Examining Computational Performance of Unsupervised
Concept Drift Detection: A Survey and Beyond

Elias Werner
ScaDS.Al CIDS, TU Dresden
Dresden, Germany
elias.werner@tu-dresden.de

Sunna Torge
ScaDS.AI CIDS, TU Dresden
Dresden, Germany
sunna.torge@tu-dresden.de

ABSTRACT

Concept drift detection is crucial for many Al systems to ensure the
system’s reliability. These systems often have to deal with large

Nishant Kumar

CGV, TU Dresden

Dresden, Germany
nishant.kumar@tu-dresden.de

Stefan Gumhold
CGV, TU Dresden
Dresden, Germany

stefan.gumhold@tu-dresden.de

Matthias Lieber
ScaDS.Al CIDS, TU Dresden
Dresden, Germany
matthias lieber@tu-dresden.de

Wolfgang E. Nagel
ScaDS.Al CIDS, TU Dresden
Dresden, Germany

wolfgang.nagel@tu-dresden.de
1 INTRODUCTION

In the last years, the amount of available data increased signifi-
cantly due to the big data revolution. For instance, the collected

amounts of data or react in real time. Thus, drift detectors must
meet computational requirements or constraints with a compre-
hensive performance evaluation. However, so far, the focus of de-
veloping drift detectors is on detection quality, e.g. accuracy, but

data volume is expected to be about 175 ZB only for the year 2025 [38].
The availability of vast amounts of data and the exploit of computa-
tional resources like GPUs or TPUs led to the advent of deep learning (DL)
methods in many application fields such as predictive maintenance [33],

2304.08319v2 [cs.LG] 4 Oct 2023

arxXiv

not on computational performance, such as running time. We show
that the previous works consider computational performance only
as a secondary objective and do not have a benchmark for such
evaluation. Hence, we propose a set of metrics that considers both,
computational performance and detection quality. Among others,
our set of metrics includes the Relative Runtime Overhead RRO to
evaluate a drift detector’s computational impact on an Al system.
This work focuses on unsupervised drift detectors, not being re-
stricted to the availability of labeled data. We measure the compu-
tational performance based on the RRO and memory consumption
of four available unsupervised drift detectors on five different data
sets. The range of the RRO reaches from 1.01 to 20.15. Moreover, we
measure state-of-the-art detection quality metrics to discuss our
evaluation results and show the necessity of thorough computa-
tional performance considerations for drift detectors. Additionally,
we highlight and explain requirements for a comprehensive bench-
mark of drift detectors. Our investigations can also be extended for
supervised drift detection.

CCS CONCEPTS

« Software and its engineering — Software performance; «
Computing methodologies — Online learning settings; Model
development and analysis.

KEYWORDS

Concept Drift, Unsupervised Drift Detection, Computational Per-
formance, Benchmark

ACM Reference Format:

Elias Werner, Nishant Kumar, Matthias Lieber, Sunna Torge, Stefan Gumbhold,
and Wolfgang E. Nagel. 2023. Examining Computational Performance of
Unsupervised Concept Drift Detection: A Survey and Beyond. In Proceed-

ings of . ACM, New York, NY, USA, Article 4, 9 pages. https://doi.org/xx.xxx/xxx_x

2023. https://doi.org/xx.XXx/Xxx_x

social media [29], marine photography [24] or transportation plan-
ning [16]. The effectiveness of such applications is often deter-
mined by the performance of the DL model on a different data dis-
tribution than the distribution on which the model was trained
with. However, pure DL based applications work nicely on the
training data distribution but do not perform well when the test
data distribution is different from the training data distribution.

For example, Grubitzsch et al. [16] outlined that the reliability
of such Al models is questionable for sensor data-based transport
mode recognition. The reason is the variety of different context in-
formation, e.g. device type or user behavior that introduces drift
into the data. Langenkamper et al. [24] demonstrated concept drift
when using different gear or changing positions in marine photog-
raphy and explained the effect on DL models. Hence, such applica-
tions need to be accompanied by approaches such as concept drift
detection to estimate changes in the data distribution and to decide
the robustness of a DL model on a given input.

Furthermore, applications must cope with large amounts of data
or high-velocity data streams and react in real-time. On the other
hand, applications are often bounded to certain hardware require-
ments or have to operate with limited computational resources.
These observations should point to the necessity of thorough inves-
tigations concerning the running time, memory usage and scalabil-
ity of a drift detector (DD). However, the literature focuses on the
methodological improvements and evaluation on small-scale ex-
amples as outlined in the survey by Gemaque et al. [12]. Note that
we refer to evaluation and metrics such as accuracy or recall as de-
tection quality. We refer to metrics such as runtime or memory us-
age as computational performance. Also, theoretical computational
complexities solely fail to capture the computational performance
of an algorithm when deployed on real hardware and being applied
to real data due to multiple factors such as implementation, com-
piler optimizations, data distribution and further external impacts.
Only recently established machine learning benchmarks [34] em-
phasize the importance of computational performance evaluation


http://arxiv.org/abs/2304.08319v2
https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://doi.org/xx.xxx/xxx_x
https://doi.org/xx.xxx/xxx_x

in the wider data science community and offer a means to methodi-
cally study computational performance across various application
domains and methodologies. While there is only one paper focus-
ing on the computational performance of supervised DDs that re-
quire the availability of data labels, nothing is available for unsu-
pervised DDs. Our work focuses on unsupervised DDs that operate
in the absence of data labels, as we believe that the presence of la-
beled data is unlikely for many application scenarios. As there is
no previous work investigating the computational performance of
unsupervised DD, this work provides an initial examination of the
available literature and the computational performance of related
approaches.
The main contributions of this work are:

(1) We highlight that the previous literature lacks computational
performance evaluation for unsupervised concept drift de-
tection.

(2) We state the requirements for a comprehensive evaluation
of DDs, reflecting computational performance and detection
quality.

(3) We propose an initial set of metrics for a comprehensive
evaluation of DDs and discuss our measurements of four
related DD pipelines.

The rest of the paper consists of four parts. In section 2 we in-
troduce preliminaries and give a definition for concept drift. In
section 3 we give an outline of computational performance inves-
tigations for supervised concept drift detection. section 4 presents
the prior works for unsupervised concept drift detection, discuss
their important research contributions and explain the scope of
previous computational performance evaluation. In section 5 we
propose and discuss metrics for an evaluation that considers com-
putational performance and detection quality. Furthermore, we high-
light the necessity for thorough performance investigations based
on the evaluation of four different DDs.

2 BACKGROUND

This section introduces the formal definition of concept drift and
explains supervised and unsupervised concept drift detection.

In general, we follow the formal notations and definitions from
Webb et al. [44] for the following illustrative equations. Moreover,
we take also into account the publications by Gama et al. [11] and
Hoens et al. [20] among others. Note that the next assumptions
hold for the discrete and continuous realms in principle. Never-
theless, for ease of simplification, we consider only the discrete
realm in our notations. Assume for a machine learning (ML) prob-
lem there is a random variable X over vectors of input features
[Xo, X1, ..., Xn]. Moreover, there is a random variable Y over the
output that can be either discrete (for classification tasks) or con-
tinuous (for regression tasks). In this case, P(X) and P(Y) repre-
sent the probability distribution over X and Y respectively (priori).
P(X,Y) represents the joint probability distribution over X and Y
and refers to a concept. At a particular time ¢, a concept can now
be denoted as follows:

Pr(X,Y) (1)

E. Werner et al.

Concept drift happens when the underlying probability distribu-
tion of a random variable changes over time. Formally:

Pr(X,Y) # Pri(X,Y) @

Supervised drift detection is the process where the data labels Y are
always immediately available and unsupervised DDs detect drift
without labeled data.

3 SUPERVISED CONCEPT DRIFT DETECTION

Many approaches for supervised drift detection have been devel-
oped in the last decades. Well-known surveys such as those by
Gama et al. [11] or Barros et al. [2] summarize the work in the field.
Moreover, [2] presents a large scale evaluation of related super-
vised DDs. However, they only consider detection quality aspects,
e.g. accuracy and no computational performance aspects, e.g. run-
ning time of the compared methods. Only recently, [32] presented
a benchmark of supervised DDs that considers the running time
and memory usage of the related DDs besides the DDs’ quality.
However, they applied their procedure on small-scale datasets only
and do not consider a thorough analysis of the computational per-
formance evaluation. To the best of the authors’ knowledge, there
is no literature available that demonstrates the computational per-
formance of supervised DDs on larger real-world datasets. Never-
theless, performance bottlenecks might be a problem as applica-
tions need to fulfill resource requirements when processing high
data volume or high-velocity data and have to react in realtime.
Thus, we believe that the computational performance aspects should
also be considered as a main objective for supervised concept drift
detection. One approach to deal with such resource requirements
are parallel DDs. Although not investigated comprehensively, there
are few works available discussing the scalability or paralleliza-
tion of supervised DDs. One solution was developed by Grulich et
al. [17] presenting a parallel version of the supervised DD Adwin
with the ability to compute high data volumes with a high veloc-
ity. However, they are missing a comprehensive evaluation of their
approach.

Even though the field of supervised concept drift detection can
be investigated further, we focus on the unsupervised case in the
rest of the paper. Unsupervised DDs gained a lot of attention in the
last years due to their applicability in use cases where data labels
are not available immediately.

4 UNSUPERVISED CONCEPT DRIFT
DETECTION

In this section, we present a novel overview of unsupervised DDs
that reflects on the computational performance instead of detec-
tion quality only. Our investigation is based on recently published
survey articles and extends them. Furthermore, we discuss the re-
spective computational performance and detection quality evalua-
tion conducted by the prior work and show the necessity of thor-
ough computational performance studies.

4.1 Existing Surveys

Gemagque et al. [12] presents an early taxonomy for drift detection
that focuses on unsupervised DDs. The basis of their taxonomy is
the accumulation and the updating process of windowed data that



Examining Computational Performance of Unsupervised Concept Drift Detection

is used for detecting the drift. At the first level, they distinguish be-
tween batch-processed and online-processed drift detection before
dividing the classes more specifically. A more recent survey on un-
supervised DDs was conducted by Shen et al. [40]. They propose
to separate the DDs into two categories based on the underlying
method for drift detection. Approaches in group A are based on
the differences in the data distribution. They either measure the
sample density of different regions in the sample space or use sta-
tistical test methods to detect differences in the data distribution
of a reference data set and a new data set. Thus, group A is fur-
ther divided into regional density-based and statistical test-based
methods. Approaches in Group B are based on model quality e.g.
changing confidences, and detecting drift by monitoring and alert-
ing changes in such model quality. Group B can be divided further
into classifier-based methods, i.e. directly monitoring the quality
of a base model or other model-based methods that use additional
auxiliary means to detect drift, depending on the specific situation.
Both surveys give an overview of related unsupervised DDs and
highlight the versatility of the different approaches.

4.2 Computational Performance
Considerations

Although both surveys mention the importance of computational
performance considerations, they did not incorporate such objec-
tives in their overviews thoroughly. Thus, we developed an overview
that reflects on the computational performance of the related work
by extracting the computational performance considerations which
will be discussed next. Note that the evaluation concerning the de-
tection quality might be different in the several papers. For our
survey, we used the recent overview presented in [40] as a start-
ing point, extended it with further works and aligned them to the
taxonomy. Table 1 presents our survey results.

4.2.1 Investigated Features. In the first column of Table 1 we indi-
cate whether such computational performance experiments were
conducted. For approaches without such evaluation objective, it
is difficult to assess the runtime, memory or energy consumption
behavior in applications with vast amounts of data, high veloc-
ity data streams or limited computational resources. If computa-
tional performance experiments were conducted, we investigated
three points. A) the objectives for the performance experiments.
Those can be Hyperparameters and their effect on the runtime of
an approach. Data means, the approach is evaluated on different
data sets and the computational performance is recorded. If the ap-
proach is compared with other DDs it is evaluated wrt to Related
approaches. B) the computational performance metrics that are in-
vestigated in the several works. This is the running time for most
of the approaches and RAM-hour for one of the works. C) the data
that was used for the computational performance experiments. We
show the number of data samples, dimensions and the source of the
data that was used for running time or RAM-hour evaluation. The
last column indicates whether the source code of the approach is
available.

4.2.2  Study Results. Several works [6, 8,9, 13, 14, 19, 22, 23, 31, 35,
39, 46] do not conduct any runtime, memory, energy or scalability
related performance measurements. Thus, it is difficult to assess

their computational performance in real-world applications. Dasu
etal. [7] and Gu et al. [18] conducted experiments concerning con-
structions’ running time and updating their data representation.
However, they do not consider the computational performance of
the actual drift detection. Lu et al. [30] compared their approach
with [7] but only concerning the data representation. The overall
running time including the drift detection is unclear for those ap-
proaches. However, experiments by Qahtan et al. [37] showed that
[7] has a linear increase in the running time of the data represen-
tation with growing window size and data dimensionality. Thus,
they end up with a running time of 300 seconds for a data dimen-
sionality of 20 and a window size of 10,000 samples. While [7, 18,
30, 37] evaluate the computational performance of their DD on
synthetic data, Liu et al. [26, 27] used real-world data for the com-
putational performance evaluation. Therefore, they ended up with
data sets that contained fewer samples, but up to 500 dimensions.

Recently, [26] considered the RAM-hour metric to evaluate the
memory consumption of the DD as recommended in [3]. Song et
al.[41] create data sets based on real sources with 24 dimensions.
They compare their method with two other approaches but with
only a low amount of data and without a comprehensive experi-
mental setup. Dos Reis et al. [10] conducted experiments on syn-

thetic data to evaluate three different versions of the Kolmogorov—Smirnov

test for streaming data. However, they did not compare their method
to other approaches and considered only a small data set. Greco et
al. [15] used real data for their evaluation and compared their ap-
proach with two other DDs but lacked a comprehensive evaluation
setup as well. The most sophisticated running time performance
evaluation was conducted by Pinagé et al. [36]. They tracked the
running time of all the presented experiments on synthetic and real
data. Moreover, they have leveraged the most extensive data set as
per our survey, with over 4.9+ 10° data samples and 41 dimensions.
Experiments on this data set demonstrated high running times of
several hours for related approaches.

4.3 Detection Quality Considerations

We skipped the data for detection quality or ML model quality
evaluation in Table 1 since we focus on the computational perfor-
mance considerations of the literature. Moreover, the evaluation of
the related work in terms of the approaches’ detection quality or
ML model quality is mostly comprehensive and sound. Through-
out the literature, many experiments investigating approaches’ hy-
perparameters and their behavior on different data sets were con-
ducted. There are also sporadic comparisons between different ap-
proaches in the single evaluation sections of the several works.
However, there is no large-scale benchmarking across different
DDs with a unified evaluation setting as it is available for super-
vised DD [2, 32].

4.4 Discussion

In future applications with high volume of data, high-velocity data
or computational resource constraints, resource-efficient approaches
and implementations are required. However, as outlined in the pre-
vious section, computational performance aspects for unsupervised
concept drift detection were only investigated as a secondary ob-
jective in the literature. Only a few papers conducted running time



E. Werner et al.

Table 1: Computational performance measures of the unsupervised DDs categorized as by Shen et al. [40]. Papers mentioned
in italic were not considered by the original survey. Hyp = Investigation of hyperparameters, Rel= Comparison with related

approaches, Data = evaluation on different data sets.

. o . Data for Computational Performance Evaluation ~ Source
Paper Experiments Objectives Metrics - -
# Samples # Dimension Source Code
Group A: differences in data distribution, regional density based
Dasu et al. [7] 4 Hyp running time 5.000.000 4-10 Synthetic X
Gu et al. [18] v Hyp, Rel running time 100.000 2-10 Synthetic X
Qahtan et al. [37] 4 Hyp, Rel running time 5.000.000 2-20 Synthetic X
Liu et al. [27] v Data, Rel running time 9324, 18.159, 500,8 Real X
45.312
Liu et al. [26] v Data, Rel running time, 1500, 9324, 99, 500, 8 Real X
RAM-Hour 18.159, 45.312
Song et al. [41] v Hyp, Rel running time 100-7000 24 Real X
Group A: differences in data distribution, statistical test based
Mustafa et al. [35] X X
Greco et al. [15] 4 Hyp, Rel running time 120.000 2 Real X
Kifer et al. [22] X X
Ditzler et al. [9] X X
dos Reis et al. [10] v Hyp running time 10.000 1 Synthetic v
Li et al. [25] 4 Hyp running time 10.000 1 Synthetic X
Group B: model quality monitoring, classifier output based
de Mello et al. [8] X X
Haque et al. [19] X v
Lughofer et al. [31] X X
Sethi et al. [39] X X
Pinagé et al. [36] v Hyp, Data running time Synthetic: 2k, 4k, Synthetic: 2 Synthetic, Real v
10k, 30k Real: 20, 5, 41
Real: 1901,
45312, 4.9 = 10°
Kim et al. [23] X X
Group B: model quality monitoring, other model based
Goziiagik et al. [13] X v
Goziiagik and Can [14] X v
Lu et al. [30] 4 Hyp running time 5.000.000 6-20 Synthetic X
Zheng et al. [46] X X
Cerqueira et al. [6] X v

experiments in their evaluation, and only one investigated mem-
ory utilization. While the amount of data that was used in the re-
spective evaluations, is sufficient to evaluate the DD’s detection
quality or the ML model’s quality, it is not large enough to investi-
gate the performance in terms of running time or memory usage.
Moreover, the papers’ evaluation settings are inconsistent and vary
in the chosen data sets, number and dimension of data points and
how the performance measurement is carried out. While this is
comprehensible for the literature that presents novel methodologi-
cal approaches, we need to investigate computational performance

as a primary objective for productive DDs and real-world applica-
tions in future works. Although some papers consider the theo-
retical computational complexity of their algorithms, this can not
replace such empiric measurements on real datasets and machines,
e.g. as outlined by [21] highlighting the impact of computational
performance bugs on the running times of implementations. Thus,
we require consistent computational performance evaluations in
order to assess the applicability of DDs for use cases with high vol-
ume of data and high-velocity data. Moreover, we should investi-
gate scalable or parallel DDs and the resource-efficient deployment



Examining Computational Performance of Unsupervised Concept Drift Detection

of the approaches in order to avoid waste of resources and to foster
energy-efficient Al systems.

5 COMPUTATIONAL PERFORMANCE
EVALUATION

To show the necessity of thorough computational performance con-
siderations, we conducted several experiments with four different

drift detectors on four datasets. First, we introduce the relevant

computational performance metrics that we measured. Second, we

introduce the evaluated pipelines and DDs, and present the datasets.
Lastly, we show and discuss our experiment results. All experi-
ments were performed five times and we report the average of
the results. We also calculated the standard deviations but omit-
ted them from the discussion as they were insignificant. All exper-
iments were conducted on the HPC machine XXXXX at XXXXX.
We used a single CPU core of an AMD EPYC 7702 CPU, fixed to

2.0 GHz frequency to improve reproducibility. Since the implemen-
tations do not run in parallel, we do not consider multiple CPUs or

nodes.

5.1 Metrics

To assess the computational performance of a drift detector, we
measure the overall runtime of the whole pipeline R, and the
runtime of the drift detector Rpp. For Rs,,, we start the time
measurement after loading the data and conducting an initial base
model training. We end the measurement after processing the whole
data stream. For Rpp we measure the time for everything, that is
required to detect a drift and maintain the drift detector. We do not
consider the drift handling, e.g. re-training of a base model, in case
of a detected drift. Thus, we do not penalize a DD for an expensive
base model or drift handling strategy. We can not compare Rsym,
or Rpp across different approaches, since the default implemen-
tations are based on different programming languages and base
models. Thus, we compute the Relative Runtime Overhead RRO to
compare the DDs of the different pipelines as follows:

Rsum

Rsum — Rpp

Since the RRO is a relative measure, we can compare it across dif-
ferent approaches. It gives a first measure for the runtime over-
head that is introduced by the DD in a pipeline. We assess the RRO
wrt the different approaches and the initially proposed base mod-
els and pipeline components to compare the runtime overhead. It
is important to mention, that the RRO is based only on the DD
and not on the overhead that is introduced by the continuous re-
training of the model. However, a DD triggers a drift handling
method for each detected drift, e.g. model re-training. Thus, if a
DD is too sensitive, the runtime overhead for the whole pipeline
will increase, due to the low detection quality of the DD. Thus, it is
important to reflect on both 1) the computational performance and
2) the detection quality of a DD. We also monitor the peak mem-
ory Mpeqx of the overall pipeline with profilers for the individual
programming languages.

For real-world datasets, it is difficult to compute the detection
quality of a DD directly, since the drift is always measured relative
to a window of data samples that is maintained by the DD itself.
Furthermore, this would require further pre-investigation of the

RRO =

Table 2: Datasets that were used for the evaluation.

Dataset Description Size Classes

Laser sensor data from flying in-

Insects  sects 5325x50 5

Abrupt The same as Insects, but shuffled

Insects to introduce abrupt drift 5325x50 5

UWave 4 set of eight gestures from ac-

Gesture celerometers 4479x315 8

Forest Cartographic features to deter-

Covtype mine forest cover type 581012x54 7
Network data containing intru-

KDD sions and normal network traf- 4.9 x

CUP99

fic 10%x41 2

individual datasets. Therefore, to reflect on the detection quality
of the different DDs, we measure the accuracy metric Acc for the
base ML models of the different pipelines. Accuracy is determined
by Acc = correct decisions/ overall decisions. Note that Acc does not
represent the proportion of correctly detected drifts. Instead, it in-
directly reflects the detection quality of the DD, since the accuracy
of the ML base model is affected by true and false drift detections.
Since a detected drift always triggers a drift handling, that might
cause additional computational overhead, we count the number of
detected drifts as Detections. Moreover, since some of the related
approaches request true labels after a detected drift, we monitor
the relative amount of requested data labels with the ReqLabels
metric.

5.2 Datasets

For our experiments, we use five different real-world datasets as de-
scribed in Table 2. The datasets Insects [42] and Abrupt Insects [42]
consist of 50 dimensions with five different classes that refer to
different insects. Abrupt Insects was shuffled in a way, that it con-
sists of abrupt drift, i.e. the sudden change in the data distribution.
The UWave dataset [28] consists of 4479 samples with 315 dimen-
sions that represent accelerometer motion data of eight different
gestures. The Forest Covtype [5] dataset consists of 54 features
with seven different forest cover type designations. The data in
KDDCUP99 [43] consists of 41 dimensions and each sample is as-
signed to either the Normal or Intrusion class.

For the datasets Insects, Abrupt Insects and UWave we use 500
labeled samples initially available for the training of a base ML
model. For the datasets Forest Covtype and KDDCUP99 we use
5000 labeled samples respectively. The rest of the data is used for
the inference of the ML model and our experiments wrt concept
drift detection and handling.

5.3 Evaluated Drift Detectors

From Table 1, six implementations are publicly available. We used
the original Python implementations of [10] and [6], the original
Java implementation of [19] and the original Matlab implementa-
tion of [36]. We used the default pipelines of the approaches, but



adapted some hyperparameters, following the guidance of the re-
spective papers. Moreover, we made minor changes in the code-
bases in order to make the implementations run with the different
datasets and for conducting our measurements. The code for our
experiments will be available publicly !. Note, for that initial inves-
tigation we skipped the implementations by Goziiacik et al. [13, 14]
since their pipelines conduct continual re-training of the ML model
with the true labels. Thus, even if their drift detection is fully un-
supervised, they rely on the immediate availability of data labels
across their whole pipeline and a comparison with the other meth-
ods requires adaptions of their pipelines.

5.3.1 IKS. The Incremental Kolmogorov-Smirnov (IKS) was intro-
duced by dos Reis et al. [10] and detects drift based on the changes
in the raw input data distribution. Therefore, it constructs a refer-
ence window and a detection window and compares the data dis-
tributions within these windows with a Kolmogorov-Smirnov test.
The default implementation for IKS operates on a single input fea-
ture. In the case of drift, we follow the strategy of model replace-
ment that was suggested in the original paper among other drift
handling mechanisms. The model replacement strategy requests
true labels and trains a new model. For our evaluation, we use a
Random Forest with 100 decision trees as a base classifier.

5.3.2 STUDD. Cerqueira et al. [6] presented STUDD, an approach
that follows a student-teacher learning paradigm. It consists of a
student auxiliary model to mimic the behavior of a primary teacher
decision model. Drift is detected if the mimicking loss of the stu-
dent model changes wrt the teacher’s predictions. In case of a de-
tected drift, the method updates the existing base model and stu-
dent model with the requested true labels. As a basis for our eval-
uation, we use a Random Forest with 100 decision trees.

5.3.3 SAND. SAND is an approach for adapting and detecting novel
classes over data streams and was introduced by Haque et al. [19].
The classification is done by K-means clustering, setting the value
of K based on the size of the training data. Moreover, it consists of a

concept drift detection that was introduced as Beta Distribution Change P%.gﬁ)%DCP)

and operates on the confidences that ML model emits in the infer-
ence. BDCP reports drift in case of drops in the confidences. In
the original paper, the authors recommend calling BDCP in cases,
where the confidences fall under a certain threshold in order to
reduce running time. Therefore, we used this procedure in our ex-
periments. If a drift is detected, true labels are requested and the
model is retrained.

5.3.4 PinagéDD. Pinagé et al [36] present DCS-LA+EDDM, a method

that detects drift by monitoring the pseudo-error of an ensemble
classifier. They use an ensemble of Hoeffding trees and select one
of the ensemble members by DCS-LA [45] method to provide the
pseudo ground truth for unlabelled samples. The pseudo-error is
then calculated wrt this pseudo-ground truth. If the error changes,
drift is detected and the ensemble is updated. DCS-LA+EDDM re-
quires a training and a validation dataset for the internal pseudo-
label generation. Therefore we separated the 500 samples into 350
samples training and 150 samples validation data for Abrupt In-
sects and Insects, 3500 and 1500 for Forest Covtype and KDDCUP99

Uhttps://github.com/

E. Werner et al.

Table 3: Evaluation of the approaches on the different
datasets. Mp, i is in Megabyte. A "-" for the baselines indi-
cates, that there is no value for the metric available.

& M ot e\
O%xfo%"'& MQ«&OQ’ P&c\ﬁ %ewé;&q\»“‘o%m Y QX\O e 0¥
IKS 78% 5 89% 34s 5s 1.17 189
Insects STUDD 84% 0 0% 52s 26s 2.00 190
SAND 99% 4 77% 4s 2s 2.00 196
PinagéDD 78% 0 0% 143s 48s 1.50 629
Baselinel 84% - - 25s - - 185
Baseline2 81% - 100% 28s - - 189
IKS 85% 6 34% 32s 4s 1.14 185
Abrupt STUDD 83% 2 19% 57s 30s 2.11 193
Insects SAND 98% 5 68% 17s 15s 8.5 230
PinagéDD 66% 1 0% 139s 49s 1.54 643
Baselinel 65% - - 26s - - 182
Baseline2 79% - 100% 29s - - 187
IKS 90% 0 0% 23s 2s 1.09 221
UWave STUDD 90% 0 0% 43s 21s 1.95 223
Gesture SAND 80% 11 72% 8s 2s 133 211
PinagéDD 89% 0 0% 528s 4s 1.01 357
Baselinel 90% - - 21s - - 222
Baseline2 91% - 100% 27s - - 248
IKS 85% 400 50% 5266s 1138s 1.27 704
Forest STUDD 68% 25 3% 10218s 6108s 2.48 1008
CovtypeSAND 94% 1493 87% 5176s 4910s 20.15 388
PinagéDD 52% 8 0% 11970s 3248s 1.37 3756
Baselinel 61% - - 4321s - - 446
Baseline2 80% - 100% 4432s - - 698

no termination within 60min

respectively. Under the hood, DCS-LA+EDDM uses the supervised
DD EDDM [1] based on the pseudo-labels. In case of a detected
drift, the pseudo-labels are used and no true labels are required.
For ease of naming, we refer to DCS-LA+EDDM as PinagéDD.
Additionally, we measure two baselines that use a Random For-
est with 100 decision trees as a classifier. Baselinel does not con-
duct any re-training and Baseline2 updates the classifier after 500
samples for Insects, Abrupt Insects and UWave 5000 samples for
Forest Covtype, and KDDCUP99 respectively. Both pipelines are
implemented with Python. The setup is described and provided
by [6] and supports the assessment of the DDs’ experiment results.

5.4 Experiment Results

Table 3 shows our experiment results. We can see that the total ab-
solute runtime of the approaches is high for all pipelines when deal-
ing with the larger Forest Covtype dataset. For KDDCUP99, none
of the approaches terminates within 60 minutes. However, we see


https://github.com/

Examining Computational Performance of Unsupervised Concept Drift Detection

differences in the runtimes, i.e. the Java implementation of SAND
is always the fastest and the Matlab implementation of PinagéDD
is always the slowest. Since it is difficult to compare these abso-
lute runtimes, the RRO provides a relative measure that reflects
the overhead introduced by the drift detection. It ranges from 1.09
to 1.27 for the IKS. For STUDD we measure higher runtime over-
heads, i.e. 1.95 - 2.48 due to drift detection. The reason for this is the
expensive maintenance of the student model. Furthermore, each
detected drift is followed by drift handling, which increases the to-
tal runtime Rgy,;,. Also for SAND the RRO is high, i.e. 1.33-20.15,
due to the fast inference times of the clustering base model and the
relatively expensive computations for computing and maintaining
the drift detection. For PinagéDD the RRO is lower, 1.01-1.54, be-
cause it uses a fast supervised DD under the hood based on pseudo-
true labels. However, creating these can be expensive and lead the
model training in the wrong direction, as the pseudo-label could
still be wrong. Thus, PinagéDD does not require any true labels but
has the lowest accuracy on average which can be even lower than
Baselinel. The highest accuracy for all datasets, except UWave can
be achieved with SAND. The reason for this could be the fast con-
verging clustering model and the high amount of detected drift
and requested true labels. Next to PinagéDD, STUDD requires on
average the least amount of labeled data. It still achieves good ac-
curacy on the Insects and Abrupt Insects datasets but drops off
on the Forest Covtype data. IKS detects a lot of drift and requests
many data labels. However, IKS only operates on a single input
feature, and varying the input feature under investigation could
result in different behaviors. Memory consumption is insignificant
for all pipelines. In general, we observed a high sensitivity of all
approaches to different hyperparameter settings. Thus, the inter-
dependence of DDs, their hyperparameters, base models, datasets
and underlying hardware resources should be further investigated.
In addition, other methods of drift handling, such as «/f transfor-
mation described in [10], could be investigated.

5.5 Discussion

As demonstrated in the experiments, concept drift detection can
be an important pillar to guarantee the robustness of Al applica-
tions. Without proper drift detection, the accuracy of the pipelines
would decrease significantly as shown by Baselinel. Also, as Base-
line2 shows, a pure re-training approach might not help to main-
tain the robustness of a ML application and might increase the
runtime of the whole pipeline. However, from the publicly avail-
able approaches, there is no unsupervised DD available that ful-
fills the need for high detection accuracy, without many required
true labels while having a low runtime overhead. A comprehensive
benchmark of unsupervised DDs is not yet available but is required
to assess the behavior of available DDs and to identify strengths
and bottlenecks in current approaches. Hence, we propose to con-
sider the following aspects when conducting a benchmark for un-
supervised DDs.

5.5.1 Metrics. For drift detection, computational performance and
detection quality are interrelated and depend on the data, the pa-
rameters of the DD and the base ML model in the pipeline, e.g. a
DD that detects a high number of drift causes higher runtimes due

to triggered drift handling. Therefore, the whole landscape of unsu-
pervised DDs should be investigated from both perspectives: detec-
tion quality and computational performance. We proposed a first
set of metrics to support this investigation. However, although the
RRO provides an initial measure to compare different approaches
across implementations, a fair comparison requires further steps.

5.5.2  Implementation and Methodology. We need proper imple-
mentations with the same programming language in order to make
approaches comparable. Implementations should be publicly avail-
able and should be extensively documented. We also need theo-
retical considerations of the time and memory complexity of the
approaches, and comparisons between them. Furthermore, as out-
lined in Table 1, some DDs operate on the pure input data, while
others require the confidence or error rates of the base ML model.
Thus, the benchmarking has to consider many different base clas-
sifiers and hyperparameter settings in order to obtain represen-
tative results for a comprehensive comparison between different
DDs. Since the experimental space would be huge in this case, an
alternative would be to simulate the output of a ML model. It would
then be possible to investigate different DDs wrt requirements of
a ML model and its inference quality. This would allow more spe-
cific investigations of DD and ML model combinations in an Al
pipeline.

5.5.3 Datasets. In addition, benchmarks should be conducted based
on different datasets from real-world domains and synthetic sources.
While real-world data provide insights into the behavior in real ap-
plications, synthetic datasets are helpful in testing specific charac-
teristics by defining patterns of concept drift in advance. In addi-
tion, it may be interesting to investigate the effect of data size per
sample point, which can be reflected in experiments with various
datasets.

Thus, a comprehensive benchmark supports the community in
assessing available approaches and helps to develop novel solu-
tions, including parallel and scalable implementations as proposed
by Grulich et al. for the supervised DD ADWIN [17].

6 CONCLUSION

This work presents the first survey for unsupervised concept drift
detection with a focus on computational performance. We high-
light that computational performance is not represented compre-
hensively in the literature. We propose an initial set of metrics that
reflect on both: detection quality and computational performance.
Among others, it consists of the metric for relative runtime over-
head to assess the computational performance of a DD. We show
the necessity of such investigations by demonstrating the high run-
time of the available approaches on larger datasets. We conclude
that the computational readiness of contemporary DDs is ques-
tionable for future applications with lots of data and high-velocity
streams. Thus, the scientific community requires comprehensive
benchmarks across different DDs as well as scalable unsupervised
solutions for concept drift detection.

For future work, we plan to extend our research by combining
theoretical computational complexity with empirically measured



computational performance, e.g. similar Big-O bounds as worst-
case computational scenarios for algorithms, but different empir-
ically measured computational performance of the implementa-
tion. Following this methodology helps to identify potential per-
formance bugs as originally described in [21]. Furthermore, we
want to develop a component for benchmarking DDs in the frame-
work Massive Online Analysis (MOA) [4]. MOA is a state-of-the-
art tool for analyzing and comparing data streaming tasks and on-
line learning methods. It supports various tasks, e.g. classification,
regression, out-of-distribution detection and concept drift detec-
tion. Thus, it is used to conduct the benchmarking of supervised
DDs in [2] and [32]. However, it does not support unsupervised
DDs yet. Nevertheless, it offers a consistent and unified bench-
marking environment established in the scientific community. Based
on this component, we want to conduct a comprehensive bench-
mark of all state-of-the-art DDs, beyond the initial experiments in
this work. With the gained insights, we plan to develop parallel
and resource-efficient solutions in the future.

ACKNOWLEDGMENT

This work was supported by the German Federal Ministry of Edu-
cation and Research (BMBF, SCADS22B) and the Saxon State Min-
istry for Science, Culture and Tourism (SMWK) by funding the
competence center for Big Data and Al "ScaDS.AI Dresden/Leipzig*.

The authors gratefully acknowledge the GWK support for fund-
ing this project by providing computing time through the Center
for Information Services and HPC (ZIH) at TU Dresden.

REFERENCES

[1] Manuel Baena-Garcia, José del Campo-Avila, Raul Fidalgo, Albert Bifet, Ricard
Gavalda, and Rafael Morales-Bueno. 2006. Early drift detection method. In
Fourth international workshop on knowledge discovery from data streams, Vol. 6.
Citeseer, 77-86.

[2] Roberto Souto Maior Barros and Silas Garrido T Carvalho Santos. 2018. A large-
scale comparison of concept drift detectors. Information Sciences 451 (2018), 348—
370.

[3] Albert Bifet, Geoff Holmes, Bernhard Pfahringer, and Eibe Frank. 2010. Fast

perceptron decision tree learning from evolving data streams. In Advances in

Knowledge Discovery and Data Mining: 14th Pacific-Asia Conference, PAKDD 2010.

Proceedings. Part II 14. Springer, 299-310.

Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Philipp Kranen, Hardy Kremer,

Timm Jansen, and Thomas Seidl. 2010. MOA: Massive online analysis, a frame-

work for stream classification and clustering. In Proceedings of the first workshop

on applications of pattern analysis. PMLR, 44-50.

[5] Jock A Blackard and Denis J Dean. 1999. Comparative accuracies of artificial
neural networks and discriminant analysis in predicting forest cover types from
cartographic variables. Computers and electronics in agriculture 24,3 (1999), 131—
151.

[6] Vitor Cerqueira, Heitor Murilo Gomes, Albert Bifet, and Luis Torgo. 2022.
STUDD: a student-teacher method for unsupervised concept drift detection.
Machine Learning (2022), 1-28.

[7] Tamraparni Dasu, Shankar Krishnan, Suresh Venkatasubramanian, and Ke
Yi. 2006. An information-theoretic approach to detecting changes in multi-
dimensional data streams. In Proc. Symposium on the Interface of Statistics, Com-
puting Science, and Applications (Interface).

[8] Rodrigo F de Mello, Yule Vaz, Carlos H Grossi, and Albert Bifet. 2019. On learn-
ing guarantees to unsupervised concept drift detection on data streams. Expert
Systems with Applications 117 (2019), 90-102.

[9] Gregory Ditzler and Robi Polikar. 2011. Hellinger distance based drift detec-
tion for nonstationary environments. In 2011 IEEE symposium on computational
intelligence in dynamic and uncertain environments (CIDUE). IEEE, 41-48.

[10] Denis Moreira dos Reis, Peter Flach, Stan Matwin, and Gustavo Batista.
2016. Fast unsupervised online drift detection using incremental Kolmogorov-
Smirnov test. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. 1545-1554.

[11] Jodo Gama, Indré Zliobaité, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid
Bouchachia. 2014. A survey on concept drift adaptation. ACM computing surveys

[4

flaa

[12]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21

[22]

[23

[24]

[25

[26]

[27]

E. Werner et al.

(CSUR) 46, 4 (2014), 1-37.

Rosana Noronha Gemaque, Albert Franca Josua Costa, Rafael Giusti, and Eu-
landa Miranda Dos Santos. 2020. An overview of unsupervised drift detection
methods. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
10, 6 (2020), e1381.

Omer Géziiagik, Alican Bityiikgakir, Hamed Bonab, and Fazli Can. 2019. Unsu-
pervised concept drift detection with a discriminative classifier. In Proceedings
of the 28th ACM international conference on information and knowledge manage-
ment. 2365-2368.

Omer Géziiagik and Fazli Can. 2021. Concept learning using one-class classifiers
for implicit drift detection in evolving data streams. Artificial Intelligence Review
54 (2021), 3725-3747.

Salvatore Greco and Tania Cerquitelli. 2021. Drift lens: Real-time unsupervised
concept drift detection by evaluating per-label embedding distributions. In 2021
International Conference on Data Mining Workshops (ICDMW). IEEE, 341-349.
Philipp Grubitzsch, Elias Werner, Daniel Matusek, Viktor Stojanov, and Markus
Héhnel. 2021. Al-based transport mode recognition for transportation planning
utilizing smartphone sensor data from crowdsensing campaigns. In 2021 IEEE
International Intelligent Transportation Systems Conference (ITSC). IEEE, 1306—
1313.

Philipp M Grulich, René Saitenmacher, Jonas Traub, Sebastian Bref3, Tilmann
Rabl, and Volker Markl. 2018. Scalable Detection of Concept Drifts on Data
Streams with Parallel Adaptive Windowing.. In EDBT. 477-480.

Feng Gu, Guangquan Zhang, Jie Lu, and Chin-Teng Lin. 2016. Concept drift de-
tection based on equal density estimation. In 2016 International Joint Conference
on Neural Networks (IJCNN). IEEE, 24-30.

Ahsanul Haque, Latifur Khan, and Michael Baron. 2016. Sand: Semi-supervised
adaptive novel class detection and classification over data stream. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 30.

T Ryan Hoens, Robi Polikar, and Nitesh V Chawla. 2012. Learning from stream-
ing data with concept drift and imbalance: an overview. Progress in Artificial
Intelligence 1 (2012), 89-101.

Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. 2012. Un-
derstanding and detecting real-world performance bugs. ACM SIGPLAN Notices
47, 6 (2012), 77-88.

Daniel Kifer, Shai Ben-David, and Johannes Gehrke. 2004. Detecting change in
data streams. In VLDB, Vol. 4. Toronto, Canada, 180-191.

Youngin Kim and Cheong Hee Park. 2017. An efficient concept drift detection
method for streaming data under limited labeling. IEICE Transactions on Infor-
mation and systems 100, 10 (2017), 2537-2546.

Daniel Langenkédmper, Robin Van Kevelaer, Autun Purser, and Tim W Nattkem-
per. 2020. Gear-induced concept drift in marine images and its effect on deep
learning classification. Frontiers in Marine Science 7 (2020), 506.

Bin Li, Yi-jie Wang, Dong-sheng Yang, Yong-mou Li, and Xing-kong Ma. 2019.
FAAD: An unsupervised fast and accurate anomaly detection method for a multi-
dimensional sequence over data stream. Frontiers of Information Technology &
Electronic Engineering 20, 3 (2019), 388-404.

Anjin Liu, Jie Lu, Feng Liu, and Guangquan Zhang. 2018. Accumulating regional
density dissimilarity for concept drift detection in data streams. Pattern Recog-
nition 76 (2018), 256-272.

Anjin Liu, Yiliao Song, Guangquan Zhang, and Jie Lu. 2017. Regional concept
drift detection and density synchronized drift adaptation. In IJCAI International
Joint Conference on Artificial Intelligence.

[28] Jiayang Liu, Zhen Wang, Lin Zhong, Jehan Wickramasuriya, and Venu Vasude-

[29

(30]

[31]

(32]

[33

[34]

van. 2009. uWave: Accelerometer-based personalized gesture recognition and
its applications. In 2009 IEEE International Conference on Pervasive Computing
and Communications. 1-9. https://doi.org/10.1109/PERCOM.2009.4912759
Zhuoran Liu, Leqi Zou, Xuan Zou, Caihua Wang, Biao Zhang, Da Tang, Bolin
Zhu, Yijie Zhu, Peng Wu, Ke Wang, et al. 2022. Monolith: Real Time Recommen-
dation System With Collisionless Embedding Table. preprint arXiv:2209.07663
(2022).

Ning Lu, Guangquan Zhang, and Jie Lu. 2014. Concept drift detection via com-
petence models. Artificial Intelligence 209 (2014), 11-28.

Edwin Lughofer, Eva Weigl, Wolfgang Heidl, Christian Eitzinger, and Thomas
Radauer. 2016. Recognizing input space and target concept drifts in data streams
with scarcely labeled and unlabelled instances. Information Sciences 355 (2016),
127-151.

Mahmoud Mahgoub, Hassan Moharram, Passent Elkafrawy, and Ahmed Awad.
2022. Benchmarking Concept Drift Detectors for Online Machine Learning. In
Model and Data Engineering: 11th International Conference, MEDI 2022, Proceed-
ings. Springer, 43-57.

Inigo Martinez, Elisabeth Viles, and Ifiaki Cabrejas. 2018. Labelling drifts in a
fault detection system for wind turbine maintenance. In Intelligent Distributed
Computing XII. Springer, 145-156.

Peter Mattson, Christine Cheng, Gregory Diamos, Cody Coleman, Paulius Mi-
cikevicius, David Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bit-
torf, et al. 2020. Mlperf training benchmark. Proceedings of Machine Learning
and Systems 2, 336-349.


https://doi.org/10.1109/PERCOM.2009.4912759

Examining Computational Performance of Unsupervised Concept Drift Detection

[35] Ahmad M Mustafa, Gbadebo Ayoade, Khaled Al-Naami, Latifur Khan, Kevin W

Hamlen, Bhavani Thuraisingham, and Frederico Araujo. 2017. Unsupervised

deep embedding for novel class detection over data stream. In 2017 IEEE Inter-

national Conference on Big Data (Big Data). IEEE, 1830-1839.

Felipe Pinagé, Eulanda M dos Santos, and Jodo Gama. 2020. A drift detection

method based on dynamic classifier selection. Data Mining and Knowledge Dis-

covery 34 (2020), 50-74.

[37] Abdulhakim A Qahtan, Basma Alharbi, Suojin Wang, and Xiangliang Zhang.
2015. A PCA-based change detection framework for multidimensional data
streams: Change detection in multidimensional data streams. In Proceedings of
the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 935-944.

[38] David Reinsel, John Gantz, and John Rydning. 2018. Data age 2025: the digitiza-
tion of the world from edge to core. Seagate (2018).

[36

[39] Tegjyot Singh Sethi and Mehmed Kantardzic. 2017. On the reliable detection of
concept drift from streaming unlabeled data. Expert Systems with Applications
82 (2017), 77-99.

[40] Pei Shen, Yongjie Ming, Hongpeng Li, Jingyu Gao, and Wanpeng Zhang. 2023.

Unsupervised Concept Drift Detectors: A Survey. In Advances in Natural Com-
putation, Fuzzy Systems and Knowledge Discovery: Proceedings of the ICNC-FSKD

[41

[42

[43

[44

[45

[46

]

]

2022. Springer, 1117-1124.

Xiuyao Song, Mingxi Wu, Christopher Jermaine, and Sanjay Ranka. 2007. Sta-
tistical change detection for multi-dimensional data. In Proceedings of the 13th
ACM SIGKDD international conference on Knowledge discovery and data mining.
667-676.

Vinicius MA Souza, Denis M dos Reis, Andre G Maletzke, and Gustavo EAPA
Batista. 2020. Challenges in benchmarking stream learning algorithms with real-
world data. Data Mining and Knowledge Discovery 34 (2020), 1805-1858.
Salvatore Stolfo, Wei Fan, Wenke Lee, Andreas Prodromidis, and Philip Chan.
1999. KDD Cup 1999 Data. UCI Machine Learning Repository. DOL
https://doi.org/10.24432/C51C7N.

Geoffrey I Webb, Roy Hyde, Hong Cao, Hai Long Nguyen, and Francois Petitjean.
2016. Characterizing concept drift. Data Mining and Knowledge Discovery 30, 4
(2016), 964-994.

Kevin Woods, W. Philip Kegelmeyer, and Kevin Bowyer. 1997. Combination of
multiple classifiers using local accuracy estimates. IEEE transactions on pattern
analysis and machine intelligence 19, 4 (1997), 405-410.

Shihao Zheng, Simon Zon, Mykola Pechenizkiy, Cassio Campos, Werner Ipen-
burg, and Hennie Harder. 2019. Labelless Concept Drift Detection and Explana-
tion. In NeurIPS 2019 Workshop on Robust Al in Financial Services.



	Abstract
	1 Introduction
	2 Background
	3 Supervised Concept Drift Detection
	4 Unsupervised Concept Drift Detection
	4.1 Existing Surveys
	4.2 Computational Performance Considerations
	4.3 Detection Quality Considerations
	4.4 Discussion

	5 Computational Performance Evaluation
	5.1 Metrics
	5.2 Datasets
	5.3 Evaluated Drift Detectors
	5.4 Experiment Results
	5.5 Discussion

	6 Conclusion
	References

