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We demonstrate that the complex spatiotemporal structure in active fluids can feature charac-
teristics of hyperuniformity. Using a hydrodynamic model, we show that the transition from hy-
peruniformity to non-hyperuniformity and anti-hyperuniformity depends on the strength of active
forcing and can be related to features of active turbulence without and with scaling characteristics of
inertial turbulence. Combined with identified signatures of Levy walks and non-universal diffusion
in these systems, this allows for a biological interpretation and the speculation of non-equilibrium
hyperuniform states in active fluids as optimal states with respect to robustness and strategies of
evasion and foraging.

INTRODUCTION

Disordered hyperuniform systems show hybrid crystal-
liquid characteristics which endows them with unique
isotropic properties and robustness against defects [1, 2].
Perfect crystals exhibit both short- and long-range cor-
relations, which lead to a structure factor Ŝ(|k|) with

sharp, ordered peaks and Ŝ(|k|) → 0 as |k| → 0, where
k being the wavevector and |k| the wavenumber. Equiv-
alently, the local number variance σ2(R) in perfect crys-
tals scales with the window size of observation R as
σ2(R) ∼ Rβ with β = d − 1, where d is the dimension-
ality of the system. Contrary to this, for conventional
liquids, Ŝ(|k|) → const. > 0 as |k| → 0 and σ2(R) ∼ Rβ

with β = d. Hyperuniform systems are characterized by
Ŝ(|k|) ∼ |k|α with α > 0 and d− 1 ≤ β < d for |k| → 0,
with different classifications and types depending on α
and β [2]. Perfect crystals belong to these systems. How-
ever, disordered systems with these characteristics also
exist and have been identified in physics [3, 4], material
science [5, 6] and mathematics [7, 8], to name just a few,
and have been shown to be advantageous in technologi-
cal applications, e.g., photonic crystals with full isotropic
bandgaps [9–14] or solar cells with increased absorption
rates [15]. Less explored is the concept of hyperunifor-
mity in living systems. Examples are the photoreceptor
mosaic in the avian retina [16] or the repertoire of lym-
phocyte receptors in the adaptive immune system [17],
where disordered hyperuniformity leads to nearly opti-
mal functionality. Active systems, which comprise indi-
vidually driven units that convert locally stored energy
into mechanical motion [18, 19], are conventionally at-
tributed with giant number fluctuations [20–22] or motil-
ity induced phase separation [23, 24] for which β > d

and Ŝ(|k|) → ∞ as |k| → 0 and thus hyperuniformity
is prohibited. Such properties have even been termed
”anti-hyperuniformity” [2]. However, characteristics of
hyperuniformity have also been identified in active sys-
tems. The few examples in this context are [25–28]. The

required long-range correlation in these systems results
from the generated fluid flow, which leads to effective re-
pulsion in the far field and thus suppressed density fluc-
tuations. The experimental system in [27] considers the
collective dynamics of marine algae Effrenium voratum,
which swim in circles on an air-liquid interface where
they self-organize into disordered hyperuniform states.
The behaviour has been suggested by two-dimensional
particle simulations [25–28] and analysed by analytical
treatments of modified Navier-Stokes equations [25] and
an active polar gel model [26]. The discrepancy with con-
ventional models for active systems, which prohibit hy-
peruniformity, results from neglected hydrodynamic in-
teractions in these models.
We consider a momentum-conserving extension of

the Navier-Stokes equations, known as the generalized
Navier-Stokes (GNS) equations [29] and demonstrate
using two-dimensional simulations that for low activi-
ties, such systems form a non-equilibrium hyperuniform
fluid phase. The found transition between hyperunifor-
mity (Ŝ(|k|) → 0) and non-hyperuniformity (Ŝ(|k|) →
const. > 0) or even ”anti-hyperuniformity” (Ŝ(|k|) → ∞)
[2] as |k| → 0 thereby relates to the transition between
active turbulence states without and with characteristics
of inertial turbulence [30]. The considered simulations
address the basic ingredients for non-equilibrium hyper-
uniformity discussed in [25–28]. While being restricted
to d = 2, they consider hydrodynamic interactions and
nonlinear chiral motion. We first review the properties of
active turbulence and describe the GNS equations, before
computational results are tested against various proper-
ties and discussed, and finally conclusions and biological
interpretations are given.

ACTIVE VERSUS INERTIAL TURBULENCE

Active systems are prone to experience instabilities
and self-organization phenomena, thus developing corre-
lated collective flows that can become spatiotemporally
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chaotic. This makes them analogous to inertial turbu-
lence at a descriptive level, and hence, these flows are
commonly termed active turbulence [31]. A huge effort
has been made to identify similarities and discrepancies
between well-explored inertial turbulence and the poten-
tially new active turbulence [32, 33]. Classical inertial
fluids undergo a laminar-to-turbulent transition at mod-
erately large Reynolds numbers. Above this transition,
inertial effects destabilize the flow and lead to chaotic
patterns of vortices and jets. At fully developed inertial
turbulence, external driving injects kinetic energy at a
scale at which viscous dissipation is negligible. Inertial
effects transport this energy across scales until it dissi-
pates by viscous effects at large scales. In the interme-
diate scales of this energy cascade, the flow exhibits self-
similarity, and velocity correlations are scale-invariant.
For this regime, the energy spectrum follows a power
law Ê(|k|) ∼ |k|−5/3, with a universal exponent inde-
pendent of the external driving and the properties of the
fluid [34]. Even if such scale separation is not present
in active flows, power laws have also been found in ac-
tive turbulence [30, 32, 33], if the activity is above some
threshold. Simulations also suggest that the flow exhibits
spatio-temporal intermittency above this threshold [33],
which further supports the connection to inertial turbu-
lence. However, differences have also been established for
this regime. In [32] it is shown that the observed scaling
laws are parameter dependent, which demonstrates the
non-universal behaviour of active turbulence. However,
this depends on the considered model; within the con-
text of active nematodynamics universal scaling is sug-
gested [35, 36]. Within a Lagrangian perspective, the
mean-squared displacements (MSD) of tracer trajecto-
ries in inertial turbulence have a universal behavior of
diffusive self-separation [37]. Experiments and simula-
tions in active turbulence show signatures of Levy walks
and non-universal diffusion [38–42]. In [41] this behav-
ior is attributed to oscillatory streaks emerging at large
active driving. Given that Lévy walks increase the en-
counter probability in stochastic search [43–45], this sug-
gests an optimal search strategy at large activities. Most
of these comparisons between active and inertial turbu-
lence focus on intermediate scales [31] and therefore do
not address hyperuniformity, which is a property at large
spatial scales.

MODELING ACTIVE TURBULENCE

We consider the GNS equations [29], which re-
late to the phenomenologically-proposed Toner-Tu-Swift-
Hohenberg (TTSH) equations [46, 47] for bacterial sus-
pensions. However, the TTSH equations, also considered
in [32, 33, 41] neglect hydrodynamic interactions medi-
ated by the solvent, which makes it a dry system [31]. In

FIG. 1. a) - c) Snapshots of flow fields in the periodic do-
main within the statistically steady states. LIC visualisation
with color coding corresponding to vorticity ω. Corresponding
movies are provided in SI, a) −Γ2/Γ0 = 1, b) −Γ2/Γ0 = 2 and
c) −Γ2/Γ0 = 2.5. The corresponding inlets highlight the mi-
crovortices in these flows. d) - f) Corresponding trajectories of
a tracer particle in the flow fields shown in the corresponding
movies to a) - c). The scaled shaded region corresponds to the
considered periodic domain.

the GNS equations

∂tu+ u · ∇u+∇p = ∇ · σ, ∇ · u = 0 (1)

with velocity u(x, t), pressure p(x, t) and effective stress
tensor σ(x, t) which comprises passive contributions from
the intrinsic fluid viscosity and active contributions rep-
resenting the forces exerted by the bacteria on the fluid.
It reads

σij = νeff (∂iuj + ∂jui) with νeff = Γ0 − Γ2∆+ Γ4∆
2

(2)

and Γ0 > 0, Γ2 < 0 and Γ4 > 0. These parameters are
the simplest choice of an isotropic active stress tensor
[48], which produces a band of unstable modes injecting
energy to drive flows and produce patterns of vortices.
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This can become turbulent due to the nonlinear advec-
tion, as in inertial turbulence. Γ0 describes the damping
of long-wavelength perturbations on scales much larger
than the typical correlation length of the coherent flow
structures, whereas Γ2 and Γ4 account for the growth
and damping of modes at intermediate and small scales.
For suitably chosen values, (1) reproduces the experi-
mentally observed bulk vortex dynamics of bacterial sus-
pensions [49]. We explore this model numerically using
an approach similar to [30, 50, 51] and approximate the
effective viscosity by a piecewise constant function in re-
ciprocal space, see Section . Figure 1 shows snapshots of
the flow field within statistically steady states together
with corresponding trajectories of tracer particles for se-
lected forcing parameters −Γ2/Γ0.

RESULTS

We consider regimes characterized by different be-
haviors of energy dissipation at large scales. This can
be quantified by the radial energy spectrum of the ki-
netic energy Ê(|k|, t) = 1

2

∫
|k′|=|k| û(|k

′|, t)2d|k′| with

û(k, t) =
∫
u(x, t) exp−ik·x dx the Fourier transform

of u(x, t), see Section . The total energy, E(t) =∫
Ê(|k|, t)d|k| is fluctuating and eventually reaches a

statistically steady state. Within this regime we con-
sider the time-averaged spatial mean energy ⟨E⟩Ω =
1
T

1
|Ω|

∫ t0+T

t0
E(t)dt, where Ω is the simulation domain, t0

the time of statistical equalibration and T the considered
time interval. The results are shown in Figure 2 as a func-
tion of the ratio −Γ2/Γ0. For |Γ2/Γ0| ≤ 2.4, the values
of ⟨E⟩Ω are small and increase slightly with |Γ2/Γ0|. A
sharp transition occurs at a critical value |Γ2/Γ0| ≈ 2.4
where the flow begins to condensate and the mean en-
ergy jumps by an order of magnitude and increases more
rapidly by further increasing |Γ2/Γ0| ≥ 2.4. Below the
transition, the corresponding flow fields are characterized
by microvortices as shown in Figure 1 a) and b). The dis-
tance of the microvortices is correlated to the unstable
modes in the effective viscosity [29]. Above the critical
value, the condensate is characterized by two counterro-
tating vortices, see Figure 1 c). The size of these vortices
depends on the considered domain size. This reproduces
the analysis reported in [30], where the presence of a
condensate is associated with an inverse energy transfer.
Indeed, analyzing this behavior in terms of energy spec-
tra reveals the analogy with inertial turbulence for large
values of |Γ2/Γ0|, see Figure 3. The time-averaged ra-

dial energy spectrum Ê(|k|) = 1
T

∫ t0+T

t0
Ê(|k|, t)dt shows

Kolmogorov scaling, Ê(|k|) ∼ |k|−5/3 for these values.
However, below the critical value, the spectra follow
power laws, with activity-dependent non-universal scal-
ing laws where the exponents are in the range set by
energy equipartition, with Ê(|k|) ∼ |k| for low activities

and Ê(|k|) ∼ const. close to the critical value.

FIG. 2. Time-averaged spatial mean energy of statisti-
cally steady-states ⟨E⟩Ω vs. forcing |Γ2/Γ0|. The colors
are chosen according to the forcing and are used consis-
tently in all figures. Open symbols indicate condensate
states.

FIG. 3. Time-averaged radial energy spectra Ê(|k|) as a
function of k = |k| for different forcing |Γ2/Γ0|. Dashed
lines correspond to the condensate state. Characteristic
scaling regimes are indicated. The gray region marks the
energy input. The quantities are rescaled by K = 36.5,

the center of the region of energy input, and |Êf
max|, the

maximum of the energy spectrum in this region.

The transition between active turbulence states with-
out and with characteristics of inertial turbulence is fur-
ther supported by considering the distribution of (longi-
tudinal) velocity increments, see Section . A significant
deviation from a Gaussian distribution is a signature of
fully developed inertial turbulence where fat tails sug-
gest the velocity increments are intermittent [52]. The
distributions, together with a Gaussian distribution for
comparison, are shown in Figure 4 a) and lead to similar
results as in [33]. The deviation from a Gaussian dis-
tribution increases with increasing activity. It becomes
distinctly non-Gaussian above some critical value, which
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can be quantified by the kurtosis K, see Section , shown
in Figure 4 b). Starting with K = 3, the kurtosis slightly
increases until the critical value, where a sharp transi-
tion occurs, and K ≫ 3 for larger activities. A simi-
lar non-Gaussian behaviour was also observed in velocity
gradient statistics for bacterial suspensions [53]. Besides
these Eulerian measures, Figure 1 d) - f) show trajec-
tories of a tracer particle within the flows depicted in
Figure 1 a) - c). The spatial scale is adapted to fit the
trajectories independent of the periodic boundary condi-
tions. The qualitative differences are already visible. As
in [41], we compute the mean square displacement (MSD)
where we consider the ensemble average over 100 parti-
cles. The results are shown in Figure 4 c). We observe a
turnover from a ballistic regime ∆x2 ∼ t2 to a diffusive
regime ∆x2 ∼ t. Above the critical value, this turnover is
more or less sharp, whereas below the critical value, it is
smooth with an extended intermediate anomalous diffu-
sive regime with ∆x2 ∼ tξ with 1 < ξ < 2. The identified
slopes ξ, as they evolve over time, are shown in Figure 4
d). Below the critical value, the intermediate anomalous
diffusive regime increases with activity. However, above
the critical value the qualitative behavior changes due to
the formation of condensates strongly influencing the tra-
jectories. In [41] this superdiffusive behavior is related to
experiments for dense bacterial suspensions [40, 54]. As
in [41] we refrain from more detailed analysis due to a
lack of high-precision data.

These different measurements not only confirm known
characteristics of inertia turbulence for active turbulence
if the considered forcing is above some critical thresh-
old, but they also confirm the existence of a threshold
and provide different approaches to measure it quantita-
tively. The sharp transition for the time-averaged spa-
tial mean energy in Figure 2, the change in scaling of
the time-averaged radial energy spectra to Kolmogorov
scaling in Figure 3, the strong deviation from a Gaus-
sian distribution of the velocity increments in Figure 4
a), quantified by a substantial increase of the kurtosis in
Figure 4 b), and the change in transition from a ballistic
to a diffusive regime in the MSD in Figure 4 c), quan-
tified by the change in slope in Figure 4 d), all occur
at |Γ2/Γ0| = 2.4. Below this threshold, all considered
measures only slightly increase with forcing.

We add a new measure to support the described tran-
sition and to characterize the system below the critical
forcing. We test for hyperuniformity of the spatial order
of the microvortices, which characterize the statistically
steady states. We consider two different approaches; see
Section . The first extracts the extrema of the vortic-
ity field ω(x, t) and analyses the resulting point config-
urations {rj}, see SI Figure 1 a) - c) for corresponding
points to Figure 1 a) - c). SI Figure 1 d) - f) show the
corresponding scattering patterns with a circular region
around the origin where there is almost no scattering for
low activities. This is a first signature for long-range cor-

relations, which may correspond to a hyperuniform char-
acter. More quantitatively, SI Figure 2 a) and b) show

the structure factor Ŝ(|k|) and the value at largest length

scale Ŝ(|k| = |k|min) as a function of forcing strength.
While the last increases with forcing and shows a jump
at the critical value |Γ2/Γ0| = 2.4, the data in SI Figure
2 a) is too noisy to analyze the behavior for |k| → 0.
The second approach uses an extension of the concept of
hyperuniformity to scalar fields [2, 55–57] and analyses
the vorticity field ω(x, t) directly. Defining the autoco-
variance function

ψ(r) = ⟨[ω(x1, t)− ⟨ω(x1, t)⟩][ω(x2, t)− ⟨ω(x2, t)⟩]⟩ (3)

with r = x2 − x1 and ⟨ · ⟩ the ensemble average over

time instances, we consider its spectral density ψ̂(k) =

ψ̂d(|k|)2π|k|, with the radial spectrum ψ̂d(|k|), which
is shown in Figure 5. Hyperuniform characters can be
inspected by considering the scaling and the values for
small wavenumbers (see, e.g., [55]). Again we observe
a strong dependency on the forcing with a qualitative
change in the behaviour at the critical value |Γ2/Γ0| =
2.4. A transition towards ”anti-hyperuniformity” can be
seen. Below, the critical value characteristics of hyper-
uniformity can be identified. Scaling with |k|α and α ∼ 2
can be observed for forcing significantly below the criti-
cal value. The measured values for the smallest wavevec-
tor increase from 10−4 to 10−1 with increasing forcing.
These results indicate Type I hyperuniformity [2] for low
forcing and a possible transition to non-hyperuniformity
close to the critical value.

By invoking ergodicity, so implying statistically homo-
geneous ψ(r), and assuming an infinite system, the spec-

tral density ψ̂(k) corresponds to |ω̂(k)|2 with ω̂(k) =
1
T

∫ t0+T

t0
ω̂(k, t)dt and ω̂(k, t) the Fourier transform of

the vorticity ω(x, t) [58]. This allows for a direct re-
lation between the energy spectra in Figure 3 and the
autocovariance spectra in Figure 5, resulting from

Ê(|k|) = |ω̂(k)|2

|k|2
=

2πΨ̂d(|k|)
|k|

, (4)

where the first relation is an established connection in
fluid mechanics between the energy E(u) and the enstro-
phy E(ω) =

∫
|ω(x)|2dx, see [31]. The indicated scaling

exponents in Figure 5 support this relation and allow for
a broader discussion.

DISCUSSION

Our results are not restricted to the considered GNS
equations. The established connection between scaling
properties of the autocovariance function and the energy
spectra also allows testing various experimental systems
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a) c)

b) d)

FIG. 4. a) Infinitesimal (longitudinal) velocity increment evaluated by the local gradient of the velocity field u(x, t).
Normalized such that the standard deviation is 1 and compared with a Gaussian distribution (dashed line). b) Kurtosis
K for different forcing. c) Mean square displacement (MSD). The grey shading indicates the standard deviation resulting
from the averaging of MSD of all trajectories. d) The slope of MSD shown in c). All considered for different forcing
|Γ2/Γ0|.

for hyperuniformity. Figure 6 a) summarizes results re-
ported in [31]. These data contain polar as well as ne-
matic systems and with the exception of [59], all systems
can be considered as (quasi) two-dimensional. None of
these studies focuses on low active forcing, and most are
concerned with intermediate scales and the comparison
with inertial turbulence. However, rescaling the mea-
sured energy spectra in these experiments, applying the
scaling transform in (4) and focusing on |k| → 0 allows to
extract the scaling exponent α, from which characteris-
tics of hyperuniformity can be obtained. The results are
shown in Figure 6 b) together with our simulation data.
Using the classification of hyperuniformity in [2] (α > 1
type I, α = 1 type II, 0 < α < 1 type III, α = 0 non-
hyperuniformity, α < 0 anti-hyperuniformity) almost all
systems indicate type I hyperuniformity. Only the low-
est volume fractions of the bacterial suspension (E. coli)
[59] and the largest forcing before condensation in our
simulations indicate type 3 hyperuniformity. Further in-
creasing the forcing in the simulations leads to non- and
anti-hyperuniformity. This conclusion relies only on the
scaling behaviour. Considering in addition the values of
Ψ̂d(|k|)/|Ψ̂max| for the smallest values of |k| available in
Figure 6 a), which gives a finite size estimate of the hy-

peruniformity metric H = lim|k|→0 Ψ̂d(|k|)/|Ψ̂max|, see
[55], this conclusion is less clear for most of the exper-
imental data. While ideally H = 0 for hyperuniform
systems, in the literature it is commonly accepted the
nomenclature of near hyperuniformity for H ≤ 10−2 and
effective hyperuniformity for H ≤ 10−4 [60, 61]. The first
could be confirmed only for the self-propelled Janus par-
ticles in [62]. All others ask for measurements on larger
systems. However, the simulation results, see also the se-
lected simulations on larger domains in SI Figure 3, are
clearly within the classification of nearly hyperuniform
systems, at least for forcing significantly below the criti-
cal value, and the classification as type I hyperuniformity
holds.

Besides the theoretical interest in the context of non-
equilibrium physics, the connection between hyperuni-
formity and active turbulence also allows for specula-
tions from a biological perspective. Combining general
properties of disordered hyperuniform systems and en-
countered Lagrangian measures of Levy walks and non-
universal diffusion allows for the following interpretation:
The systems invest energy on a low level to maintain
a non-equilibrium hyperuniform state, characterized by
isotropic properties and robustness against defects [2]
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FIG. 5. Radial spectra of autocovariance function

Ψ̂d(|k|) as a function of k = |k| for different forcing
|Γ2/Γ0|. Dashed lines correspond to the condensate state.
Characteristic scaling regimes are indicated. The gray re-
gion marks the energy input. The quantities are rescaled
by K = 36.5, the center of the region of energy input and

Ψ̂f
max, the maximum of Ψ̂d(|k|) in this region.

which are preferential properties of a resting state. Only
if appropriate, the systems invest larger activities, relax-
ing the hyperuniform state, leading to different classifica-
tions and types and states with enhanced superdiffusive
properties, which are optimal strategies for evasion and
foraging [45]. Similar strategies have been identified for
a single bacterium [66] and T cells [67], which switch
between diffusive and superdiffusive motility in search
for dense and sparsely distributed targets, respectively.
Such behaviour has also been modeled [68], and even
robot swarms use such strategies, see [69] and the refer-
ences therein. However, if this plausible-seeming strat-
egy, which could be drawn from our simulation results,
can explain why nature allows for such complex systems,
has to be further explored.

MATERIALS AND METHODS

(1) is transformed into a vorticity formulation using
ωe3 = ∇×u with ω(x, t) the vorticity and e3(x) the unit
vector perpendicular to the considered two-dimensional
space. The resulting equation reads

∂tω + u · ∇ω = νeff∆ω. (5)

We consider the piecewise-constant approximation

νeff(|k|) =


Γ0 > 0 for |k| < k0

Γ2 < 0 for k0 ≤ |k| ≤ k1

Γ4 > 0 for k1 < |k|
(6)

a)

b)

FIG. 6. a) Radial spectra of autocovariance function

Ψ̂d(|k|) as a function of k = |k| for various experimental
systems taken from [31] (Figure 1, corresponding to a)
bacterial suspension (B. subtilis) [46], b) sperm suspen-
sion [63], c) self-propelled Janus particles [62], d) bacte-
rial suspension (E. coli) [59], the numbers correspond to
selected volume fractions, e) tissue cell monolayers [64]
for different tissues (NIH-3T3, mouse embryonic fibrob-
last cell line; C2C12, mouse myoblast cell line; HUVEC,
human umbilical vein endothelial cells; MDCK, Madin-
Darby Canine Kidney cells) and f) microtubulin-kinesin
suspensions [65]). Data points are rescaled and normal-

ized by Kmax, and Ψ̂max. (4) is used to transform the
energy spectra into the autocovariance function. Charac-
teristic scaling regimes are indicated. b) Scaling exponent
α obtained from the three lowest values of k for each curve
in a) and Figure 5, together with characteristic values for
different types of hyperuniformity. Same labels as in a).

as introduced and justified in [30] and solve (5) using
a pseudospectral method with a third-order TVD (To-
tal Variation Diminishing) scheme for time discretization
and a periodic domain of size [−π, π] × [−π, π] which is
discretized by 28 points in each direction. For selected
simulations we also increase the domain size to demon-
strate the persistence of the scaling on larger scales, see
SI Figure 3. The domain size influences the onset of
the deviation above the threshold. However, the results
concerning the threshold and characteristics of hyperuni-
formity are not affected.
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In our simulations, fixed values of Γ0 = 1.1 × 10−3,
Γ4 = 1.1 × 10−2, k0 = 33 and k1 = 40 are chosen, while
Γ2 is varied. The effective driving of the fluid is defined as
the ratio of the forcing viscosity to the viscosity for long
wavelengths, −Γ2/Γ0, and the forced wave numbers are
confined to [k0, k1]. For all simulations, the initial data
are Gaussian-distributed random velocity fields. All sim-
ulations run until a statistically steady state is reached,
and data are analysed only within this state.

The statistically steady states are characterized by mi-
crovortices, which don’t or do form a condensate depend-
ing on the activity strength. We consider two different
approaches to analyse the spatial order of these microvor-
tices. The first extracts the extrema of the vorticity field
ω(x, t) and analyses the resulting point configurations
{rj}, see SI Figure 1 a) - c) for corresponding points to
Figure 1 a) - c). Hyperuniformity in these point configu-

rations can be characterized by computing Ŝ(|k|) ∼ |k|α
as |k| → 0 or σ2(R) ∼ Rβ as R → ∞ and determining
α and β. Both criteria are connected by defining the
density

ρ̂(k, {rj}) =
N∑
j=1

exp(ik · rj), (7)

with rj the position of point j and N the number of
points. The structure factor now reads

Ŝ(k, {rj}) =
|ρ̂(k, {rj})|2

N
= 1 +

2

N
Ĉ(k, {rj}), (8)

with Ĉ(k, {rj}) the real quantity

Ĉ(k, {rj}) =
N−1∑
j=1

N∑
m=j+1

cos(k · (rj − rm)). (9)

Results are shown in SI Figure 2. The second approach
uses an extension of the concept of hyperuniformity to
scalar fields [2, 55–57] and analyses the vorticity field
ω(x, t) directly. Using the autocovariance function ψ(r),
see (3), the field is hyperuniform if the radial spectral

density ψ̂d(|k|), which is the radial average of the Fourier
transform of ψ(r), satisfies the condition

ψ̂d(|k|) → 0 as |k| → 0 (10)

and hyperuniform characters can be inspected by the as-
sociated scaling of ψ̂d(|k|) for small wavenumbers (see,
e.g., [55]). As the identification of extrema is associ-
ated with additional numerical error, and the definition
of ω(x, t) inherently contains more information, we favor
the second approach.

The velocity increments are computed as δlu := u(x+
l)−u(x) which is a vector and depends on the length and
direction of l [41]. A longitudinal velocity increment (in
velocity direction) is defined as δ∥,lu := δlu · u

|u| . Assum-

ing Taylor hypothesis we obtain δlu := u(x+ l)−u(x) ≈

l∂u∂x = li∂iuj for l → 0, which allows to define the longi-
tudinal velocity increment as

δ∥u = û
∂u

∂x
û = ûi∂iuj ûj with û =

u

|u|
(11)

Deviations from a Gaussian distribution, which are a
signature of inertial turbulence [70, 71] are quantified by
the kurtosis K, which is computed as the fourth moment
of the velocity increment

K =
⟨(δlu)4⟩
⟨(δlu)2⟩2

. (12)

as in [72].

Point configurations and structure factor

Figure 7 a) - c) shows the point configurations of the
extracted extrema of the vorticity fields in Figure 1 a)
- c). Nearby extrema have been merged. Figure 7 d)
- f) show the corresponding spectral density of extrema
distribution.

The circular region around the origin in which there is
almost no scattering for low activities (Figure 7 d) and
e)) provides a first signature for long-range correlations.
Slight differences can be seen if compared with Figure 7
f), corresponding to a larger activity above the critical
value. More quantitatively, Figure 8 a) and b) show the

structure factor Ŝ(|k|) and the value Ŝ(kmin) as a func-
tion of forcing strength. While a qualitative change at
the critical value is visible, these data do not show clear
characteristics of hyperuniformity as the data is too noisy
for small |k|.

Numerical validation

We demonstrate the independence of the simulation
results for three selected activities. Figure 9 shows the
radial spectra of autocovariance function Ψ̂d(|k|)/|Ψ̂max|
for increased domain sizes of [−2π, 2π] × [−2π, 2π],
[−4π, 4π]× [−4π, 4π] and [−8π, 8π]× [−8π, 8π] which are
discretized by 29, 210 and 211 points in each direction,
respectively. The spectra of the condensate phase, cor-
responding to |Γ2/Γ0| = 2.5, are size-dependent as the
macroscopic vortex is bound by the domain. However,
other properties are not affected. The scaling behavior is
the same as in the main text for n = 1, and the hyper-
uniformity metric H further decreases with increasing n,
confirming nearly hyperuniformity or even effective hy-
peruniformity and, therefore, type I hyperuniformity for
forcing significantly below the critical value.
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a) d)

b) e)

c) f)

FIG. 7. a) - c) Point configurations corresponding to extrema of the vorticity field ω in Figure 1 a) - c), respectively. d)

- e) Corresponding spectral density of extrema distribution Ŝ(k) to point configurations in a) - c).

Movies

We provide movies corresponding to the flow field
snapshots shown in Figure 1 a) - c). They consider
LIC visualization with color coding corresponding to
vorticity and show the statistically steady states. The
file names correspond to the magnitude of forcing
|Γ2/Γ0| one.mov, two.mov and twopointfive.mov.
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