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The intelligent agent model – a fully
two-dimensional microscopic traffic flow model

Martin Treiber and Ankit Anil Chaudhari

Abstract Recently, a fully two-dimensional microscopic traffic flow model for lane-

free vehicular traffic flow has been proposed [Physica A, 509, pp. 1-11 (2018)]. In

this contribution, we generalize this model to describe any kind of human-driven

directed flow including lane-based vehicular flow, lane-free mixed traffic, bicycle

traffic, and pedestrian flow. The proposed intelligent-agent model (IAM) has the

same philosophy as the well-known social-force model (SFM) for pedestrians but

the interaction and boundary forces are based on car-following models making this

model suitable for higher speeds. Depending on the underlying car-following model,

the IAM includes anticipation, response to relative velocities, and accident-free

driving. When adding a suitable floor field, the IAM reverts to an integrated car-

following and lane-changing model with continuous lane changes. We simulate this

model in several lane-based and lane-free environments in various geometries with

and without obstacles. We observe that the model produces accident-free traffic flow

reproducing the observed self-organisation phenomena.

1 Introduction

Microscopic traffic flow models traditionally describe the flow in a continuous lon-

gitudinal and discrete lateral dimension in form of car-following and lane-changing

models [1]. In traffic flow simulators such as VISSIM [2] or SUMO [3], both com-

ponents are integrated into a common model. These traditional models, however,

are not able to describe disordered lane-free traffic flow consisting of a wide variety

of vehicle sizes and properties which is typically observed in developing countries.

This type of flow is characterized by a continuous lateral degree of freedom requiring

a fully two-dimensional model. Generalizing lane-changing models with incentives

in terms of acceleration differences [4, 5], a first fully two-dimensional model for

mixed vehicular flow with lateral forces proportional to longitudinal acceleration

shears has been proposed, the mixed-traffic model (MTM) [6].

Martin Treiber

TU Dresden, e-mail: martin.treiber@tu-dresden.de

Ankit Anil Chaudhari

TU Dresden, e-mail: ankit_anil.chaudhari@tu-dresden.de

1

http://arxiv.org/abs/2310.16816v1
martin.treiber@tu-dresden.de
ankit_anil.chaudhari@tu-dresden.de


2 Martin Treiber and Ankit Anil Chaudhari

However, this model only reacts to vehicles in the front and also has a rather

complicated formulation of the lateral forces making it hard to calibrate. In contrast,

the social-force model (SFM) for pedestrians by Helbing and Molnár [7] has a clean

formulation. There, the acceleration of each pedestrian is given by the superposition

of the free-flow social force, the interaction forces exerted by the pedestrians nearby,

and the repulsive forces of the boundaries. However, the SFM cannot be applied to

vehicles, cyclists or other self-driven agents with a higher speed since it does not

contain the kinematic constraints of a limited acceleration, is not crash free, and does

not revert to a plausible car-following model in case of single-file traffic. This is also

the case for other pedestrian flow models [8].

On the other hand, there exist several car-following models for mixed traffic which,

however, only modify the model parameters depending on the lateral offset or the

kind of leaders and followers [9, 10] while not incorporating any lateral dynamics

itself.

In this contribution, we propose the intelligent-agent model (IAM) which is an

integration of the (simplified) MTM for vehicular traffic and the SFM for pedestrians.

As the MTM, it is based on a car-following model to which it reverts for single-file

traffic and from which it inherits all the properties for a safe high-speed motion.

It also contains aspects of the social-force model such as the superposition of the

social forces of all active agents nearby (including the back) with a directional

weighting. Optionally, we also introduce floor fields to transform the originally lane-

free formulation to a lane-based environment. In this case, the IAM reverts to an

integrated car-following and lane-changing model with continuous lane changes.

In Sect. 2, we formulate our proposed model IAM. In Section 3, we simulate

it with the underlying Intelligent-Driver-Model [11, 12] in several lane-based and

lane-free environments with mixed vehicular-bicycle traffic and pure bicycle traffic.

We conclude with a discussion in Sect. 4.

2 Model specification

As the SFM, the proposed IAM is based on social forces which can be subdivided into

the self-driving force to reach the destination with a desired speed, the interaction

forces with other moving and standing objects, and boundary forces to keep the

agents in the driveable or walkeable area,

d®E8

dC
= ®5 self

8 (®E8) +
∑

9

®5 int
8 9 (®A8 , ®E8 , ®A 9 , ®E 9 ) +

∑

1

®581 . (1)

Unlike the SFM, the IAM is dedicated to directed flows where a local axis of the road

or pathway can be defined. Furthermore, the IAM is anisotropic with a distinctively

different dynamics for the longitudinal direction (parallel to the axis) and the lateral

one. We denote the components of the longitudinal and lateral position vector with

®G = (G, H)′, and decompose the velocity and force vectors by ®E = (E, F)′ and
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®5 = ( 5 , 6)′, respectively. Setting the agent’s mass < = 1, the forces also denote the

accelerations, ®5 = ( ¤E, ¤F)′.

2.1 Self-driving forces

The longitudinal part of the self-driving force is derived from the underlying car-

following (CF) which we characterize by the general acceleration function ¤E ≡ dE
dC

=

5 CF (B, E, E;) depending on the (bumper-to-bumper) gap B to the leader, the subject’s

speed E, and the leading speed E;. We derive the self-driving force by decomposing

this model as

5 CF (B, E, E;) = 5 self (E) + 5 CF,int(B, E, E;), 5 self (E) = 5 CF (B → ∞, E, E), (2)

where 5 CF,int
= 5 CF − 5 self denotes the CF force in case of a strictly single-file

traffic. Notice that the desired speed E0 is given in terms of the implicit relation

5CF (B → ∞, E0, E0) = 0.

Since we assume situations where the lateral velocity component is of the order of

the pedestrian speed, the free-flow velocity relaxation term of the SFM is appropriate

resulting in the lateral self-driving force

6self (F) =
F0 − F

gH
, (3)

where the lateral desired speed F0 = E04
dest
H is nonzero if the unit vector ®4dest to the

destination is not parallel to the road axis, for example, when entering or leaving the

road or bikeway.

2.2 Interaction forces

According to Eq (1), the interacting force is a superposition of the forces ®5 int
8 9

=
(

5 int
8 9 , 6

int
8 9

)′

of the nearby agents including standing objects, e.g., the stopping line of

a red traffic light which is represented by a very wide and very short virtual vehicle

with the outline of the stopping line. In the following, we define the longitudinal and

lateral forces exerted by an agent/object 9 as a function of ®G 9 and ®E 9 .

2.2.1 Longitudinal interaction forces

We assume that the longitudinal interaction is that of the CF model whenever the

follower’s occupancy area laterally encroaches that of the leader. If the lateral speeds

are negligible with respect to the longitudinal ones, encroachment is given if the
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absolute value of the lateral offset ΔH = H 9 − H8 is less than the average agent/object

with , = (,8 + , 9 )/2. If no encroachment is given, i.e., the lateral gap BH =

|ΔH | −, > 0, the longitudinal force decreases exponentially with BH as in the SFM.

This results in

5 int
8 9 (®G8 , ®G 9 , ®E8, ®E 9 ) = U(BH) 5

CF (BG , E8, E 9 ) (4)

where

BG = G 9 − G8 − ! 9 , BH = |H 9 − H8 | −,, U(BH) = min
(

1, 4−|BH |/B0H

)

. (5)

The underlying CF model must be specified in a way that negative gaps BG (i.e.,

collisions) result in a maximum deceleration (e.g. 9 m/s2). Furthermore, we assume

a longitudinal force of zero if BG < 0 but BH > 0, i.e., the agent 9 drives in parallel.

Interactions from followers As in the SFM, we also include “pushing” interactions

from the followers (G 9 < G8) which are weakend by the SFM anisotropy factor _ ≤ 1,

5
push

8 9 = −_ 5 int
98 (6)

With _ = 1, we would have a momentum conserving dynamics (“actio=reactio”)

but no longer a defined fundamental diagram, i.e., a steady-state macroscopic flow-

density relation. Plausible values (of the order of _ = 0.1) increase the flow efficiency

without leading to more critical situations.

Total longitudinal interaction Reacting to more than one leader or follower can

lead to inconsistent results if there are large size differences between the agents. For

example, three cyclists driving in parallel and followed by a truck will not exert on

the truck driver the triple social force. Rather, the truck driver reacts to the slowest

and/or nearest bicycle, only. Therefore, the total longitudinal interaction force is

given by

5 int
8 = min

9 ,G 9≥G8
5 int
8 9 + max

9 ,G 9<G8
5

push

8 9
. (7)

Notice that, even in single-file traffic, the selected leader needs not to be the immediate

leader but can also be a red traffic light further downstream.

2.2.2 Lateral interaction forces

Generalizing the incentive criterion of the lane-changing model MOBIL, the lateral

incentive exerted by agent 9 is proportional to the shear of the longitudinal force

from this agent. Formulating the incentive in terms of an induced desired lateral

velocity F08 , we have

F0,8 9 ∝ m 5 int
8 9 /mH8 (8)

leading via (4), as in the SFM, to an exponential decrease of the repulsion if there

is no lateral overlap. However, if there is an overlap, the longitudinal force does

not change with H8 and the lateral incentive is zero. To break this tie, we assume
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Table 1 Model parameters of the IAM in addition of the parameters of the underlying CF model

Parameter Meaning Typical value

SFM transversal relaxation time gH 1 s

Attenuation width B0H 0.3 m

Boundary attenuation width B�0 0.2 m

SFM anisotropy parameter _ 0 - 0.2

Lateral sensitivity f 1 s

long. deceleration at the boundary 5̂B 0.2 m/s2

lat. acceleration at the boundary 6̂B 5 m/s2

that the lateral incentive linearly increases with the lateral offset in the overlapping

region. Inserting (8) into (4) and describing the lateral dynamics, as in the SFM, as

a relaxation process, we finally obtain

6int
8 9 =

F0,8 9 − F8

g
, F0,8 9 = f 5 int

CF

{

ΔH/, |ΔH | ≤ ,,

sign(ΔH)4−BH/B0H otherwise.
(9)

Unlike the longitudinal case, we assume no shielding, so the total lateral interaction

force is given by the sum of the forces exerted by all surrounding agents with that of

the followers reduced by the anisotropy factor _.

2.3 Boundary forces and floor fields

In principle, a boundary of a driveable area can be modelled by a series of long

obstacles. However, an equivalent dedicated approach is more efficient. When driving

near the road boundary or even transgressing it partly, there is not only a strong social

force towards the road center but also a weak decelerating force in the longitudinal

Fig. 1 Force (acceleration)
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direction:

®5B(BH) = UB(BH)

(

− 5̂B
E

E0
, ±6̂B

) ′

, UB (B) = min
(

1, 4−B/BB0
)

, (10)

where BH is the gap between the boundary and the vehicle (BH < 0 if the boundary is

transgressed) and 5̂B, 6̂B and BB0 are model parameters (cf Table 1).

Finally, to obtain the resulting acceleration vector caused by the boundaries, all

forces from the left and right boundary are added up (Fig. 1).

Floor fields For lane-based flow, we add a periodic floor field:

6lane(G, H) = −
mΦ

mH
, Φ(G, H) = ±Φ0 cos(2cH/,lane) (11)

where plus applies for an even lane number (a lane separating line is on the direc-

tional road axis) and minus for an uneven number. The maximum induced lateral

acceleration is given by 2cΦ0/,lane.

3 Simulation and validation of lane-based and lane-free scenarios

In this section, we simulate the IAM for two different scenarios: Lane based vehic-

ular traffic (Sect. 3.1) and lane-free bicycle traffic (Sect. 3.2). Both simulations are

validated by empirical data.
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Fig. 2 Left: Trajectory data taken from the open-data project pNEUMA [13]. Right: simulation of

the IAM with floor fields. In both images, the motorcycles are color-coded whether they drive in

the lane (gray) or between the lanes to the left or right (green and blue, respectively).
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3.1 Lane-based city traffic

The Figs. 2 (left), 3 (left), and 4(left) show naturalistic trajectory data of the second-

to-right lane of the Athens arterial Leof. Alexandrias as obtained by the open-data

project pNEUMA [13] on Oct 24, 2018. The data show that the motorcyclists

generally make use of the space between the lanes (Figs. 3 and 4) to overtake the

larger vehicles as seen in the G-C cross section of the trajectories at the middle lane

and its boundaries (Fig. 2). This leads to a partial segregation of the vehicle types

with motorcycles accumulating behind the stopping lines of the red traffic lights (red

horizontal lines in Fig. 2) and starting first when the lights turn green.

In the IAM (right plots of the respective figures), this particular situation is mod-

elled by floor fields with a phase shift of c between motorcycles and other vehicles.

The simulation qualitatively and even semi-quantitatively reproduced all observa-

tions such as the longitudinal and lateral vehicle-type segregation, the longitudinal

dynamics including the overtaking maneuvers of the motorcyclists (Fig. 2 right), the

lane-changing rate (beginning and ending trajectories in Fig. 2, number of crossing

trajectories in Fig. 3), and the lateral dynamics during lane changes (Fig. 3).
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Fig. 3 Cross section on the G-H plane of the same observed and simulated trajectories as in Fig. 2.
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Fig. 4 Histogram of the lateral positions of the motorcycles (blue) and the rest of the vehicles

(black). Left: real trajectories of the Athens arterial (see Fig. 2); right: simulation of the IAM.
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3.2 Lane-free bicycle traffic

To demonstrate the ability of the IAM to simulate lane-free traffic and various ob-

served self-organisation effects [14], we simulate bicycle traffic on bike paths of

several widths. In order to create congested traffic, we implemented a downstream

bottleneck reducing the capacity. For narrow paths (width 1 m), we observed stag-

gered single-lane following while two or free lanes emerge for the wider paths

(Fig. 5). For even wider paths, the lanes gradually vanish (not shown). For free traf-

fic, the configuration is also different with less emerging lines (two lanes, staggered

or non-staggered single lane) depending on the width and the traffic demand.
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Fig. 5 Simulation of the lateral distributions of lane-free dense bicycle traffic for path width 1.0 m

(left), 1.6 m(middle), and 2.4 m(right).
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Fig. 6 Simulation of the trajectories of a 2.4 m wide lane-less bike path in G-H direction (left) and

in G-C direction (right).

In Fig. 6, we take a closer look at the widest considered bikepath (F = 2.4 m)

where a third center file spontaneously begins to form. From G = 170 m to G = 200 m,

a bottleneck in form of a gradual width reduction to 1.6 m is introduced and the three-
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lane traffic spontaneously reorganizes into two-lane traffic, starting at G = 140 m,

i.e., 30 m upstream of the beginning of the bottleneck.

4 Discussion

The proposed Intelligent-agent model (IAM) integrates the continuous two-dimen-

sional dynamics of the SFM with the high-speed properties of car-following models

to which it reverts for single-lane traffic. The simulated anticipative high-speed

behaviour of this model became most evident in the bicycle simulation of Fig. 6where

a spontaneous transition of three-lane to two-lane flow occurs 30 m upstream of the

bottleneck. This anticipation is driven by the relative-speed term of the underlying

IDM and can be observed for most longitudinal sub-models containing a relative-

speed term. By construction, the SFM is not able to such an anticipation.

When adding floor fields, we obtain an integrated car-followingand lane-changing

model similar to MOBIL [5, 12] but with continuous lateral motion. We have shown

that the IAM can describe the observed dynamics and emergent phenomena of mixed

vehicular and motorcycle traffic and lane-free bicycle traffic. In the future, we plan

to validate the model on further trajectory data, including truly lane-free mixed

vehicular traffic [6] and zipper merging and investigate microscopic aspects of the

cyclist’s configuration and how the capacity depends on the path width [14]. For an

online demonstration, see mtreiber.de/mixedTraffic/index.html.
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