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On the calibration of stochastic car following models 

Recent experimental and empirical observations have demonstrated that stochasticity plays a 

critical role in car following (CF) dynamics. To reproduce the observations, quite a few 

stochastic CF models have been proposed. However, while calibrating the deterministic CF 

models is well investigated, studies on how to calibrate the stochastic models are lacking. 

Motivated by this fact, this paper aims to address this fundamental research gap. Firstly, the 

CF experiment under the same driving environment is conducted and analyzed. Based on the 

experimental results, we test two previous calibration methods, i.e., the method to minimize 

the Multiple Runs Mean (MRMean) error and the method of maximum likelihood estimation 

(MLE). Deficiencies of the two methods have been identified. Next, we propose a new 

method to minimize the Multiple Runs Minimum (MRMin) error. Calibration based on the 

experimental data and the synthetic data demonstrates that the new method outperforms the 

two previous methods. Furthermore, the mechanisms of different methods are explored from 

the perspective of error analysis. The analysis indicates that the new method can be regarded 

as a nested optimization model. The method separates the aleatoric errors caused by 

stochasticity from the epistemic error caused by parameters, and it is able to deal with the two 

kinds of errors effectively. Finally, we find that under the calibration framework of stochastic 

CF models, the calibrated parameter set using spacing as MoP may not always outperform 

that using velocity as MoP. These findings are expected to enhance the understanding of the 

role of stochasticity in CF dynamics where the new calibration framework for stochastic CF 

models is established. 

Keywords: car following; calibration; experiment; stochasticity; trajectory 

1 Introduction 

As one of the bases of traffic flow research, car following (CF) models are proposed to 

mimic the complex driving behavior interacting with vehicles and the driving environment by 

physical formulation from the longitudinal perspective. To evaluate and compare the ability 

of the CF models to characterize  real traffic flow, the calibration and validation processes are 

indispensable. Calibration aims to find one set of model parameters with which the simulation 

outputs are best consistent with the observed data. Hence, calibration results refer to the best 

description of the model for the unique dataset. 

To calibrate the deterministic CF models, e.g., the intelligent driver model (IDM, 

Treiber et al., 2000), the optimal velocity model (OVM, Bando et al., 1995), the Full Velocity 

Difference Model (FVDM, Jiang et al., 2001), and Newell’s model (Newell, 2002), many 

remarkable achievements have been made under the deterministic calibration framework. As 

a systematic process consisting of several elements, formulation of the calibration (Sharma et 

al., 2019) is equivalent to the following optimization problem: 
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minimize  ( ( ), )

subject to 

sim obsGoF MoP MoP

LB UB 



 
   (1) 

There are four core components in the calibration: the objective function, the dataset, 

the optimization algorithm (OA), and the CF model. The objective function is the 

combination of the measure of performance (MoP) and goodness of fitness (GoF). The 

controversy on the selection of MoP is not settled until Punzo and Montanino (2016) proved 

that the errors on spacing are cumulative on velocity and are more robust and therefore should 

be adopted as MoP. Meanwhile, a new comparison method of GoF based on Pareto efficiency 

(Punzo et al., 2021) is proposed which demonstrates that GoFs based on non-percentage 

errors are preferred over percentage-based ones. The above findings unified the foundation of 

the selection of objective function. In particular, recently, owing to the bountiful experimental 

and empirical datasets such as NGSIM, Naples Dataset (Punzo and Simonelli, 2005), Hefei 

Dataset (Jiang et al., 2015), and HighD dataset (Krajewski et al., 2018), the calibration 

research is greatly promoted. Furthermore, a wide variety of optimization algorithms are 

deployed, including the simultaneous perturbation stochastic approximation (SPSA) method 

(Lee and Ozbay, 2009), genetic algorithm (GA), OptQuest (Punzo et al., 2012), sequential 

quadratic programming (SQP) algorithm (Wang et al., 2010), DIviding RECTangles 

(DIRECT) algorithm (Li et al., 2016), Cross-Entropy Method (CEM) (Zhong et al., 2016), 

Levenberg-Marquardt algorithm (LM) (Treiber and Kesting, 2018), etc. According to the “No 

free lunch theorems for optimization”, no algorithm can outperform others in all domains of 

calibration. Hence, the optimization algorithm should be specifically selected for the 

calibration scenario and problem. Ideally, the global optimum should be found which can be 

tested by running the calibration with different initial solutions.  

In addition to the above components, calibration also involves many other aspects. To 

name a few, Treiber and Kesting (2013a) investigated the influence of data sample intervals 

and smoothing on calibration. Punzo et al. (2015) revealed the interaction mechanism of 

parameters, trajectories, and calibration outputs by applying global sensitivity analysis and 

proposed a simple model with fewer parameters. The completeness of the trajectories (i.e., 

combinations of driving regimes) in the data has also been proven to have an impact on the 

calibration results (Sharma et al., 2019) by using similar methods. For a comprehensive 

systematic review on calibration, one can  refer to Punzo et al. (2021), in which all the core 

components are thoroughly explored and summarized under the calibration framework for 

deterministic CF models. 

All these above findings are achieved in the deterministic calibration framework. 

However, recent CF experiments reveal that stochastic factors play a critical role in 

reproducing empirical CF dynamics. For instance, Jiang et al. (2014) demonstrated that the 

standard deviation of speed grows in a concave way along the observed CF platoon from the 

Hefei experiments. The concave pattern has also been confirmed by Tian et al. (2016a) by 

using the US 101 data which indicates it is a universal property (Zhou et al., 2017). In terms 
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of microscopic mechanism, the concave growth pattern is due to the cumulative effect of 

stochastic factors (Jiang et al., 2018; Tian et al., 2019). Meanwhile, many stochastic CF 

models have been developed in recent years ( Laval et al., 2014; Tian et al., 2016b, 2019; Xu 

and Laval, 2020; Lee et al., 2019, 2021; Jiang et al., 2014; Treiber and Kesting, 2018). 

Unfortunately, stochasticity may add noises to the calibration process (Punzo et al., 2021). 

Thus, the previous calibration methods may be unsuitable. The lack of related research may 

impede the promotion and application of the stochastic CF models.  

Motivated by the research gap, in this paper, we aim to propose a reasonable 

calibration framework for stochastic CF models. First, we review the previous calibration 

methodology for stochastic CF models to extract the current research gap. Then an additional 

dataset from our recent CF experiment is introduced and analyzed. The elements of 

calibration are presented. Moreover, we propose a new Multiple Runs Minimum (MRMin) 

method and compare it with two previous calibration methods based on the experimental 

trajectories. Next, the synthetic trajectories are generated by simulations through the CF 

models. The results of calibration on synthetic trajectories are highly consistent with the 

preset parameters, which demonstrates that the new method is numerically effective for 

stochastic model calibration. Furthermore, the new mechanism is explored from the 

perspective of error analysis, which explains why previous calibration methods lead to 

unreasonable results and the new method does not. Finally, we report the finding that under 

the new framework of stochastic CF model calibration, the calibrated parameter set using 

spacing as MoP may not always outperform that using velocity as MoP. 

The contribution of this paper is threefold. (i) To establish a framework for calibrating 

stochastic CF models. (ii) To reveal the mechanism of different calibration methods from the 

perspective of error component analysis. (iii) To illustrate the selection of MoP.  

The rest of the paper is organized as follows. Section 2 reviews the previous calibration 

methods for stochastic CF models and introduces the new experimental data and calibration 

settings. Section 3 investigates the performance of different calibration methods of the 

stochastic CF model. Section 4 presents the error analysis to explain the mechanism of the 

different calibration methods. In Section 5, we discuss the selection of MoP. Finally, the 

conclusion is summarized in Section 6. 

2 Background and calibration settings 

2.1 Previous calibration methods 

Recently, a few stochastic models have been proposed, some of which have been 

calibrated but the process is still not unified. Laval et al. (2014) proposed a parsimonious 

stochastic CF model to describe the traffic oscillations and recommended the calibration 

method of performing a large number of runs to estimate the distribution of predicted 

trajectories. Xu and Laval (2019) advised to use Maximum Likelihood Estimation (MLE) for 

calibration. Shortly afterward, Xu and Laval (2020) estimated the parameters of the two-
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regime stochastic car-following models by MLE. Lee et al., (2019a) also adopted the MLE to 

calibrate the integrated deep learning and stochastic car-following model. Another estimation 

method is to use the mean simulation output of multiple runs for the objective function. In 

Lee et al. (2021), the mean of the simulated individual velocity among 100 runs is used to 

compare with the observed speed. Treiber and Kesting (2018) also selected the mean errors 

between the observed and simulated speed over 10 simulation runs with independent seeds as 

the objective function. 

In addition to the calibration of microscopic trajectories of stochastic CF models, 

some calibration practices for macroscopic stochastic models and macroscopic patterns 

reproduced by stochastic CF models are conducted. To name a few, Ngoduy (2021) used the 

difference between the mean predicted and observed speed as the objective function to 

calibrate the stochastic higher-order continuum traffic models. Zheng et al. (2022) calibrated 

the models from the perspective of macroscopic patterns by comparing repeated simulated 

trajectories and the real ones aiming to reduce the impact of stochasticity on statistics. Apart 

from the above-mentioned study, several studies on the stochastic CF models do not specify 

the calibration settings. All these researches are summarized in Table. 1.  

To summarize, two current calibration approaches for estimating the stochastic 

parameters of CF models are as follows: 

⚫ Maximum Likelihood Estimation (MLE) 

The MLE is proposed by Hoogendoorn and Hoogendoorn (2010) which assumes the 

residual =state -statesim obs

k k ke  follows the zero-mean multivariate normal distribution with a 

covariance matrix Σ and the residuals at different time steps k are homoscedastic (constant 

Σ) and independent from each other. This leads to the following condition: 

1

1

min max

min

( )

( ) ln(2 ) ln(det( ))
2 2

 to:

K
T

k k

k

z

z L

K K
L e e

subject



 

  

−

=

= −

= − − −

 

Σ Σ
 (2) 

The covariance is estimated by
1

1
= e

K
T
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e
K =
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Table. 1. Review of the calibration settings for stochastic CF models. 2 

Microscopic 

Calibration 
Data MoP GoF Model OA Estimation Method 

Treiber and 

Kesting (2018) 

25-car-platoon 

experiment V
  SSE 

IDM with stochastic 

acceleration noise and 

action points 

Levenberg-

Marquardt 

Mean simulated 

value of 10 repeated 

runs 

Ngoduy et al. 

(2019) 
NGSIM V RMSE 

OVM with stochastic 

acceleration noise by 

Cox-Ingersoll-Ross 

process 

Genetic 

algorithm 

Mean simulated 

value of 100 runs 

Lee et al. 

(2019) 
NGSIM V 

Likelihood 

Function 

Same as Ngoduy et al., 

(2019) 
- MLE 

Xu and Laval 

(2019) 

25-car-platoon 

experiment 
- - 

Two-Regime Stochastic 

Car-Following Model 
- MLE recommended 

Xu and Laval 

(2020) 

7-car-platoon 

experiment& 25-car-

platoon experiment 

S 
Likelihood 

Function 

Two-Regime Stochastic 

Car-Following Model 
- MLE 

Lee et al. 

(2021) 

Circular road 

experiment 
V RMSE 

Stochastic behavior 

model of personal 

mobility 

Genetic 

algorithm 

Mean simulated 

value of 100 runs 

Ngoduy (2021) NGSIM V Index PI 
Stochastic higher-order 

continuum traffic models 

Genetic 

algorithm 

Mean simulated 

value 

Zheng et al., 

(2022) 

Circular road 

experiment 

V
 and 

macroscopic 

variables 

Mixed 

macroscopic 

relative errors 

2D-IDM and SSAM 
Genetic 

algorithm 

Mean simulated 

value of M runs 
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⚫ Multiple Runs Mean Value Method (MRMean for short): 

In MRMean, the mean value of the GoF in multiple replicated simulations is used as 

the optimization objective and the formula is as follows: 

1 1

min max

min

( , )

    or   ( , )

( )

 to:

obs

obs

N N
sim sim

i i

i i
i

sim

i

z

GoF MoP MoP MoP

z GoF MoP
N N

MoP F

subject



  

= ==

=

 

 
 (3) 

where 
obsMoP   is the observed MoP, 

sim

iMoP  is the simulated MoP in the ith run. N is the 

number of repeated simulations. When the spacing is adopted as MoP and the RMSE is 

adopted as GoF, the objective function will be: 

2

,
1 11

1
( )

N KN
sim obsi
i k ks

i ki

s sRMSE
K

z
N N

= ==

−

= =
    (4) 

where 
obs

ks  is the spacing between the car and the preceding car in the kth time step, obtained 

by observation, ,

sim

i ks  is the spacing in the kth time step obtained by  simulation in the ith run.

[0, ]k K . t  is the time step and the total time is K t . 

2.2 Experimental data 

The essential difference between the stochastic models and the deterministic models is 

that the model output varies even under the same input. Inspired by this fact and to investigate 

the property of stochasticity of driving behavior, one CF experiment under the same driving 

environment is carried out. 

The experiment was performed on October 12, 2021, on a straight road of about 1.5 

km in length in the Traffic Test Site of the Ministry of Transport, China. In the experiment, 

high-precision global navigation systems (precision ±1 m for location and ±1km/h for 

velocity) have been installed on the cars to record their locations and velocities every 0.1 s. 

One autonomous car (AV) and one human-driven car (HV) are involved. A total of nine runs 

are conducted in this experiment under the same circumstance. Initially, the two cars are 

stopped bumper-to-bumper. In each run, the AV moves as the leading car and follows the 

same designed trajectory with the same control parameters. The HV is driven by the same 

driver to follow the AV. Hence the external driving scenario of the HV in the nine runs is 

almost the same. Notably, the pre-runs are important for drivers to get more experienced with 

the test protocol, especially for those complex experiments of long periods. However, the 

setup of this experiment was relatively simple so pre-runs experiments are not needed. The 

trajectories of both cars are collected by high-precision GPS. There is no obvious adaptive 
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behavior over the nine runs which can be seen from the velocity and spacing profile in Fig. 1 

and Fig. 2. Meanwhile, all the trajectories contain four driving regimes: two times for 

acceleration (A), three times for deceleration (D), four times for following (F), and one time 

for standstill (S) so that the trajectory completeness of this experiment belongs to the ADFS 

(Sharma et al., 2019) which is the most common one in the reconstructed NGSIM I-80 data 

(Sharma et al., 2018). 

 

Fig. 1. The velocity profile of the experimental data. The red lines represent the leading AV 

and the other colors represent the following HV over the nine runs. 

 

Fig. 2. The spacing profile between AV and HV over the nine runs. 

To further analyze the stochasticity of car-following behavior, we use the paired t-test1 

at 95% significance to compare the difference among different runs. One can see from Table. 

2 and Table. 3 that none of the velocity sequences for the nine trajectories differed 

significantly. In contrast, most of the trajectories are significantly different in spacing. The 

result indicates that the driver has more tendency to keep a similar velocity rather than similar 

spacing in the same driving environment.  

 

 

1 The spacing or velocity sequence is non-stationary time series. The paired t-test can focus more on 

the difference between pairs of data at each time step which effectively extracts the sequence 

pattern. While non-parametric methods (such as the KS test) calculate the similarity of the 

cumulative distribution of the whole sequence, they may be incapable of extracting the time-related 

information. 
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In real traffic flow, we can only acquire one trajectory. This raises the following two 

important questions: 

Q1. How to calibrate the driving behavior with stochasticity against one single trajectory? 

Q2. Whether the different experimental trajectories can be characterized by one set of 

parameters of the stochastic model? 

Table. 2. The significance test of the spacing sequence of nine trajectories by using paired t-

test at 95% confidence level. 0 and 1 represent no significant difference and significant 

difference, respectively.  

Spacing 1 2 3 4 5 6 7 8 9 

1 0 1 1 1 1 1 1 1 1 

2  0 1 1 1 0 1 1 0 

3   0 1 0 1 1 1 1 

4    0 1 1 1 1 1 

5     0 1 1 1 1 

6      0 1 1 0 

7       0 1 1 

8        0 0 

9         0 

 

Table. 3. The significance test of the velocity sequence of nine trajectories by using paired t-

test at 95% confidence level. 0 and 1 represent no significant difference and significant 

difference, respectively. 

Velocity 1 2 3 4 5 6 7 8 9 

1 0 0 0 0 0 0 0 0 0 

2  0 0 0 0 0 0 0 0 

3   0 0 0 0 0 0 0 

4    0 0 0 0 0 0 

5     0 0 0 0 0 

6      0 0 0 0 

7       0 0 0 

8        0 0 

9         0 

 

2.3 Optimization algorithm 

As another element of calibration, the optimization algorithm is of critical role. In 

recent years, several improved heuristic algorithms have been proposed. Ciuffo and Punzo 

(2014) found that the GA outperforms the others globally by comparing different OAs and it 

is also the most commonly used one in calibrating stochastic CF models (see Table. 1). 

Therefore, we applied GA as the optimization algorithm in this paper by using the MATLAB 

toolbox.  
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2.4 MoP and GoF 

In sections 3.1 and 3.2, to test different calibration methods, the RMSE is selected as 

the GoF, since it can avoid situations where the error is magnified by an observed MoP of 

zero (e.g., when the observed velocity is zero as the denominator of the formula of RMSPE). 

The spacing is selected as the MoP, as suggested by Punzo and Montanino (2016). 

2.5 Model and its integration scheme 

2D-IDM is selected for the calibration to ensure the adaptability and generalization of 

the results: 

⚫ 2D-IDM inherits the excellent properties of IDM in which each parameter has a clear 

physical meaning. 

⚫ The stochastic items in 2D-IDM are in a neat form and easy to understand. By adopting 

the time-varying time headway, it can capture the stochasticity of driving behavior. 

⚫ 2D-IDM has been shown, as a stochastic CF model, to be capable of reproducing the 

concave growth pattern, i.e, the traffic oscillation grows in a concave way among the CF 

platoon.  

⚫ It can span a 2D region in the velocity-spacing plane so that the dynamic relation of 

velocity and spacing can be described.  

The mathematical formulation of the 2D-IDM is as follows (Jiang et al., 2014): 

( )
( ) ( )

( )

24 *

max

1
n n

n

n

v t s t
a t a

v x t

   
 = − −         

  (5) 

( )*

0

( ) ( )
max ( ) ( ) ,0

2

n n
n n n

v t v t
s t s T t v t

ab

 
= + + 

 
 (6) 

1 2 1 1

1

( )( )      ( )
( )

( )                    ( )  
n

n

T r t T T r t p t
T t t

T t r t p t

+ −  
+  = 

 
  (7) 

where na , nv , nT and 
*

ns is the acceleration, velocity, desired time headway, and desired 

spacing of the nth car, respectively. ( )r t  and 1( )r t  are two uniformly distributed 

pseudorandom numbers in [0,1]. 1( ) ( ) ( )n n nv t v t v t− = −  is the velocity difference between the 

following car n and the preceding car 1n − . The definition and calibration boundaries of 

parameters of 2D-IDM are shown in Table. 4. Note that 2 1T T T= +  . 
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Table. 4. Parameters definition and calibration boundaries of experimental trajectories for 2D-

IDM. 

Parameters Definition Unit Calibration Boundaries 

maxv  Maximum Velocity (km/h) [40,60] 

a  Maximum Acceleration (m/s2) [0.5,3] 

b  Maximum Deceleration (m/s2) [0.5,5] 

0s  Minimum spacing (m) [0.5,5] 

1T  Minimum desired time headway (s) [0.1,1] 

T  The changeable interval of desired time headway (s) [0,1.3] 

p  randomization change rate (s-1) [0,1] 

 

Ballistic updating is adopted as the model integration scheme, which has been proved 

to consistently outperform the Euler method (Treiber and Kanagaraj, 2015): 

( ) ( ) ( )

( ) ( )
( ) ( )

2

v t t v t a t t

v t v t t
x t t x t t

+  = + 

 + + 

+  = + 


  (8) 

3 The stochastic CF model Calibration 

3.1 The Multiple Runs Minimum Method 

Apart from the two calibration methods introduced in section 2.1, a new calibration 

method is proposed, which has a different mechanism from the view of driving stochasticity. 

As we mentioned in section 2.2, the trajectories of multiple runs can be regarded as different 

realizations of the stochastic CF model. Hence, the Multiple Runs Minimum Method (MRMin 

for short) takes the minimum value of the GoF (the best realization of the CF model) in 

multiple replicated simulations as the optimization objective: 

[1,..., ]

min max

min

min { ( , )}

( )

 to:

obs sim

i
i N

sim

z

z GoF MoP MoP

MoP F

subject



  


=

=

 

  (9) 

When RMSE is adopted as GoF and spacing is adopted as MoP, one has: 

2

,[1,..., ] [1,..., ]
1

1
min min { } min ( )

K
i sim obs

s i k ki N i N
k

z RMSE s s
K 

=

= = −  (10) 
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a) (b)  

Fig. 3. The simulated distribution of objective function (a) MRMean and (b) MRMin on 

spacing when N=1000. The sample number is 1000. The red line is a fitting curve, which 

shows the normal distribution in panel (a) and the Gumbel distribution in panel (b). 

(a) (b)  

Fig. 4. The impact of N on the stability of objective function with (a) MRMean and (b) 

MRMin on spacing. The sample number is 1000. 

The calibration settings have been clarified in Section 2. Note that in Table. 1, the 

number of repeated simulations was usually set arbitrarily. If we assume the RMSE on 

spacing follows
2( , )N   , according to the central limit theorem, the MRMean of RMSE on 

spacing can be regarded as a random variable following 
2

( , )N
N


 , see Fig.3(a). Hence, for 

MRMean, the standard deviation of N=n is 
1

n
 times the standard deviation of N=1. 

Therefore, only exponential growth of N can bring precision benefits for MRMean, see Fig. 4. 

The MRMin can be regarded as extreme values. In Fig. 3(b), one can see that it is well 

approximated by extreme value distribution (the Gumbel distribution). We calculate the 

standard deviations of the objective function of MRMin under different values of N in Fig. 4. 

It can be seen that the larger N is, the more stable the objective function is. To summarize, the 

increase of N brings small stability benefits when N is large and the calibration computation 

time will increase greatly. Therefore, N is uniformly set to 200 in this paper. 
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3.2 Calibration methods test using experimental data 

For each trajectory in the nine runs, a set of parameters is calibrated to examine the 

validity of the calibration approach and the difference between the calibrated parameter sets. 

Given that each trajectory is collected under the same condition, the value of calibrated 

parameter sets in the nine runs should be: 

C1 Concentrated. Given that the nine trajectories are generated by one driver under the 

same circumstance, the parameter sets of the nine trajectories should be close to each 

other. 

C2 Valid with stochasticity. (i) the stochastic parameter ∆T should not be extremely 

small. Otherwise, the model would tend to be deterministic; (ii) and the parameter p 

should not be too large to be consistent with reality. 

 

Fig. 5. Boxplot of calibration results for experimental trajectories by the method of MRMean, 

MLE , and MRMin. The calibration boundaries are presented in Table. 4. 

The calibration results of the nine experimental trajectories are shown as boxplots in 

Fig. 5. It can be seen that when applying MRMean, the distribution of the parameter p is 

concentrated and close to the upper boundary, and the parameter T  is small. This indicates 

that the calibrated 2D-IDM tends to be deterministic. It can be observed more explicitly in the 

simulated trajectories in Fig. 6 (a). The 5%-95% prediction (simulated) interval under one set 

of parameters and the profile of prediction data is approximately one curve rather than a band. 

From the view of driving behavior, the MRMean is represented to minimize the averaged 

driving behavior which may likely neutralize or even eliminate the driving behavior 

stochasticity and is contrary to the physical meaning of stochasticity in driving behavior. 

Similarly, Punzo and Montanino (2020) also pointed out that using the averages of many 
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scenario simulations to represent the traffic system makes no sense, which is an incomplete or 

artefactual system representation. 

(a) (b)  

(c)  

Fig. 6. Simulated spacing profile of 5-95% prediction interval of 2D-IDM by using one 

sample set of parameters from the calibrated results of (a)MRMean (b)MLE (c)MRMin. 

When it comes to MLE, simulation results indicate MLE can keep the stochasticity of 

the model. Fig. 6 (b) demonstrates that the prediction band of the parameters calibrated with 

MLE can partially cover the nine real trajectories. Finally, Fig. 6 (c) shows that the prediction 

band of the parameters calibrated with MRMin can cover the nine real trajectories better. This 

demonstrates that the MRMin performs better than the MLE. 

Even if the stochastic parameters are successfully calibrated by MRMin in plausible 

values and consistent with criteria C2, it does not necessarily mean that the estimation of 

stochastic parameters is reasonable because we cannot figure out what the actual value of 

parameters should be. Hence, there are still two problems to be addressed. 

M1. The numerical correctness of MRMin. The synthetic trajectories can be used for 

calibration to verify the consistency between the calibrated value and preset/ground 

truth value. 

M2. The calibrated parameters may fall into the trap of overfitting and perform poorly on 

the training datasets. The only way out of this trap is validation. 

Hence, in sections 3.3 and 3.4, the numerical correctness and efficiency of the new 

method are examined. 

3.3 Numerical correctness tests on calibration methods by using synthetic data 

To evaluate the validity and correctness of the MRMin, we synthesized 30 trajectories 

by using the experimental AV trajectories as leading car trajectories and generated the 

synthetic trajectories of the following car through simulations of 2D-IDM. Since it aims only 
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to check the consistency between the parameter sets calibrated by different calibration 

methods and the preset parameters of the synthetic trajectory (mainly for the stochastic 

parameters), only the three parameters related to stochasticity are calibrated. Other parameters 

are given. The preset value and calibration boundaries of parameters are presented in Table. 5. 

Table. 5. The parameters and calibration boundaries of synthetic trajectories for 2D-IDM 

parameters maxv  a  b  0s  1T  T  p  

Preset parameters 
50 1.5 2.5 2 

0.6 0.5 0.1 

calibration boundaries [0.1,1] [0.1,1.5] [0,1] 

 

Fig. 7 shows that the three stochastic parameters calibrated by MRMean lead to the 

degradation of stochastic CF models, which is similar to the results in Fig. 5. As for MLE, 

roughly speaking, the stochastic parameter p is calibrated pretty well. However, there are still 

two erratic outliers. Moreover, T  calibrated by MLE deviates significantly from the real 

value, which indicates the inaccuracy of MLE2 . In contrast, the three parameters are all 

calibrated pretty well by MRMin.  

 

Fig. 7. Boxplot of calibration results for synthetic trajectories of 2D-IDM by the method of 

MRMean, MLE, and MRMin. The black line represents the preset parameters. 

In the deterministic CF models, the synthetic trajectories can always be calibrated with 

zero error. In contrast, there are nonzero errors in all three methods, as shown in Fig. 7. 

Nevertheless, the preset parameters can be calibrated effectively by the MRMin method. The 

calibrated results are all concentrated around the preset parameters. To further illustrate the 

property and validity of the objective function, the contour plot is shown in Fig. 8. For 

MRMin, we can observe a relatively distinctive global minimum, which is almost equal to the 

preset parameters, see Fig. 8 (a1) and (a2). For MRMean, no matter how many times we re-

 

2 This may be because the assumption of normal distribution of errors in MLE is not always suitable 

when calibrating the stochastic CF model. Thus, the estimation of the covariance matrix is 

inaccurate. 
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sample the contour plots, it always shows a smooth and nearly the same shape, see Fig. 8 (b1) 

and (b2). The global optimum is achieved when 1p = , which significantly deviates from the 

preset value. For MLE, the objective function is quite unstable and the shape of the contour 

plot is irregular. Therefore, it is incapable of finding a stable global optimum near the preset 

values, see Fig. 8(c1) and (c2). All these indicate that only the objective function of MRMin is 

effective to identify a global optimum near the preset parameters.  

(a1) (a2)  

(b1) (b2)  

(c1) (c2)  

Fig. 8. Contour plots of objective functions of (a) MRMin (b)MRMean (c) MLE against T  

and p . The blue star represents the preset value of T  and p . The black point represents 

the Global Optimum of the corresponding objective function. The other parameters except for 

T  and p  are set as the preset values. For each method, we show two contour plots to show 

the variation of profile under different random seeds due to the stochasticity. 
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3.4 Validation of the calibration results on experimental data 

Section 3.3 has demonstrated that the MRMin is effective for the calibration of 

stochastic CF models, which answers question Q1 in section 2.2. This subsection investigates 

question Q2, i.e., Whether the different experimental trajectories can be characterized by one 

set of parameters of the stochastic model. To this end, we apply the two-level validation 

method proposed by Punzo and Montanino (2020) and select the best realization among N 

runs with the parameters calibrated by MRMin. As an example, Fig. 9 demonstrates that the 

best realization among the simulated trajectories of the 2D-IDM can well capture Run 1. 

Moreover, as shown in Appendix A, this is true for all the nine experimental trajectories for 

the same parameter set (and usually different simulated realization). This gives evidence for 

the hypothesis that the dynamics of all nine experimental runs are equivalent, i.e., all intra-

driver (intra-run and inter-run) variations are captured by the random terms of the model. 

(a) (b)  

Fig. 9. The best-simulated realization of 2D-IDM among N runs with one set of parameters 

calibrated by MRMin. 

We define the errors under the best realization among the model outputs of multiple 

runs as the validation error, which can be formulated as 

( ) ( )( )* *

[1,..., ]
, min ,

obs

sim
obs Traj i

i N
ValiError Traj RMSE MoP MoP 


=  (11) 

where *  is the calibrated parameter set, obsTraj  is the observed (experimental or empirical) 

trajectory used for validation. In accordance with the calibration setup in section 3.2, we 

choose spacing as the MoP of validation. Table. 6 shows the validation errors of the MRMin 

method. The validation error for MRMean and MLE can be found in Appendix A. Table. 7 

compares the three calibration methods. One can see that the MRMin outperforms MLE and 

MRMean. Meanwhile, the standard deviation of the validation errors of MRMin is the smallest, 

which further supports the hypothesis of Q2, i.e., no matter which trajectory is used for 

calibration, the parameter sets calibrated with MRMin can always capture the dynamic 
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features of driving behavior. The results also demonstrate that there is no overfitting, which 

addresses the concern of M2.  

Table. 6. The validation errors of 2D-IDM (Units: m) calculated by MRMin with parameter 

sets of different trajectories calibrated by MRMin. The column of “mean” represents the 

averaged validation performance of the parameter set calibrated with one trajectory on all the 

trajectories. 

Validation Error 
Validation errors calculated on trajectory No.* (Unit: m)   

1 2 3 4 5 6 7 8 9 Mean STD 

Calibrated 

parameter set 

of trajectory 

No.* 

1 0.681 1.719 1.444 1.112 1.469 1.05 1.629 1.151 2.237 1.388 0.453 

2 1.022 0.883 0.944 1.03 1.039 0.945 0.841 0.884 1.859 1.05 0.312 

3 1.209 1.323 0.55 1.499 0.929 0.744 0.972 1.057 2.05 1.148 0.444 

4 0.956 1.529 1.53 1.017 1.666 0.95 2.29 1.224 2.185 1.483 0.503 

5 1.424 1.548 1.014 1.855 0.584 0.89 0.775 1.128 2.268 1.276 0.546 

6 1.147 1.699 1.18 1.287 0.908 0.441 1.286 1.221 2.079 1.25 0.458 

7 2.441 2.455 1.151 2.922 1.076 1.944 0.513 1.712 3.074 1.921 0.882 

8 0.958 1.396 1.109 1.383 0.926 1 1.107 0.712 2.242 1.204 0.445 

9 1.242 1.486 1.421 1.545 0.992 1.093 1.05 1.3 0.891 1.224 0.232 

Mean value of All 1.327 0.475 

Table. 7. The validation errors comparison of 2D-IDM (Units: m) calculated by MRMin with 

parameter sets of different trajectories calibrated by three calibration methods.  

Methods 
Validation errors calculated on trajectory No.* Mean 

of all 

STD 

of all 1 2 3 4 5 6 7 8 9 

MRMean 1.733 1.507 1.537 1.904 1.522 1.523 2.128 1.479 2.368 1.745 0.588 

MLE 1.511 1.092 1.444 1.505 1.487 1.343 2.054 1.347 1.744 1.503 0.514 

MRMin 1.388 1.05 1.148 1.483 1.276 1.25 1.921 1.204 1.224 1.327 0.475 
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4 Errors analysis 

Table. 8. Variables and related notations. 

Notations Explanation 

t  Time step 

K Total time step 

K t  Total simulation time 

( )r t , 1( )r t  Uniformly distributed pseudorandom numbers in [0,1] 

iRS
 

The random seed in the ith repeated simulation 

( ) or  MoP MoP

k ke e   
Total epistemic error in the kth time step of any 

simulation 

 or ( )MoP MoP

k k    
Parameter epistemic error in the kth time step of any 

simulation 

( ) or MoP MoP

k k    Random variable: Aleatoric error in the kth time step 

( )( ) or ,MoP MoP

k i k iRS RS    
Random sample: Aleatoric error in the kth time step of 

the ith repeated simulation 

( , )sim

k iv RS  
Simulated velocity in the kth time step of the ith repeated 

simulation 
obs

kv  Observed velocity in the kth time step  

( , )sim

k ix RS  
Simulated position in the kth time step of the ith repeated 

simulation 
obs

kx  Observed position in the kth time step  

1 2( , , , )v v v T

Ke e e e=
 

Vector of the total epistemic error on the velocity of any 

simulation 

1 2( ) ( ( ), ( ), , ( ))v v v T

i i i K iRS RS RS RS   =
 

Vector of the aleatoric error on the velocity of the ith 

repeated simulation 

1 2( , , , )T

K   =
 

Vector of the standard deviations of ( )MoP

k   

*  The optimal/calibrated solution of the parameters set 

*RS  The optimal/calibrated solution of random seed 

 

4.1 The components of errors 

Given a fixed leader trajectory and fixed initial speed and position of the follower, the 

follower’s trajectory simulated by a deterministic model with a given parameter set is fixed. 

So is the calibration error. However, this is different for stochastic CF models. The total 

calibration errors of stochastic CF models consist of two components: epistemic error 

component e and aleatoric component  . Both components are the function of the model, the 

parameters, and the selected MoP.  

When conducting a simulation of a given stochastic CF model, the epistemic error 

component ( )MoP MoP

k ke e =  includes the model epistemic uncertainty (the irreducible model 

performance gap) and the parameter epistemic error ( )MoP

k  (the reducible gap between the 

present parameters and the optimal parameters). 
MoP

ke is independent of the random seed. No 
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matter how many repetitions of simulations are conducted, the value of 
MoP

ke  is always fixed 

under a given set of parameters. The aleatoric error component ( )MoP MoP

k k  =  contains the 

aleatoric uncertainty (the volatility due to model stochastic terms). 
MoP

k  is assumed as a 

centralized random variable, i.e., the expectation is zero and the variance is 2 ( , )MoP  . For 

the ith repeated simulation, ( ),MoP

k iRS   is a random sample drawn by the random seed from 

its empirical distribution. If iRS  is settled, i.e., the sequence of ( )r t  and 1( )r t  is fixed, the 

output will be fixed. Hence, the parameter set determines the empirical distribution of 
MoP  

while iRS  (RS of the i th simulation) determines its value ( ),MoP

iRS   in one specific 

simulation realization. To summarize, in the process of solving the calibration problem, the 

simulated velocity of the k th time step in the i th repeated simulation can be written as follows: 

Total Epistemic Error Aleatoric Error 

Parameter Epistemic ErrorOptimal Velocity

=
*

( ) ( , )( , )

( ) ( , )( )

v vsim obs
k k ik i k

opt v
k k ik

e RSv RS v

v RS

  

   

= + +

+ +

 (12) 

In fact, the component we want to minimize is the epistemic error. To find the impact 

of error components on the objective function of calibration, we conduct the error propagation 

formulation (see, e.g., Punzo and Montanino, 2016). For the sake of simplicity,   is omitted 

in the formula with ballistic update rules: 



21 

 

1 1 1 1

1 0
1 0

1 0 1 1 1 1
0 1

2 2 2 2

2
2 1

( ) ( )

( ) ( )
( ) ( )

2

( ) ( )

2 2 2

( ) ( )

(
( ) ( )

sim obs v v

i i

sim sim
sim sim i i

i i

obs obs v v v v
obs obsi i

sim obs v v

i i

sim
sim sim

i i

v RS v e RS

v RS v RS
x RS x RS t

v v e RS e RS
x t t x

v RS v e RS

v RS
x RS x RS



 




 = + +


+
= + 


 + + +
= +  +  = +


= + +

= + 1

1 1 2 1 2 2 1 1
1

2 2
2 1 1

) ( )

2

( ) ( ) ( )

2 2 2 2

( )
( )

2 2

( ) ( )

( )

sim

i i

v v obs obs v v v v
obs i i i

v v
obs v v i

i

sim obs v v

k i k k k i

sim obs v

k i k j

v RS
t

e RS v v e RS e RS
x t t t t

e RS
x e t RS t

v RS v e RS

x RS x e

  









+ 



+ + + +
= +  +  +  + 


   
= + +  + +    

   





= + +

= +
1 1

1 1

( )
( )

2 2

v vk k
vk k i
j i

j j

e RS
t RS t




− −

= =




   
+  + +    

   
 

 (13) 

Note that k  is a function of ( ) ( ) ( )( )1 2 1, , ,i i k iRS RS RS   −  so that k  is not an 

independent and identically distributed variable. The variance of k  is different among 

different time step, which can be described as 
2

k  . Given that ( )v

k iRS  is just one sample 

from the distribution of k , the mean squared error on velocity is: 

( ) ( ) ( )( )2 2 2
2

1 1 1

= ( - ) ( ) 2 ( )
K K K

v sim obs v v v v v v

K k k k k k k i k k i

k k k

MSE v v e e RS e RS  
= = =

= + = + +   (14) 

4.2 The mechanism of MRMean on errors 

If we use the RMSE as GoF and the velocity as MoP, the objective function of the 

MRMean can be written as: 

( ) ( )( )
 

2 2

[1,..., ] [1,..., ]
1

[1,..., ]

mean{ }= mean ( ) 2 ( )

mean ( ) ( ) 2 ( )

K
V v v v v

K k k i k k i
i N i N

k

T T T

i i i
i N

z MSE e RS e RS

e e RS RS e RS

 

  

 
=



 
= + + 

 

= + +


 (15) 
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here 1 2( , , , )v v v T

Ke e e e= , 1 2( ) ( ( ), ( ), , ( ))v v v T

i i i K iRS RS RS RS   =  and 1 2( , , , )T

K   = . 

Given that the expectation of ( )
k

v

k iRS  is zero and 
v

ke  is a fixed value under one set of 

parameters, one has  

 
[1,..., ]

mean 2 ( ) 0T

i
i N

e RS


=   (16) 

For simplicity, we assume that ( )v

k iRS  follows the normal distribution 
2(0, )kN   so 

that the second item 

  ( ) ( )( )22 2

[1,..., ]
1 1

mean ( ) ( ) = ( ( )) = ( )
K K

T v v T

i i k i k i k
i ii N

k k

RS RS E RS E RS      


= =

+ =   (17) 

Therefore 

[1,..., ]
mean{ }=V T T

K
i N

z MSE e e  


= +   (18) 

In fact, the objective function of MRMean is just a combination of the deterministic 

errors and the variance of stochastic errors. When minimizing z to find the optimal solution, it 

will obviously minimize the deterministic error Te e , and the variance T   tends to zero at 

the same time. However, when the value of 
2

k  tends to zero, the stochastic CF models will 

degrade into a deterministic one which explains the results of MRMean in sections 3.2 and 3.2. 

The mechanism still holds when adopting spacing as MoP.  

4.3 The mechanism of MRMin on errors 

As for the MRMin, the objective function can be written as 

 
[1,..., ] [1,..., ]
min { }= min ( ) ( ) 2 ( )V T T T

K i i i
i N i N

z MSE e e RS RS e RS  
 

= + +  (19) 

Hence, minimizing the objective function can be reformulated as 

  
[1,..., ]

min  min min ( ) ( ) 2 ( )T T T

i i i
i N

z e e RS RS e RS  


= + +   (20) 

When calibrating the stochastic CF models, there are two goals. (a) Minimize the 

parameter epistemic error which has been included as Te e  in the objective function; (b) Keep 

the aleatoric uncertainty, i.e., let the model keep stochastic rather than deterministic. iRS  can 

be regarded as another exogenous parameter determined by simulation. Hence, if the 

objective function of calibrating deterministic CF models is adopted, the effects of random 

seeds will be ignored and the two error components will be mixed. This means that the 

calibration of stochastic CF models should be an optimization model with two steps to 
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dispose of the two error components separately. The MRMin method converts the calibration 

into a nested optimization model. The first step of the optimization model is as follows: 

 
[1,..., ]

*

min ( ( ), ( , ))

arg min ( ( ), ( , )) arg min ( , ) ( , ) 2 ( , )
i i

i
i N

T T

i
RS RS

f e RS

RS f e RS RS RS e RS

  

        






= = +


 (21) 

The logic of the first (inner) level is easy to understand. It finds the optimal RS under 

which the realization is most consistent with reality. From the perspective of driving behavior, 

it aims to find the trajectory that is most similar to the observed trajectory. This is achieved 

under the fixed parameters, which optimize the stochasticity-related errors 2T Te  + . 

Meanwhile, the solution of the first step of calibration does not directly involve the property 

of stochastic error itself. In other words, the optimization objective does not directly restrict 

the size of stochasticity. Thus, it does not affect the calibration of the stochastic parameters as 

the MRMean does. 

In the second (outer) level of the optimization model, the aim is to minimize the error 

of parameter epistemic uncertainty. 

 

*

* * * *

min ( ( ), ( , ))

* arg min ( ( ), ( , )) arg min ( , ) ( , ) 2 ( , )T T T

e

F e RS

F e RS e e RS RS e RS





  

         





= = + +


 (22) 

The calibration for deterministic CF models can be treated as an optimization model only with 

the second step. It only aims to minimize the parameter epistemic error without dealing with 

the stochastic error. Therefore, it can be directly expressed as solving a single one-step 

objective function. On the other hand, the first step of the nested optimization model is 

equivalent to another special calibration scene. For instance, the parameters are iterated to 

approach the preset values in the solving process of calibrating one synthetic trajectory. In 

this case, the epistemic error is zero. Thus, the criterion to end the iteration is that the same 

simulated trajectory can be found in multiple simulations. As long as the number of 

simulations is large enough, it is capable of finding such a trajectory that has zero error with 

the synthetic trajectory. The summary of different calibration frameworks is shown in Table. 

9. 
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Table. 9. Optimization framework and solution properties for different calibration scenarios 

Objective Function Deterministic CF models Stochastic CF models 

Experimental data 
*( ( )) 0F e    

* * *

*

( ( ), ( , )) 0

( ( ), ( , )) 0

F e RS

f e RS

  

  

 


=  

Synthetic data 
*( ( )) 0F e  =  

* * *

*

( ( ), ( , )) 0

lim ( ( ), ( , )) 0
N

F e RS

f e RS

  

  
→

 =


=  

Decision Variables     and RS  

Error Components e  e  and   

 

5 Selection of MoP 

The commonly used MoP includes velocity and spacing. By conducting the error 

propagation analysis, Punzo and Montanino (2016) confirmed that the errors in the spacing 

are cumulative on velocity so that it contains more degrees of freedom. Hence, when the 

spacing is selected as MoP, the objective function can keep the memory of model residuals 

occurrence times. This issue is of great importance (Punzo and Montanino, 2016) because 

there is only one global solution for the calibration of deterministic CF models. However, 

when it comes to the adoption of MoP for stochastic CF models, the errors in spacing may 

still include many degrees of freedom as the errors in velocity in the form of MSE. Actually, 

the errors on spacing also contain the stochastic error items of the aleatoric uncertainty and 

the calibration process has been converted from a one-level optimization model into a nested 

optimization model. Thus, the property of objective function has greatly changed and the role 

of the MoP needs to be revisited.  

 

Fig. 10. Boxplot of calibration results for experimental trajectories of 2D-IDM by MRMin on 

spacing (in green) and velocity (in blue), respectively. The calibration boundaries are 

presented in Table. 4. 
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Fig. 10 shows the distribution of calibrated parameters sets on spacing and velocity. 

The values of most of these parameters are similar for the two MoPs. Fig. 11 presents the 

errors in spacing and velocity for two calibrated parameter sets with different MoPs. With the 

same 500 random seeds, the parameter set calibrated on spacing may not always outperform 

the parameter set calibrated on velocity under the stochastic calibration framework. As can be 

seen in Fig. 11, there are three kinds of relations of calibration results on the two MoPs. 

Sometimes the parameter set calibrated on spacing performs better, see Fig. 11(a). The 

parameter set calibrated on velocity could also perform better, see Fig. 11(b). In addition, they 

can also show similar performance, see Fig. 11(c). Hence, from the perspective of calibration 

on stochastic CF models, there seems to be no obvious priority between them.  

(a) (b)  

(c)  

Fig. 11. The errors calculated with RMSE under the coordinate axis on spacing and velocity. 

The 500 blue points are simulated by using the parameter set calibrated by MRMin on 

spacing (
*

s ) with the experimental trajectory of different runs (a)Run 3 (b)Run 4 (c)Run 2. 

The 500 red points are simulated by using the parameter set calibrated by MRMin on velocity 

(
*

v ) with the same experimental trajectory. The blue and red points are using the same total 

of 500 random seeds. Hence, each blue or red point corresponds to one simulation result 

under one unique random seed. 

To further verify this finding, we conduct the error analysis. According to equation 

(12), the MSE on spacing is the accumulation of the MSE on velocity:  
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( )

2
1 1

2

1 1 1 1
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1 1
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1 1 1

1
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2

( )
( ) ( )

2 2

( )
( )

2 2

( )

v vK K k k
x sim obs v vk k i
K k k j j i

k k j j

v vK k k
v vk k i
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v v

j j i
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

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



− −
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− −

= = =

−

=

    
= − = +  + +      

    

    
=  + + +     

    

 
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 
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   
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k k i n n i
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 
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 
 
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= 
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 
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 
 
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 
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 


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Hence, the objective function of the MRMin on spacing is as follows: 

( )

( ) ( )

[1,..., ]

1
2

12

1[1,..., ]

1 1

[1,..., ]

2

[1,..., ]

min { }

1
( ) ( )

4
min

1
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From the formula, the calibration on spacing is one exactly nested optimization model 

whose outer level and inner level are different from the calibration on velocity (The underline 

in Equation (24) represents the inner level for MRMin-MSEs). Hence, they are in a more 

complex relationship than the cumulative one. Therefore, when we adopt the spacing as MoP 

with MRMin, it is not equivalent to minimizing the accumulation of errors on the velocity 

with MRMin. Their calibration results correspond to two different random seeds. Hence, they 

do not have a one-to-one relationship. 

We also validate the calibrated parameters on spacing and velocity by calculating the 

validation error MRMin on spacing (or velocity). We compare the experimental trajectories 

and the simulated ones, the parameters of which are calibrated by MRMin on velocity (or 

spacing),  

*

[1,..., ]
min ( , ( (min ))v obs sim

s i s
i N

ValiError RMSE v v RMSE


=  (25) 

where ( )* min ( )RMSE s  are the optimal parameters calibrated by MRMin-RMSE on spacing. 

Hence, four 9*9 matrices of validation errors can be computed, i.e., s
vValiError , s

sValiError ,

v
sValiError  and v

vValiError . For instance, Table. 10 shows the matrix of s
sValiError . The 

details of other validation errors can be found in Appendix B. 

Table. 10. The cross errors v
sValiError  of 2D-IDM: validation errors calculated by vMRMin

with parameter sets of different trajectories calibrated by sMRMin . 

v
sValiError

 

Cross errors calculated on trajectory No.* (Unit: m/s)   

1 2 3 4 5 6 7 8 9 Mean STD 

Calibrated 

parameter 

set of 

trajectory 

No.* 

1 0.294 0.312 0.346 0.273 0.327 0.309 0.288 0.289 0.353 0.31 0.028 

2 0.306 0.301 0.339 0.275 0.293 0.311 0.258 0.311 0.309 0.3 0.023 

3 0.336 0.288 0.262 0.278 0.284 0.286 0.253 0.306 0.286 0.287 0.024 

4 0.311 0.286 0.324 0.223 0.288 0.313 0.295 0.285 0.291 0.291 0.029 

5 0.316 0.28 0.316 0.256 0.258 0.274 0.246 0.285 0.285 0.28 0.025 

6 0.331 0.288 0.28 0.282 0.259 0.231 0.244 0.302 0.262 0.275 0.03 

7 0.322 0.273 0.278 0.267 0.241 0.269 0.231 0.27 0.299 0.272 0.027 

8 0.332 0.3 0.377 0.283 0.303 0.345 0.313 0.302 0.319 0.319 0.028 

9 0.324 0.31 0.321 0.294 0.306 0.293 0.284 0.307 0.238 0.297 0.026 

Mean value of All 0.292 0.027 
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Table. 11. The cross-validation errors comparison of 2D-IDM calculated with parameter sets 

of different trajectories calibrated by different MoPs.  

 
Validation errors calculated on trajectory No.* Mean of 

all 

STD of 

all 1 2 3 4 5 6 7 8 9 
v
sValiError  0.310 0.300 0.287 0.291 0.280 0.275 0.272 0.319 0.297 0.292 0.027 

v
vValiError  0.293 0.266 0.28 0.267 0.276 0.287 0.27 0.261 0.334 0.282 0.034 

v
sValiError  1.474 1.093 1.349 1.351 2.565 1.974 2.339 1.049 1.553 1.639 0.552 

s
sValiError  1.388 1.05 1.148 1.483 1.276 1.25 1.921 1.204 1.224 1.327 0.475 

 

The mean values reflect the validation performance of one calibrated set of parameters, 

see Table 11. The significance test is conducted to explore the difference in the validation 

performance of different MoPs. We carried out the KS-test and t-test, and the results 

demonstrate whether we use spacing or velocity as the MoP, the validation performance of 

the calibrated parameters has no significant difference, see Table. 12. In fact, the difference 

between 1.327 and 1.639 is only 0.3 m in spacing, which is very small in reality. To 

summarize, there is no difference in using these two types of MoPs when the stochastic CF 

models are applied to reality. This is reasonable given that the relation of spacing and velocity 

is not one-to-one. Together with the results in Fig. 11, it is recommended that when 

calibrating stochastic CF models, both spacing and velocity are adopted. Then the 

performance of calibration results of the two MoPs should be evaluated. The parameter set 

with better performance should be selected as the calibration results. 

 

Table. 12. The significant test of the validation errors of 2D-IDM on velocity and spacing  

Validation Errors 
Averaged validation MRMin on 

spacing 

Averaged validation MRMin on 

velocity 

Parameters calibrated by MRMin on 

spacing 
1.327 0.292 

Parameters calibrated by MRMin on 

velocity 
1.639 0.282 

p-value in t-test 0.13554 0.25542 

p-value in KS-test 0.2500 0.2500 

 

6 Conclusions and future directions 

Although remarkable progress has been made in the field of traffic flow model 

calibration, all these were made under the deterministic framework. The calibration study of 

stochastic CF models is lacking. The stochasticity adds noises to the calibration process and is 

not straightforward to deal with. This paper conducts a detailed investigation of the 

calibration methodology of stochastic CF models by using a new dataset of the CF experiment. 

Our analysis reveals that (i) the stochasticity in driving behavior can be captured by one set of 
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parameters with stochastic CF models. (ii) the MRMin-RMSE should be adopted as the 

objective function because the formulation of MRMin-RMSE effectively separates the 

aleatoric uncertainty and epistemic uncertainty and turns the calibration process into a nested 

optimization problem. (iii) there is no priority between spacing and velocity to be adopted as 

MoP under the stochastic framework of calibration.  

These findings are different and novel from the previous studies on the calibration of 

deterministic CF models. Hence, we establish the new calibration framework for the 

stochastic CF models. The effective calibration methodology of stochastic CF models can 

also promote its application because the individual driving behavior stochasticity under the 

same driving environment can be captured by one set of parameters. 

To summarize, the main target when calibrating stochastic CF models is to minimize 

the epistemic uncertainty by considering the impact of aleatoric uncertainty rising from the 

stochastic items of models. In the future, more objective function forms and methods under 

the calibration framework of stochastic CF models can be developed. Meanwhile, another 

goal to pursue is to decrease the computational complexity and optimization solution time, 

which requires a more high-efficiency global optimization algorithm. 
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Fig. 12. The spacing profile of the best realization of simulated trajectories with one set of 

parameters calibrated by MRMin of 2D-IDM. 

  

Fig. 13. The velocity profile of the simulated trajectories with one set of parameters calibrated 

by MRMin of 2D-IDM. 
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Table. 13. The validation errors of 2D-IDM calculated by MRMin with parameter sets of 

different trajectories calibrated by MRMean. The red value represents the averaged validation 

performance of the parameter set calibrated with one trajectory on the other 8 trajectories. 

Validation Error 
Validation calculated on trajectory No.* (Units: m)   

1 2 3 4 5 6 7 8 9 Mean STD 

Calibrated 

parameter set 

of trajectory 

No.* 

1 0.87 1.968 1.759 1.346 1.852 1.223 2.602 1.439 2.538 1.733 0.582 

2 1.201 1.539 1.389 1.583 1.336 1.094 2.221 1.18 2.024 1.507 0.387 

3 1.69 1.851 0.763 2.249 0.995 1.272 1.285 1.193 2.536 1.537 0.588 

4 1.103 2.015 2.15 1.081 2.061 1.307 3.071 1.786 2.563 1.904 0.669 

5 1.735 1.928 1.003 2.232 0.716 1.206 1.211 1.184 2.482 1.522 0.599 

6 1.309 1.766 1.38 1.601 1.278 0.639 2.144 1.399 2.193 1.523 0.477 

7 2.645 2.647 1.455 3.223 1.327 2.167 0.548 1.888 3.251 2.128 0.911 

8 1.287 1.707 1.128 1.828 1.027 1.222 1.714 0.924 2.471 1.479 0.494 

9 2.336 2.429 2.677 2.499 2.585 1.973 3.221 2.527 1.062 2.368 0.589 

Mean value of All 1.745  0.588  

 

Table. 14. The validation errors of 2D-IDM calculated by MRMin with parameter sets of 

different trajectories calibrated by MLE. The red value represents the averaged validation 

performance of the parameter set calibrated with one trajectory on all the trajectories. 

Validation Error 
Validation calculated on trajectory No.* (Unit:m)   

1 2 3 4 5 6 7 8 9 Mean STD 

Calibrated 

parameter set 

of trajectory 

No.* 

1 0.757 1.707 1.467 1.136 1.605 1.086 2.208 1.263 2.366 1.511 0.527 

2 1.032 1.254 0.766 1.242 0.86 0.773 1.319 0.942 1.64 1.092 0.294 

3 1.529 1.733 0.682 1.95 1.05 1.148 1.245 1.216 2.441 1.444 0.531 

4 0.997 1.623 1.61 1.002 1.485 0.875 2.378 1.406 2.164 1.505 0.517 

5 1.673 1.884 1.058 2.155 0.676 1.159 1.207 1.11 2.464 1.487 0.588 

6 1.13 1.56 1.268 1.342 1.111 0.624 1.912 1.215 1.92 1.343 0.409 

7 2.564 2.55 1.365 3.132 1.241 2.099 0.529 1.817 3.187 2.054 0.899 

8 1.165 1.545 1.08 1.645 0.978 1.084 1.51 0.85 2.264 1.347 0.441 

9 1.665 1.932 1.882 1.751 1.67 1.488 2.461 1.949 0.894 1.744 0.42 

Mean value of All 1.503 0.514 

Appendix B 

Table. 15. The cross errors v
vValiError  of 2D-IDM: validation errors calculated by vMRMin

with parameter sets of different trajectories calibrated by vMRMin . 

v
vValiError

 

Cross errors calculated on trajectory No.* (Unit:m/s)   

1 2 3 4 5 6 7 8 9 Mean STD 

Calibrated 

parameter set 

of trajectory 

No.* 

1 0.289 0.298 0.336 0.252 0.302 0.31 0.28 0.271 0.303 0.293 0.024 

2 0.315 0.282 0.27 0.267 0.244 0.253 0.232 0.265 0.263 0.266 0.024 

3 0.344 0.313 0.214 0.289 0.278 0.229 0.241 0.307 0.301 0.28 0.043 

4 0.299 0.278 0.282 0.252 0.253 0.233 0.239 0.275 0.297 0.267 0.024 

5 0.326 0.286 0.276 0.281 0.23 0.246 0.219 0.309 0.313 0.276 0.038 
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6 0.346 0.313 0.276 0.304 0.252 0.217 0.236 0.322 0.319 0.287 0.044 

7 0.329 0.28 0.241 0.276 0.237 0.233 0.203 0.308 0.327 0.27 0.045 

8 0.298 0.27 0.248 0.263 0.256 0.253 0.221 0.256 0.284 0.261 0.022 

9 0.374 0.334 0.363 0.349 0.328 0.342 0.352 0.347 0.217 0.334 0.046 

Mean value of All 0.282 0.034 

 

Table. 16. The cross errors s
vValiError  of 2D-IDM: validation errors calculated by sMRMin

with parameter sets of different trajectories calibrated by vMRMin . 

s
vValiError

 

Cross errors calculated on trajectory No.* (Unit:m)   

1 2 3 4 5 6 7 8 9 Mean STD 

Calibrated 

parameter set 

of trajectory 

No.* 

1 1.218 1.921 1.085 1.775 1.019 1.189 1.464 1.066 2.53 1.474 0.51 

2 1.047 1.184 0.873 1.458 0.862 0.752 0.781 1.069 1.815 1.093 0.35 

3 1.261 1.576 1.135 1.352 1.242 0.763 1.102 1.417 2.295 1.349 0.421 

4 1.145 1.677 1.067 1.54 0.964 0.711 1.527 1.155 2.376 1.351 0.493 

5 3.143 3.098 1.972 3.772 1.659 2.75 0.832 2.408 3.453 2.565 0.942 

6 2.329 2.433 1.468 2.641 1.222 1.813 0.807 1.878 3.171 1.974 0.744 

7 2.92 3.001 1.775 3.199 1.419 2.406 0.734 2.132 3.461 2.339 0.906 

8 1.121 0.992 1.033 1.15 0.843 0.761 0.736 1.083 1.723 1.049 0.295 

9 1.405 1.618 1.631 1.769 1.532 1.162 2.14 1.576 1.149 1.553 0.304 

Mean value of All 1.639 0.552 

 

Table. 17. The cross errors s
sValiError  of 2D-IDM: validation errors calculated by sMRMin

with parameter sets of different trajectories calibrated by sMRMin . 

s
sValiError

 

Cross errors calculated on trajectory No.* (Unit:m)   

1 2 3 4 5 6 7 8 9 Mean STD 

Calibrated 

parameter 

set of 

trajectory 

No.* 

1 0.681 1.719 1.444 1.112 1.469 1.05 1.629 1.151 2.237 1.388 0.453 

2 1.022 0.883 0.944 1.03 1.039 0.945 0.841 0.884 1.859 1.05 0.312 

3 1.209 1.323 0.55 1.499 0.929 0.744 0.972 1.057 2.05 1.148 0.444 

4 0.956 1.529 1.53 1.017 1.666 0.95 2.29 1.224 2.185 1.483 0.503 

5 1.424 1.548 1.014 1.855 0.584 0.89 0.775 1.128 2.268 1.276 0.546 

6 1.147 1.699 1.18 1.287 0.908 0.441 1.286 1.221 2.079 1.25 0.458 

7 2.441 2.455 1.151 2.922 1.076 1.944 0.513 1.712 3.074 1.921 0.882 

8 0.958 1.396 1.109 1.383 0.926 1 1.107 0.712 2.242 1.204 0.445 

9 1.242 1.486 1.421 1.545 0.992 1.093 1.05 1.3 0.891 1.224 0.232 

Mean value of All 1.327 0.475 
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