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WECK’S SELECTION THEOREM: THE MAXWELL COMPACTNESS PROPERTY

FOR BOUNDED WEAK LIPSCHITZ DOMAINS WITH MIXED BOUNDARY

CONDITIONS IN ARBITRARY DIMENSIONS

SEBASTIAN BAUER, DIRK PAULY, AND MICHAEL SCHOMBURG

Abstract. It is proved that the space of differential forms with weak exterior- and co-derivative, is
compactly embedded into the space of square integrable differential forms. Mixed boundary conditions on
weak Lipschitz domains are considered. Furthermore, canonical applications such as Maxwell estimates,
Helmholtz decompositions and a static solution theory are proved. As a side product and crucial tool
for our proofs we show the existence of regular potentials and regular decompositions as well.

In Memoriam of our Dear Friend and Mentor Karl-Josef (Charlie) Witsch (1948-2017)
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1. Introduction

The aim of this contribution is to prove a compact embedding, so called “Weck’s selection theorem”
or (generalized) Maxwell compactness property [27, 28, 23], of differential q-forms with weak exterior
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and co-derivative into the space of square integrable q-forms subject to mixed boundary conditions on
bounded weak Lipschitz domains Ω ⊂ RN , i.e.,

D̊
q
Γτ
(Ω) ∩ ε−1∆̊q

Γν
(Ω) →֒ L

2,q(Ω)

is compact. The main result is given by Theorem 4.8. Here N ≥ 2 and 0 ≤ q ≤ N are natural numbers,
the dimension of the domain Ω and the rank of the differential forms, respectively. This generalises the
results from [1], where bounded weak Lipschitz domains in the classical setting of R3 were considered. In
fact, the results from [1] can be recovered by setting N = 3 and q = 1 or q = 2.

Similar results for strong Lipschitz domains in three dimensions can be found in [10, 7]. For a historical
overview of the mathematical treatment of Weck’s selection theorem (Maxwell compactness property)
see [1, 12, 24] and the literature cited therein. In particular, let us mention the important papers
[27, 26, 23, 2, 31, 10, 24]. We emphasise that in [31] Witsch was able to go even beyond Lipschitz
regularity (p-cusps). In [29] Weck applied Witsch’s ideas to the theory of elasticity.

The central role of compact embeddings of this type can for example be seen in connection with
Hilbert space complexes, where the compact embeddings immediately provide closed ranges, solution
theories by continuous inverses, Friedrichs/Poincaré-type estimates, and access to Hodge-Helmholtz-type
decompositions, Fredholm theory, div-curl-type lemmas, and a-posteriori error estimation, see [20, 19, 21].
In exterior domains, where local versions of the compact embeddings hold, one obtains radiation solutions
(scattering theory) with the help of Eidus’ limiting absorption principle [4, 5, 6], see [13, 14, 15, 17, 16, 18].
We elaborate on some of these applications in our Section 5.

Finally we note that by the same arguments as in [23] our results extend to Riemannian manifolds.

2. Notations, Preliminaries and Outline of the Proof

Let Ω ⊂ RN be a bounded weak Lipschitz domain. For a precise definition of weak Lipschitz domains,

see Definitions 2.3 and 2.5. In short, Ω is an N -dimensional C0,1-submanifold of RN with boundary,
i.e., a manifold with Lipschitz atlas. Let Γ := ∂Ω, which is itself an (N − 1)-dimensional Lipschitz-
manifold without boundary, consist of two relatively open subsets Γτ and Γν such that Γτ ∪ Γν = Γ and
Γτ ∩ Γν = ∅. The separating set Γτ ∩ Γν (interface) will be assumed to be a, not necessarily connected,
(N − 2)-dimensional Lipschitz-submanifold of Γ. We shall call (Ω,Γτ ) a weak Lipschitz pair.

We will be working in the framework of alternating differential forms, see for example [9]. The vector

space C̊∞,q(Ω) is defined as the subset of C∞,q(Ω), the set of smooth alternating differential forms of rank
q, having compact support in Ω. Together with the inner product

〈E,H〉L2,q(Ω) :=

∫

Ω

E ∧ ⋆H

it is an inner product space1. We may then define L
2,q(Ω) as the completion of C̊∞,q(Ω) with respect to

the corresponding norm. L2,q(Ω) can be identified with those q-forms having L
2-coefficients with respect

to any coordinate system. Using the weak version of Stokes’ theorem

〈dE,H〉L2,q+1(Ω) = −〈E, δH〉L2,q(Ω), E ∈ C̊
∞,q(Ω), H ∈ C̊

∞,q+1(Ω),(1)

weak versions of the exterior derivative and co-derivative can be defined. Here d is the exterior derivative,
δ = (−1)N(q−1)⋆d ⋆ the co-derivative and ⋆ the Hodge-star-operator on Ω. We thus introduce the Sobolev
(Hilbert) spaces (equipped with their natural graph norms)

D
q(Ω) :=

{
E ∈ L

2,q(Ω) : dE ∈ L
2,q+1(Ω)

}
, ∆q(Ω) :=

{
E ∈ L

2,q(Ω) : δ E ∈ L
2,q−1(Ω)

}

in the distributional sense. It holds

⋆Dq(Ω) = ∆N−q(Ω), ⋆∆q(Ω) = D
N−q(Ω).

We further define the test forms

C̊
∞,q
Γτ

(Ω) :=
{
ϕ|Ω : ϕ ∈ C̊

∞,q(RN ), dist(suppϕ,Γτ ) > 0
}

and note that C̊∞,q
∅ (Ω) = C

∞,q(Ω). We now take care of boundary conditions. First we introduce strong
boundary conditions as closures of test forms by

D̊
q
Γτ
(Ω) := C̊

∞,q
Γτ

(Ω)
D

q(Ω)

, ∆̊q
Γν
(Ω) := C̊

∞,q
Γν

(Ω)
∆q(Ω)

.(2)

1For simplicity we work in a real Hilbert space setting.
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For the full boundary case Γτ = Γ (resp. Γν = Γ) we set

D̊
q(Ω) := D̊

q
Γτ
(Ω), ∆̊q(Ω) := ∆̊q

Γν
(Ω).

Furthermore, we define weak boundary conditions in the spaces

D̊
q
Γτ
(Ω) :=

{
E ∈ D

q(Ω) : 〈E, δ ϕ〉L2,q(Ω) = −〈dE,ϕ〉L2,q+1(Ω) for all ϕ ∈ C̊
∞,q+1
Γν

(Ω)
}
,

∆̊q
Γν
(Ω) :=

{
H ∈ ∆q(Ω) : 〈H, dϕ〉L2,q(Ω) = −〈δ H, ϕ〉L2,q−1(Ω) for all ϕ ∈ C̊

∞,q−1
Γτ

(Ω)
}
,

(3)

and again for Γτ = Γ (resp. Γν = Γ) we set

D̊
q(Ω) := D̊

q
Γτ
(Ω), ∆̊q(Ω) := ∆̊q

Γν
(Ω).

We note that in definitions (1) and (2) the smooth test forms can by mollification be replaced by their

respective Lipschitz continuous counterparts, e.g. C̊
∞,q
Γτ

(Ω) can be replaced by C̊
0,1,q
Γτ

(Ω). Similarly, in
definition (3) the smooth test forms can by completion be replaced by their respective closures, i.e.,

C̊
∞,q+1
Γν

(Ω) and C̊
∞,q−1
Γτ

(Ω) can be replaced by ∆̊q+1
Γν

(Ω) and D̊
q−1
Γτ

(Ω), respectively. In (2) and (3) homo-
geneous tangential and normal traces on Γτ , respectively Γν , are generalised. Clearly

D̊
q
Γτ
(Ω) ⊂ D̊

q
Γτ
(Ω), ∆̊q

Γν
(Ω) ⊂ ∆̊q

Γν
(Ω)

and it will later be shown that in fact equality holds under our regularity assumptions on the boundary.
In case of full boundary conditions the equality even holds without any assumptions on the regularity of
the boundary, as can be seen by a short functional analytic argument, see [1], but which is unavailable
for the mixed boundary case.

We define the closed subspaces

D
q
0(Ω) :=

{
E ∈ D

q(Ω) : dE = 0
}
, ∆q

0(Ω) :=
{
E ∈ ∆q(Ω) : δ E = 0

}

as well as D̊
q
Γτ ,0

(Ω) := D̊
q
Γτ
(Ω) ∩ D

q
0(Ω) and ∆̊q

Γν ,0
(Ω) := ∆̊q

Γν
(Ω) ∩ ∆q

0(Ω). Analogously for the weak
spaces

D̊
q
Γτ ,0

(Ω) := D̊
q
Γτ
(Ω) ∩D

q
0(Ω), ∆̊q

Γν ,0
(Ω) := ∆̊q

Γν
(Ω) ∩∆q

0(Ω).

In addition to the latter canonical Sobolev spaces we will also need the classical Sobolev spaces for
the Euclidean components of q-forms. Note that Ω, together with the global identity chart, is an N -
dimensional Riemannian manifold. In particular, q-forms E ∈ L

2,q(Ω) can be represented globally in
Cartesian coordinates by their components EI , i.e., E =

∑
I EIdx

I . Here we use the ordered multi index

notation dxI = dxi1 ∧ · · · ∧ dxiq for I = (i1, ..., iq) ∈ {1, ..., N}q. The inner product for E,H ∈ L
2,q(Ω) is

given by

〈E,H〉L2,q(Ω) =

∫

Ω

E ∧ ⋆H =
∑

I

∫

Ω

EIHI =
∑

I

〈EI , HI〉L2(Ω) = 〈 ~E, ~H〉L2(Ω),

where we introduce the vector proxy notation

~E = [EI ]I ∈ L
2(Ω;RNq), Nq :=

(
N

q

)
.

For k ∈ N we can now define the Sobolev space H
k,q(Ω) as the subset of L2,q(Ω) having each component

EI in H
k(Ω). In these cases, we have for |α| ≤ k

∂αE =
∑

I

∂αEIdx
I and 〈E,H〉

Hk,q(Ω)
:=

∑

0≤|α|≤k

〈∂αE, ∂αH〉L2,q(Ω)

and we use the vector proxy notation also for the gradient, i.e.,

∇ ~E = [∂nEI ]n,I = [...∇EI ...]I ∈ L
2(Ω;RN×Nq ).

In particular, for E,H ∈ H
1,q(Ω)

〈E,H〉
H1,q(Ω)

= 〈E,H〉L2,q(Ω) +

N∑

n=1

〈∂nE, ∂nH〉L2,q(Ω) =
∑

I

( ∫

Ω

EIHI +
∑

n

∫

Ω

∂nEI∂nHI

)

=
∑

I

(〈EI , HI〉L2(Ω) + 〈∇EI ,∇HI〉L2(Ω)) = 〈 ~E, ~H〉L2(Ω) + 〈∇ ~E,∇ ~H〉L2(Ω) = 〈 ~E, ~H〉H1(Ω)
.
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Boundary conditions for H1,q(Ω)-forms can again be defined strongly and weakly, i.e., by closure

H̊
1,q
Γτ

(Ω) := C̊
∞,q
Γτ

(Ω)
H

1,q(Ω)

and by integration by parts

H̊
1,q
Γτ

(Ω) :=
{
E ∈ H

1,q(Ω) : 〈EI , ∂n φ〉L2(Ω) = −〈∂nEI , φ〉L2(Ω) for all n, I and all φ ∈ C̊
∞
Γν
(Ω)

}
,

respectively. Le us also introduce the following Sobolev type spaces

D
k,q(Ω) : =

{
E ∈ H

k,q(Ω) : dE ∈ H
k,q+1(Ω)

}
,

∆k,q(Ω) : =
{
E ∈ H

k,q(Ω) : δ E ∈ H
k,q−1(Ω)

}
.

Remark 2.1. We emphasise that by switching Γτ and Γν we can define the respective boundary conditions
on the other part of the boundary as well. Moreover, all definitions of our spaces extend literally to any
open subset Ω ⊂ RN and any relatively open complementary boundary pairs Γτ and Γν .

Finally we introduce our transformations ε.

Definition 2.2. A transformation ε : L
2,q(Ω) → L

2,q(Ω) will be called admissible, if ε is bounded,

symmetric, and uniformly positive definite. More precisely, ε is a self-adjoint operator on L
2,q(Ω) and

there exists ε, ε > 0 such that for all E ∈ L
2,q(Ω)

ε|εE|L2,q(Ω) ≤ |E|L2,q(Ω) ≤ ε
√
〈εE,E〉L2,q(Ω).

2.1. Lipschitz Domains. Let Ω ⊂ RN be a bounded domain with boundary Γ := ∂Ω. We introduce
the setting we will be working in. Define (cf. Figure 2)

I := (−1, 1), B := IN ⊂ RN , B± := {x ∈ B : ±xN > 0}, B0 := {x ∈ B : xN = 0},

B0,± := {x ∈ B0 : ±x1 > 0}, B0,0 := {x ∈ B0 : x1 = 0}.

Definition 2.3 (weak Lipschitz domain). Ω is called weak Lipschitz, if the boundary Γ is a Lipschitz
submanifold of the manifold Ω, i.e., there exist a finite open covering U1, . . . , UK ⊂ RN of Γ and vector
fields φk : Uk → B, such that for k = 1, . . . ,K

(i) φk ∈ C
0,1(Uk, B) is bijective and ψk := φ−1

k ∈ C
0,1(B,Uk),

(ii) φk(Uk ∩Ω) = B−

hold.

Remark 2.4. For k = 1, . . . ,K we have φk(Uk \Ω) = B+ and φk(Uk ∩ Γ) = B0.

Definition 2.5 (weak Lipschitz domain and weak Lipschitz interface). Let Ω be weak Lipschitz. A
relatively open subset Γτ of Γ is called weak Lipschitz, if Γτ is a Lipschitz submanifold of Γ, i.e., there
are an open covering U1, . . . , UK ⊂ RN of Γ and vector fields φk := Uk → B, such that for k = 1, . . . ,K
and in addition to (i), (ii) in Definition 2.3 one of

(iii) Uk ∩ Γτ = ∅,
(iii′) Uk ∩ Γτ = Uk ∩ Γ ⇒ φk(Uk ∩ Γτ ) = B0,
(iii′′) ∅ 6= Uk ∩ Γτ 6= Uk ∩ Γ ⇒ φk(Uk ∩ Γτ ) = B0,−

holds. We define Γν := Γ \ Γτ to be the relatively open complement of Γτ .

Definition 2.6 (weak Lipschitz pair). A pair (Ω,Γτ ) conforming to Definitions 2.3 and 2.5 will be called
weak Lipschitz.

Remark 2.7. If (Ω,Γτ ) is weak Lipschitz, so is (Ω,Γν). Moreover, for the cases (iii), (iii′) and (iii′′)in
Definition 2.5 we further have

(iii) Uk ∩ Γτ = ∅ ⇒ Uk ∩ Γν = Uk ∩ Γ ⇒ φk(Uk ∩ Γν) = B0,
(iii′) Uk ∩ Γτ = Uk ∩ Γ ⇒ Uk ∩ Γν = ∅,
(iii′′) ∅ 6= Uk∩Γτ 6= Uk∩Γ ⇒ ∅ 6= Uk∩Γν 6= Uk∩Γ ⇒ φk(Uk∩Γν) = B0,+ and φk(Uk∩Γτ∩Γν) = B0,0.

In the literature the notion of a Lipschitz domain Ω ⊂ RN is often used for a strong Lipschitz domain.
For this let us define for x ∈ RN

x′ := (x1, x2, . . . , xN−1), x′′ := (x2, . . . , xN−1).
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Definition 2.8 (strong Lipschitz domain). Ω is called strong Lipschitz, if there are an open covering
U1, . . . , UK ⊂ RN of Γ, rigid body motions Rk = Ak + ak, Ak ∈ RN×N orthogonal, ak ∈ RN , and

ξk ∈ C
0,1(IN−1, I), such that for k = 1, . . . ,K

(i) Rk(Uk ∩ Ω) =
{
x ∈ B : xN < ξk(x

′)
}
.

Remark 2.9. For k = 1, . . . ,K we have

Rk(Uk \ Ω) =
{
x ∈ B : xN > ξk(x

′)
}
, Rk(Uk ∩ Γ) =

{
x ∈ B : xN = ξk(x

′)
}
.

Definition 2.10 (strong Lipschitz domain and strong Lipschitz interface). Let Ω be strong Lipschitz. A
relatively open subset Γτ of Γ is called strong Lipschitz, if there exist an open covering U1, . . . , UK ⊂ RN

of Γ, rigid body motions Rk, and ξk ∈ C
0,1(IN−1, I), ζk ∈ C

0,1(IN−2, I), such that for k = 1, . . . ,K and
in addition to (i) in Definition 2.8 one of

(ii) Uk ∩ Γτ = ∅,
(ii′) Uk ∩ Γτ = Uk ∩ Γ ⇒ Rk(Uk ∩ Γτ ) =

{
x ∈ B : xN = ξk(x

′)
}
,

(ii′′) ∅ 6= Uk ∩ Γτ 6= Uk ∩ Γ ⇒ Rk(Uk ∩ Γτ ) =
{
x ∈ B : xN = ξk(x

′), x1 < ζk(x
′′)
}

holds. We define Γν := Γ \ Γτ to be the relatively open complement of Γτ .

Definition 2.11 (strong Lipschitz pair). A pair (Ω,Γτ ) conforming to Definitions 2.8 and 2.10 will be
called strong Lipschitz.

Remark 2.12. If (Ω,Γτ ) is strong Lipschitz, so is (Ω,Γν). Moreover, for the cases (ii), (ii′) and (ii′′)
in Definition 2.10 we further have

(ii) Uk ∩ Γτ = ∅ ⇒ Uk ∩ Γν = Uk ∩ Γ ⇒ Rk(Uk ∩ Γν) =
{
x ∈ B : xN = ξk(x

′)
}
,

(ii′) Uk ∩ Γτ = Uk ∩ Γ ⇒ Uk ∩ Γν = ∅,
(ii′′) ∅ 6= Uk ∩ Γτ 6= Uk ∩ Γ ⇒ ∅ 6= Uk ∩ Γν 6= Uk ∩ Γ ⇒

Rk(Uk ∩ Γν) =
{
x ∈ B : xN = ξk(x

′), x1 > ζk(x
′′)
}
,

Rk(Uk ∩ Γτ ∩ Γν) =
{
x ∈ B : xN = ξk(x

′), x1 = ζk(x
′′)
}
.

Remark 2.13. The following holds:

(i) Ω strong Lipschitz ⇒ Ω weak Lipschitz
(ii) (Ω,Γτ ) strong Lipschitz pair ⇒ (Ω,Γτ ) weak Lipschitz pair

For a proof just define φk := ϕk ◦Rk with ϕk : Uk → B given by

ϕk(x) :=



x1 − ζk(x′′)

x′′

xN − ξk(x′)


 .

Note that the contrary does not hold as the implicit function theorem is not available for Lipschitz maps.

For later purposes we introduce special notations for the half-cube domain

Ξ := B−, γ := ∂ Ξ(4)

and its relatively open boundary parts γτ and γν := γ \ γτ . We will only consider the cases

γν = ∅, γν = B0, γν = B0,+(5)

and we note that Ξ and γ, γτ , γν are strong Lipschitz, see Figure 1.

2.2. Outline of the Proof. Let (Ω,Γτ ) be a weak Lipschitz pair for a bounded domain Ω ⊂ RN .

• As a first step, we observe H̊
1,q
Γτ

(Ω) = H̊
1,q
Γτ

(Ω), i.e., for the H
1,q(Ω)-spaces the strong and weak

definitions of the boundary conditions coincide, see Lemma 2.14.

• In the second and essential step, we construct various regular H1,q-potentials on simple domains,
mainly for the half-cube Ξ from (4) with the special boundary constellations (5), i.e.,

D̊
q
Γν ,0

(Ξ) = D̊
q
γν ,0

(Ξ) = d H̊1,q−1
γν (Ξ), ∆̊q

Γν ,0
(Ξ) = ∆̊q

Γν ,0
(Ξ) = δ H̊1,q+1

γν (Ξ),

see Section 3. Potentials of this type are called regular potentials.
• In the third step, Section 3.3, it is shown that the strong and weak definitions of the boundary
conditions coincide on the half-cube Ξ from (4) with the special boundary constellation (5), i.e.,

D̊
q
Γν
(Ξ) = D̊

q
Γν
(Ξ), ∆̊q

Γν
(Ξ) = ∆̊q

Γν
(Ξ).(6)
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Ω

R3 \ ΩΓ

Γν

Γτ

Uk

Uk ∩ Γτ

Uk ∩ Γν

φk

ψk = φ−1

k

x1

x2

x3

B

B0,+

B0,−B−

B+

Figure 1. Mappings φk and ψk between a ball Uk and the cube B.

• The fourth step proves the compact embedding on the half-cube Ξ from (4) with the special
boundary constellations (5), i.e.,

D̊
q
Γτ
(Ξ) ∩ ε−1∆̊q

Γν
(Ξ) →֒ L

2,q(Ξ)(7)

is compact, see Section 4.1.
• In the fifth step, Theorem 4.7, (6) is established for weak Lipschitz domains, i.e.,

D̊
q
Γτ
(Ω) = D̊

q
Γτ
(Ω), ∆̊q

Γν
(Ω) = ∆̊q

Γν
(Ω).

• In the last step, we finally prove the compact embedding (7) for weak Lipschitz pairs, i.e.,

D̊
q
Γτ
(Ω) ∩ ε−1∆̊q

Γν
(Ω) →֒ L

2,q(Ω)

is compact, see our main result Theorem 4.8.

2.3. Some Important Results. Within our proofs we need a few important technical lemmas. First,

the strong and weak definitions of the boundary conditions coincide for H1,q(Ω)-forms, which is a density

result for H
1,q(Ω)-forms. This is an immediate consequence of the corresponding scalar result, whose

proof can be found in [10, Lemma 2, Lemma 3] and with a simplified proof in [1, Lemma 3.1].

Lemma 2.14 (weak and strong boundary conditions coincide for H
1,q(Ω)). Let Ω ⊂ RN be a bounded

domain and let (Ω,Γτ ) be a weak Lipschitz pair as well as

H̊
˜
1,q
Γτ

(Ω) :=
{
u ∈ H

1,q(Ω) : u|Γτ
= 0

}

in the sense of traces. Then H̊
1,q
Γτ

(Ω) = H̊
˜
1,q
Γτ

(Ω) = H̊
1,q
Γτ

(Ω).

Another crucial tool in our arguments is a universal extension operator for the Sobolev spaces Dk,q(Ω)

and ∆k,q(Ω) given in [8], which is based on the universal extension operator for standard Sobolev spaces

H
k(Ω) introduced by Stein in [25]. “Universality” in this context means that the operator, which is given

by a single formula, is able to extend all orders of Sobolev spaces simultaneously. More precisely, the
following theorem, which is taken from [8, Theorem 3.6], holds:

Lemma 2.15 (Stein’s extension operator). Let Ω ⊂ RN be a bounded strong Lipschitz domain. Then for
k ∈ N0 and 0 ≤ q ≤ N there exists a (universal) linear and continuous extension operator

E : Dk,q(Ω)→ D
k,q(RN ).

More precisely, E satisfies EE = E a.e. in Ω and there exists c > 0 such that for all E ∈ D
k,q(Ω)

|EE|
Dk,q(RN )

≤ c|E|
Dk,q(Ω)

.

Furthermore, E can be chosen such that EE has a fixed compact support in RN for all E ∈ D
k,q(Ω).
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Our third lemma summarises well known and fundamental results for the theory of Maxwell’s equa-
tions from [22, 23]. For this, we denote orthogonality and the orthogonal sum in L

2,q(Ω) by ⊥ and ⊕,
respectively, and introduce the harmonic Dirichlet and Neumann forms

HqD(Ω) := D̊
q
0(Ω) ∩∆q

0(Ω), HqN (Ω) := D
q
0(Ω) ∩ ∆̊q

0(Ω),

respectively.

Lemma 2.16 (Picard’s generalisation ofWeck’s selection theorem, Helmholtz decompositions andMaxwell
estimates). Let Ω ⊂ RN be a bounded weak Lipschitz domain. Then the embeddings

D̊
q(Ω) ∩∆q(Ω) →֒ L

2,q(Ω), D
q(Ω) ∩ ∆̊q(Ω) →֒ L

2,q(Ω)

are compact and HqD(Ω), H
q
N (Ω) are finite-dimensional. Moreover, the Helmholtz decompositions

L
2,q(Ω) = d D̊q−1(Ω)⊕∆q

0(Ω) L
2,q(Ω) = dDq−1(Ω)⊕ ∆̊q

0(Ω)

= D̊
q
0(Ω)⊕ δ∆

q+1(Ω) = D
q
0(Ω)⊕ δ ∆̊

q+1(Ω)

= d D̊q−1(Ω)⊕HqD(Ω)⊕ δ∆
q+1(Ω), = dDq−1(Ω)⊕HqN (Ω)⊕ δ ∆̊q+1(Ω)

are valid. In particular, all ranges are closed subspaces of L2,q(Ω) and

d D̊q−1(Ω) = D̊
q
0(Ω) ∩H

q
D(Ω)

⊥, dDq−1(Ω) = D
q
0(Ω) ∩H

q
N (Ω)⊥,

δ∆q+1(Ω) = ∆q
0(Ω) ∩H

q
D(Ω)

⊥, δ ∆̊q+1(Ω) = ∆̊q
0(Ω) ∩H

q
N (Ω)⊥.

Furthermore, there exists c > 0 such that

c|E|L2,q(Ω) ≤ | dE|L2,q+1(Ω) + | δ E|L2,q−1(Ω)

holds for all E ∈ D̊
q(Ω) ∩∆q(Ω) ∩HqD(Ω)

⊥ and all E ∈ D
q(Ω) ∩ ∆̊q(Ω) ∩HqN (Ω)⊥, i.e., the Maxwell (or

Friedrichs-Poincaré type) estimates are valid.

Corollary 2.17 (refined Helmholtz decompositions). Let Ω ⊂ RN be a bounded weak Lipschitz domain.
Then

D̊
q(Ω) = D̊

q
0(Ω)⊕

(
D̊
q(Ω) ∩ δ∆q+1(Ω)

)
, d D̊q(Ω) = d

(
D̊
q(Ω) ∩ δ∆q+1(Ω)

)
,

D
q(Ω) = D

q
0(Ω)⊕

(
D
q(Ω) ∩ δ ∆̊q+1(Ω)

)
, dDq(Ω) = d

(
D
q(Ω) ∩ δ ∆̊q+1(Ω)

)
,

∆q(Ω) =
(
d D̊q−1(Ω) ∩∆q(Ω)

)
⊕∆q

0(Ω), δ∆q(Ω) = δ
(
d D̊q−1(Ω) ∩∆q(Ω)

)
,

∆̊q(Ω) =
(
dDq−1(Ω) ∩ ∆̊q(Ω)

)
⊕ ∆̊q

0(Ω), δ ∆̊q(Ω) = δ
(
dDq−1(Ω) ∩ ∆̊q(Ω)

)
.

Let πq,Ω : L2,q(Ω)→ δ ∆̊q+1(Ω) be the orthonormal Helmholtz projector onto δ ∆̊q+1(Ω). By the latter

corollary πq,Ω maps Dq(Ω) to

D
q(Ω) ∩ δ ∆̊q+1(Ω) = D

q(Ω) ∩ ∆̊q
0(Ω) ∩H

q
N (Ω)⊥.

Corollary 2.18 (Maxwell estimate for d and Neumann boundary condition). Let Ω ⊂ RN be a bounded

weak Lipschitz domain. Then for all E ∈ D
q(Ω) it holds πq,ΩE ∈ D

q(Ω) ∩ δ ∆̊q+1(Ω) and dπq,ΩE = dE
as well as

c|πq,ΩE|L2,q(Ω) ≤ | dE|L2,q+1(Ω),

with c from Lemma 2.16.

If Ω = RN a similar theory holds true utilising polynomially weighted Sobolev spaces, see [22] for

details. Let πq,RN : L2,q(RN )→ ∆q
0(R

N ) be the orthonormal Helmholtz projector onto ∆q
0(R

N ).

Lemma 2.19 (Helmholtz decompositions and Maxwell estimate for d in the whole space). It holds
HqN (RN ) = HqD(R

N ) = {0} and

L
2,q(RN ) = D

q
0(R

N )⊕∆q
0(R

N ), D
q(RN ) = D

q
0(R

N )⊕
(
D
q(RN ) ∩∆q

0(R
N )

)
.

Moreover, for all E ∈ D
q(RN ) it holds πq,RNE ∈ D

q(RN ) ∩∆q
0(R

N ) and dπq,RNE = dE as well as

|πq,RNE|
Dq(RN )

≤ |E|
Dq(RN )

.

Regularity in the whole space, see e.g. [11, (4.7) or Lemma 4.2 (i)], shows the following result.
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Lemma 2.20 (regularity in the whole space). D
q(RN ) ∩∆q(RN ) = H

1,q(RN ) with equal norms. More

precisely, E ∈ D
q(RN ) ∩∆q(RN ) if and only if E ∈ H

1,q(RN ) and

|E|2
H1,q(RN )

= |E|2
L2,q(RN ) + | dE|

2
L2,q+1(RN ) + | δ E|

2
L2,q−1(RN ).

3. Regular Potentials

As one of our main steps (step 4), in Section 4.1 the compact embedding is proved on the half-cube

Ξ ⊂ RN . This will be achieved (in step 2) by constructing regular H1(Ξ)-potentials for d-free and δ-free
L
2,q(Ξ)-forms, which will then enable us to use Rellich’s selection theorem. This section is devoted to the

construction and existence of these regular potentials, i.e., to step 2.

3.1. Regular Potentials Without Boundary Conditions. Let us recall

dDq−1(Ω) = D
q
0(Ω) ∩H

q
N (Ω)⊥, δ∆q+1(Ω) = ∆q

0(Ω) ∩H
q
D(Ω)

⊥

from Lemma 2.16. The next two lemmas ensure the existence of H1,q(Ω)-potentials without boundary
conditions for strong Lipschitz domains.

Lemma 3.1 (regular potential for d without boundary condition). Let Ω ⊂ RN be a bounded strong
Lipschitz domain. Then there exists a continuous linear operator

Td : Dq0(Ω) ∩H
q
N (Ω)⊥ → H

1,q−1(RN ) ∩∆q−1
0 (RN )

such that for all E ∈ D
q
0(Ω) ∩H

q
N (Ω)⊥

d TdE = E in Ω.

Especially

D
q
0(Ω) ∩H

q
N (Ω)⊥ = dH1,q−1(Ω) = d

(
H

1,q−1(Ω) ∩∆q−1
0 (Ω)

)

and the regular potential depends continuously on the data. Particularly, these are closed subspaces of
L
2,q(Ω) and Td is a right inverse to d. By a simple cut-off technique Td may be modified to

Td : Dq0(Ω) ∩H
q
N (Ω)⊥ → H

1,q−1(RN )

such that TdE has a fixed compact support in RN for all E ∈ D
q
0(Ω) ∩H

q
N (Ω)⊥.

Proof. Suppose E ∈ D
q
0(Ω) ∩ H

q
N (Ω)⊥. By Lemma 2.16 there exists H ∈ D

q−1(Ω) with dH = E in Ω.

Applying Corollary 2.18 we get πq−1,ΩH ∈ D
q−1(Ω) ∩ δ ∆̊q(Ω) with dπq−1,ΩH = dH = E and

|πq−1,ΩH |Dq−1(Ω)
≤ c|E|L2,q(Ω).

Note that πq−1,ΩH is uniquely determined. By the Stein extension operator E : D0,q−1(Ω)→ D
0,q−1(RN )

from Lemma 2.15 we have Eπq−1,ΩH ∈ D
0,q−1(RN ) with compact support. Projecting again, now with

Lemma 2.19 onto ∆q−1
0 (RN ), we obtain πq−1,RN Eπq−1,ΩH ∈ D

q−1(RN ) ∩ ∆q−1
0 (RN ) (again uniquely

determined) with dπq−1,RN Eπq−1,ΩH = d Eπq−1,ΩH and

|πq−1,RN Eπq−1,ΩH |Dq−1(RN )
≤ |Eπq−1,ΩH |Dq−1(RN )

≤ c|πq−1,ΩH |Dq−1(Ω)
.

Lemma 2.20 shows πq−1,RN Eπq−1,ΩH ∈ H
1,q−1(RN ) ∩∆q−1

0 (RN ) with

|πq−1,RN Eπq−1,ΩH |H1,q−1(RN )
= |πq−1,RN Eπq−1,ΩH |Dq−1(RN )

.

Finally, TdE := πq−1,RN Eπq−1,ΩH ∈ H
1,q−1(RN ) ∩∆q−1

0 (RN ) meets our needs as

|TdE|H1,q−1(RN )
≤ c|E|L2,q(Ω)

and d TdE = dπq−1,RN Eπq−1,ΩH = d Eπq−1,ΩH = dπq−1,ΩH = dH = E in Ω. �

By Hodge-⋆-duality we get a corresponding result for the δ-operator.

Lemma 3.2 (regular potential for δ without boundary condition). Let Ω ⊂ RN be a bounded strong
Lipschitz domain. Then there exists a continuous linear operator

Tδ : ∆
q
0(Ω) ∩H

q
D(Ω)

⊥ → H
1,q+1(RN ) ∩ D

q+1
0 (RN ),

such that for all E ∈ ∆q
0(Ω) ∩H

q
D(Ω)

⊥

δ TδE = E in Ω.
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Especially

∆q
0(Ω) ∩H

q
D(Ω)

⊥ = δH1,q+1(Ω) = δ
(
H

1,q+1(Ω) ∩ D
q+1
0 (Ω)

)

and the regular potential depends continuously on the data. In particular, these are closed subspaces of
L
2,q(Ω) and Tδ is a right inverse to δ. By a simple cut-off technique Tδ may be modified to

Tδ : ∆
q
0(Ω) ∩H

q
D(Ω)

⊥ → H
1,q+1(RN )

such that TδE has a fixed compact support in RN for all E ∈ ∆q
0(Ω) ∩H

q
D(Ω)

⊥.

3.2. Regular Potentials With Boundary Conditions for the Half-Cube. Now we start construct-

ing H
1,q(Ξ)-potentials on Ξ with boundary conditions. Let us recall our special setting on the half-cube

Ξ = B− and γν = ∅, γν = B0 or γν = B0,+.

Furthermore, cf. Figure 2, we extend Ξ over γν by

Ξ̃ = int(Ξ ∪ Ξ̂), Ξ̂ :=

{
{x ∈ B : xN > 0} = B+ , if γν = B0,

{x ∈ B : xN , x1 > 0} = {x ∈ B+ : x1 > 0} =: B+,+ , if γν = B0,+.

Lemma 3.3 (regular potential for d with partial boundary condition on the half-cube). There exists a
continuous linear operator

Sd : D̊q
γν ,0

(Ξ)→ H
1,q−1(RN ) ∩ H̊

1,q−1
γν (Ξ),

such that for all H ∈ D̊
q
γν ,0

(Ξ)

dSdH = H in Ξ.

Especially

D̊
q
γν ,0

(Ξ) = D̊
q
γν ,0

(Ξ) = d H̊1,q−1
γν (Ξ) = d D̊q−1

γν (Ξ) = d D̊q−1
γν (Ξ)

and the regular H̊
1,q−1
γν (Ξ)-potential depends continuously on the data. In particular, these spaces are

closed subspaces of L2,q(Ξ) and Sd is a right inverse to d. Without loss of generality, Sd maps to forms
with a fixed compact support in RN .

Proof. The case γν = ∅ is done in Lemma 3.1. Hence let γν = B0 or γν = B0,+. Suppose H ∈ D̊
q
γν ,0

(Ξ)

and define H̃ ∈ L
2,q(Ξ̃) as extension of H by zero to Ξ̂ by

H̃ :=

{
H in Ξ,

0 in Ξ̂.
(8)

By definition of D̊q
γν ,0

(Ξ) (weak boundary condition) it follows d H̃ = 0 in Ξ̃, i.e., H̃ ∈ D
q
0(Ξ̃). Because Ξ̃

is strong Lipschitz and topologically trivial, especiallyHqN (Ξ̃) = {0}, Lemma 3.1 yields a regular potential

E = TdH̃ ∈ H
1,q−1(RN ) ∩D

q−1
0 (RN ) with dE = H̃ in Ξ̃ and

|E|
H1,q−1(RN )

≤ c|H̃ |
L2,q(Ξ̃) ≤ c|H |L2,q(Ξ).

In particular, E ∈ H
1,q−1(Ξ̂) and dE = 0 in Ξ̂, i.e., E ∈ H

1,q−1(Ξ̂) ∩ D
q−1
0 (Ξ̂). Using Lemma 3.1 again,

this time in Ξ̂, we obtain F = TdE ∈ H
1,q−2(RN ) ⊂ H

1,q−2(Ξ̂) with dF = E in Ξ̂ and

|F |
H1,q−2(RN )

≤ c|E|
L2,q(Ξ̂).

Since E ∈ H
1,q−1(Ξ̂) we have F ∈ D

1,q−2(Ξ̂). Let E : D1,q−2(Ξ̂) → D
1,q−2(RN ) be the Stein extension

operator from Lemma 2.15. Then

Sd : D̊
q
γν ,0

(Ξ) −→ H
1,q−1(RN )

H 7−→ E − d(EF )

is linear and continuous as

|SdH |H1,q−1(RN )
≤ |E|

H1,q−1(RN )
+ |EF |

D1,q−2(RN )

≤ |E|
H1,q−1(RN )

+ |F |
D1,q−2(Ξ̂)

≤ |E|
H1,q−1(RN )

≤ c|H |L2,q(Ξ).
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x1

x2

x3

Ξ̂

Ξ

B0

x1

x2

x3

Ξ̂

Ξ

B0,+

Figure 2. The half-cube Ξ = B
−
, extended by Ξ̂ to the polygonal domain Ξ̃, and the rectangles γν = B0 and

γν = B0,+.

Since SdH = 0 in Ξ̂, we have SdH |γν = 0, which means SdH ∈ H̊
˜
1,q−1
γν (Ξ). Therefore, by Lemma 2.14 we

see SdH ∈ H̊
1,q−1
γν (Ξ) ⊂ D̊

q−1
γν (Ξ) ⊂ D̊

q−1
γν (Ξ). Moreover, d(SdH) = dE = H̃ in Ξ̃, especially d(SdH) = H

in Ξ. Finally we note

d H̊1,q−1
γν (Ξ) ⊂ d D̊q−1

γν (Ξ) ⊂ D̊
q
γν ,0

(Ξ), d D̊q−1
γν (Ξ) ⊂ D̊

q
γν ,0

(Ξ) ⊂ d H̊1,q−1
γν (Ξ),

completing the proof. �

Again by Hodge-⋆-duality we obtain the following.

Lemma 3.4 (regular potential for δ with partial boundary condition on the half-cube). There exists a
continuous linear operator

Sδ : ∆̊
q
γν ,0

(Ξ)→ H
1,q+1(RN ) ∩ H̊

1,q+1
γν (Ξ),

such that for all H ∈ ∆̊q
γν ,0

(Ξ)
δ SδH = H in Ξ.

Especially

∆̊q
γν ,0

(Ξ) = ∆̊q
γν ,0

(Ξ) = δ H̊1,q+1
γν (Ξ) = δ ∆̊q+1

γν (Ξ) = δ ∆̊q+1
γν (Ξ)

and the regular H̊
1,q+1
γν (Ξ)-potential depends continuously on the data. In particular, these spaces are

closed subspaces of L2,q(Ξ) and Sδ is a right inverse to δ. Without loss of generality, Sδ maps to forms
with a fixed compact support in RN .

3.3. Weak and Strong Boundary Conditions Coincide for the Half-Cube. Now the two main

density results immediately follow. We note that this has already been proved for the H
1,q(Ω)-spaces in

Lemma 2.14, i.e., H̊1,q
Γτ

(Ω) = H̊
1,q
Γτ

(Ω).

Lemma 3.5 (weak and strong boundary conditions coincide for the half-cube). D̊
q
γν (Ξ) = D̊

q
γν (Ξ) and

∆̊q
γν (Ξ) = ∆̊q

γν (Ξ).

Proof. Suppose E ∈ D̊
q
γν (Ξ) and thus dE ∈ D̊

q+1
γν ,0

(Ξ). By Lemma 3.3 there exists H = Sd dE ∈ H̊
1,q
γν (Ξ)

with dH = dE. By Lemma 3.3 we get E −H ∈ D̊
q
γν ,0

(Ξ) = D̊
q
γν ,0

(Ξ) and hence E ∈ D̊
q
γν (Ξ). �

4. Weck’s Selection Theorem

4.1. The Compact Embedding for the Half-Cube. First we show the main result on the half-cube
Ξ = B− with the special boundary patches

γν = ∅, γν = B0 or γν = B0,+

from the latter section. To this end let ε be an admissible transformation on L
2,q(Ξ) and let us consider

the densely defined and closed (unbounded) linear operator

dq−1
τ : D̊q−1

γτ (Ξ) ⊂ L
2,q−1(Ξ)→ L

2,q
ε (Ξ) ; E 7→ dE
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together with its (Hilbert space) adjoint

− δqν ε := (dq−1
τ )∗ : ε−1∆̊q

γν (Ξ) ⊂ L
2,q
ε (Ξ)→ L

2,q−1(Ξ) ; H 7→ − δ εH.

Note that by Lemma 3.5 we have ∆̊q
γν (Ξ) = ∆̊q

γν (Ξ). Here, L
2,q
ε (Ξ) denotes L

2,q(Ξ) equipped with
the inner product 〈 · , · 〉

L
2,q
ε (Ξ) := 〈ε · , · 〉L2,q(Ξ). Let ⊕ε denote the orthogonal sum with respect to the

L
2,q
ε -scalar product. The projection theorem yields immediately:

Lemma 4.1 (regular Helmholtz decompositions for the half-cube). The Helmholtz decompositions

L
2,q
ε (Ξ) = D̊

q
γτ ,0

(Ξ)⊕ε ε
−1∆̊q

γν ,0
(Ξ), D̊

q
γτ ,0

(Ξ) = d H̊1,q−1
γτ (Ξ), ∆̊q

γν ,0
(Ξ) = δ H̊1,q+1

γν (Ξ)

hold. Moreover, the refined Helmholtz decompositions

D̊
q
γτ (Ξ) = d H̊1,q−1

γτ (Ξ)⊕ε
(
D̊
q
γτ (Ξ) ∩ ε

−1 δ H̊1,q+1
γν (Ξ)

)
,

ε−1∆̊q
γν (Ξ) =

(
d H̊1,q−1

γτ (Ξ) ∩ ε−1∆̊q
γν (Ξ)

)
⊕ε ε

−1 δ H̊1,q+1
γν (Ξ),

D̊
q
γτ (Ξ) ∩ ε

−1∆̊q
γν (Ξ) =

(
d H̊1,q−1

γτ (Ξ) ∩ ε−1∆̊q
γν (Ξ)

)
⊕ε

(
D̊
q
γτ (Ξ) ∩ ε

−1 δ H̊1,q+1
γν (Ξ)

)

are valid, and the respective regular potentials, given by the operators Sd and Sδ from Lemma 3.3 and
Lemma 3.4, respectively, depend continuously on the data.

Proof. The projection theorem yields L2,qε (Ξ) = d D̊q−1
γτ (Ξ)⊕ε ε

−1∆̊q
γν ,0

(Ξ). Furthermore,

d D̊q−1
γτ (Ξ) = d D̊q−1

γτ (Ξ) = d H̊1,q−1
γτ (Ξ) = D̊

q
γτ ,0

(Ξ)

by Lemma 3.3 and

∆̊q
γν ,0

(Ξ) = ∆̊q
γν ,0

(Ξ) = δ H̊1,q+1
γν (Ξ)

by Lemma 3.4. The other assertions follow immediately. �

Lemma 4.2 (Weck’s selection theorem for the half-cube). The embedding D̊
q
γτ (Ξ)∩ε

−1∆̊q
γν (Ξ) →֒ L

2,q
ε (Ξ)

is compact.

Proof. Let (Hn)n∈N be a bounded sequence in D̊
q
γτ (Ξ) ∩ ε

−1∆̊q
γν (Ξ). By Lemma 4.1 we can decompose

Hn = Hd
n +Hδ

n = dEd
n + ε−1 δ Eδn ∈

(
d H̊1,q−1

γτ (Ξ) ∩ ε−1∆̊q
γν (Ξ)

)
⊕ε

(
D̊
q
γτ (Ξ) ∩ ε

−1 δ H̊1,q+1
γν (Ξ)

)
,

with Ed
n = SdH

d
n and Eδn = SδH

δ
n. Then dHδ

n = dHn and δ εHd
n = δ εHn as well as

|Ed
n|H1,q−1(Ξ)

≤ c |Hd
n|L2,q(Ξ) ≤ c |Hn|L2,q

ε (Ξ),

|Eδn|H1,q+1(Ξ)
≤ c |Hδ

n|L2,q(Ξ) ≤ c |Hn|L2,q
ε (Ξ).

By Rellich’s selection theorem and without loss of generality (Ed
n) and (Eδn) converge in L

2,q−1(Ξ) and

L
2,q+1(Ξ), respectively. Moreover,

|Hd
n −H

d
m|

2
L
2,q
ε (Ξ)

= 〈Hd
n −H

d
m, d(E

d
n − E

d
m)〉

L
2,q
ε (Ξ)

= −〈δ ε(Hd
n −H

d
m), Ed

n − E
d
m〉L2,q−1(Ξ) ≤ c |E

d
n − E

d
m|L2,q−1(Ξ),

|Hδ
n −H

δ
m|

2
L
2,q
ε (Ξ)

= 〈Hδ
n −H

δ
m, ε

−1 δ(Eδn − E
δ
m)〉

L
2,q
ε (Ξ)

= −〈d(Hδ
n −H

δ
m), Eδn − E

δ
m〉L2,q+1(Ξ) ≤ c |E

δ
n − E

δ
m|L2,q+1(Ξ).

Thus (Hd
n) and (Hδ

n) converge in L
2,q
ε (Ξ) and altogether (Hn) converges in L

2,q
ε (Ξ) as well. �

Remark 4.3. The use of Helmholtz decompositions and regular potentials in the proof of Lemma 4.2
demonstrates the main idea behind an elegant proof of a compact embedding. This general idea carries
over to proofs of compact embeddings related to other kinds of Hilbert complexes as well, arising, e.g., in
elasticity, general relativity, or biharmonic problems, see for example [21].



12 SEBASTIAN BAUER, DIRK PAULY, AND MICHAEL SCHOMBURG

4.2. The Compact Embedding for Weak Lipschitz Domains. The aim of this section is to transfer
Lemma 4.2 to arbitrary weak Lipschitz pairs (Ω,Γτ ). To this end we will employ a technical lemma, whose
proof is sketched in [23, Section 3] and [30, Remark 2]. We give a detailed proof in the appendix. Let

us consider the following situation: Let Θ, Θ̃ be two bounded domains in RN with boundaries Υ := ∂Θ,

Υ̃ := ∂ Θ̃ and let Υ0 ⊂ Υ be relatively open. Moreover, let

φ : Θ→ Θ̃, ψ := φ−1 : Θ̃→ Θ

be Lipschitz diffeomorphisms, this is, φ ∈ C
0,1(Θ, Θ̃) and ψ = φ−1 ∈ C

0,1(Θ̃,Θ). Then Θ̃ = φ(Θ),

Υ̃ = φ(Υ) and we define Υ̃0 := φ(Υ0).

Lemma 4.4 (pull-back lemma for Lipschitz transformations). Let E ∈ D̊
q
Υ0

(Θ) resp. D̊
q
Υ0

(Θ) and

H ∈ ε−1∆̊q
Υ0

(Θ) resp. ε−1∆̊q
Υ0

(Θ) for an admissible transformation ε on L
2,q(Θ). Then

ψ∗E ∈ D̊
q

Υ̃0

(Θ̃) resp. D̊
q

Υ̃0

(Θ̃) and dψ∗E = ψ∗ dE,

ψ∗H ∈ µ−1∆̊q

Υ̃0

(Θ̃) resp. µ−1∆̊q

Υ̃0

(Θ̃) and δ µψ∗H = ± ⋆ dψ∗ ⋆ εH = ± ⋆ ψ∗ ⋆ δ εH,

where µ := (−1)qN−1⋆ψ∗⋆εφ∗ is an admissible transformation. Moreover, there exists c > 0, independent
of E and H, such that

|ψ∗E|
Dq(Θ̃)

≤ c|E|
Dq(Θ)

, |ψ∗H |
µ−1∆q(Θ̃)

≤ c|H |
ε−1∆q(Θ)

.

Let (Ω,Γτ ) be a bounded weak Lipschitz pair as introduced in Definitions 2.3 and 2.5. We adjust
Lemma 4.4 to our situation: Let U1, . . . , UK be an open covering of Γ according to Definitions 2.3 and

2.5 and set U0 := Ω. Therefore U0, . . . , UK is an open covering of Ω. Moreover let χk ∈ C̊
∞(Uk),

k ∈ {0, . . . ,K}, be a partition of unity subordinate to the open covering U0, . . . , UK . Now suppose
k ∈ {1, . . . ,K}. We define

Ωk := Uk ∩ Ω, Γk := Uk ∩ Γ, Γτ,k := Uk ∩ Γτ , Γν,k := Uk ∩ Γν ,

Γ̂k := ∂ Ωk, Σk := Γ̂k \ Γ, Γ̂τ,k := int(Γτ,k ∪ Σk), Γ̂ν,k := int(Γν,k ∪ Σk),

σ := γ \B0, γ̂τ := int(γτ ∪ σ), γ̂ν := int(γν ∪ σ).

Lemma 4.4 will from now on be used with

Θ := Ωk, Θ̃ := Ξ, φ := φk : Ωk → Ξ, ψ := ψk : Ξ→ Ωk

and with one of the following cases

Υ0 := Γτ,k, Υ0 := Γ̂τ,k, Υ0 := Γν,k, Υ0 := Γ̂ν,k.

Then Υ = Γ̂k and Υ̃ = φk(Γ̂k) = γ as well as (depending on the respective case)

Υ̃0 = φk(Γτ,k) = γτ , Υ̃0 = φk(Γ̂τ,k) = γ̂τ , γτ ∈ {∅, B0, B0,−}, γν = γ \ γτ ,

Υ̃0 = φk(Γν,k) = γν , Υ̃0 = φk(Γ̂ν,k) = γ̂ν , γν ∈ {∅, B0, B0,+}, γτ = γ \ γν .

Remark 4.5. Lemmas 3.3, 3.4, 3.5, 4.1, 4.2 hold for γν = B0,− without any (substantial) modification
as well.

It is straightforward to show the following:

Lemma 4.6 (localization). Let (Ω,Γτ ) be a bounded weak Lipschitz pair. Then for E ∈ D̊
q
Γτ
(Ω), respec-

tively, E ∈ D̊
q
Γτ
(Ω) and H ∈ ∆̊q

Γν
(Ω), respectively, H ∈ ∆̊q

Γν
(Ω) we have for k ∈ {1, . . . ,K}

E ∈ D̊
q
Γτ,k

(Ωk), χkE ∈ D̊
q

Γ̂τ,k

(Ωk), H ∈ ∆̊q
Γν,k

(Ωk), χkH ∈ ∆̊q

Γ̂ν.k

(Ωk),

E ∈ D̊
q
Γτ,k

(Ωk), χkE ∈ D̊
q

Γ̂τ,k

(Ωk), H ∈ ∆̊q
Γν,k

(Ωk), χkH ∈ ∆̊q

Γ̂ν.k

(Ωk).

Theorem 4.7 (weak and strong boundary conditions coincide). Let (Ω,Γτ ) be a bounded weak Lipschitz

pair. Then D̊
q
Γτ
(Ω) = D̊

q
Γτ
(Ω) and ∆̊q

Γν
(Ω) = ∆̊q

Γν
(Ω).

Proof. Suppose E ∈ D̊
q
Γτ
(Ω). Then χ0E ∈ D̊

q(Ω) ⊂ D̊
q
Γτ
(Ω) by mollification. Let k ∈ {1, . . . ,K}. Then

χkE ∈ D̊
q

Γ̂τ,k

(Ωk) by Lemma 4.6. Lemma 4.4, Lemma 3.5 (with γν := γτ ) and Remark 4.5 yield

ψ∗
k(χkE) ∈ D̊

q
γ̂τ
(Ξ) = D̊

q
γ̂τ
(Ξ), γ̂τ = φk(Γ̂τ,k), γτ ∈ {∅, B0, B0,−}.
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Then χkE = χkφ
∗
kψ

∗
kE ∈ D̊

q

Γ̂τ,k

(Ωk) ⊂ D̊
q
Γτ
(Ω) by Lemma 4.4. Hence we see E =

∑
k χkE ∈ D̊

q
Γτ
(Ω).

∆̊q
Γν
(Ω) = ∆̊q

Γν
(Ω) follows analogously or by Hodge-⋆-duality. �

Now the compact embedding for bounded weak Lipschitz pairs (Ω,Γτ ) can be proved.

Theorem 4.8 (Weck’s selection theorem). Let (Ω,Γτ ) be a bounded weak Lipschitz pair and let ε be an

admissible transformation on L
2,q(Ω). Then the embedding

D̊
q
Γτ
(Ω) ∩ ε−1∆̊q

Γν
(Ω) →֒ L

2,q
ε (Ω)

is compact.

Proof. Suppose (En) is a bounded sequence in D̊
q
Γτ
(Ω) ∩ ε−1∆̊q

Γν
(Ω). Then by mollification

E0,n := χ0En ∈ D̊
q(Ω) ∩ ε−1∆̊q(Ω)

and E0,n even has compact support in Ω. By classical results, see [27, 28, 23], (E0,n) contains a subse-

quence, again denoted by (E0,n), converging in L
2,q
ε (Ω). Let k ∈ {1, . . . ,K}. By Lemma 4.6

Ek,n := χkEn ∈ D̊
q

Γ̂τ,k

(Ωk), εEk,n ∈ ∆̊q

Γ̂ν,k

(Ωk),

and the sequence (Ek,n) is bounded in D̊
q

Γ̂τ,k

(Ωk)∩ ε−1∆̊q

Γ̂ν,k

(Ωk) by the product rule. By Lemma 4.4 we

have ψ∗
kEk,n ∈ D̊

q
γ̂τ
(Ξ) and

|ψ∗
kEk,n|Dq(Ξ)

≤ c|Ek,n|Dq(Ωk)
,

showing that (ψ∗
kEk,n) is bounded in D̊

q
γ̂τ
(Ξ). Analogously, (ψ∗

kEk,n) ⊂ µ−1
k ∆̊q

γ̂ν
(Ξ) is bounded in

µ−1
k ∆̊q

γ̂ν
(Ξ) with the admissible transformation µk := (−1)qN−1 ⋆ ψ∗

k ⋆ εφ
∗
k. Thus (ψ

∗
kEk,n) is bounded in

D̊
q
γ̂τ
(Ξ) ∩ µ−1

k ∆̊q
γ̂ν
(Ξ) ⊂ D̊

q
γ̂τ
(Ξ) ∩ µ−1

k ∆̊q
γν (Ξ), γν ∈ {∅, B0, B0,+}, γ̂τ = γ \ γν .

Thus, by Lemma 4.2 and without loss of generality, (ψ∗
kEk,n) is a Cauchy sequence in L

2,q(Ξ). Now

Ek,n = φ∗kψ
∗
kEk,n ∈ L

2,q(Ωk)

and Lemma 4.4 yields

|Ek,n − Ek,m|L2,q(Ωk) ≤ c|ψ
∗
kEk,n − ψ

∗
kEk,m|L2,q(Ξ).

Hence (Ek,n) is a Cauchy sequence in L
2,q(Ωk) and so in L

2,q
ε (Ω) for their extensions by zero to Ω. Finally,

extracting convergent subsequences for k = 1, . . . ,K, we see that

(En) =
( K∑

k=0

χkEn
)
=

( K∑

k=0

Ek,n
)

is a Cauchy sequence in L
2,q
ε (Ω). �

5. Applications

From now on, let Ω ⊂ RN be a bounded domain and let (Ω,Γτ ) be a weak Lipschitz pair as well as

ε : L2,q(Ω)→ L
2,q(Ω) be admissible. Then by Theorem 4.8 the embedding

D̊
q
Γτ
(Ω) ∩ ε−1∆̊q

Γν
(Ω) →֒ L

2,q(Ω)(9)

is compact. The results of this section immediately follow in the framework of a general functional
analytic toolbox, see [20, 19, 21]. For details, see also the proofs in [1] for the classical case of vector
analysis.
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5.1. The Maxwell Estimate. A first consequence of (9) is that the space of so-called “harmonic”
Dirichlet-Neumann forms

Hqε(Ω) := D̊
q
Γτ ,0

(Ω) ∩ ε−1∆̊q
Γν ,0

(Ω)

is finite-dimensional, as the unit ball in Hqε(Ω) is compact by (9). By a standard indirect argument, (9)
immediately implies the so-called Maxwell estimate:

Theorem 5.1 (Maxwell estimate). There is cm > 0, such that for all E ∈ D̊
q
Γτ
(Ω)∩ε−1∆̊q

Γν
(Ω)∩Hqε(Ω)

⊥ε

|E|
L
2,q
ε (Ω) ≤ cm

(
| dE|2

L2,q+1(Ω) + | δ εE|
2
L2,q−1(Ω)

)1/2
.

Here we denote by ⊥ε orthogonality with respect to the L
2,q
ε (Ω)-inner product.

5.2. Helmholtz Decompositions. Applying the projection theorem to the densely defined and closed
(unbounded) linear operators

dq−1
τ : D̊q−1

Γτ
(Ω) ⊂ L

2,q−1(Ω)→ L
2,q
ε (Ω) ; E 7→ dE

with (Hilbert space) adjoint (see Theorem 4.7)

− δqν ε := (dq−1
τ )∗ : ε−1∆̊q

Γν
(Ω) ⊂ L

2,q
ε (Ω)→ L

2,q−1(Ω) ; H 7→ − δ εH

and
−ε−1 δq+1

ν : ε−1∆̊q+1
Γν

(Ω) ⊂ L
2,q+1(Ω)→ L

2,q
ε (Ω) ; H 7→ −ε−1 δ H

with adjoint (see Theorem 4.7)

dqτ := (−ε−1 δq+1
ν )∗ : D̊qΓτ

(Ω) ⊂ L
2,q
ε (Ω)→ L

2,q+1(Ω) ; E 7→ dE

we obtain the Helmholtz decompositions

L
2,q
ε (Ω) = d D̊q−1

Γτ
(Ω)⊕ε ε

−1∆̊q
Γν ,0

(Ω),(10)

L
2,q
ε (Ω) = D̊

q
Γτ ,0

(Ω)⊕ε ε−1 δ ∆̊q+1
Γν

(Ω).(11)

Therefore, D̊qΓτ ,0
(Ω) = d D̊q−1

Γτ
(Ω)⊕ε H

q
ε(Ω) and, altogether, we get the refined Helmholtz decomposition

L
2,q
ε (Ω) = d D̊q−1

Γτ
(Ω)⊕ε H

q
ε(Ω)⊕ε ε

−1 δ ∆̊q+1
Γν

(Ω).(12)

Theorem 5.2 (Helmholtz decompositions). The orthonormal decompositions

L
2,q
ε (Ω) = d D̊q−1

Γτ
(Ω)⊕ε ε

−1∆̊q
Γν ,0

(Ω)

= D̊
q
Γτ ,0

(Ω)⊕ε ε
−1 δ ∆̊q+1

Γν
(Ω)

= d D̊q−1
Γτ

(Ω)⊕ε H
q
ε(Ω)⊕ε ε

−1 δ ∆̊q+1
Γν

(Ω)

hold. Furthermore

d D̊qΓτ
(Ω) = d

(
D̊
q
Γτ
(Ω) ∩ ε−1 δ ∆̊q+1

Γν
(Ω)

)
= d

(
D̊
q
Γτ
(Ω) ∩ ε−1∆̊q

Γν ,0
(Ω) ∩Hqε(Ω)

⊥ε
)
,

δ ∆̊q
Γν
(Ω) = δ

(
∆̊q

Γν
(Ω) ∩ ε d D̊q−1

Γτ
(Ω)

)
= δ

(
∆̊q

Γν
(Ω) ∩ ε

(
D̊
q
Γτ ,0

(Ω) ∩Hqε(Ω)
⊥ε

))

and

d D̊q−1
Γτ

(Ω) = D̊
q
Γτ ,0

(Ω) ∩Hqε(Ω)
⊥ε , δ ∆̊q+1

Γν
(Ω) = ∆̊q

Γν ,0
(Ω) ∩Hqε(Ω)

⊥,

D̊
q
Γτ ,0

(Ω) = d D̊q−1
Γτ

(Ω)⊕ε H
q
ε(Ω), ∆̊q

Γν ,0
(Ω) = δ ∆̊q+1

Γν
(Ω)⊕ε−1 εHqε(Ω).

The ranges d D̊q−1
Γτ

(Ω) and δ ∆̊q+1
Γν

(Ω) are closed subspaces of L2,qε (Ω). Moreover, the d- resp. δ-potentials

are uniquely determined in D̊
q
Γτ
(Ω) ∩ ε−1∆̊q

Γν ,0
(Ω) ∩ Hqε(Ω)

⊥ε and ∆̊q
Γν
(Ω) ∩ ε

(
D̊
q
Γτ ,0

(Ω) ∩ Hqε(Ω)
⊥ε

)
,

respectively, and depend continuously on their respective images.

Proof. For ε = id (10) and (11) yield

∆̊q
Γν
(Ω) =

(
d D̊q−1

Γτ
(Ω) ∩ ∆̊q

Γν
(Ω)

)
⊕ ∆̊q

Γν ,0
(Ω),

D̊
q
Γτ
(Ω) = D̊

q
Γτ ,0

(Ω)⊕
(
D̊
q
Γτ
(Ω) ∩ δ ∆̊q+1

Γν
(Ω)

)

and thus with (10), (11), and (12)

δ ∆̊q
Γν
(Ω) = δ

(
∆̊q

Γν
(Ω) ∩ d D̊q−1

Γτ
(Ω)

)
= δ

(
D̊
q
Γτ ,0

(Ω) ∩ ∆̊q
Γν
(Ω) ∩Hq(Ω)⊥

)
,
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d D̊qΓτ
(Ω) = d

(
D̊
q
Γτ
(Ω) ∩ δ ∆̊q+1

Γν
(Ω)

)
= d

(
D̊
q
Γτ
(Ω) ∩ ∆̊q

Γν ,0
(Ω) ∩Hq(Ω)⊥

)
.

Now Theorem 5.1 implies the closedness of the ranges and the continuity of the potentials. The other
assertions follow immediately. �

Corollary 5.3 (refined Helmholtz decompositions). It holds

D̊
q
Γτ
(Ω) = d D̊q−1

Γτ
(Ω)⊕ε

(
D̊
q
Γτ
(Ω) ∩ ε−1∆̊q

Γν ,0
(Ω)

)

= D̊
q
Γτ ,0

(Ω)⊕ε
(
D̊
q
Γτ
(Ω) ∩ ε−1 δ ∆̊q+1

Γν
(Ω)

)

= d D̊q−1
Γτ

(Ω)⊕ε H
q
ε(Ω)⊕ε

(
D̊
q
Γτ
(Ω) ∩ ε−1 δ ∆̊q+1

Γν
(Ω)

)
,

ε−1∆̊q
Γν
(Ω) =

(
d D̊q−1

Γτ
(Ω) ∩ ε−1∆̊q

Γν
(Ω)

)
⊕ε ε

−1∆̊q
Γν ,0

(Ω)

=
(
D̊
q
Γτ ,0

(Ω) ∩ ε−1∆̊q
Γν
(Ω)

)
⊕ε ε

−1 δ ∆̊q+1
Γν

(Ω)

=
(
d D̊q−1

Γτ
(Ω) ∩ ε−1∆̊q

Γν
(Ω)

)
⊕ε H

q
ε(Ω)⊕ε ε

−1 δ ∆̊q+1
Γν

(Ω).

5.3. Static Solution Theory. As a further application we turn to the boundary value problem of
generalized electro- and magnetostatics with mixed boundary values: Let F ∈ L

2,q+1(Ω), G ∈ L
2,q−1(Ω),

Eτ , Eν ∈ L
2,q
ε (Ω), and let ε be admissible. The problem is to find E ∈ D

q(Ω) ∩ ε−1∆q(Ω) such that

dE = F,

δ εE = G,

E − Eτ ∈ D̊
q
Γτ
(Ω),

ε(E − Eν) ∈ ∆̊q
Γν
(Ω).

(13)

For uniqueness, we require the additional conditions

〈εE,Dℓ〉L2,q
ε (Ω) = αℓ ∈ R, ℓ = 1, . . . , d,(14)

where d is the dimension and {Dℓ} an ε-orthonormal basis of Hqε(Ω). The boundary values on Γτ and
Γν , respectively, are realised by the given volume forms Eτ and Eν , respectively.

Theorem 5.4 (static solution theory). (13) admits a solution, if and only if

Eτ ∈ D
q(Ω), Eν ∈ ε

−1∆q(Ω),

and

F − dEτ ⊥ ∆̊q+1
Γν ,0

(Ω), G− δ εEν ⊥ D̊
q−1
Γτ ,0

(Ω).(15)

The solution E ∈ D
q(Ω) ∩ ε−1∆q(Ω) can be chosen in a way such that condition (14) with α ∈ Rd is

fulfilled, which then uniquely determines the solution. Furthermore, the solution depends linearly and
continuously on the data.

Note that (15) is equivalent to

F − dEτ ∈ d D̊qΓτ
(Ω), G− δ εEν ∈ δ ∆̊

q
Γν
(Ω).

For homogeneous boundary data, i.e., Eτ = Eν = 0, the latter theorem immediately follows from
a functional analytic toolbox, see [20, 19, 21], which even states a sharper result: The linear static
Maxwell-operator

M : D̊
q
Γτ
(Ω) ∩ ε−1∆̊q

Γν
(Ω) −→ d D̊qΓτ

(Ω)× δ ∆̊q
Γν
(Ω)× Rd

E 7−→
(
dE, δ εE, (〈εE,Dℓ〉L2,q

ε (Ω))
d
ℓ=1

)

is a topological isomorphism. Its inverse M−1 maps not only continuously onto D̊
q
Γτ
(Ω) ∩ ε−1∆̊q

Γν
(Ω),

but also compactly into L
2,q
ε (Ω) by (9). For homogeneous kernel data, i.e., for

M0 : D̊
q
Γτ
(Ω) ∩ ε−1∆̊q

Γν
(Ω) ∩Hqε(Ω)

⊥ε −→ d D̊qΓτ
(Ω)× δ ∆̊q

Γν
(Ω)

E 7−→ (dE, δ εE)
,

we have ||M−1
0 || ≤ (c2

m
+ 1)1/2. For details and a proof of Theorem 5.4 in the classical setting of vector

analysis see [1].
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6. Remarks on the Transformations

Let us mention some observations on the transformations, in particular that some results are indepen-
dent of the admissible transformation ε. For this, let Ω ⊂ RN be an open set, let ε and µ be admissible
transformations on L

2,q(Ω), and let us recall the arguments leading to (10) in Section 5.2 for the densely
defined and closed (unbounded) linear operator

dq−1
τ : D̊q−1

Γτ
(Ω) ⊂ L

2,q−1(Ω)→ L
2,q
µ (Ω) ; E 7→ dE.

If Theorem 4.7 (weak and strong boundary conditions coincide) is not available, its adjoint is given by

− δqν µ := (dq−1
τ )∗ : µ−1∆̊q

Γν
(Ω) ⊂ L

2,q
µ (Ω)→ L

2,q−1(Ω) ; H 7→ − δ µH

yielding instead of (10) the Helmholtz (and refined Helmholtz) decompositions

L
2,q
µ (Ω) = d D̊q−1

Γτ
(Ω)⊕µ µ

−1∆̊q
Γν ,0

(Ω),(16)

D̊
q
Γτ
(Ω) = d D̊q−1

Γτ
(Ω)⊕µ

(
D̊
q
Γτ
(Ω) ∩ µ−1∆̊q

Γν ,0
(Ω)

)
,(17)

µ−1∆̊q
Γν
(Ω) =

(
d D̊q−1

Γτ
(Ω) ∩ µ−1∆̊q

Γν
(Ω)

)
⊕µ µ

−1∆̊q
Γν ,0

(Ω).(18)

Theorem 6.1 (independence of the transformation). Let Ω ⊂ RN be an open set and let ε be an
admissible transformation on L

2,q(Ω).

(i) Weck’s selection theorem is independent of the transformation ε, i.e., the compactness of the
embedding in Theorem 4.8 does not depend on ε.

(ii) The dimension of Hqε(Ω) does not depend on ε, in particular dimHqε(Ω) = H
q(Ω).

(iii) If Weck’s selection theorem (Theorem 4.8) holds, then the dimension of Hqε(Ω) is finite.

Proof. (iii) has already been shown in the beginning of Section 5.1.
To show (i), let us assume that the embedding

D̊
q
Γτ
(Ω) ∩ µ−1∆̊q

Γν
(Ω) →֒ L

2,q
µ (Ω)(19)

is compact. Moreover, let (En) be a bounded sequence in D̊
q
Γτ
(Ω) ∩ ε−1∆̊q

Γν
(Ω). By (17) we have

D̊
q
Γτ
(Ω) ∋ En = Ed,n + E0,n ∈ d D̊q−1

Γτ
(Ω)⊕µ

(
D̊
q
Γτ
(Ω) ∩ µ−1∆̊q

Γν ,0
(Ω)

)
(20)

with dEn = dE0,n and |Ed,n|L2,q
µ (Ω) , |E0,n|L2,q

µ (Ω) ≤ |En|L2,q
µ (Ω). Hence (E0,n) is a bounded sequence in

D̊
q
Γτ
(Ω) ∩ µ−1∆̊q

Γν ,0
(Ω) and therefore contains by (19) a L

2,q
µ (Ω)-converging subsequence, again denoted

by (E0,n). By (18) we get

µ−1∆̊q
Γν
(Ω) ∋ µ−1εEn = Hd,n +H0,n ∈

(
d D̊q−1

Γτ
(Ω) ∩ µ−1∆̊q

Γν
(Ω)

)
⊕µ µ

−1∆̊q
Γν ,0

(Ω)

with δ εEn = δ µHd,n and |Hd,n|L2,qµ (Ω) , |H0,n|L2,qµ (Ω) ≤ |µ
−1εEn|L2,q

µ (Ω). Therefore (Hd,n) is a bounded

sequence in D̊
q
Γτ ,0

(Ω) ∩ µ−1∆̊q
Γν
(Ω) and hence contains by (19) a L

2,q
µ (Ω)-converging subsequence, again

denoted by (Hd,n). Then by orthogonality, i.e., d D̊q−1
Γτ

(Ω)⊥ ∆̊q
Γν ,0

(Ω),

〈En − Em, En − Em〉L2,q
ε (Ω)

= 〈ε(En − Em), Ed,n − Ed,m〉L2,q(Ω) + 〈ε(En − Em), E0,n − E0,m〉L2,q(Ω)

= 〈µ(Hd,n −Hd,m), Ed,n − Ed,m〉L2,q(Ω) + 〈µµ
−1ε(En − Em), E0,n − E0,m〉L2,q(Ω)

≤ c
(
|Hd,n −Hd,m|L2,q

µ (Ω) + |E0,n − E0,m|L2,q
µ (Ω)

)
,

which shows that (En) is a Cauchy sequence in L
2,q
ε (Ω).

To show (ii), we obtain by (17)

D̊
q
Γτ ,0

(Ω) = d D̊q−1
Γτ

(Ω)⊕µ H
q
µ(Ω), Hqµ(Ω) = D̊

q
Γτ ,0

(Ω) ∩ µ−1∆̊q
Γν ,0

(Ω),(21)

and denote the orthonormal projector on the second component by π. Then

π̂ : Hqε(Ω) −→ Hqµ(Ω)
H 7−→ πH

is injective, as π̂E = 0 implies E ∈ d D̊q−1
Γτ

(Ω) ∩ Hqε(Ω) = {0}, and hence dimHqε(Ω) ≤ dimHqµ(Ω). By
symmetry we obtain dimHqε(Ω) = dimHqµ(Ω), completing the proof. �
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7. General Regular Potentials and Decompositions

A closer inspection of the proof of Lemma 3.3 shows that Lemma 3.3 and Lemma 3.4 hold for more
general situations.

Definition 7.1 (extendable domain). Let Ω ⊂ RN and let (Ω,Γν) be a bounded strong Lipschitz pair.
Moreover, let Ω and Γν be topologically trivial (then so is Γτ ). The pair (Ω,Γν) is called “extendable”,

if Ω can be extended through Γν by zero to Ω̂, resulting in a topologically trivial strong Lipschitz domain

Ω̃ = int(Ω ∪ Ω̂).

Lemma 7.2 (regular potentials and decompositions for extendable domains). Let Ω ⊂ RN and let (Ω,Γν)
be a bounded, topologically trivial, and extendable strong Lipschitz pair.

(i) There exists a continuous linear operator

Sqd : D̊q
Γν ,0

(Ω)→ H
1,q−1(RN ) ∩ H̊

1,q−1
Γν

(Ω),

such that dSqd = id |
D̊

q

Γν ,0
(Ω), i.e., for all H ∈ D̊

q
Γν ,0

(Ω)

dSqdH = H in Ω.

Especially

D̊
q
Γν ,0

(Ω) = D̊
q
Γν ,0

(Ω) = dSqdD̊
q−1
Γν ,0

(Ω) = d H̊1,q−1
Γν

(Ω) = d D̊q−1
Γν

(Ω) = d D̊q−1
Γν

(Ω)

and the regular H̊
1,q−1
Γν

(Ω)-potential depends continuously on the data. In particular, these spaces

are closed subspaces of L2,q(Ω) and Sqd is a right inverse to d. Without loss of generality, Sd maps
to forms with a fixed compact support in RN .

(ii) The regular decompositions

D̊
q
Γν
(Ω) = D̊

q
Γν
(Ω) = H̊

1,q
Γν

(Ω) + d H̊1,q−1
Γν

(Ω)

= Sq+1
d d D̊qΓν

(Ω)∔ dSqd(1− S
q+1
d d)D̊qΓν

(Ω)

= Sq+1
d d D̊qΓν

(Ω)∔ D̊
q
Γν ,0

(Ω)

hold with linear and continuous regular decomposition resp. potential operators, where ∔ denotes

the direct sum. More precisely, Sq+1
d d+dSqd(1− S

q+1
d d) = id |

D̊
q

Γν
(Ω), i.e., for all E ∈ D̊

q
Γν
(Ω)

E = Sq+1
d dE + dSqd(1− S

q+1
d d)E ∈ H̊

1,q
Γν

(Ω) + d H̊1,q−1
Γν

(Ω)

with the linear and continuous regular potential operators

Sq+1
d d : D̊qΓν

(Ω)→ H̊
1,q
Γν

(Ω),

Sqd(1− S
q+1
d d) : D̊qΓν

(Ω)→ H̊
1,q−1
Γν

(Ω).

(iii) Hodge-⋆-duality yields the corresponding results for the co-derivative. In particular, there exists
a continuous linear δ-right inverse operator

Sqδ : ∆̊q
Γν ,0

(Ω)→ H
1,q+1(RN ) ∩ H̊

1,q+1
Γν

(Ω),

i.e., δ Sqδ = id|
∆̊

q
Γν ,0

(Ω). Moreover, ∆̊q
Γν ,0

(Ω) = ∆̊q
Γν ,0

(Ω) = δ H̊
1,q+1
Γν

(Ω) and the regular H̊1,q+1
Γν

(Ω)-

potential depends continuously on the data. Furthermore, the regular decompositions

∆̊q
Γν
(Ω) = ∆̊q

Γν
(Ω) = H̊

1,q
Γν

(Ω) + δ H̊
1,q+1
Γν

(Ω)

= Sq−1
δ δ ∆̊q

Γν
(Ω)∔ δ Sqδ (1− S

q−1
δ δ)∆̊q

Γν
(Ω)

hold with the linear and continuous regular potential operators

Sq−1
δ δ : ∆̊q

Γν
(Ω)→ H̊

1,q
Γν

(Ω),

Sqδ (1− S
q−1
δ δ) : ∆̊q

Γν
(Ω)→ H̊

1,q+1
Γν

(Ω),

and Sq−1
δ δ+ δ Sqδ (1− S

q−1
δ δ) = id |∆̊q

Γν
(Ω).
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Proof. For (i) we follow the proof of Lemma 3.3. To show (ii), we first note D̊
q
Γν
(Ω) = D̊

q
Γν
(Ω) by

Theorem 4.7. Let E ∈ D̊
q
Γν
(Ω). Then dE ∈ D̊

q+1
Γν ,0

(Ω) and by (i) we see Sq+1
d dE ∈ H̊

1,q
Γν

(Ω) with

d(Sq+1
d dE) = dE. Thus E − Sq+1

d dE ∈ D̊
q
Γν ,0

(Ω) = d H̊1,q−1
Γν

(Ω) and Sqd(E − S
q+1
d dE) ∈ H̊

1,q−1
Γν

(Ω)

with dSqd(E − S
q+1
d dE) = E − Sq+1

d dE by (i), yielding

E = Sq+1
d dE + dSqd(1− S

q+1
d d)E ∈ H̊

1,q
Γν

(Ω) + d H̊1,q−1
Γν

(Ω),

which proves the regular decompositions and also the assertions about the regular potential operators.

To show the directness of the sums, let H = Sq+1
d dE ∈ D̊

q
Γν ,0

(Ω) with some E ∈ D̊
q
Γν
(Ω). Then

0 = dH = dE as dE ∈ D̊
q+1
Γν ,0

(Ω) and thus H = 0. �

Remark 7.3 (trivial Dirichlet-Neumann forms for extendable domains). Let Ω ⊂ RN and let (Ω,Γτ ) be
a bounded, topologically trivial, and extendable strong Lipschitz pair. Then the Dirichlet-Neumann forms
are trivial, i.e., Hqε(Ω) = {0}, which follows immediately by Theorem 5.2 and, interchanging Γτ and Γν ,

Lemma 7.2 (i) as d D̊q−1
Γτ

(Ω) = D̊
q
Γτ ,0

(Ω) = d D̊q−1
Γτ

(Ω)⊕ε H
q
ε(Ω).

Now, assume (Ω,Γτ ) to be a bounded strong Lipschitz pair and let us recall the partition of unity

from Section 4.2. After some possible adjustments, Uk and χk can be chosen such that (Ωk, Γ̂ν,k) is a
bounded, topologically trivial, and extendable strong Lipschitz pair for all k = 0, . . . ,K. Maybe U0 has

to be replaced by more neighbourhoods U−L, . . . , U0 to ensure that all pairs (Ωk, Γ̂ν,k), k = −L, . . . ,K,
are topologically trivial. Note that for all “inner” indices k = −L, . . . , 0 we have Ωk = Uk as well as

Γ̂ν,k = Γ̂k = ∂ Ωk = ∂ Uk. Then for E ∈ D̊
q
Γν
(Ω) we have χkE ∈ D̊

q

Γ̂ν,k

(Ωk) for all k by Lemma 4.6.

Lemma 7.2 (ii) shows the decomposition

χkE = Ek + dHk ∈ H̊
1,q

Γ̂ν,k

(Ωk) + d H̊1,q−1

Γ̂ν,k

(Ωk)

with potentials depending continuously on χkE. Extending Ek and Hk by zero to Ω yields Ẽk ∈ H̊
1,q
Γν

(Ω)

and H̃k ∈ H̊
1,q−1
Γν

(Ω) and

E =
∑

k

χkE =
∑

k

Ẽk + d
∑

k

H̃k ∈ H̊
1,q
Γν

(Ω) + d H̊1,q−1
Γν

(Ω).

As all operations have been linear and continuous we obtain the regular decomposition and potential
representation

D̊
q
Γν
(Ω) = H̊

1,q
Γν

(Ω) + d H̊1,q−1
Γν

(Ω), d D̊qΓν
(Ω) = d H̊1,q

Γν
(Ω)(22)

with linear and continuous potential operators

Pqd : D̊qΓν
(Ω)→ H̊

1,q
Γν

(Ω), Sq+1
d : d D̊qΓν

(Ω)→ H̊
1,q
Γν

(Ω),

Qqd : D̊qΓν
(Ω)→ H̊

1,q−1
Γν

(Ω).

Note that by Theorem 5.2

d D̊qΓν
(Ω) = D̊

q+1
Γν ,0

(Ω) ∩Hq+1
ε (Ω)⊥ε , D̊

q+1
Γν ,0

(Ω) = d D̊qΓν
(Ω)⊕ε H

q+1
ε (Ω),(23)

where here Γτ and Γν are interchanged in the definition of

Hq+1
ε (Ω) := D̊

q+1
Γν ,0

(Ω) ∩ ε−1∆̊q+1
Γτ ,0

(Ω).

Let us summarise the results related to (22).

Theorem 7.4 (regular potentials and decompositions for d in strong Lipschitz domains). Let Ω ⊂ RN

and let (Ω,Γν) be a bounded strong Lipschitz pair.

(i) There exists a continuous linear operator

Sqd : d D̊q−1
Γν

(Ω)→ H̊
1,q−1
Γν

(Ω),

such that dSqd = id |d D̊
q−1

Γν
(Ω). Especially

d D̊q−1
Γν

(Ω) = d H̊1,q−1
Γν

(Ω)

and the regular H̊
1,q−1
Γν

(Ω)-potential depends continuously on the data. In particular, these spaces

are closed subspaces of L2,q(Ω) and Sqd is a right inverse to d.
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(ii) The regular decompositions

D̊
q
Γν
(Ω) = H̊

1,q
Γν

(Ω) + d H̊1,q−1
Γν

(Ω) D̊
q
Γν ,0

(Ω) = d H̊1,q−1
Γν

(Ω) +
(
H̊
1,q
Γν

(Ω) ∩ D̊
q
Γν ,0

(Ω)
)

= Sq+1
d d D̊qΓν

(Ω)∔ D̊
q
Γν ,0

(Ω), = d H̊1,q−1
Γν

(Ω)⊕Hq(Ω)

= d H̊1,q−1
Γν

(Ω)⊕ε H
q
ε(Ω)

hold with linear and continuous regular decomposition resp. potential operators, which can be
defined explicitly by the orthonormal Helmholtz projectors and the operators Sqd.

Proof. (i) and the first regular decomposition of (ii) together with the existence of the regular potential

operators are clear from the considerations leading to (22). Let E ∈ D̊
q
Γν
(Ω). As dSq+1

d dE = dE by (i),

we have E − Sq+1
d dE ∈ D̊

q
Γν ,0

(Ω), showing the second regular decomposition of (ii). As in the proof of

Lemma 7.2 the sum is direct. Finally, (i) and (23) complete the proof. �

Remark 7.5. Note that Hq(Ω) is a subspace of smooth forms, i.e.,

Hq(Ω) = D̊
q
Γν ,0

(Ω) ∩ ∆̊q
Γτ ,0

(Ω) ∩ C
∞,q(Ω).

Hodge-⋆-duality yields the corresponding results for the co-derivative.

Theorem 7.6 (regular potentials and decompositions for δ in strong Lipschitz domains). Let Ω ⊂ RN

and let (Ω,Γν) be a bounded strong Lipschitz pair.

(i) There exists a continuous linear operator

Sqδ : δ ∆̊q+1
Γν

(Ω)→ H̊
1,q+1
Γν

(Ω),

such that δ Sqδ = id |δ ∆̊q+1

Γν
(Ω). Especially

δ ∆̊q+1
Γν

(Ω) = δ H̊
1,q+1
Γν

(Ω)

and the regular H̊
1,q+1
Γν

(Ω)-potential depends continuously on the data. In particular, these spaces

are closed subspaces of L2,q(Ω) and Sqδ is a right inverse to δ.
(ii) The regular decompositions

∆̊q
Γν
(Ω) = H̊

1,q
Γν

(Ω) + δ H̊
1,q+1
Γν

(Ω) ∆̊q
Γν ,0

(Ω) = δ H̊
1,q+1
Γν

(Ω) +
(
H̊

1,q
Γν

(Ω) ∩ ∆̊q
Γν ,0

(Ω)
)

= Sq−1
δ δ ∆̊q

Γν
(Ω)∔ ∆̊q

Γν ,0
(Ω), = δ H̊

1,q+1
Γν

(Ω)⊕Hq(Ω)

= δ H̊
1,q+1
Γν

(Ω)⊕Hqε(Ω)

hold with linear and continuous regular decomposition resp. potential operators, which can be
defined explicitly by the orthonormal Helmholtz projectors and the operators Sqδ .

In the latter theorem for δ the Dirichlet-Neumann forms have again the usual boundary conditions

Hqε(Ω) = D̊
q
Γτ ,0

(Ω) ∩ ε−1∆̊q
Γν ,0

(Ω).

For the case of no or full boundary conditions, related results on regular potentials and regular de-
compositions are presented in [3].
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Appendix A. Proof of Lemma 4.4 (Pull-Back Lemma for Lipschitz Transformations)

We start out by proving the assertions for the exterior derivative.

A.1. Without Boundary Conditions. Let E =
∑

I EI dx
I ∈ D

q(Θ). We have to show ψ∗E ∈ D
q(Θ̃)

with dψ∗E = ψ∗ dE.

(i) Let us first consider Φ =
∑
I ΦI dx

I ∈ C
0,1,q(Θ), i.e., ΦI ∈ C

0,1(Θ) for all I. In the following we
denote by ·̃ the composition with ψ. We have

dψj =
∑

i

∂iψj dx
i, ψ∗Φ =

∑

I

Φ̃Iψ
∗ dxI =

∑

I

Φ̃I(dψi1) ∧ · · · ∧ (dψiq ),

dΦ =
∑

I,j

∂jΦI(d xj) ∧ (dxI).

By Rademacher’s theorem Φ̃I = ΦI ◦ ψ and ψj belong to C
0,1(Θ̃) ⊂ H

1(Θ̃) and the chain rule

holds, i.e., ∂iΦ̃I =
∑
j ∂̃jΦI∂iψj . As ψj ∈ H

1(Θ̃) we get dψj ∈ D
1
0(Θ̃) by

〈dψj , δ ϕ〉L2,1(Θ̃) = −〈ψj , δ δ ϕ〉L2,0(Θ̃) = 0

for all ϕ ∈ C̊
∞,2(Θ̃). Thus by definition we see

dψ∗Φ =
∑

I

(d Φ̃I) ∧ (dψi1) ∧ · · · ∧ (dψiq ) =
∑

I,i

∂iΦ̃I(dx
i) ∧ (dψi1) ∧ · · · ∧ (dψiq )

=
∑

I,i,j

∂̃jΦI∂iψj(dx
i) ∧ (dψi1) ∧ · · · ∧ (dψiq ) =

∑

I,j

∂̃jΦI(dψj) ∧ (dψi1) ∧ · · · ∧ (dψiq ).
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On the other hand it holds

ψ∗ dΦ =
∑

I,j

∂̃jΦI(ψ
∗ dxj) ∧ (ψ∗ dxI) =

∑

I,j

∂̃jΦI(dψj) ∧ (dψi1) ∧ · · · ∧ (dψiq ).

Therefore, ψ∗Φ ∈ D
q(Θ̃) and dψ∗Φ = ψ∗ dΦ.

(ii) For general E ∈ D
q(Θ) we pick Φ ∈ C̊

∞,q+1(Θ̃). Note suppΦ ⊂⊂ Θ̃ = φ(Θ). Replacing ψ by φ

in (i) we have φ∗ ⋆ Φ ∈ D
N−q−1(Θ) with dφ∗ ⋆Φ = φ∗ d ⋆Φ and, since φ∗ ⋆ Φ =

∑
I (̃⋆Φ)Iφ

∗ dxI

holds, suppφ∗ ⋆ Φ ⊂⊂ Θ. By standard mollification we obtain a sequence (Ψn) ⊂ C̊
∞,N−q−1(Θ)

with Ψn → φ∗ ⋆ Φ in D
N−q−1(Θ). Furthermore ⋆Ψn ∈ C̊

∞,q+1(Θ). Then

〈ψ∗E, δΦ〉
L2,q(Θ̃) =

∫

Θ̃

ψ∗E ∧ ⋆ δΦ = ±

∫

Θ̃

ψ∗E ∧ ψ∗φ∗ d ⋆Φ = ±

∫

Θ̃

ψ∗(E ∧ φ∗ d ⋆Φ)

= ±

∫

Θ

E ∧ φ∗ d ⋆Φ = ±

∫

Θ

E ∧ dφ∗ ⋆ Φ← ±

∫

Θ

E ∧ dΨn

= ±

∫

Θ

E ∧ ⋆ ⋆ d ⋆ ⋆Ψn = ±〈E, δ ⋆Ψn〉L2,q(Θ)

= ±〈dE, ⋆Ψn〉L2,q+1(Θ) → ±〈dE, ⋆φ
∗ ⋆ Φ〉L2,q+1(Θ) = ±

∫

Θ

dE ∧ φ∗ ⋆ Φ

= ±

∫

Θ̃

ψ∗(dE ∧ φ∗ ⋆Φ) = ±

∫

Θ̃

(ψ∗ dE) ∧ ⋆Φ = −〈ψ∗ dE,Φ〉
L2,q+1(Θ̃)

and hence ψ∗E ∈ D
q(Θ̃) with dψ∗E = ψ∗ dE.

(iii) Let E ∈ D
q(Θ). By (ii) we know ψ∗E ∈ D

q(Θ̃) with dψ∗E = ψ∗ dE. Hence

|ψ∗E|2
L2,q(Θ̃)

=

∫

Θ̃

ψ∗E ∧ ⋆ψ∗E =

∫

Θ

φ∗ψ∗E ∧ φ∗ ⋆ ψ∗E

= ±

∫

Θ

E ∧ ⋆(⋆φ∗ ⋆ ψ∗)E ≤ c|E|2
L2,q(Θ)

and

| dψ∗E|
L2,q+1(Θ̃) = |ψ

∗ dE|
L2,q+1(Θ̃) ≤ c| dE|L2,q+1(Θ).

A.2. With Strong Boundary Condition. Let E ∈ D̊
q
Υ0

(Θ) and (En) ⊂ C̊
∞,q
Υ0

(Θ) with En → E

in D
q(Θ). By Appendix A.1 (ii) we know ψ∗En, ψ

∗E ∈ D
q(Θ̃) with dψ∗En = ψ∗ dEn as well as

dψ∗E = ψ∗ dE. Furthermore, ψ∗En has compact support away from Υ̃0. By standard mollification we

see ψ∗En ∈ D̊
q

Υ̃0

(Θ̃). Moreover, by A.1 (iii) ψ∗En → ψ∗E in D
q(Θ̃). Therefore ψ∗E ∈ D̊

q

Υ̃0

(Θ̃) with

dψ∗E = ψ∗ dE.

A.3. With Weak Boundary Condition. Let E ∈ D̊
q
Υ0

(Θ) and Φ ∈ C̊
∞,q+1

Υ̃1

(Θ̃), where Υ1 = Υ \ Υ0.

By Appendix A.1 (ii) we again know ψ∗E ∈ D
q(Θ̃) with dψ∗E = ψ∗ dE. Moreover by Appendix A.2

φ∗ ⋆Φ ∈ D̊
N−q−1
Υ1

(Θ) and hence ⋆φ∗ ⋆Φ ∈ ∆̊q+1
Υ1

(Θ). We repeat the calculation from Appendix A.1 (ii) to
arrive at

〈ψ∗E, δΦ〉
L2,q(Θ̃) =

∫

Θ̃

ψ∗E ∧ ⋆ δΦ = ±〈E, ⋆φ∗ d ⋆Φ〉L2,q(Θ)

= ±〈E, ⋆ dφ∗ ⋆ Φ〉L2,q(Θ) = ±〈E, δ ⋆φ
∗ ⋆ Φ〉L2,q(Θ)

= ±〈dE, ⋆φ∗ ⋆ Φ〉L2,q+1(Θ) = −〈ψ
∗ dE,Φ〉

L2,q+1(Θ̃) = −〈dψ
∗E,Φ〉

L2,q+1(Θ̃)

and therefore ψ∗E ∈ D̊
q

Υ̃0

(Θ̃).

A.4. Assertions for the Co-Derivative. It holds by Appendix A.1 (ii)

εH ∈ ∆q(Θ) ⇔ ⋆εH ∈ D
N−q(Θ) ⇔ ψ∗ ⋆ εφ∗ψ∗H ∈ D

N−q(Θ̃) ⇔ µψ∗H ∈ ∆q(Θ̃).

Moreover, using Appendix A.1 (iii) µ is admissible since for all H ∈ L
2,q(Θ̃)

〈µH,H〉
L2,q(Θ̃) = ±〈⋆ψ

∗ ⋆ εφ∗H,H〉
L2,q(Θ̃) = ±〈ψ

∗ ⋆ εφ∗H, ⋆H〉
L2,N−q(Θ̃)

= ±

∫

Θ̃

ψ∗ ⋆ εφ∗H ∧H = ±

∫

Θ

⋆εφ∗H ∧ ⋆ ⋆ φ∗H



22 SEBASTIAN BAUER, DIRK PAULY, AND MICHAEL SCHOMBURG

= ±〈εφ∗H,φ∗H〉L2,q(Θ) ≥ c|φ
∗H |2

L2,q(Θ) ≥ c|H |
2
L2,q(Θ̃)

.

Furthermore

δ µψ∗H = ± ⋆ dψ∗ ⋆ εH = ± ⋆ ψ∗ ⋆ δ εH.

The remaining assertions now follow by Appendix A.1-A.3 and Hodge-⋆-duality.
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