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The ATLAS Detector at the LHC

Large Hadron Collider (LHC):

• Proton bunches collide with 25 ns spacing (40 MHz)

• 2029: Start of High Luminosity LHC (HL-LHC) with
up to ~7 x nominal luminosity

ATLAS Detector

• From ~20 collisions to up to ~200 collisions per 
bunch crossing (BC) → pileup increases

• 2026-2028: Phase-II upgrade

• Readout electronics of Liquid-Argon (LAr) 
calorimeter need to be improved

HL-LHC
[1,2]

[3]
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…

• Absorber (Pb, Cu, W) and electrodes
in accordeon geometry

• Active medium: Liquid Argon (LAr) in 
between

Particle
shower

• Free electrons raise triangular pulse

• Shaped into bipolar pulse and digitized

• Parameter of interest: Amplitude 
proportional to deposited energy

copper electrode
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LAr Calorimeter Readout

~182 000 
LAr cells

25 ns

[4,5,6]
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Optimal Filtering Algorithm (OF) 

• calculates deposited energy per cell

• Trigger system applies additional maximum finder

• Good in energy resolution but

• Weak in reconstruction of overlapping signals

➢ Development of Neural Networks to improve energy reconstruction

➢ Keep parameters low (≈ 100) due to FPGA resource limits

LAr Calorimeter Readout

Trigger

Event

Readout

FPGA – Field Programmable
Gate Array

• Real-time signal processing

• Installation of 556 high-
performance FPGAs

• 250 Tbps total data rate

• 150 ns maximum latency

[7]
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Convolutional Neural Networks for LAr Readout

Plain 2-layered CNN (2-Conv CNN)

• Dilation enables larger Field of View (FoV)

• ReLU activation functions

• Output: reconstructed energy

4-layered CNN with Tagging (4-Conv CNN)

• Sigmoid and ReLU activation functions

• Intermediate output tags signal overlaps

• Output: reconstructed energy

ReLU

Sigmoid

ReLU
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Performance Evaluation: Energy Resolution

Optimal Filter: 

• Larger deviation spread in low
energy region

• Negative bias in high energy
region

CNNs: 

• Improvement in energy
resolution, more symmetric and 
centered distribution

• Performance stable within large 
energy range

𝐸𝑡𝑟𝑢𝑒 < 0.5 GeV 𝐸𝑡𝑟𝑢𝑒 > 0.5 GeV



ML for Processing of ATLAS Lar Calorimeter Signals with FPGAs
Anne-Sophie Berthold (ATLAS LAr)
Fast ML for Science 25 September 2023

7 / 13

Performance Evaluation: Sequence Comparison

Example Sequence

Optimal Filter

• Close signals cannot be
resolved

• Signals within undershoot
underestimated

CNN

• Optimized to reconstruct
overlapping signals

Signal Gap
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Performance Evaluation : Energy Reconstruction as Function of Gap

4-Conv CNN

with Tagging

2-Conv CNN

Optimal Filter

➢ OF struggles with overlapping pulses (gap < 25 BC)

➢ CNNs show improvement
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σ

ΔE

98 % range

Performance Evaluation - Combining all: Star Plot

✓ Performance overview
x    No replacement for

other plots as details
might be hidden

Score indicates CNN performance:

𝑠𝑐(𝑋) = 1 −
𝑋_𝐴𝑁𝑁

𝑋_𝑂𝐹
• Red circle: (=0) OFMax yield
• Outer circle: (=1) best yield
• Inside circle (<0): worse than OF



ML for Processing of ATLAS Lar Calorimeter Signals with FPGAs
Anne-Sophie Berthold (ATLAS LAr)
Fast ML for Science 25 September 2023

10 / 13

Firmware Implementation

ANN model from Keras

Converter

FPGA

Integrated circuits, configurable by
user after manufacturing

• DSP: digital signal processor

• ALM: adaptive logic module with
lookup table

Firmware development on Intel 
Stratix-10 FPGA

Final design uses Intel Agilex

[8,9]

[7]
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• Fully configurable CNN network implementation in 
VHDL

• Layer building blocks with configurable

• Inputs
• Outputs
• Activation functions

• Chaining of components with configurable

• Kernel sizes
• Filters per layer
• Dilation

• Parameter automatically extracted from Keras output
files

• Calculation in 18 bit fixed point numbers

• Supports pipelining and time division multiplexing:

➢ Design runs at 12x ADC frequency with cyclic
processing of 12 detector cells

CNN Firmware Implementation

ANN config

in out

VHDL 
Firmware
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• Trigger latency requirement ≈ 150 ns

• Need to process 384 detector cells on 1 FPGA
➢ E.g. 12-fold multiplexing with 33 parallel instances

• Resource estimates (based on Intel Quartus reports):

FPGA Resource Estimation

✓
Achieved by all 

compiled firmwares
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Summary and Outlook

Summary

• CNNs are able to replace Optimal Filtering algorithm

• CNNs show good performance results in energy resolution and 
especially on signal overlaps

• Firmware implementation of CNNs with VHDL

• Resource requirements regarding latency and bandwidth are 
satisfied

Outlook

• Further improvements by applying quantization aware training 
and more CNN parameters (100 → 400)

• Study for influence of energy reconstruction by CNNs for full 
event reconstruction

• Further tests on FPGA hardware ongoing Thank you for your
attention!
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Sources II

Slides 10, 11: 

[8] Keras Logo. URL: https://keras.io/ (visited on 05/25/2023)

[9] Tensorflow Logo. URL: https://www.vectorlogo1.zone/logos/tensorflow/index.html 

 (visited on 05/25/2023)

Papers related to these slides:

• Georges Aad et al. Artificial Neural Networks on FPGAs for Real-Time Energy Reconstruction of the ATLAS Lar 
Calorimeters. In: Computing and Software for Big Science 5.1 (Oct. 2021) DOI: 10.1007/s41781-021-00066-y. 
URL: https://doi.org/10.1007/s41781-021-00066-y.

https://keras.io/
https://www.vectorlogo1.zone/logos/tensorflow/index.html
https://doi.org/10.1007/s41781-021-00066-y
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Convolutional Neural Networks (CNNs)

• Convolutional operation with certain kernel size

• Activation function gives opportunity to classify, weight, cut

Rectified
Linear Unit 
(ReLU)

Sigmoid

similar
to OF
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Convolutional Neural Networks (CNNs)

• Convolutional operation with certain kernel size

• Activation function gives opportunity to classify, weight, cut

• Feature maps focus on different properties

• Training minimizes difference between output and target

Rectified
Linear Unit 
(ReLU)

Sigmoid
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Convolutional Neural Networks (CNNs)

• Convolutional operation with certain kernel size

• Activation function gives opportunity to classify, weight, cut

• Feature maps focus on different properties

• Training minimizes difference between output and target

• Dilation varies field of view (FoV) without increasing parameters

• Keep parameters low (≈ 100 /≈ 400) and FoV realistic (≤ 24) due 
to FPGA implementation

Rectified
Linear Unit 
(ReLU)

Sigmoid
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Performance Evaluation: Different Detector Regions

➢ Same architecture trained for different detector regions → shows similar results

[
4
]
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Studying Influence of Size of Training Dataset with the Star Plot

• Training dataset consists of several sub-
datasets that hold different scenarios

• Study influence of dataset size by enhancing
all sub-datasets D equally: 
• [200, 400, 600, 800, 1000]*D for each

scenario

➢ Some scores not affected

➢ For others: at least 600*D for each
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Performance Evaluation: Signal Efficiency vs Background Rejection

Receiver Operating Characteristic (ROC) Curves

• Indicate detection performance

• Signal efficiency

= 
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

• Background rejection

= 
𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

• Dependent on threshold

CNNs reach higher signal efficiencies at same 
background rejection level compared to OFMax

Efficiency 
enhancement
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Performance Studies: Fakes

Spectrum of predicted transverse
energy in BCs without energy
deposition
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CNN Firmware Implementation

• Transfer to hardware implemented in 
VHDL

• Time division multiplexing:

➢ Design runs at 12x ADC frequency
with cyclical processing of 12 
detector cells Cell A

Cell B
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CNN Firmware Implementation

• Transfer to hardware implemented in 
VHDL

• Time division multiplexing:

➢ Design runs at 12x ADC frequency
with cyclical processing of 12 
detector cells Cell A

Cell B
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