPs can operate at. Depending on the mode of operation,
this is at least 578 MHz [29, p. 32].
The circuit design to be prorgammed onto the FPGA can be described in a hard-

14 1 Introduction

Figure 1.8: Stratix 10 Development kit [18, p. 39 (Fig. 19)]

ware description language (HDL), which is in some regards similar to a program-
ming language. Here, the language Very High Speed Integrated Circuit Hardware
Description Language (VHDL) is used. To translate this very abstracted VHDL
code to a digital circuit design and a format that can be programmed onto the
FPGA, a synthesis tool is necessary. For this FPGA model this is the Quartus
[28] software by Intel. During development, it is also helpful to simulate the de-
sign, since the full synthesis is time and resource consuming and data extraction
from the FPGA in real time for debug purposes is challenging. For this purpose,
specialized simulation software like Modelsim or Questasim [46] exists. Here, a
version delivered with the Intel Quartus development tools is used [33].

1.8 Artificial Neural Networks

1.8.1 Overview of Network Types
Artificial neural networks (ANNs) in general are a group of machine learning
algorithms loosely modelled after the biological neurons found in living organisms,
albeit severely modified and adapted to the necessities of digital data processing.
Goodfellow, Bengio, and Courville define a machine learning algorithm as “an
algorithm that is able to learn from data” [20, p. 97]. They proceed to cite the
definition for what learning means in this context by Mitchell (1997): “A computer
program is said to learn from experience 𝐸 with respect to some class of tasks 𝑇
and performance measure 𝑃 , if its performance at tasks in 𝑇 , as measured by 𝑃 ,
improves with experience 𝐸.”
In general, the network itself is a layered structure, that operates on some input
data and calculates output values based on this. Each layer represents a mathe-
matical function that is applied to the output of the function of the previous layer.
As long as there is no recursive or feedback structure, the network is classified as a
feedforward network [20, p. 164]. The other case is a recurrent network, but those
are not relevant in the context of this work. Usually, the connections between

1.8 Artificial Neural Networks 15

those layers and the architecture of the layers itself are fixed by the developer.
Generally, each layer consists of a number of neurons which operate on the layer
input in parallel. They process their input by multiplying it with fixed weights,
summing the results and applying a nonlinear activation function, which has been
defined by the developer.
What sets ANNs apart from classical signal filter solutions is the way how the
weights used in the calculation of the output are obtained. The learning process
itself is transformed into a minimisation problem with the help of a loss function.
An example for such a learning algorithm, that is used for the networks for this
master’s thesis, is the Adam optimiser [20, pp. 305 sq.]. While the architecture,
provided data samples and the general settings of this learning algorithm are
handled by the developer, he does not take any direct action during the learning
process itself and lets the algorithm figure out on its own how to make the network
fit the provided training data. The parameters that the training algorithm cannot
change during this training process are called hyperparameters.
In contrast to linear models, like fitting a linear function or system of linear equa-
tions, a nonlinear activation function is used in neural networks. In consequence,
iterative algorithms that make use of the gradient are used in training. This does
not guarantee a global minimum of the loss function. [20, p. 173].
Machine learning algorithms can be categorized as either supervised or unsuper-
vised during the training. Here, supervised algorithms are used. This means that
the training data set contains the desired output value for each data sample. The
learning algorithm then optimizes the network parameters to be able to predict
the associated output value with the provided input. In unsupervised learning,
the learning algorithm would be tasked with finding interesting features in the
training data itself. [20, p. 103].
There are a lot of possible architectures for these networks. For this work the most
important type is the convolutional neural network (CNN). This type is very well
suited for the specific purposes of this application and the implementation on
FPGAs.
The network training is done using the TensorFlow [40] and Keras [11] libraries
for Python.
The training and validation data is generated using the ATLAS Readout Elec-
tronics Upgrade Simulation. (AREUS) software [38] [47]. This program provides
a modular toolbox to simulate the entire readout of the LAr calorimeter from the
detector cell to the digital energy reconstruction. This can be used to generate
digitized samples like the real ADC would provide them. AREUS includes all
relevant noise sources, like electronic noise and out-of-time pile-up. The result is
a realistic representation of the electronic noise and pile-up energy distribution. It
supports a wide range of properties of the accelerator and detector. For example,
the proper bunch train structure can be simulated. For the verification data, a
sequence with regular high energy hits and a typical pile-up background is used.

16 1 Introduction

1.8.2 Convolutional Neural Networks
CNNs are typically used in applications for processing structured 2D or 1D data
[20, p. 326]. This network type provides several key benefits for the planned
application. In comparison to fully connected networks, there are a lot fewer
connections. This reduces the number of parameters and thus the amount of
resources needed to calculate the network output. This is achieved by effectively
reusing the same parameters over the entire input data. The network operates
like a sliding window over the input sequence. This is similar to the mathematical
convolution operation. The size of the sliding window is the kernel size, which has
to be smaller than the input data size. [20, pp. 329 sqq.]
A special benefit regarding the time series data from the LAr calorimeter readout
is, that CNNs can process continuous data streams. This means, that it can be
applied to an input data stream for any timespan without altering the network
structure. Of special note here is the equivariance to translation of this network
type [20, pp. 334 sq.]. The expected pulses from the detector mostly have the
same shape independent of when in the time series they occur. This property of
CNNs means, that it reacts to two identical pulses at different points in time in
exactly the same way.
Figure 1.9 shows the basic working principle of a convolutional neural network
layer operating on a continuous series. In figure 1.9a the kernel size is two and the
dilation one, which means that no input values are skipped. The lower chain of
blocks represents the input, the upper chain the output values. The numbers in the
boxes represent the time step this input or output value belongs to. When moving
to the second and third subpicture, the time step increases by one respectively.
As the kernel size suggests, there are always two input values contributing to one
output value, which is highlighted. Each connecting line represents a multiplica-
tion by a fixed weight. Before the output value is obtained, those intermediate
results need to be summed up, the bias added and the activation function ap-
plied. Figure 1.9b shows the process for a layer with kernel size three. The only
difference here is, that three input values are considered per output value as the
kernel size suggests. It should also be noted, that the networks here are all causal,
which means, that only input values of the current and past time steps can be
considered. The last subplot 1.9c shows the principle for a kernel size of two again,
but this time with a dilation of two. This means that there are still two input
values considered per output value, but between all consecutive input sample one
value will be skipped.
To understand the benefit of dilation, one has to look at the range of input values
considered for one output values of the network. This is called receptive field. For
the single layers shown in 1.9, the receptive field is two for the first case without
dilation in 1.9a, and three for the same kernel size and thus number of parameters
in 1.9c. This effect increases in influence for multiple layers, since each input

1.8 Artificial Neural Networks 17

3 2 1 03 2 1 0

3 2 1 0

3 2 1 0

3 2 1 0 3 2 1 0

(a) Kernel 2, dilation 1

3 2 1 03 2 1 0

3 2 1 0 3 2 1 0

(b) Kernel 3, dilation 1

3 2 1 03 2 1 0

3 2 1 0 3 2 1 0

(c) Kernel 2, dilation 2

Figure 1.9: Working principle of a layer in a causal CNN for different kernel
sizes and dilations

18 1 Introduction

values for the shown layer may again be calculated using the spread induced from
the dilation. The benefit here is, that the network can look further into the past,
while retaining the same amount of parameters. There may be more information
in the spread out input samples than just the consecutive sequence of the latest
input values.
Each layer may consist of multiple feature maps, which all operate on the same
input, but operate independently and have their own sets of weights. The next
layer then gets the output of every feature map of the previous layer.
CNNs are well suited for the purposes of this project, since they recycle their
weights a lot. Where other networks need weights for every input value, CNNs
can perform well with just a small set of weights, which get applied to all the input
values. This is perfect for applications, where the resources during application of
the network to data are severely limited.

1.9 Trigger Performance of the Convolutional
Neural Networks

The trigger performance of the network can be characterised using receiver op-
erating characteristic (ROC) curves. They show the background rejection as a
function of signal efficiency. This is done by varying the threshold over which
the trigger output is considered as a hit between zero and one. For each value in
this interval, the amount of correctly identified signal hits and correctly rejected
background events is calculated by comparing the neural network prediction to
the true result and added as a data point to the plot. This means that the perfect
trigger would have a square ROC curve that reaches the top right corner of the
plot. In practice this cannot be achieved, but it is desirable to get as close to
that corner as possible. Both of the axes are important, since signal efficiency
without background rejection is useless and vice-versa. A perfect signal efficiency
can be achieved by triggering for every event, a perfect background rejection by
never triggering. Both of these cases are obviously undesirable. Similar plots can
be obtained from energy reconstruction algorithms by varying an energy instead
of trigger threshold. Everything above the threshold is classified as a signal hit
detection by the algorithm, for everything below the threshold it is assumed that
the algorithm classified this as a background signal.
Such a ROC curve can be seen in figure 1.10 comparing the trigger performance of
different trigger and energy reconstruction algorithms for a pile-up parameter of
𝜇 = 140 as it is expected after the Phase-II upgrade of the LHC. The red line shows
the performance of the OF, which is the benchmark and baseline scenario for all
alternative energy reconstruction methods under investigation. The yellow and
blue lines show the performance of a CNN with three and four layers respectively.

1.9 Trigger Performance of the Convolutional Neural Networks 19

75 80 85 90 95 100
Signal Efficiency [%]

75

80

85

90

95

100

Ba
ck

gr
ou

nd
 R

ej
ec

tio
n

[%
]

AREUS Simulation
EMB Middle (,) = (0.5125, 0.0125)
Ethreshold = 240 MeV, = 140

OFMax k=5
Trigger-CNN 2-Conv
EReco-CNN 3-Conv
EReco-CNN 4-Conv

Figure 1.10: ROC curves showing the trigger performance of the trigger and
energy reconstruction neural networks compared to the Optimal Filter. [7,
p. 8]

Those networks are trained to reconstruct the hit energy. They both contain a
trigger subnetwork with two convolutional layers responsible for detecting signal
hits over an energy of 240 MeV. The performance of this part as a separate
network is shown in the plots in green. The training procedure for these networks
is described in [2]. More details about the network architectures are presented in
section 4.1.
It is very clear, that all the neural network solutions have a much better signal
efficiency. This means that true signal hits are much more likely to be correctly
classified as signal by the CNNs than the traditional OF. While the OF barely
reaches 80 %, the CNNs only drop of after 95 %. In the displayed interval, all
neural networks outperform the OF at all signal efficiencies.

20 1 Introduction

The best performance is reached by the isolated trigger network, closely followed
by the four layer energy reconstruction network. The three layer energy recon-
struction network has similar performance up to signal efficiencies of 93 %, but
drops off afterwards and the curve ends much sooner without reaching any lower
values of background rejection independent of the signal efficiency. This is due
to the fact, that this network has more problems reconstructing very low energies
below the threshold of the trigger subnetwork due to its reduced number of layers.
Since this is only a software implementation, the next challenge is to port these
neural networks onto the FPGA platform and evaluate the performance of the
resulting firmware implementation compared to the software reference. The accu-
racy of the energy reconstruction or trigger performance may degrade depending
on the approximations necessary in the firmware version to be able to meet the
latency and resource requirements.

1.10 HLS4ML
An alternative approach to bring machine learning solutions onto FPGAs is the
High-Level Synthesis for Machine Learning (HLS4ML) package. It allows the
description of neural networks on a higher level language, which is then ported
to code synthesizeable on the FPGA. It offers a flexible and highly customizable
implementation. HLS4ML has been written specifically with the application in
high energy physics trigger systems in mind and is thus similar to the context of
this work [14, pp. 2 sq.].
A very notable feature of HLS4ML is the ability to reuse DSPs a specified number
of times. This allows a trade-off between latency and DSP usage. It is possible to
tweak the reuse parameter from a dedicated DSP for every multiplication all the
way to only using a single one for the entire network. [14, p. 13].
Other techniques used to reduce the resource usage are the use of fixed point
numbers and compression techniques on the network training level, like pruning.
[14, p. 11]
However, this package is only beginning to support Intel FPGAs. Also, many of
the advanced features, like using DSPs multiple times, are not useful in the ATLAS
LAr readout scenario due to the very stringent latency requirements. Therefore
it was decided, that the ANNs are to be directly implemented in firmware using
VHDL instead of using this pre-made framework. This will allow much more
optimisation towards the specific use-case than the HLS4ML solution.
An alternative approach for the LAr energy reconstruction with more complex
networks, that uses HLS4ML for the conversion into FPGA firmware, is also pre-
sented in [2].

2 Trigger Networks

2.1 Previous Work

The firmware developments presented here are the continuation of previous work
[18] by Nick Fritzsche on the implementation of neural networks on FPGA.
The adopted VHDL code consists of several components, which, when put to-
gether, model the network and necessary control logic. The basic building block
is the connections.vhd file, which contains the entity that calculates the output
of one feature map of one network layer. This module has generic input ports
for the basic configuration of that layer, like the kernel size, dilation and other
network parameters, as well the bit widths and number of fractional bits for the
different signals used. The signal input and output ports are used to get access to
the weights and input of the respective layer and output the result of this feature
map.
The entity in ann.vhd constructs the network out of the building blocks of con-
nections.vhd. Each layer consists of a number of those entities according to the
number of feature maps in that layer. This module creates those entities using
the VHDL for-generate statement. This allows a flexible structure, which can be
configured from a config file read in during compilation or simulation time. The in-
stances of the connections module are linked together and provide the appropriate
weights and necessary configuration values in the superordinate ann component.
Depending on whether the network is to be simulated or synthesized, this is in-
cluded into a test bench or a wrapper with some additional control logic. However,
while the code can be executed on an FPGA, it is not possible to input or out-
put values to and from the FPGA yet, except when using the utility program
Signaltap from Intel. To control the functions of the module later, a slow control
module is under development by Rainer Hentges within the LASP project. While
the weights can be loaded with the help of the available random-access memory
(RAM) on the development board, there is currently no signal injector available
to simulate the ADC input stream. Therefore, the verification is mostly done by
simulation in Modelsim or Questasim and the performance is estimated using the
Intel Quartus compilation reports.

22 2 Trigger Networks

2.2 Piecewise Linear Approximation of the Sigmoid
Activation Function

Due to the very low level nature of the logic components on the FPGA, the
nonlinear activation function cannot simply be calculated on the chip. The DSPs
are also not capable of calculating a function as complex as this directly and the
resource usage would be prohibitive. The simplest solution is a LUT with the
required bit width. This is easy enough to implement on the FPGA, since it
contains a high number of programmable LUTs anyway, albeit with a much lower
bit width. These can be composed together to form a larger LUT without using
up the more limited supply of DSPs. The necessary program code for the LUT
can easily be generated by a Python script.
Different approaches have been considered on how to potentially replace the LUT
for the activation functions with a more elegant, more performant or a solution
using up less logic cells. One promising option is a composition of linear approx-
imations in a series of subintervals. One such approach is presented by Amin,
Curtis, and Hayes-Gill [3] under the name piecewise linear approximation of a
nonlinear function (PLAN). They approximate the sigmoid function as constant
for 𝑥-values greater than five. The interval [0, 5] is divided into three distinct
subintervals. In each of those intervals a linear function is used with the salient
property of having a slope that can be expressed as a power of two term, includ-
ing negative exponents. The boundaries between intervals are chosen to achieve
a continuous function. For negative values of 𝑥 the symmetry of the function is
utilized and the result can be calculated according to 𝑓(−𝑥) = 1 − 𝑓(𝑥). The
result of this approximation approach can be seen in Figure 2.1.
The special conditions for the slope are chosen to allow the replacement of all
multiplications by bit shifts. In a further step of abstraction, the entire approx-
imation can be replaced by a logical function mapping input bits to output bits
when using fixed point numbers [3, p. 314]. This is possible, since all required
multiplications are just bit shifts and can therefore be easily replaced by logical
functions. Similarly, the check for the appropriate approximation subinterval for
the current input value can be expressed like this. A subtraction step is still re-
quired for negative input values, but the use of the symmetry otherwise halves
the required resources.
The suggested direct transformation for a bit width of eight is presented in [3,
p. 315] and can be implemented in VHDL without issues. However, this is a very
rigid solution, since it provides a solution only for the fixed bit width including
four fractional bits for the input and seven for the output.
It is possible to extend this approach for higher bit widths, when using fixed point
numbers with more fractional bits. This requires only some modification of the
transformation mappings. The result is a better discrete approximation of the

2.2 Piecewise Linear Approximation of the Sigmoid Activation Function 23

6 4 2 0 2 4 6
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Sigmoid
PLAN approximation

Figure 2.1: Sigmoid function and PLAN approximation according to [3]

linear functions that make up PLAN itself. The number of subintervals and the
linear functions themselves remain unchanged for this. This means that only the
discrete implementation increases in accuracy, while the inherent deviations due
to the linear approximation and intervals remains the same. However, this has
potential if PLAN is already used during network training. The derivative can be
calculated from the approximation itself by the following property of the sigmoid
function [3, p. 313]:

𝑓 ′(𝑥) = 𝑓(𝑥) · (1 − 𝑓(𝑥)) (2.1)

This ensures a continuous derivative, although the exact derivative of the approxi-
mation would have discontinuities. Then the higher bit width allows the hardware
implementation to more closely match the results of the reference implementation,
which uses floating point numbers. One definite improvement of the more flexible
bit width is the easier integration with the rest of the code, which uses a config-
urable number of bits and fractional bits for most signals. The fixed nature of
the original PLAN did not fit this concept well. And, while the accuracy may not
improve much due to the inherent deviations of the linear functions used to ap-
proximate the sigmoid function, the results will have a higher granularity, meaning
that different input values will lead to different output values more so than with
the original PLAN, since there is less rounding necessary before the application
of the activation function. Of course one could argue, that this higher granularity
is purely the illusion of a higher accuracy, since the inherent deviations from the

24 2 Trigger Networks

approximation are dominant.

2.3 Dilation Support
Some trigger networks make use of dilation, as explained in section 1.8.2. It helps
to increase the receptive field, without the need for more network parameters. This
feature was previously not supported in the VHDL implementation. To add this,
a clever buffer of the input values is necessary. Previously, each neuron buffered
its input values depending on the kernel size. In each clock cycle, the buffer is
shifted by one step forward and the latest input value inserted. To implement a
dilation 𝑑, this same buffer can be used, but its size needs to be increased. Instead
of kernel size 𝑘 the buffer now needs a size of at least

𝑠buffer = 𝑑 · (𝑘 − 1) + 1 (2.2)

not considering other technical reasons that may require more delay for the buffer.
This is due to the fact, that there will still be 𝑘 values required for the calculation,
but they are spaced out more due to the dilation 𝑑.

2.4 Automatic Conversion of Keras Files to
Configuration for VHDL Implementation

The network architecture can be specified in a configuration file. This contains a
package with the definition of a number of VHDL constants, which define the net-
work. To facilitate this process, an automated configuration tool has been created.
It is able to read the Keras model files obtained from the network training and
generate the configurations necessary for the VHDL representation of the network.
This allows to reliably and reproducible configure larger networks without errors
in the translation. All the automated tasks are controlled by a central Python
script. A command line flag tells the script to either prepare the files for simula-
tion or synthesis, since the target directories and files differ slightly between those
options. If an input sequence is provided, the tool is able to prepare the simulation
environment for the network so it can be tested directly without further manual
interventions.
Global parameters like the bit width of the internal signals and the number of
fractional bits for input values and weights can be specified in a configuration file.
If this file does not exist, it is automatically generated with a set of default values.
This file has the standard ini file structure to be easily accessible.
In the first step, the script searches for the necessary input files in the provided
directories. This is the JavaScript Object Notation (JSON) file with the network

2.4 Automatic Conversion of Keras Files to Configuration for VHDL
Implementation 25

description, as well as the Hierarchical Data Format 5 (HDF5) file with the net-
work weights from the Keras training. The directory of the Keras model files
and the input sequence in the HDF5 file format can be specified as command line
options. The script identifies the necessary files from those directories automati-
cally. It can also read in multiple input sequence files and combine them into one
longer sequence. This is required to apply the network to larger datasets, since
the available sequences generated by AREUS are fragmented into smaller parts,
while the VHDL simulation works better with a single large sequence.
Keras itself is used to read in the model files. To be exact, the Python library
TensorFlow.Keras is utilized, since it was also used to write those files after the
training. Despite Keras not being needed for anything else here, this is still the
most elegant solution, since this script does not need to be designed with the
exact structure of the Keras files in mind. It will also be compatible with different
versions of Keras, where the file structure may change in subtle ways, as long as
the application programming interface (API) functions remain the same.
The conversion is only possible for a limited range of network architectures and
features, as they are required by the specific networks under investigation for
this project. If necessary, new features and network types can be added to this
procedure at a later time. However, the script does support all features of the
VHDL implementation and is thus complete for its specific purpose.
Several decimal input files are generated afterwards. This is most importantly
the input sequence based on the provided HDF5 files, but also stimulus files that
govern the enable signal for the calculation as well as the reset signal and a signal
required to begin the process of reading the network weights and bias values from
the input array. The network weights are written into such a decimal text file
as well and shifted by the correct number of steps to match the timing of the
other provided control signals. For an alternative version of the code that reads
in the weights in the VHDL model using the on-board RAM of the FPGA, a
mif file with the weights is also provided. This can be used to initialize the
RAM with the correct values. Whether the decimal sequence file or this RAM
initialisation file are used in the simulation can be chosen in the test bench code.
The conversion script here provides the necessary input for both options. In case
of synthesis, only the RAM initialisation file can be used. The same goes for all
other decimal input and stimulus files: They cannot be used in the synthesized
project. Since this information is not necessary during the synthesis, the project
can still be compiled. However, at this point it is not possible to really test it on
an actual FPGA, since no proper input sample injector and wrapper framework
exists yet. When the VHDL project is embedded into such a framework later on,
the respective file formats necessary at that point will need to be added to this
conversion script to be able to still use it.
After all the network parameters have been identified and sorted, they are applied
as patches to a provided template configuration file using a regular expression

26 2 Trigger Networks

search and replace approach. The template file can be any valid configuration
file. No special preparation, like masking all the configuration values, is required.
The function used to prepare and buffer the patches beforehand already takes
care of whether a specific variable is a single value or an array and formats it
accordingly, so that a valid VHDL file is output. The template file is only edited
in very specific positions, as only the values of the patched generics are replaced
by the new values. This means that the rest of the file remains largely unchanged,
including all comments and formatting. This approach results in a separation of
VHDL code and the automation script, since no actual code needs to be generated.
The resulting code on both sides is therefore much more readable.
The script outputs a warning for all generics in the template, for which no patch
has been defined. This helps with identifying problems in the conversion process.
It is desirable, that the script defines patches for all generics in the file to really
be independent of the values defined in the template file. If variables were not
overwritten by the script, the initial values from the template file would be kept,
which is not intended behaviour.
After this string manipulation, the configuration is written to the target directory
used by the simulation and a shell script with the correct command line options
for a script to later compare the results between the VHDL implementation and
the Keras reference model is generated.

2.5 Comparison and Verification
The networks implemented in VHDL need to be verified to identify potential
issues with the code and judge the influence of the inherent deviations due to
the simplifications made in the model. The verification can be directly integrated
with the automation tools presented in the previous section. Since the simulation
software is able to write the output of the network into files, it can be easily
accessed. This will not be possible when the firmware is tested on an actual
FPGA. With the help of this simulation setup, issues in the implementation can
be identified and fixed during development more effectively. This will be replaced
by a proper process verification framework in later stages of the project.
The output from the VHDL networks needs to be processed before it can be
compared to the results from Keras, which provides the reference model run on a
regular CPU based computer.
To read the input sequence, the same functions used by the conversion script can
be reused. The results from the VHDL simulation are read from the hex file and
converted to floating point numbers using the provided number of fractional bits.
The Keras model and its weights are loaded by Keras and the model applied to
the input sequence. This means, that there are now the simulation results as well
as the reference results available for comparison.

2.6 Integration into the LASP Framework 27

However, the VHDL results are still shifted by a certain number of bunch crossings.
The exact shift depends on the implementation and the latency of the test bench,
as well as architecture of the simulated network. While this shift can in theory be
calculated by this evaluation script, it can also be determined by comparing it to
the reference results. The latter approach is more robust against changes to the
VHDL code, since it does not have to be changed every time, the latency of the
model changes. This concept is therefore chosen. Starting with a shift of zero,
the sequences are shifted relative to each other step by step. For each step, the
root mean square (RMS) of the difference is calculated. The final result for the
shift is the value where the minimal RMS is observed. To reduce the effort of the
calculation, it is sufficient to only consider positive shifts of the VHDL sequence
relative to the Keras results, as well as set a reasonable upper limit for the shift.
The RMS is also output and can be used as a first indicator of the quality of the
simulation results and determine whether it is likely, that any problems or bugs
occurred somewhere.
To verify the results from the VHDL simulation, a plot of the differences to the
reference model is an obvious choice. Of special interest is a plot of those differ-
ences as a function of the true deposited energy in the detector cell. This helps to
separate problems in the reconstruction of low energy hits and pile-up events at
or below the noise threshold from high energy hits and see how the influence of
the numerical simplifications of the VHDL implementation influence the trigger
performance at different energy scales. To get access to this information, the orig-
inal input files for the ADC samples can be revisited. Since they were generated
by an AREUS simulation, they also contain further information like the actual
deposited energy in the detector cell for each BC.
To judge the performance of the trigger networks after the training process, ROC
curves as described in section 1.9 can be used. They show, how effective the
trigger network can separate signal and noise events. The previous comparison
between VHDL and Keras results is of a more technical nature. A comparison of
the ROC curves from the two implementations will show the actual influence of the
observed numerical inaccuracies on the trigger performance and thus the expected
physics results. The pre-processing of the results described in this section already
provides all necessary information to generate these plots for both models. The
plotting itself can be done using the same code as it is used to evaluate network
performance after the training and is provided by Anne-Sophie Berthold.

2.6 Integration into the LASP Framework
The LASP system is the detector readout component responsible for the digital
filtering and energy reconstruction in the ATLAS LAr calorimeter. This firmware
does not only contain the signal processing components for the energy reconstruc-

28 2 Trigger Networks

tion, but also additional features necessary for the operation of the energy readout.
This includes functionalities to receive the ADC samples, buffer the data until it
is requested by the following readout and trigger systems and transmit the data
in the required formats and protocols.
In order to integrate the neural network component into this larger firmware
project, several technical modifications were necessary. Apart from stricter re-
quirements regarding coding style and interfaces, it also uses its own building
pipeline and environment. The project was ported into this framework largely by
Nick Fritzsche in parallel to the feature extensions described here. Those exten-
sions were than added afterwards to the code inside the framework in a modified
version as a merge request on the GitLab version control system. The funda-
mental structure of the neural network code did not change in this process. The
principle of the introduced automation tools for the configuration of the VHDL
implementation directly from trained Keras models was also unaffected.

2.7 Trigger Network Performance
A ROC curve for an example trigger network can be seen in figure 2.2. The
classification between hit and background is done with the known true deposited
energy based on the energy threshold of 240 MeV. The plot is for a trigger network
with two convolutional layers, where the first layer uses ten feature maps. The
kernel size is three for the first and two for the second layer. The second layer also
has a dilation of two. Plot 2.2a uses the LUT for the sigmoid activation function
and 2.2b uses the PLAN approximation with four fractional bits in the input to
the activation function and seven bits for the output.
The plots show the curves for the reference model in blue. For this the network
was used on the PC directly in Keras on the same input sequence. The red curves
shows the result from the VHDL-model results using the Questasim simulation
software. Both lines are in good agreement with the VHDL-model and are nearly
indistinguishable. The most notable difference is, that the curve for the VHDL-
model using the PLAN sigmoid function ends earlier and does not reach higher
signal efficiencies. This is due to the rounding involved with the fixed point
numbers and the PLAN approximation of the sigmoid activation function. The
greatly decreased bit width of the PLAN approximation has only a very limited
influence on the ROC curve. It is very remarkable, that the trigger performance
does not suffer from either the limited bit width of the VHDL implementation
in general or the approximated sigmoid activation function. This is due to the
fact, that the network is only used to make a binary decision using the current
threshold. Little variations due to rounding have very little influence. The general
performance of the VHDL models is still significantly better than for the OF, since
that had much worse trigger characteristics as discussed in section 1.9. The good

2.7 Trigger Network Performance 29

0.75 0.80 0.85 0.90 0.95 1.00
Signal Efficiency

0.75

0.80

0.85

0.90

0.95

1.00

Ba
ck

gr
ou

nd
 R

ej
ec

tio
n

Eth = 3
VHDL
Keras

(a) VHDL results when using LUT for activation function

0.75 0.80 0.85 0.90 0.95 1.00
Signal Efficiency

0.75

0.80

0.85

0.90

0.95

1.00

Ba
ck

gr
ou

nd
 R

ej
ec

tio
n

Eth = 3
VHDL
Keras

(b) VHDL results when using PLAN for activation function

Figure 2.2: ROC curve of a two layer convolutional network. Comparison
between the simulated VHDL-model and the Keras reference for two different
implementations of the activation function.

30 2 Trigger Networks

agreement of the VHDL and Keras models here therefore shows that the networks
on the FPGA can also reach a much better trigger performance than the OF. It
remains to be seen, how the performance will look for the energy reconstrution,
as the reduced bit width will have more influence there.

3 Optimisation

3.1 Approaches in Optimisation
The optimisation of an FPGA design can happen with regard to different perfor-
mance metrics. When talking about speed, there are three different variables that
can be optimised for in this context: throughput, latency and timing [35, p. 1].
Throughput regards the amount of data that can be processed in a certain time.
This value is predefined for this project, since the bit width and number of input
channels per FPGA is largely fixed by other project requirements already [36].
The latency is of high interest for this project, since the energy and timing in-
formation is required by the trigger system. A reduction of the latency per layer
of the neural network means that potentially more layers could be used. This
means, that even after the latency requirements are met, a further reduction of
latency gives more flexibility for the possible network architectures. This flexi-
bility may not be needed though, since more layers do not automatically result
in higher quality output, especially if the number of parameters in the network
is fixed. The latency optimisation has therefore a very high priority, until the
CNNs currently under evaluation meet the requirements. A further reduction is
beneficial, but should not be prioritized in trade-offs.
The timing optimisation is of special interest in conjunction with the plans for time
domain multiplexing. If one network implementation is to process the data of 𝑛
input streams in sequence, it needs to run at 𝑛 times the speed of the input. With
the ADC sampling frequency of 40 MHz and a planned multiplexing factor of 12,
a maximum clock frequency of 480 MHz is needed. This reuse of FPGA resources
increases the number of detector cells, which can be processed per FPGA, by a
factor of 12. Further improvements in the timing are a good safeguard against
future changes that degrade the timing, but not in itself necessary. A higher
multiplexing factor is not planned, even if this could save more resources, since
it would allow more data streams to be processed per network implementation.
With a fixed number of inputs per FPGA, this could allow the use of networks
with more parameters. However, the CNN code is embedded into a larger design
with other subsystems, which also have a target frequency oriented towards the 12
times multiplexing. Currently, there are no plans for an additional clock to drive
a faster CNN data processing. The goal here remains to reach the frequency of
480 MHz with all features implemented. Some margin here remains very beneficial

32 3 Optimisation

though.
A key concept for reaching high throughputs on FPGAs and other hardware de-
vices is the use of pipelining. Kilts [35, p. 2] compares this to the assembly line
used in automotive production. This means, that a high number of specialized
processing stations are combined to a chain. On the way to the finished product,
each input value or car passes through all those stations in the same order. At
each station, a specific processing or manufacturing step is executed. At a high
level, this concept is used in the structure of the CNN code. The data take a lin-
ear path and there are no multiplication units that are passed twice. This means,
that all loops regarding the network structure are unrolled as suggested by Kilts
[35, p. 2]. Further optimisations can only be achieved with a higher execution fre-
quency. Reusing multiplication units could potentially allow networks with more
parameters. However, it is highly unlikely, that the desired execution frequencies
can be met then, especially with the already introduced multiplexing feature. This
fully unrolled structure also reduces the amount of control logic inside each layer.
The use of pipelining does not automatically increase the latency, since the maxi-
mum clock frequency increases together with the latency measured in clock cycles.
However, the maximum clock frequency is driven by the critical path. The longest
time necessary for the connection between any two consecutive registers is there-
fore crucial. Since all other registers in the module will be using the same clock,
their connections among each other will have the same delay as the slowest con-
nection. Therefore, the use of more pipelining stages does degrade latency, while
improving the maximum clock frequency [35, p. 5].
The optimisation of timing and thus the maximum clock frequency is more com-
plex. It has already been established, that this can be improved by the introduc-
tion of additional pipelining stages. But there are other possibilities to improve
the signal delay on the critical path. Many of these optimisations are very depen-
dent on the specific logic operations between the involved registers. The measures
to improve that timing include parallelisation, flattening logic, balancing registers
and reordering of paths [35, p. 16]. Many of those methods can be applied by the
synthesis tool itself. But it is hard to generalize, in which situation the specific
tool will succeed and where more manual attention is required. This is also a very
dynamic field, since the synthesis tools are in constant development and new and
improved optimisation features are added.
Another approach is to reduce the number of parameters in the network. In
contrast to the previously discussed solutions, this has a direct impact on the
quality of the network output itself. For example, one can prune all the weights
below a certain threshold. However, this technique is not well suited for the
LAr data processing. When the CNNs are programmed onto an FPGAs, all the
calculation processes will be mapped to certain areas and actual physical locations
on the chip. It is simplest to implement the network in such a way, that each
multiplication unit is assigned to one specific weight in the network and all the

3.2 Results of Optimisations 33

connections in the ANN exist as actual connections on the FPGA and not just
as a rule for a higher level controller on how to assign data to multi-purpose
calculation units. This is somewhat connected to the described unrolled loops,
but such an abstraction would be necessary for a dynamic model, that can handle
pruned weights.
While being easier to implement, the rigid approach also reduces the overhead
between layers, since there is no higher level control logic required to assign input
values to the calculation units. Their input and output ports can just be connected
by fixed paths with some static logic cells and registers in between. This reduces
the number of interconnections required between far away regions on the FPGA
and promotes short and direct paths in the mapping. However, the key benefit
is that the weights are not required during synthesis and can be loaded at a
later time, since they have no influence on the architecture. This makes it easier
to program the same network architecture onto all the FPGAs dedicated to the
LAr calorimeter, but use a slow control to provide the weights depending on the
detector region or even the specific detector cell as necessary. The weights can
later be varied without recompiling the networks. It is not necessary to run the
synthesis tool for every single FPGA separately, which would require immense
effort in either server infrastructure or time independent of the time required to
train the networks for specific cells.
As a summary it can be noted, that pruning can be applied, but has no perfor-
mance benefits, since all the necessary calculation units for the pruned weights will
still be present on the FPGA and included in the mapping structure. Therefore,
pruning makes no difference and may actually require more logic blocks depending
on the implementation. Furthermore, all networks considered here have already
been optimized to make good use of the available number of parameters.

3.2 Results of Optimisations
The most pressing concern regarding network performance is the maximum clock
frequency. Since it is planned to use time domain multiplexing, the network
is expected to run at 12 times the frequency of the LHC bunch crossings, which
translates to 480 MHz. While the execution speed of the firmware may be different
once the multiplexing is implemented, it will not be better than the current version
with only one network instance and no multiplexing. Therefore it is crucial to
improve the design to a point, where the desired frequencies can be reached.
The multiplexing itself is a clever way to fully utilize the potential of the FPGAs
used. Since it can run at frequencies up to 1 GHz, it would be a waste to let them
run at only 40 MHz. With the multiplexing, fewer FPGAs are needed to process
all detector readout channels. Or inversely, if the number of available FPGAs is
already fixed, the size of the ANNs that can be implemented, can be increased

34 3 Optimisation

accordingly.
The maximum clock frequency can be estimated by using the Quartus Timing
Analyzer [27] reports from the synthesis step. Quartus estimates the frequency
for four different scenarios, of which the model that assumes 900 mV supply voltage
and 100 °C operating temperature is chosen. For the initial design, this is also the
scenario with the worst performance. However, this not consistently the case for
all following optimisation steps. It is still beneficial to stick to one test case as a
performance measure. Further analysis of the expected environment can be done
with the final firmware or when the performance reaches sufficiently high levels.
The FPGA model used is the Stratix 10 version 1SG280HU2F50E2VG [31]. As
a standard benchmark, a trigger network with four convolutional layers, a kernel
size of two and three feature maps in all but the last layer is used.
With those settings, an initial performance value of 54.45 MHz is obtained. This is
very far from the desired target value of 480 MHz. The design is further improved
through incremental changes and recompilation, of which only the more important
intermediate steps will be listed here. Since the clock frequency is always limited
by the slowest connection between two registers, the identification of this critical
path is very useful for targeted optimisations. The slowest data paths can also
be seen in the Quartus synthesis reports. This helps the incremental optimisation
process, since it is clear where an improvement will very likely result in better
performance and where this is not immediately the case. The two easiest ways to
address the slowest data path are to either remove logic from the path or introduce
new pipelining registers and thus distributing the work between multiple clock
cycles.
The calculation within one layer consists of four main steps here: First the correct
input samples are identified, then they are multiplied by their weights, added up
and finally the activation function is applied. The first step in optimisation taken
was therefore to split the activation function into a separate clock cycle. This
yields a frequency of 62.7 MHz. To decrease the compilation time, from now on
the high effort optimisation of the compiler is turned off. The equivalent frequency
of this step in comparison to the following ones is therefore 61.3 MHz.
In the current code, there are some overflow checks. While this is in itself a
useful feature, it adds additional logic in the calculation path and slows down
the processing. The information is also not used in a meaningful way at this
stage. While overflows are an important topic, this should be addressed later and
possibly be prevented by design for intermediate results. A check can also be
reimplemented, once a procedure exists on how to handle the cases where this
occurs. Therefore, the overflow checks are removed.
The multiplication and summation happen in separate steps in the current code,
but still the same clock cycle. By removing the intermediate variable and doing
both in one line, the compiler might be incentivised to merge the two operations
together. This can yield a better timing, since the FPGA has dedicated multiply-

3.2 Results of Optimisations 35

add units in the form of the DSPs. With these two changes, the clock frequency
could be increased to 100.84 MHz.
This design still does all the necessary multiplications in sequence within one clock
cycle. This is an approach commonly used in software solutions for CPUs. But
this sequential approach, while being good for a single, fast processing unit, is not
ideal on FPGAs. Here, intermediate steps can be parallelized by just splitting up
the data path and merging it again afterwards. The bottleneck is expected in the
multiply-add calculation block. Therefore, all the multiplications are now done in
parallel and only summed up at the next clock cycle. Since the multiplications
are now executed at the same time, the results of one step are not available
anymore for the next one. Therefore, the merged multiply-add feature cannot be
utilized anymore. However, the critical path gets much shorter, since now only
one multiplication has to be done in a clock cycle instead of all multiplications
defined by the kernel size of the layer. This results in a performance jump to
260.69 MHz. Now three of the mentioned four main steps in the calculation of
the layer output are split into individual clock cycles. If the identification of the
necessary input samples is also split from the multiplication, only a small increase
in performance to 264.41 MHz can be observed.
At this point, all high level steps have been pipelined and no obvious solution
for further performance increases exists without taking a look at the specific logic
on the critical signal path. This can be done in the register-transfer level (RTL)
viewer of the Quartus tool. This approach helps to identify further bottlenecks.
Firstly, there are some globally shared signals. Those are always a challenge for
performance, since the synthesis tool needs to maintain the proper timing and
synchronisation of these signals. Potentially, this has to be done over the entire
chip design in one clock cycle. Therefore, these should only be used with caution
and removed where possible. Of these globally shared signals there exist four in
the current design. These are the clock, reset signal, an enable signal for the
calculation and the weights vector.
A look at the logic inside the network calculation reveals that the reset and en-
able signals drive more logic of internal registers than necessary. There is also an
unnecessary feature for pruning networks. It compares the weights with a config-
urable threshold and sets them to zero in case the threshold is not passed. If this
feature proves necessary, it can be replicated by already applying the threshold
check offline to the weights, before they are uploaded onto the FPGA. But it has
already been established, that pruning does not provide any performance benefits.
Those issues have been addressed and the results are presented in table 3.1. Most
notable is, that the performance actually decreases for some of those measures.
This shows that the routing is a non-trivial task and may react in unexpected ways,
especially to changes not directly on the critical signal path. The important part
here is, that the critical path changes from the multiplication to the summation
stage. And in contrast to the multiplication, the latter can actually be pipelined

36 3 Optimisation

Table 3.1: Maximum clock frequency and critical path for incremental
changes in control logic of the CNN layer for an example network

Incremental modification 𝑓max in MHz Slowest step
Initial pipelined model 264.41 Multiplication
Enable signal only drives output 265.89 Multiplication
Remove weight threshold check 255.75 Multiplication
Buffer weights before multiplication 251.83 Multiplication
Reset only output and input to sample buffer 245.04 Summation
Delay reset signal by one cycle 233.54 Summation
Delay enable signal by one cycle 239.23 Summation

further.
Therefore, the summation is further split into two stages. This results in a max-
imum clock frequency of 375.8 MHz when combined with all the modifications
presented in table 3.1. When the 2-stage summation is implemented on top of the
initial pipelined model without those other changes, the performance results look
worse. A similar incremental modification based on this is shown in table 3.2.
It can be seen, that the previously mediocre improvements or degradations are
now actually useful and all contribute to the improved performance of the 2-stage
summation model.
For higher kernel sizes or a lot of feature maps in the previous layer and thus more
input values to a neuron, the number of intermediate results to be added up in
one clock cycle increases to a level, where this is the critical path instead of the
multiplication when using one summation stage even without the other modifica-
tions. In case of the 2-stage summation, this can still lead to a severe performance
degradation, if many additions are required. This could be compensated for by
further splitting the summation into multiple sub-steps depending on the actual

Table 3.2: Performance and critical path for control logic changes combined
with two stage summation. The brackets in the critical path column indicate
that there is no clear slowest step in the calculation.

Incremental modification 𝑓max in MHz Slowest step
Initial pipelined model (w/o split Ident.) 260.69 Multiplication
Two stage summation 257.27 Multiplication
Delay reset and enable signals 276.7 (Multiplication)
Buffer weights 285.88 (Summation)
Enable signal only drives output 323.94 Multiplication
Remove weight threshold check 330.91 (Multiplication)

3.3 Pipelining over Input Values 37

number of required add operations.
The multiplication is now running in a separate clock cycle without much other
logic between the respective registers before and after it. But still, the maxi-
mum clock frequency is very far from the target of 480 MHz. This means that
some other approach has to be taken to still gain significant improvements. It is
therefore in order to take a closer look at the calculation units responsible for the
multiplications, the DSPs.

3.3 Pipelining over Input Values
The trivial implementation until now only starts with the calculation for one spe-
cific output value, when all the necessary input values are available. This approach
is shown in table 3.3 for an unpipelined model. By splitting those four main steps
of the calculation inside a layer into four clock cycles and using a parallel ap-
proach for the multiplication, a significant performance increase measured in the
maximum clock frequency has been observed.
However, even this improved calculation scheme does not make good use of the
time delay between input values inherent to processing a time series in real time.
The calculation for a certain output value can be started when the first necessary
input value is available instead. This allows chaining the DSPs and makes use of
their combined multiply-add functionality again. This works by multiplying the
first input value by its weight and pushing the result to the next DSP, where it
should arrive at the same time as the next input value from the previous layer
or the ADC is available. The new input value is then multiplied with its weight
and added to the intermediate result from the previous DSP in the chain. This
means that only a single multiplication has to be done between the time the last
necessary input value arrives and the output is calculated. An overview of this
scheme is shown in table 3.4. All the cells of the same colour contribute to the
same output value. The result of the operation in one cell is therefore handed
over to the next unit, where this intermediate result is summed with the next
operation of the same colour. The pipelining concept makes it possible, that all
the intermediate results for the end result of different time steps exist in the DSP

Table 3.3: Previous structure of the calculation. The calculation for one
output value only starts after all input values are available.

Timestep Input Calculation
𝑛 𝑥0 𝑦0 = 𝑏 + 𝑤0 * 𝑥0 + 𝑤1 * 𝑥1 + 𝑤2 * 𝑥2

𝑛 − 1 𝑥1 𝑦1 = 𝑏 + 𝑤0 * 𝑥1 + 𝑤1 * 𝑥2 + 𝑤2 * 𝑥3
𝑛 − 2 𝑥2 𝑦2 = 𝑏 + 𝑤0 * 𝑥2 + 𝑤1 * 𝑥3 + 𝑤2 * 𝑥4

38 3 Optimisation

Table 3.4: General concept of pipelining over input values. Cells of one colour
contribute to the same output value.

Time Step Input Calculation
𝑛 𝑥0 𝑦0 = 𝑤0 * 𝑥0+ 𝑤1 * 𝑥0+ 𝑤2 * 𝑥0 + 𝑏

𝑛 − 1 𝑥1 𝑦1 = 𝑤0 * 𝑥1+ 𝑤1 * 𝑥1+ 𝑤2 * 𝑥1 + 𝑏
𝑛 − 2 𝑥2 𝑦2 = 𝑤0 * 𝑥2 + ... 𝑤1 * 𝑥2 + ... 𝑤2 * 𝑥2 + 𝑏

chain at same time. The example shows, how a kernel size of three with one input
stream can be processed with only three multiply-add units.
It is clear how all but one multiplication can be done before the last sample arrives.
There may be more than one input stream, for example when the previous layer
has more than one feature map. In that case the DSP chain structure exists
independently for each input stream and the results of all chains need to be added
up before the activation function is applied.
When comparing this concept to the previous approach, one can observe that the
use of pipelining is much better integrated with the calculation structure now.
One important improvement is also, that even for higher kernel sizes, the latency
should not change, since there are still only one multiplication and the sum over
all input streams necessary. In the initial model, all the multiplications needed to
be done in sequence, as well as the summation. In the improved pipeline model,
all multiplications were at least executed in parallel, but the summation over all
intermediate results still needed to happen afterwards.
The model using pipelining over input values, as presented here, only needs to
sum over the final results per input stream afterwards. The DSP chain structure
already does a large part of the summation steps automatically. This means
that a slight improvement in either latency or maximum clock frequency can be
expected for this model, at least for some networks. The specific architecture
of the network needs to be considered for this, since the number of additions
depends on it. For small kernel sizes the addition step will probably not be the
critical path in the entire neural network design and thus have no influence on
the maximum clock frequency. For larger kernel sizes, this can still be achieved
by further pipelining the summation stage at the cost of increased latency. The
performance of the approach using pipelining over input values is less dependent
on the specific architecture, since fewer values need to be added up after the
multiplications are finished. This path can still become the critical path depending
on the architecture, since the effort depends on the number of input paths, whose
intermediate results need to be added. Albeit, the dependence on the architecture
is much smaller.

3.4 Manual Assignment of DSPs 39

3.4 Manual Assignment of DSPs
The approach shown in table 3.4 can be further improved in terms of maximum
clock frequency. This is due to the fact that the DSPs actually requires more than
one clock cycle to calculate their output. If the result is expected after a single
clock cycle nonetheless, the remaining components will only be able to operate
at half the speed or even less. To solve this in a clean and consistent way, the
DSPs need to be assigned manually. For this, a intellectual property (IP)-core
like library function can be used. Better accessibility is provided by a wrapper for
this function [26, pp. 76 sq.]. This allows the inclusion of the DSPs like any other
VHDL component. The numbers to be multiplied are assigned as input signals
and the result is available as an output signal. This means that the multiplication
is no longer trivially implemented by using the inbuilt *-operator anymore, but
relocated to this generated component.
The Stratix 10 FPGA that will be used for this project has a special DSP ar-
chitecture, where each DSP contains two multiplication units. The best way to
use them here to process two pairs of input values together. The results of both
multiplications will then be added up automatically if the correct operating mode
is used. Furthermore, DSPs can be chained up for a multiply-add cascade over
multiple clock cycles as described in section 3.3. This is an inherent feature of
these DSPs and further motivates the use of this pipelining structure. For this,
the IP-core and wrapper have a chainin and chainout port, which can be used
for this feature. This means that the results of the necessary multiplications are
accumulated automatically without further resource usage or latency over what
the multiplications itself already require.
The idea here is to pair two multiplications together and assign them to one DSP.
Here only multiplications should be combined, whose output values need to be
summed up afterwards. Therefore, a DSP can be used only within one feature
map of one layer. One neuron has a number of input values equal to the kernel
size multiplied by the number of input channels. To pair up the multiplications,
the values of two input channels at the same time step can be grouped. This
means that the number of DSPs in one chain will be equal to the kernel size, but
two input channels will be processed together.
This approach can minimize the number of necessary DSPs for an even number of
input channels. For an odd number, the last chain of DSPs will only be utilized
by 50 %. To optimise this further, a separate calculation path is introduced for
this case. On this path, two input samples of consecutive time steps, but from the
same input channel, are assigned to one DSP in the chain. For an odd kernel size,
this will leave one multiplication unit unused. Since all multiplications within that
one neuron are assigned, this last unit cannot be used for any other purpose. This
means, that without changing the mode of the DSPs, the number of necessary
DSPs cannot be optimised further. The expected loss here is also rather small

40 3 Optimisation

Figure 3.1: Structure of a DSP on the Stratix 10 FPGA in systolic FIR mode
[32, p. 28 (Fig. 15)]

and an acceptable trade-off for the performance benefits of using the systolic
finite impulse response (FIR) mode with the automatic chain-adding feature. The
dedicated calculation path for the last input channel is only necessary for an odd
number of input channels to a neuron.
A sketch of the DSP in this mode can be seen in figure 3.1. The input values
are the two numbers to be multiplied as well as a third unused value to be added
for both multipliers. It can be seen, that the results of this operation are added
up before being output. The results are also accumulated onto the value input
on the chainin port and chainout is an alternative output port. Those ports are
handled differently from normal input and output ports and can be used to chain
the DSPs with less input latency than usual and make use of the free summation
step in the DSP.
The results of those two calculation paths need to be properly synchronized before
being summed up and the activation function is applied. For this, each path’s
results are channelled through a delay chain, that is configured with the expected
difference in latency of the two paths from the layer architecture. The summation
of the results of all the DSP chains is first done over the values from the first
calculation path including the bias. In the next step, this intermediate result is
accumulated with the result from the separate last calculation path.
Table 3.5 shows the data flow and exact timing through one feature map of a layer

3.4 Manual Assignment of DSPs 41

Table 3.5: Data flow inside a layer through DSPs and internal registers

𝐵𝐶 Input from FM Operation
𝑛 𝑥0,1 𝑥0,2 𝑥0,3 Output 𝑦11 usable in next layer

𝑛 − 1 𝑥1,1 𝑥1,2 𝑥1,3 Output 𝑦11
𝑛 − 2 𝑥2,1 𝑥2,2 𝑥2,3 Activation function
𝑛 − 3 𝑥3,1 𝑥3,2 𝑥3,3
𝑛 − 4 𝑥4,1 𝑥4,2 𝑥4,3 Sum over paths
𝑛 − 5 𝑥5,1 𝑥5,2 𝑥5,3 Sum + Bias
𝑛 − 6 𝑥6,1 𝑥6,2 𝑥6,3 DSP 2
𝑛 − 7 𝑥7,1 𝑥7,2 𝑥7,3 DSP 2 DSP 3
𝑛 − 8 𝑥8,1 𝑥8,2 𝑥8,3 DSP 1 DSP 3
𝑛 − 9 𝑥9,1 𝑥9,2 𝑥9,3 DSP 1 DSP 3 inp. reg.
𝑛 − 10 𝑥10,1 𝑥10,2 𝑥10,3 DSP 1 inp. reg. DSP 3 inp. reg.
𝑛 − 11 𝑥11,1 𝑥11,2 𝑥11,3 DSP 1 inp. reg.
𝑛 − 12 𝑥12,1 𝑥12,2 𝑥12,3

of the CNN. This layer has a kernel size of two and three input channels, which
means that the previous layer had three feature maps. It can be seen how the
DSPs are chained up. Notable is the delay of two clock cycles per chained DSP
with two initial cycles additional input delay in the first DSP. This initial delay
exists as well for the following DSPs, but not for the chainin port. Therefore, it
does only influence total latency once for the first DSP in chain.
Table 3.6 shows how the assignment of multiplications changes for two more input
channels compared to the precious example case.
The total latency 𝐿 of this implementation measured in clock cycles can be cal-
culated according to

𝐿 = 2 +
∑︁
layer

(︃
11 + (𝑘𝑖 mod 2) +

{︃
𝑘𝑖 − 1 for 𝑑𝑖 = 1
0 for 𝑑𝑖 > 1

)︃
(3.1)

from the kernel size 𝑘𝑖 and the dilation 𝑑𝑖 of the respective layer. The different
sources that make up the constant delay of 11 clock cycles per layer can be seen
in table 3.5. For a dilation of 1, the normal calculation path has an additional
delay of kernel size minus one. This results from the fact, that each DSP has an
internal delay of two clock cycles, but a new input value is available at each clock
cycle. This means that, while the first input value can be sent to the first DSP
in the chain immediately after being available, each consecutive sample needs
to be delayed by one more cycle. Here the delay of 𝑘 − 1 comes from. This
phenomenon only occurs in the normal calculation path, since the dedicated last

42 3 Optimisation

Table 3.6: Extension of the DSP layout for more input channels (feature
maps in previous layer)

𝐵𝐶 Input Operation
𝑛 𝑥0 Output 𝑦11 usable in next layer

...
𝑛 − 4 𝑥4 Sum over paths
𝑛 − 5 𝑥5 Sum + Bias
𝑛 − 6 𝑥6 DSP 2 DSP 4
𝑛 − 7 𝑥7 DSP 2 DSP 4 DSP 5
𝑛 − 8 𝑥8 DSP 1 DSP 3 DSP 5
𝑛 − 9 𝑥9 DSP 1 DSP 3
𝑛 − 10 𝑥10
𝑛 − 11 𝑥11,FM12345
𝑛 − 12 𝑥12,FM12345

path can process one input value per clock cycle, because the two multiplication
units are used for two consecutive samples instead of ones from the same time step
there. The modifier for the case of odd-numbered kernel sizes comes from the last
calculation path. Since two consecutive samples are processed in the same DSP,
the last DSP in the chain processes only one sample and gets zero as input for
the second multiplication unit in this case. The DSP still needs two clock cycles
to process the single sample. Therefore, this calculation path has an additional
delay of one clock cycle for odd-numbered kernel sizes. The global base latency of
two comes from data input and output delay in the simulation.
With the approach outlined here, a maximum clock frequency of 381.68 MHz is
achieved, which is significantly higher than the previous performance. This uses
the PLAN approximation for the activation function. When using the simpler
LUT, the performance increases to 425.35 MHz and the critical path reported by
Quartus is actually not in the network calculation itself anymore, but the logic
governing the loading process for the weights. Here it turns out, that PLAN
needs to be further pipelined to compete with the LUT in terms of maximum
clock frequency. The different range checks and shift operations followed by the
subtraction in PLAN are actually slower than just using a LUT for the full bit
width. Therefore, the LUT is used for the performance and latency optimisations
here. At a later time, PLAN can be revisited to reduce the number of necessary
ALMs in the design.
With some simplifications in the state machine that determines whether the net-
work is in coefficient reading or calculation mode, and removing some unnecessary
reset logic for the weights buffer within a neuron, the maximum clock frequency

3.4 Manual Assignment of DSPs 43

reaches 439.56 MHz.
After porting this to the LASP project, the frequency increases to 511.25 MHz.
This is most likely due to port virtualisation. The LASP project uses a script to
virtualise all input and output ports that are not actually mapped to hardware
pins. Previously, the synthesis tool mapped paths to such pins for all the input and
output signals for the network. But since this induces some delays which are not
coming from the network calculation in itself, it is a good idea to virtualise those
and not include them into the performance considerations. Later, the CNN module
will be embedded into a larger design on the FPGA and thus not be directly
connected to any pins anyway. This situation is therefore more representative of
the intended use case than the previous approach. This is also the first time,
that the network actually reaches the performance target of 480 MHz, at least
for this example network and without significantly lowering the bit widths. This
milestone brings this implementation significantly closer to be usable for the real
LAr calorimeter readout in the future.

4 Energy Reconstruction Networks

4.1 Network Architecture for Energy Reconstruction
The previous networks were only able to estimate the probability for each BC
that there was a signal hit over the 3𝜎 threshold of 240 MeV. This is already a
very useful information for the energy reconstruction, but further processing is
necessary. The networks under investigation are composed of two subnetworks [7,
p. 6]. The architecture can be seen in figure 4.1. The bottom part is a trigger
network very similar to the networks used until now. It receives the ADC samples
from the detector as an input and outputs an estimate how likely it is that there
was a hit over the noise threshold in the current BC. The trigger part consists of
two convolutional layers and uses the sigmoid activation function. The first layer
has five feature maps and a kernel size of three. The second layer has a kernel size
of six and only one feature map.
The second part is an energy reconstruction subnetwork. It makes use of the
concatenate feature of Keras to combine the ADC samples with the output of the
trigger subnetwork. The energy reconstruction consists of one or two convolutional
layers with rectified linear units (ReLUs) as activation functions. The sigmoid
function was very suitable for the trigger part, since it can only output values in the
range of (0, 1), which is very convenient to estimate probabilities and is therefore
often used for decision-making networks. However, this is not appropriate for the
energy reconstruction. Here a more linear and unconstrained function is more
promising.
The energy reconstruction subnetwork in figure 4.1 has two layers, where the
first has three feature maps and a kernel size of four. The second layer has only
one feature map and a kernel of three. This architecture is referred to as 4-
Conv and used as one of the example architectures in the following performance
considerations. The alternative architecture has only one energy reconstruction
layer with a kernel size of 21 and one feature map. The trigger subnetwork is still
the same as before. This architecture will be referred to as 3-Conv.

46 4 Energy Reconstruction Networks

...

Receptive Field = 13

...

...
...

...

...

...
Concatenate

Conv 2

Conv 1

Input

kernel = 4

dilation = 1

feature maps = 3

kernel = 6

dilation = 1

kernel = 3

dilation = 1

feature maps = 5

Bias

Output

t0 t-1 t-4 ...

Conv 3

...
...

...

Output

Tr
ig

ge
r

En

e
rg

y
R

e
co

n
st

ru
cti

o
n

t-4 t-7

Conv 4 ...
kernel = 3

dilation = 1

Figure 4.1: Architecture of the combined energy reconstruction network with
trigger part as subnetwork in the four layer version 4-Conv [7, p. 6]

4.2 Performance and Resource Usage of the Energy Reconstruction Networks 47

4.2 Performance and Resource Usage of the Energy
Reconstruction Networks

The performance estimates of the energy reconstruction networks can be seen in
table 4.1. Both network architecture reach the desired frequency of 480 MHz, al-
beit barely. While the performance degraded somewhat compared to the isolated
trigger network, it is still in the same range. On the FPGA, the energy reconstruc-
tion network is no different from the trigger one. It is only larger and uses a delay
chain to provide the ADC samples together with the trigger network output to
the first energy reconstruction layer. The energy reconstruction layers themselves
use the ReLU activation function, which is significantly easier to implement on
the FPGA, since it is constant for negative input values and linear for positive
ones.
The number of DSPs matches the expectations and none are used other than the
ones manually assigned for the multiplications. It can be seen in the table, that
some multiplication units remain unused due to the reasons presented in section
3.4. For the network architectures used here, this is a loss of about 5 %.
The networks both reach a latency of approximately 60 clock cycles. This trans-
lates to a time of 125 ns. The target value here is 125 ns to 150 ns. The networks
are therefore fast enough with the energy reconstruction to meet the timing re-
quirements of the trigger system. That is a key result and means that the network
implementation is really suitable for use in the real time energy reconstruction.
Other solutions using more complex networks have a much worse latency, that is
not suitable for the energy reconstruction for the trigger system. The CNNs under
evaluation here are smaller and use a less sophisticated architecture, but they fit
within the latency constraints of the trigger and therefore enable the use of the
improved energy reconstruction by this system. Since a better energy information
for the trigger has been a major motivation for the development of these networks,
this is a very important milestone.
However, the tests here were done with a single network instance on the FPGA.
The results will be negatively impacted when the target number of 43 networks is
implemented, since a fuller FPGA is significantly more challenging for the routing

Table 4.1: Performance, resource usage and latency of the energy reconstruc-
tion networks

Network Performance Resource usage Multipli- Latency
𝐹max in MHz ALM DSP cations in clk cycles

3-Conv CNN 493 MHz 5684 46 87 62
4-Conv CNN 480 MHz 5702 42 78 58

48 4 Energy Reconstruction Networks

tool. This number is the result of the planned 512 input channels per FPGA
combined with the 12 times multiplexing. Also, the multiplexing itself is not
implemented yet. It is projected, that this will have only a minor influence on
the latency, since it can largely be done with the existing signal buffers without
large control logic inside the layers. The resource consumption on the FPGA
in ALMs translates to 0.6 % of the total available units per instance. The DSP
usage is 0.8 % and 0.7 % of the total number for the two network architectures
respectively. All these numbers should allow fitting the 43 instances on one FPGA
without problems. The hardware usage constraints are therefore met at this stage.
Similarly to the latency, the maximum clock frequency may degrade when more
network instances are programmed onto one device. More testing and more opti-
misation will be necessary at that point to conserve the frequency of 480 MHz.

4.3 Comparison of VHDL Implementation Results
to Keras Reference

Figure 4.2 shows the energy reconstruction of the combined network for an exam-
ple sequence with continuous pile-up and an additional signal hit of up to 5 GeV
every 45 BCs. This is done for the two energy reconstruction architectures with
either three or four layers total as introduced in the previous chapter. The upper
plots for each architecture show the true hit energy together with the output from
the Keras and VHDL networks. The lower plots show the difference between the
results of the VHDL version and the Keras implementation or the true hit energy.
In general, a good agreement between the two CNN implementations can be ob-
served. The absolute difference between the two implementations is consistently
very low. The agreement shows no obvious variations between pile-up and signal
hits and is similar for both network architectures.
To put the deviations into perspective, the plots also show the true hit energy and
difference to the true hit energy respectively. There is still a general agreement
between the values, but the deviations are significantly larger. It should be noted
that the networks are trained to only reconstruct energies above the threshold of
240 MeV. Therefore, the deviations seen between the high energy hits are for the
most part actually desirable and show the expected reconstruction behaviour of
the trained networks, independent of implementation. This leads to spikes in the
deviation up to the energy threshold. While the differences for the higher energy
hits are generally lower, they are still visible and at least an order of magnitude
over the differences between the network implementations. After BC 175 the
highest differences of the reconstructed to the true hit energy can be observed.
This is likely the result of the several energy deposits at consecutive BCs. While
the neural networks are designed to handle those cases, they still cannot reach the

4.3 Comparison of VHDL Implementation Results to Keras Reference 49

0 25 50 75 100 125 150 175 200
BC

0.0

0.5

1.0

1.5

2.0

2.5

E
[G

eV
]

True Energy
Keras
VHDL

0 25 50 75 100 125 150 175 200
BC

0.2

0.0

0.2

E
[G

eV
]

VHDL - True
VHDL - Keras

(a) 3-Conv energy reconstruction network

0 25 50 75 100 125 150 175 200
BC

0.0

0.5

1.0

1.5

2.0

2.5

E
[G

eV
]

True Energy
Keras
VHDL

0 25 50 75 100 125 150 175 200
BC

0.2

0.0

0.2

E
[G

eV
]

VHDL - True
VHDL - Keras

(b) 4-Conv energy reconstruction network

Figure 4.2: Example output sequence of the energy reconstruction networks
compared to the true hit energy, as well as the deviation of VHDL implemen-
tation results to Keras and true hit energy respectively.

50 4 Energy Reconstruction Networks

same accuracy here compared to isolated large energy deposits. Compared to the
OF, this is however already an advantage. It was not able to distinguish energy
deposits this close together at all.
The comparison between reconstructed and true hit energy shows that the energy
reconstruction itself is rather challenging. The reproduction of the suggested
network architectures in VHDL instead of Keras will therefore not be the main
error source. This is an important finding regarding the network training, since
it means that the performance of the Keras networks is a good estimate of the
expected performance of the firmware implementation.
To analyse the differences between the implementations further, a statistical eval-
uation over a longer sequence is necessary. This is done over a sequence with the
same mentioned characteristics, but a length of two million input samples. Figure
4.3 shows the distribution of the relative deviation between the results from the
simulation of the VHDL model and the Keras reference. Only BCs with a true
deposited energy above 240 MeV are considered. BCs where the Keras model pre-
dicts an energy of zero are also excluded since this leads to a division by zero in
the calculation of the relative deviation.
The distribution peaks at zero for both example networks. This means that the
VHDL and Keras models generally agree with each other. There are some devia-
tions, but the curves fall off fast to both sides and do not show significant tails.
There is only one notable side-peak for the 4-Conv model between −3 % and −4 %
which hints towards a bias value in that region. The general asymmetry suggests,
that the VHDL output tends to be slightly smaller than the Keras results. This
can be due to rounding near the zero energy mark or a general slight bias. But
the deviations are within the expected range considering the fixed point accuracy.
After the networks were retrained with a modified LHC bunch train structure,
larger differences between VHDL and Keras are observed. The respective plot is
shown in 4.4. The 3-Conv network develops a kind of plateau towards negative
deviations. Where these deviations originate from, could not be determined with
certainty. It is possible, that some part of the network now depends on the exact
value of a very small intermediate result. In that case, the fixed point nature of the
calculation in the VHDL implementation leads to inaccurate results, since those
numbers may be rounded to zero or reproduced with very low accuracy, if they
are in the range of the least significant bit (LSB). The peak is also shifted slightly
towards negative values. A small bias on the results may lead to the observed
behaviour, since this would lead to a certain deviation for all energies.
The firmware simulation in Questasim does not offer an easily accessible solution
to export intermediate results. A Python implementation that reproduces the
fixed point precision could therefore help identify the origin of the differences.
However, this is not yet done for the full network. The other advantage of such an
independent implementation is, that it can be used to verify the results, especially
after changes to the code or to verify some edge cases, where one is not sure

4.3 Comparison of VHDL Implementation Results to Keras Reference 51

0.10 0.05 0.00 0.05 0.10
EVHDL EKeras

EKeras

10
5

10
4

10
3

10
2

10
1

10
0

R
el

at
iv

e
Fr

eq
ue

nc
y

AREUS Simulation
2 × 106 samples 3-Conv CNN

4-Conv CNN

Figure 4.3: Distribution of relative deviation of VHDL implementation sim-
ulation results compared to Keras reference for events above the 240 MeV
threshold.

52 4 Energy Reconstruction Networks

0.10 0.05 0.00 0.05 0.10
EHDL EKeras

EKeras

10
5

10
4

10
3

10
2

10
1

10
0

R
el

at
iv

e
Fr

eq
ue

nc
y

AREUS Simulation
2 × 106 samples 3-Conv CNN

4-Conv CNN

Figure 4.4: Distribution of relative deviation for retrained networks. The
much larger deviations hint at numerical stability problems.

4.3 Comparison of VHDL Implementation Results to Keras Reference 53

whether the deviation is due to a bug or just an artefact of the simplifications
in the VHDL model. Later it may be used for automatic tests inside the build
pipeline of the continuous integration (CI) system.
Figure 4.5 shows the absolute value of the relative deviations between the VHDL
implementation and Keras as a function of the Keras results and the true hit
energy for the two example networks with three or four convolutional layers. For
this plot, there was no energy cut applied. As expected, it can be seen that the
highest deviations appear at low energies, where even small absolute differences
are boosted, since relative deviations are being plotted. With higher energies,
the deviation generally decreases. The simulations for this were run with the
usual 10 bit precision for the decimal part, while the numbers are expressed in
GeV. The used events have a maximum energy of 5 GeV. From the numeric
inaccuracies alone one can therefore expect differences in the order of magnitude
of 1 MeV, which translates to a relative deviation of 2 × 10−4. The plotted average
deviation does not reach that value, but comes relatively close. For the 3-Conv
network there is one outlying bin at around 5 GeV, which does not appear in the
plot as a function of Keras results. This is due to low statistics in this energy
region, as not many events with such a high energy appear in the input sequence.
The results for the 4-Conv network look similar, but the plotted average does
not pass the 10−3 threshold. No special cause for this could be determined. It is
assumed that this is just due to the stacking numerical inaccuracies due to the
lower bit width and the fixed point notation. For this network, the additional
layer may also enhance this effect. This can however not be proven, since the
two networks have other differences in the architecture that may lead to different
behaviour in the VHDL version. For both networks, the deviations are higher in
the low energy region when plotting over the true hit energy than compared to the
Keras results. This is an artefact of the low resolution of the energy reconstruction
below the 240 MeV threshold of the networks in general.

54 4 Energy Reconstruction Networks

1 2 3 4 5
EKeras [GeV]

10 5

10 4

10 3

10 2

10 1

100

|E V
HD

L
E K

er
as

E K
er

as
|

0 1 2 3 4 5
Etrue [GeV]

10 5

10 4

10 3

10 2

10 1

100

|E V
HD

L
E K

er
as

E K
er

as
|

(a) 3-Conv energy reconstruction network

1 2 3 4 5
EKeras [GeV]

10 4

10 3

10 2

10 1

100

|E V
HD

L
E K

er
as

E K
er

as
|

0 1 2 3 4 5
Etrue [GeV]

10 4

10 3

10 2

10 1

100

|E V
HD

L
E K

er
as

E K
er

as
|

(b) 4-Conv energy reconstruction network

Figure 4.5: Absolute of the relative deviation between VHDL and Keras
implementation results as a function of Keras results and true deposited energy
in the detector cell

4.4 Quality of the Energy Reconstruction 55

4.4 Quality of the Energy Reconstruction
In the previous section the focus was on the comparison between the VHDL and
Keras results with the goal of judging how well one implementation reproduces
the results of the other. While this is one way of approaching this comparison,
one can also look at the overall quality of the energy reconstruction and see how
the differences influence those results.
Figure 4.6 shows the distribution of the difference between the predicted energy
and the true hit energy. This is shown for the same two example networks as
the previous comparisons. For each network this is further split into four energy
regions to see the energy dependence of the reconstruction quality. The plots are
split according to the true hit energy. This also explains the cut-off on the left
side of the curve, since no lower values can be reached, than a predicted energy
of 0 and a true energy of 0.1 GeV. A similar effect can be seen in the second and
third subplots, although with decreasing severity.
The first two subplots for the 3-Conv network reveal a slightly stronger positive
bias of the prediction in VHDL compared to the Keras version. This can be seen
in the region where the blue curve separates from the orange one and stays at
higher values for longer before falling below the displayed range as well. This
means that more events with a prediction greater than the true hit energy occur
in this energy region for the VHDL version of the network. A similar effect can be
observed in the other energy regions as well, where there is an increased number
of events where the predicted energy is about 0.5 GeV above the true hit energy.
The frequency of those events is about two to three orders of magnitude lower
than the peak. This means that less than one in 100 events is affected by this
additional bias compared to the Keras version.
For the 4-Conv network, no such effect could be observed. There are no obvious
regions of larger deviations between the two implementations here and a good
reproduction of the results of the Keras network can be expected. Interestingly
enough, this network showed a slightly higher deviation between the two imple-
mentations in the previous section. So, while the average deviation seems to be
higher here, the bias behaviour is better and leads to a more consistent reproduc-
tion.
Both networks show a definitive shift towards too small predictions in the second
and third energy range, as the peaks are clearly shifted relative to the 0 GeV mark.
But since this effect is observed for both implementations, this is a result of the
training and not the VHDL model.
In general, the energy reconstruction networks can be seamlessly transferred onto
the VHDL platform. The firmware implementation reproduces the results of the
software reference model in Keras very well. However, there seem to be some
numerical instabilities that degrade the performance for some parameter sets.
This remains to be investigated further. With the performance and latency results

56 4 Energy Reconstruction Networks

1.0 0.5 0.0 0.5 1.0
Eprediction Ehit [GeV]

10
2

10
4

10
6

N
um

be
r o

f E
nt

rie
s

Ehit range 0 GeV to 0.1 GeV
VHDL
Keras

1.0 0.5 0.0 0.5 1.0
Eprediction Ehit [GeV]

10
1

10
3

N
um

be
r o

f E
nt

rie
s

Ehit range 0.1 GeV to 0.24 GeV
VHDL
Keras

1.0 0.5 0.0 0.5 1.0
Eprediction Ehit [GeV]

10
1

10
3

N
um

be
r o

f E
nt

rie
s

Ehit range 0.24 GeV to 1 GeV
VHDL
Keras

1.0 0.5 0.0 0.5 1.0
Eprediction Ehit [GeV]

10
1

10
3

N
um

be
r o

f E
nt

rie
s

Ehit range 1 GeV to 7 GeV
VHDL
Keras

(a) 3-Conv energy reconstruction network

1.0 0.5 0.0 0.5 1.0
Eprediction Ehit [GeV]

10
1

10
3

10
5

N
um

be
r o

f E
nt

rie
s

Ehit range 0 GeV to 0.1 GeV
VHDL
Keras

1.0 0.5 0.0 0.5 1.0
Eprediction Ehit [GeV]

10
1

10
3

10
5

N
um

be
r o

f E
nt

rie
s

Ehit range 0.1 GeV to 0.24 GeV
VHDL
Keras

1.0 0.5 0.0 0.5 1.0
Eprediction Ehit [GeV]

10
0

10
1

10
2

10
3

N
um

be
r o

f E
nt

rie
s

Ehit range 0.24 GeV to 1 GeV
VHDL
Keras

1.0 0.5 0.0 0.5 1.0
Eprediction Ehit [GeV]

10
1

10
3

N
um

be
r o

f E
nt

rie
s

Ehit range 1 GeV to 7 GeV
VHDL
Keras

(b) 4-Conv energy reconstruction network

Figure 4.6: Performance of the CNNs for energy reconstruction in different
energy ranges

4.4 Quality of the Energy Reconstruction 57

shown here, the suggested CNNs become an attractive alternative to the current
OF approach. The energy reconstruction using CNNs itself outperforms the OF.
It could be shown here, that this still holds true for the firmware implementation
with its inherent numerical inaccuracies.

5 Summary
Due to the increase in pile-up on the High Luminosity LHC, new machine learning
solutions for the energy reconstruction of the LAr calorimeter are being considered.
They show a significant improvement in trigger efficiency and energy resolution
over the current OF. Consequently, these algorithms needed to be transferred onto
the FPGA platform and the resulting quality evaluated.
During this master’s thesis, the pre-existing implementation of CNNs has been
extended by the necessary features to represent the new networks under investi-
gation for energy reconstruction. This includes the ability to combine the trigger
and energy reconstruction subnetworks through the use of the concatenation fea-
ture, as well as specific network properties like dilation. With the help of the
created toolbox, the networks can be configured directly and automatically from
the network files after the training and the results can be evaluated and verified
after the simulation.
The maximum clock frequency of the networks on the FPGA has been increased
greatly by transforming the structure of the calculations inside the network from
the trivial but functional previous version into a model that properly uses the
available resources. The subsequent performance results are promising and meet
the requirement of a maximum clock frequency of at least 480 MHz. The use of
DSPs has been optimised to utilize all multiplication units as much as possible.
By including the DSPs directly instead of letting the synthesis tool do the assign-
ments, a much better integration into the structure of the calculation inside the
CNN layers has been achieved. This can be seen in significantly lower numbers of
necessary DSPs, as well as greatly improved performance estimates. The latency
and performance are also less dependent on the specific network architecture in
the new design.
The latency itself is on track to meet the requirements of the trigger as well,
since the current energy reconstruction networks have a latency of approximately
125 ns. The architectures of the CNNs themselves were already chosen to be small
enough for the required number of network instances to fit onto one FPGA. The
synthesis reports show that this can indeed be achieved.
This will need to be proven again in a synthesis of the entire structure to rule out
any timing or mapping problems, which cannot be easily anticipated beforehand.
This includes the planned multiplexing feature as well as the implementation of 43
parallel network instances on one chip. It is assumed that this will not significantly
decrease the performance or increase the latency, but the proof for this can only

60 5 Summary

be provided by a full implementation.
The accuracy of the VHDL implementation in the energy reconstruction could
be shown to be very close to the expected results based on the reference imple-
mentation in Keras on the PC. The necessary reductions in accuracy because of
the used fixed-point numbers result in a slight decrease in energy resolution, but
within the expected magnitude. The simplifications are therefore valid and vi-
able for the use in the detector readout. While some problems with numerical
stability remain for specific sets of trained networks, the deviations due to the
VHDL implementation are in general much smaller than the inherent inaccuracies
of the energy reconstruction networks themselves. The significantly better quality
of the neural network solutions compared to the currently used OF for the LAr
calorimeter readout are therefore retained in the actual firmware implementation.

Bibliography
[1] G. Aad et al. “Observation of a new particle in the search for the Standard

Model Higgs boson with the ATLAS detector at the LHC”. In: Physics
Letters B 716.1 (Sept. 2012), pp. 1–29. doi: 10.1016/j.physletb.2012.
08.020.

[2] Georges Aad et al. “Artificial Neural Networks on FPGAs for Real-Time
Energy Reconstruction of the ATLAS LAr Calorimeters”. 25th International
Conference on Computing in High-Energy and Nuclear Physics. Geneva,
Feb. 2021. url: https://cds.cern.ch/record/2752649. Accepted for
publication 2021.

[3] H. Amin, K.M. Curtis, and B.R. Hayes-Gill. “Piecewise linear approximation
applied to nonlinear function of a neural network”. In: IEE Proceedings -
Circuits, Devices and Systems 144.6 (1997), pp. 313–317. doi: 10.1049/ip-
cds:19971587. url: https://ieeexplore.ieee.org/document/646812
(visited on 04/20/2020).

[4] ATLAS Collaboration. “Monitoring and data quality assessment of the AT-
LAS liquid argon calorimeter”. In: JINST 9.arXiv:1405.3768. CERN-PH-
EP-2014-045 (May 2014). Plot available separately: http://atlas.web.
cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/LARG-2013-01/, P07024. 39 p.
url: http://cds.cern.ch/record/1701107 (visited on 05/28/2017).

[5] A. Bazan et al. “The ATLAS liquid argon calorimeter read-out system”. In:
IEEE Transactions on Nuclear Science 53.3 (June 2006), pp. 735–740. doi:
10.1109/tns.2006.873312. (Visited on 04/01/2021).

[6] I Béjar Alonso et al. High-Luminosity Large Hadron Collider (HL-LHC):
Technical design report. Ed. by I Béjar Alonso et al. CERN Yellow Reports:
Monographs. Geneva: CERN, 2020. doi: 10.23731/CYRM-2020-0010. url:
https://cds.cern.ch/record/2749422 (visited on 03/19/2021).

[7] Anne-Sophie Berthold et al. “Artificial Neural Networks for the Energy Re-
construction of ATLAS Liquid-Argon Calorimeter Signals”. In: DPG Früh-
jahrstagung. Dortmund, Mar. 17, 2021. url: https://iktp.tu-dresden.
de/IKTP/pub/21/DPG_2021_A_Berthold.pdf (visited on 04/19/2021).

[8] Maximilien Brice. Aerial View of the CERN taken in 2008. License: CC-
BY-SA-4.0. CERN. July 15, 2008. url: https://cds.cern.ch/record/
1295244 (visited on 08/17/2020).

https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.020
https://cds.cern.ch/record/2752649
https://doi.org/10.1049/ip-cds:19971587
https://doi.org/10.1049/ip-cds:19971587
https://ieeexplore.ieee.org/document/646812
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/LARG-2013-01/
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/LARG-2013-01/
http://cds.cern.ch/record/1701107
https://doi.org/10.1109/tns.2006.873312
https://doi.org/10.23731/CYRM-2020-0010
https://cds.cern.ch/record/2749422
https://iktp.tu-dresden.de/IKTP/pub/21/DPG_2021_A_Berthold.pdf
https://iktp.tu-dresden.de/IKTP/pub/21/DPG_2021_A_Berthold.pdf
https://cds.cern.ch/record/1295244
https://cds.cern.ch/record/1295244

62 Bibliography

[9] CERN. The HL-LHC project. CERN. Jan. 2021. url: https://hilumilhc.
web.cern.ch/content/hl-lhc-project (visited on 03/19/2021).

[10] S. Chatrchyan et al. “Observation of a new boson at a mass of 125 GeV with
the CMS experiment at the LHC”. In: Physics Letters B 716.1 (Sept. 2012),
pp. 30–61. doi: 10.1016/j.physletb.2012.08.021.

[11] François Chollet et al. Keras. 2015. url: https://keras.io.
[12] W.E. Cleland and E.G. Stern. “Signal processing considerations for liquid

ionization calorimeters in a high rate environment”. In: Nuclear Instru-
ments and Methods in Physics Research Section A: Accelerators, Spectrom-
eters, Detectors and Associated Equipment 338.2 (1994), pp. 467–497. issn:
0168-9002. doi: https : / / doi . org / 10 . 1016 / 0168 - 9002(94) 91332 -
3. url: https : / / www . sciencedirect . com / science / article / pii /
0168900294913323 (visited on 03/10/2021).

[13] Abdelhak Djouadi. “The anatomy of electroweak symmetry breaking Tome
II: The Higgs bosons in the Minimal Supersymmetric Model”. In: Physics
Reports 459.1-6 (May 3, 2005), pp. 1–241. doi: 10.1016/j.physrep.2007.
10.005. url: https://arxiv.org/abs/hep-ph/0503173v2 (visited on
03/31/2021).

[14] J. Duarte et al. “Fast inference of deep neural networks in FPGAs for particle
physics”. In: Journal of Instrumentation 13.07 (July 2018), P07027–P07027.
doi: 10.1088/1748-0221/13/07/p07027. (Visited on 03/29/2021).

[15] F. Englert and R. Brout. “Broken Symmetry and the Mass of Gauge Vector
Mesons”. In: Physical Review Letters 13.9 (Aug. 1964), pp. 321–323. doi:
10.1103/physrevlett.13.321.

[16] Lyndon Evans and Philip Bryant. “LHC Machine”. In: Journal of Instru-
mentation 3.08 (Aug. 2008), S08001. doi: 10.1088/1748- 0221/3/08/
s08001.

[17] H. Fritzsch, M. Gell-Mann, and H. Leutwyler. “Advantages of the color octet
gluon picture”. In: Physics Letters B 47.4 (Nov. 1973), pp. 365–368. doi:
10.1016/0370-2693(73)90625-4.

[18] Nick Fritzsche. “Development of Digital Signal Processing for the ATLAS
LAr Calorimeters with Artificial Neural Networks using FPGAs”. MA thesis.
Institut für Kern- und Teilchenphysik, TU Dresden, Mar. 31, 2020.

[19] Sheldon L. Glashow. “Partial-symmetries of weak interactions”. In: Nuclear
Physics 22.4 (Feb. 1961), pp. 579–588. doi: 10.1016/0029-5582(61)90469-
2.

[20] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. url: http://www.deeplearningbook.org (visited on 02/02/2020).

https://hilumilhc.web.cern.ch/content/hl-lhc-project
https://hilumilhc.web.cern.ch/content/hl-lhc-project
https://doi.org/10.1016/j.physletb.2012.08.021
https://keras.io
https://doi.org/https://doi.org/10.1016/0168-9002(94)91332-3
https://doi.org/https://doi.org/10.1016/0168-9002(94)91332-3
https://www.sciencedirect.com/science/article/pii/0168900294913323
https://www.sciencedirect.com/science/article/pii/0168900294913323
https://doi.org/10.1016/j.physrep.2007.10.005
https://doi.org/10.1016/j.physrep.2007.10.005
https://arxiv.org/abs/hep-ph/0503173v2
https://doi.org/10.1088/1748-0221/13/07/p07027
https://doi.org/10.1103/physrevlett.13.321
https://doi.org/10.1088/1748-0221/3/08/s08001
https://doi.org/10.1088/1748-0221/3/08/s08001
https://doi.org/10.1016/0370-2693(73)90625-4
https://doi.org/10.1016/0029-5582(61)90469-2
https://doi.org/10.1016/0029-5582(61)90469-2
http://www.deeplearningbook.org

Bibliography 63

[21] David J. Gross and Frank Wilczek. “Ultraviolet Behavior of Non-Abelian
Gauge Theories”. In: Physical Review Letters 30.26 (June 1973), pp. 1343–
1346. doi: 10.1103/physrevlett.30.1343.

[22] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble. “Global Conservation
Laws and Massless Particles”. In: Physical Review Letters 13.20 (Nov. 1964),
pp. 585–587. doi: 10.1103/physrevlett.13.585.

[23] P. W. Higgs. “Broken symmetries, massless particles and gauge fields”.
In: Physics Letters 12.2 (Sept. 1964), pp. 132–133. doi: 10.1016/0031-
9163(64)91136-9.

[24] Peter W. Higgs. “Broken Symmetries and the Masses of Gauge Bosons”.
In: Physical Review Letters 13.16 (Oct. 1964), pp. 508–509. doi: 10.1103/
physrevlett.13.508.

[25] Peter W. Higgs. “Spontaneous Symmetry Breakdown without Massless Bosons”.
In: Physical Review 145.4 (May 1966), pp. 1156–1163. doi: 10 . 1103 /
physrev.145.1156.

[26] Philipp Horn. “Simulation and Hardware Development of the Liquid-Argon
Calorimeters Phase-II Read-out Path of the ATLAS Detector”. PhD thesis.
TU Dresden, IKTP, Apr. 10, 2020. url: https://iktp.tu-dresden.de/
IKTP/pub/20/Dissertation_Philipp_Horn.pdf (visited on 03/18/2021).

[27] Intel. Intel Quartus Prime Pro Edition User Guide: Timing Analyzer, Up-
dated for Intel Quartus Prime Design Suite: 19.3. Sept. 30, 2019. url:
https://www.intel.com/content/dam/www/programmable/us/en/
pdfs/literature/ug/archives/ug-qpp-timing-analyzer-18-1.pdf
(visited on 04/18/2021).

[28] Intel. Intel Quartus Prime Software Suite. url: https : / / www . intel .
com/content/www/us/en/software/programmable/quartus- prime/
overview.html (visited on 04/18/2021).

[29] Intel. Intel Stratix 10 Device Datasheet. May 22, 2020. url: https://www.
intel.com/content/dam/www/programmable/us/en/pdfs/literature/
hb/stratix-10/s10_datasheet.pdf (visited on 05/27/2020).

[30] Intel. Intel Stratix 10 GX FPGA Development Kit User Guide. Apr. 2, 2020.
url: https://www.intel.com/content/dam/www/programmable/us/
en / pdfs / literature / ug / ug - s10 - fpga - devl - kit . pdf (visited on
04/21/2021).

[31] Intel. Intel Stratix 10 GX/SX Product Table. url: https://www.intel.
com/content/dam/www/programmable/us/en/pdfs/literature/pt/
stratix-10-product-table.pdf (visited on 04/21/2021).

https://doi.org/10.1103/physrevlett.30.1343
https://doi.org/10.1103/physrevlett.13.585
https://doi.org/10.1016/0031-9163(64)91136-9
https://doi.org/10.1016/0031-9163(64)91136-9
https://doi.org/10.1103/physrevlett.13.508
https://doi.org/10.1103/physrevlett.13.508
https://doi.org/10.1103/physrev.145.1156
https://doi.org/10.1103/physrev.145.1156
https://iktp.tu-dresden.de/IKTP/pub/20/Dissertation_Philipp_Horn.pdf
https://iktp.tu-dresden.de/IKTP/pub/20/Dissertation_Philipp_Horn.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/archives/ug-qpp-timing-analyzer-18-1.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/archives/ug-qpp-timing-analyzer-18-1.pdf
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/overview.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/overview.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/overview.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/s10_datasheet.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/s10_datasheet.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/s10_datasheet.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-s10-fpga-devl-kit.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-s10-fpga-devl-kit.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/pt/stratix-10-product-table.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/pt/stratix-10-product-table.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/pt/stratix-10-product-table.pdf

64 Bibliography

[32] Intel. Intel Stratix 10 Variable Precision DSP Blocks User Guide. Apr. 26,
2020. url: https://www.intel.com/content/dam/www/programmable/
us/en/pdfs/literature/hb/stratix-10/ug-s10-dsp.pdf (visited on
07/09/2020).

[33] Intel. ModelSim-Intel FPGA Edition Software. url: https://www.intel.
com/content/www/us/en/software/programmable/quartus- prime/
model-sim.html (visited on 04/21/2021).

[34] K. Kajantie et al. “Is There a Hot Electroweak Phase Transition atmH&mW?”
In: Physical Review Letters 77.14 (Sept. 1996), pp. 2887–2890. doi: 10.
1103 / physrevlett . 77 . 2887. url: https : / / arxiv . org / abs / hep -
ph/9605288 (visited on 04/14/2021).

[35] Steve Kilts. Advanced FPGA design : architecture, implementation, and op-
timization. Hoboken, N.J: Wiley IEEE, 2007. isbn: 9780470127896. url:
https://ieeexplore.ieee.org/servlet/opac?bknumber=5201491 (vis-
ited on 03/09/2021).

[36] LHC Experiments Committee. ATLAS Liquid Argon Calorimeter Phase-
II Upgrade: Technical Design Report. Tech. rep. CERN-LHCC-2017-018.
ATLAS-TDR-027. Geneva: CERN, Sept. 2017. url: https://cds.cern.
ch/record/2285582.

[37] LHC Experiments Committee, LHCC. ATLAS liquid-argon calorimeter: Tech-
nical Design Report. Technical design report. ATLAS. Geneva: CERN, 1996.
url: https://cds.cern.ch/record/331061 (visited on 04/06/2021).

[38] Nico Madysa. “AREUS: A Software Framework for ATLAS Readout Elec-
tronics Upgrade Simulation”. In: EPJ Web of Conferences 214 (2019). Ed.
by A. Forti et al., p. 02006. doi: 10.1051/epjconf/201921402006.

[39] Stephen P. Martin. A Supersymmetry Primer. Jan. 27, 2016. url: https:
//arxiv.org/abs/hep-ph/9709356v7 (visited on 04/12/2021).

[40] Martin Abadi et al. TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. Software available from tensorflow.org. 2015. url: https:
//www.tensorflow.org/.

[41] MissMJ and Cush. Standard Model of Elementary Particles. https : / /
creativecommons.org/licenses/by/3.0/deed.en. PBS NOVA, Fermilab,
Office of Science, United States Department of Energy, Particle Data Group.
Sept. 17, 2019. url: https : / / commons . wikimedia . org / wiki / File :
Standard_Model_of_Elementary_Particles.svg (visited on 03/29/2021).

[42] Joao Pequenao. Computer generated image of the ATLAS Liquid Argon.
CERN. Mar. 27, 2008. url: https : / / cds . cern . ch / record / 1095928
(visited on 03/29/2021).

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-dsp.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-dsp.pdf
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/model-sim.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/model-sim.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/model-sim.html
https://doi.org/10.1103/physrevlett.77.2887
https://doi.org/10.1103/physrevlett.77.2887
https://arxiv.org/abs/hep-ph/9605288
https://arxiv.org/abs/hep-ph/9605288
https://ieeexplore.ieee.org/servlet/opac?bknumber=5201491
https://cds.cern.ch/record/2285582
https://cds.cern.ch/record/2285582
https://cds.cern.ch/record/331061
https://doi.org/10.1051/epjconf/201921402006
https://arxiv.org/abs/hep-ph/9709356v7
https://arxiv.org/abs/hep-ph/9709356v7
https://www.tensorflow.org/
https://www.tensorflow.org/
https://creativecommons.org/licenses/by/3.0/deed.en
https://creativecommons.org/licenses/by/3.0/deed.en
https://commons.wikimedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg
https://commons.wikimedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg
https://cds.cern.ch/record/1095928

Bibliography 65

[43] Joao Pequenao. Computer generated image of the whole ATLAS detector.
CERN, ATLAS. Feb. 27, 2015. url: https://cds.cern.ch/images/CERN-
GE-0803012-01 (visited on 08/06/2020).

[44] H. David Politzer. “Reliable Perturbative Results for Strong Interactions?”
In: Physical Review Letters 30.26 (June 1973), pp. 1346–1349. doi: 10.1103/
physrevlett.30.1346.

[45] Abdus Salam. “Weak and electromagnetic interactions”. In: Selected Papers
of Abdus Salam. WORLD SCIENTIFIC, May 1994, pp. 244–254. doi: 10.
1142/9789812795915_0034.

[46] Siemens. Questa Verification and Simulation. url: https : / / eda . sw .
siemens.com/en-US/ic/questa/simulation/ (visited on 04/21/2021).

[47] Steffen Stärz. “Energy Reconstruction and high-speed Data Transmission
with FPGAs for the Upgrade of the ATLAS Liquid Argon Calorimeter at
LHC”. Presented 19 May 2015. Feb. 2015. url: https://cds.cern.ch/
record/2030122.

[48] G. t’Hooft and M. Veltman. “Regularization and renormalization of gauge
fields”. In: Nuclear Physics B 44.1 (July 1972), pp. 189–213. doi: 10.1016/
0550-3213(72)90279-9.

[49] The ALICE Collaboration. “The ALICE experiment at the CERN LHC.
A Large Ion Collider Experiment”. In: JINST 3 (2008). Also published by
CERN Geneva in 2010, S08002. 259 p. doi: 10.1088/1748-0221/3/08/
S08002. url: https://cds.cern.ch/record/1129812.

[50] The ATLAS Collaboration. Luminosity determination in 𝑝𝑝 collisions at√
𝑠 = 13 TeV using the ATLAS detector at the LHC. Tech. rep. ATLAS-

CONF-2019-021. Geneva: CERN, June 2019. url: https://cds.cern.ch/
record/2677054.

[51] The ATLAS Collaboration. “The ATLAS Experiment at the CERN Large
Hadron Collider”. In: Journal of Instrumentation 3.08 (Aug. 14, 2008),
S08003. doi: 10.1088/1748-0221/3/08/s08003.

[52] The CMS Collaboration. “The CMS experiment at the CERN LHC”. In:
Journal of Instrumentation 3.08 (Aug. 2008), S08004. doi: 10.1088/1748-
0221/3/08/s08004.

[53] The LHCb Collaboration. “The LHCb Detector at the LHC”. In: JINST
3.LHCb-DP-2008-001 (2008). Also published by CERN Geneva in 2010,
S08005. doi: 10.1088/1748- 0221/3/08/S08005. url: https://cds.
cern.ch/record/1129809.

https://cds.cern.ch/images/CERN-GE-0803012-01
https://cds.cern.ch/images/CERN-GE-0803012-01
https://doi.org/10.1103/physrevlett.30.1346
https://doi.org/10.1103/physrevlett.30.1346
https://doi.org/10.1142/9789812795915_0034
https://doi.org/10.1142/9789812795915_0034
https://eda.sw.siemens.com/en-US/ic/questa/simulation/
https://eda.sw.siemens.com/en-US/ic/questa/simulation/
https://cds.cern.ch/record/2030122
https://cds.cern.ch/record/2030122
https://doi.org/10.1016/0550-3213(72)90279-9
https://doi.org/10.1016/0550-3213(72)90279-9
https://doi.org/10.1088/1748-0221/3/08/S08002
https://doi.org/10.1088/1748-0221/3/08/S08002
https://cds.cern.ch/record/1129812
https://cds.cern.ch/record/2677054
https://cds.cern.ch/record/2677054
https://doi.org/10.1088/1748-0221/3/08/s08003
https://doi.org/10.1088/1748-0221/3/08/s08004
https://doi.org/10.1088/1748-0221/3/08/s08004
https://doi.org/10.1088/1748-0221/3/08/S08005
https://cds.cern.ch/record/1129809
https://cds.cern.ch/record/1129809

66 Bibliography

[54] Steven Weinberg. “A Model of Leptons”. In: Phys. Rev. Lett. 19 (21 Nov.
1967), pp. 1264–1266. doi: 10.1103/PhysRevLett.19.1264. url: https:
//link.aps.org/doi/10.1103/PhysRevLett.19.1264.

[55] Steven Weinberg. “Non-Abelian Gauge Theories of the Strong Interactions”.
In: Physical Review Letters 31.7 (Aug. 1973), pp. 494–497. doi: 10.1103/
physrevlett.31.494.

https://doi.org/10.1103/PhysRevLett.19.1264
https://link.aps.org/doi/10.1103/PhysRevLett.19.1264
https://link.aps.org/doi/10.1103/PhysRevLett.19.1264
https://doi.org/10.1103/physrevlett.31.494
https://doi.org/10.1103/physrevlett.31.494

List of Figures
1.1 Overview of the particles in the Standard Model [41] 3
1.2 Overview of the LHC [8] . 4
1.3 Overview of the ATLAS detector [43] 5
1.4 Overview of the LAr calorimeter [42] 6
1.5 LAr detector signal shape before and after analogue pulse shaper [4] . 8
1.6 Structure of the LAr calorimeter [37, 5, Fig 1-2] 9
1.7 Current schedule for the Phase-II upgrade [9] 11
1.9 Working principle of a layer in a causal CNN for different kernel sizes

and dilations . 17
1.10 ROC curves showing the trigger performance of the trigger and energy

reconstruction neural networks compared to the Optimal Filter. [7, p. 8] 19

2.1 Sigmoid function and PLAN approximation according to [3] 23
2.2 ROC curve of a two layer convolutional network. Comparison between

the simulated VHDL-model and the Keras reference for two different
implementations of the activation function. 29

3.1 Structure of a DSP on the Stratix 10 FPGA in systolic FIR mode [32,
p. 28 (Fig. 15)] . 40

4.1 Architecture of the combined energy reconstruction network with trig-
ger part as subnetwork in the four layer version 4-Conv [7, p. 6] . . . 46

4.2 Example output sequence of the energy reconstruction networks com-
pared to the true hit energy, as well as the deviation of VHDL imple-
mentation results to Keras and true hit energy respectively. 49

4.3 Distribution of relative deviation of VHDL implementation simula-
tion results compared to Keras reference for events above the 240 MeV
threshold. 51

4.4 Distribution of relative deviation for retrained networks. The much
larger deviations hint at numerical stability problems. 52

4.5 Absolute of the relative deviation between VHDL and Keras implemen-
tation results as a function of Keras results and true deposited energy
in the detector cell . 54

4.6 Performance of the CNNs for energy reconstruction in different energy
ranges . 56

Glossary
ADC analog-to-digital converter

ALICE A Large Ion Collider Experiment

ALM adaptive logic modules

ANN artificial neural network

API application programming interface

AREUS ATLAS Readout Electronics Upgrade Simulation.

ASIC application-specific integrated circuit

ATLAS proper name (formerly: A Toroidal LHC Apparatus)

BC bunch crossing

CERN European Organization for Nuclear Research

CI continuous integration

CMS Compact Muon Solenoid

CNN convolutional neural network

CPU central processing unit

DAQ data acquisition

DSP digital signal processor

FEB2 Front-End Board 2

FEX Feature Extractor

FIR finite impulse response

FPGA field-programmable gate array

GPU graphics processing unit

70 Glossary

HDF5 Hierarchical Data Format 5

HDL hardware description language

HLS4ML High-Level Synthesis for Machine Learning

IP intellectual property

JSON JavaScript Object Notation

LAr liquid argon

LASP Liquid Argon Signal Processor

LHC Large Hadron Collider

LHCb Large Hadron Collider beauty

LSB least significant bit

LUT look-up table

OF Optimal Filter

PLAN piecewise linear approximation of a nonlinear function

PLL phase-locked loop

RAM random-access memory

ReLU rectified linear unit

RMS root mean square

ROC receiver operating characteristic

RTL register-transfer level

SUSY Supersymmetry

VHDL Very High Speed Integrated Circuit Hardware Description Language

Acknowledgements
First I want to thank my supervisor Arno Straessner for enabling this master’s
thesis and his continued support throughout.
My direct colleagues on this project Nick Fritzsche and Anne-Sophie Berthold
were always very supportive and easy to work with. So my special thanks goes
to them for the good cooperation that made this work possible. Rainer Hentges
was also always ready to give support and help in any situation. Similarly, the
detector working group was always very supportive and ensured a nice work en-
vironment, both at the university and in remote. Therefore, my thanks of course
also goes to Wolfgang Mader, Andreas Glatte, Markus Helbig, Martin Serfling,
Tobias Teichmann and Philipp Horn.

Erklärung

Hiermit erkläre ich, dass ich diese Arbeit im Rahmen der Betreuung am Institut für
Kern- und Teilchenphysik ohne unzulässige Hilfe Dritter verfasst und alle Quellen
als solche gekennzeichnet habe.

Johann Christoph Voigt
Dresden, 28. April 2021

	Introduction
	The Standard Model of Particle Physics
	Beyond Standard Model Physics
	ATLAS and the LHC
	The LAr-Calorimeter
	Current Optimal Filter Approach
	Phase-II Upgrade Plans
	FPGA and VHDL
	Artificial Neural Networks
	Overview of Network Types
	Convolutional Neural Networks

	Trigger Performance of the Convolutional Neural Networks
	HLS4ML

	Trigger Networks
	Previous Work
	Piecewise Linear Approximation of the Sigmoid Activation Function
	Dilation Support
	Automatic Conversion of Keras Files to Configuration for VHDL Implementation
	Comparison and Verification
	Integration into the LASP Framework
	Trigger Network Performance

	Optimisation
	Approaches in Optimisation
	Results of Optimisations
	Pipelining over Input Values
	Manual Assignment of DSPs

	Energy Reconstruction Networks
	Network Architecture for Energy Reconstruction
	Performance and Resource Usage of the Energy Reconstruction Networks
	Comparison of VHDL Implementation Results to Keras Reference
	Quality of the Energy Reconstruction

	Summary
	Bibliography
	List of Figures
	Glossary

