

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs

<u>Anne-Sophie Berthold</u>, Nick Fritzsche, Rainer Hentges, Alexander Lettau, Arno Straessner, Johann Christoph Voigt

Fast Machine Learning For Science Workshop London, 25th September 2023

The ATLAS Detector at the LHC

Large Hadron Collider (LHC):

- Proton bunches collide with **25 ns** spacing (40 MHz)
- 2029: Start of High Luminosity LHC (HL-LHC) with up to ~7 x nominal luminosity

ATLAS Detector

- From ~20 collisions to up to ~200 collisions per bunch crossing (BC) → pileup increases
- 2026-2028: Phase-II upgrade
- Readout electronics of Liquid-Argon (LAr)
 calorimeter need to be improved

[1,2]

LAr Calorimeter Readout

proportional to deposited energy

LAr Calorimeter Readout

FPGA – Field Programmable Gate Array

[7]

- Real-time signal processing
- Installation of 556 highperformance FPGAs
- 250 Tbps total data rate
- 150 ns maximum latency

Optimal Filtering Algorithm (OF)

• calculates deposited energy per cell

- Development of Neural Networks to improve energy reconstruction
- > Keep parameters low (\approx 100) due to FPGA resource limits

Convolutional Neural Networks for LAr Readout

Plain 2-layered CNN (2-Conv CNN)

- Dilation enables larger Field of View (FoV)
- ReLU activation functions
- Output: reconstructed energy

4-layered CNN with Tagging (4-Conv CNN)

- Sigmoid and ReLU activation functions
- Intermediate output tags signal overlaps
- Output: reconstructed energy

Energy Reconstruction

Performance Evaluation: Energy Resolution

Optimal Filter:

- Larger deviation spread in low energy region
- Negative bias in high energy region

CNNs:

- Improvement in energy resolution, more symmetric and centered distribution
- Performance stable within large energy range

Performance Evaluation: Sequence Comparison

Example Sequence

Optimal Filter

- Close signals cannot be resolved
- Signals within undershoot underestimated

CNN

 Optimized to reconstruct overlapping signals

Performance Evaluation : Energy Reconstruction as Function of Gap

Performance Evaluation - Combining all: Star Plot

Firmware Implementation

Integrated circuits, configurable by user after manufacturing

- **DSP:** digital signal processor
- **ALM:** adaptive logic module with lookup table

Firmware development on **Intel Stratix-10** FPGA

Final design uses Intel Agilex

CNN Firmware Implementation

- Fully configurable CNN network implementation in VHDL
 - Layer building blocks with configurable
 - Inputs
 - Outputs
 - Activation functions
 - Chaining of components , with configurable
 - Kernel sizes
 - Filters per layer
 - Dilation
- Parameter automatically extracted from Keras output files
- Calculation in 18 bit fixed point numbers
- Supports pipelining and time division **multiplexing**:
 - Design runs at 12x ADC frequency with cyclic processing of 12 detector cells

FPGA Resource Estimation

- Trigger latency requirement ≈ 150 ns
- Need to process 384 detector cells on 1 FPGA
 > E.g. 12-fold multiplexing with 33 parallel instances
- Resource estimates (based on Intel Quartus reports):

FPGA	Network	Multiplexing	Detector cells	$f_{ m max}$	ALMs	DSPs
Stratix-10	2-Conv CNN	12	396	415 MHz	8 %	28 %
	4-Conv CNN	12	396	481 MHz	18 %	27 %
Agilex	2-Conv CNN	12	396	539 MHz	4 %	13 %
	4-Conv CNN	12	396	549 MHz	9 %	12 %

Summary and Outlook

Summary

- CNNs are able to replace Optimal Filtering algorithm
- CNNs show good performance results in energy resolution and especially on signal overlaps
- Firmware implementation of CNNs with VHDL
- Resource requirements regarding latency and bandwidth are satisfied

Outlook

- Further improvements by applying quantization aware training and more CNN parameters (100 \rightarrow 400)
- Study for influence of energy reconstruction by CNNs for full event reconstruction
- Further tests on FPGA hardware ongoing

ML for Processing of ATLAS Lar Calorimeter Signals with FPGAs Anne-Sophie Berthold (ATLAS LAr) Fast ML for Science 25 September 2023

Thank you for your

attention!

13/13

Sources I

Slide 2:

- [1] URL: <u>https://static1.bmbfcluster.de/3/4/3/8_ef6a5eef8f44963/3438meg_22ce2885dae52af.jpg</u>.
- Joao Pequenao. Computer generated image of the whole ATLAS detector. CERN. Mar. 27, 2008.
 URL: <u>https://cds.cern.ch/record/1095924</u> (visited on 05/10/2023).
- [3] Peter Vankov, ATLAS Upgrade for the HL_LHC: meeting the chalenges of a five-fold increase in collision rate.
 CERN. Jan. 25, 2012. URL: <u>https://cds.cern.ch/record/1419213/</u> (visited on 05/10/2023).

Slide 3:

- [4] Joao Pequenao. Computer generated image of the ATLAS Liquid Argon. CERN. Mar. 27, 2008.
 URL: <u>https://cds.cern.ch/record/1095928</u> (visited on 05/17/2023).
- [5] Karl Jakobs. Lecture Material. CERN. 2015.
 URL: <u>https://www.particles.uni-freiburg.de/dateien/vorlesungsdateien/particledetectors/kap8</u>
- [6] ATLAS Collaboration. *Monitoring and data quality assessment of the ATLAS liquid argon calorimeter.* CERN. May 13, 2014. URL: <u>https://cds.cern.ch/record/1701107</u> (visited on 05/24/2023).

Slides 4, 10:

[7] Intel. *Stratix 10 FPGA*.

URL: https://newsroom.intel.com/editorials/intels-stratix-10-fpga-supporting-smart-connected

<u>-revolution</u> (visited on 04/18/2021).

Sources II

Slides 10, 11:

- [8] *Keras Logo*. URL: <u>https://keras.io/</u> (visited on 05/25/2023)
- [9] *Tensorflow Logo*. URL: <u>https://www.vectorlogo1.zone/logos/tensorflow/index.html</u> (visited on 05/25/2023)

Papers related to these slides:

 Georges Aad et al. Artificial Neural Networks on FPGAs for Real-Time Energy Reconstruction of the ATLAS Lar Calorimeters. In: Computing and Software for Big Science 5.1 (Oct. 2021) DOI: 10.1007/s41781-021-00066-y. URL: <u>https://doi.org/10.1007/s41781-021-00066-y</u>.

Convolutional Neural Networks (CNNs)

- Convolutional operation with certain kernel size
- Activation function gives opportunity to classify, weight, cut

 $A \dots$ activation function

Convolutional Neural Networks (CNNs)

- Convolutional operation with certain kernel size
- Activation function gives opportunity to classify, weight, cut
- Feature maps focus on different properties
- **Training** minimizes difference between output and target

Convolutional Neural Networks (CNNs)

- Convolutional operation with certain kernel size
- Activation function gives opportunity to classify, weight, cut
- Feature maps focus on different properties
- **Training** minimizes difference between output and target
- **Dilation** varies field of view (FoV) without increasing parameters
- Keep parameters low ($\approx 100 / \approx 400$) and FoV realistic (≤ 24) due to FPGA implementation

Performance Evaluation: Different Detector Regions

> Same architecture trained for different detector regions \rightarrow shows similar results

Studying Influence of Size of Training Dataset with the Star Plot

- Training dataset consists of several subdatasets that hold different scenarios
- Study influence of dataset size by enhancing all sub-datasets D equally:
 - [200, 400, 600, 800, 1000]*D for each scenario
- Some scores not affected
- For others: at least 600*D for each

Performance Evaluation: Signal Efficiency vs Background Rejection

Receiver Operating Characteristic (ROC) Curves

- Indicate detection performance
- Signal efficiency = true positives true positives+false negatives

 Background rejection true negatives
 - $=\frac{1}{true \ negatives+false \ positives}$
- Dependent on threshold

CNNs reach **higher signal efficiencies** at same background rejection level compared to OFMax

Performance Studies: Fakes

Spectrum of predicted transverse energy in BCs without energy deposition

ML for Processing of ATLAS Lar Calor Anne-Sophie Berthold (ATLAS LAr) Fast ML for Science 25 September 2023

CNN Firmware Implementation

- Transfer to hardware implemented in VHDL
- Time division **multiplexing**:
 - Design runs at 12x ADC frequency with cyclical processing of 12 detector cells

CNN Firmware Implementation

- Transfer to hardware implemented in VHDL
- Time division **multiplexing**:
 - Design runs at 12x ADC frequency with cyclical processing of 12 detector cells

