WEAK EQUALS STRONG L^{2} REGULARITY FOR PARTIAL TANGENTIAL TRACES ON LIPSCHITZ DOMAINS

NATHANAEL SKREPEK © AND DIRK PAULY ©

Abstract

We investigate the boundary trace operators that naturally correspond to $\mathrm{H}(\operatorname{curl}, \Omega)$, namely the tangential and twisted tangential trace, where $\Omega \subseteq \mathbb{R}^{3}$. In particular we regard partial tangential traces, i.e., we look only on a subset Γ of the boundary $\partial \Omega$. We assume both Ω and Γ to be strongly Lipschitz. We define the space of all $\mathrm{H}(\operatorname{curl}, \Omega)$ fields that possess a L^{2} tangential trace in a weak sense and show that the set of all smooth fields is dense in that space, which is a generalization of [BBBCD97]. This is especially important for Maxwell's equation with mixed boundary condition as we answer the open problem by Weiss and Staffans in [WS13, Sec. 5] for strongly Lipschitz pairs.

1. Introduction

We will regard a bounded strongly Lipschitz domain $\Omega \subseteq \mathbb{R}^{3}$ and the Sobolev space that corresponds to the curl operator

$$
\mathrm{H}(\operatorname{curl}, \Omega)=\left\{f \in \mathrm{~L}^{2}(\Omega) \mid \operatorname{curl} f \in \mathrm{~L}^{2}(\Omega)\right\}
$$

and the "natural" boundary traces that are associated with the curl operator

$$
\pi_{\tau} f:=\nu \times\left. f\right|_{\partial \Omega} \times \nu \quad \text { and } \quad \gamma_{\tau} f:=\nu \times\left. f\right|_{\partial \Omega} \quad \text { for } \quad f \in \mathrm{C}^{\infty}\left(\mathbb{R}^{3}\right)
$$

where ν denotes the outer normal vector on the boundary of Ω. These boundary traces are called tangential trace and twisted tangential trace, respectively. They are motivated by the integration by parts formula

$$
\langle\operatorname{curl} f, g\rangle_{\mathrm{L}^{2}(\Omega)}-\langle f, \operatorname{curl} g\rangle_{\mathrm{L}^{2}(\Omega)}=\left\langle\gamma_{\tau} f, \pi_{\tau} g\right\rangle_{\mathrm{L}^{2}(\partial \Omega)} .
$$

We can even extend these boundary operators to $\mathrm{H}(\operatorname{curl}, \Omega)$ by introducing suitable boundary spaces, see e.g., [BCS02] for full boundary traces or [Skr21] for partial boundary traces. However, in this article we focus on those $f \in \mathrm{H}(\operatorname{curl}, \Omega)$ that have a meaningful $\mathrm{L}^{2}(\partial \Omega)$ (twisted) tangential trace. Hence, for $\Gamma \subseteq \partial \Omega$ we are interested in the following spaces

$$
\begin{aligned}
& \stackrel{\circ}{\mathrm{H}}_{\Gamma}(\operatorname{curl}, \Omega)=\left\{f \in \mathrm{H}(\operatorname{curl}, \Omega) \mid \pi_{\tau} f=0 \text { on } \Gamma\right\}, \\
& \hat{\mathrm{H}}_{\Gamma}(\operatorname{curl}, \Omega)=\left\{f \in \mathrm{H}(\operatorname{curl}, \Omega) \mid \pi_{\tau} f \text { is in } \mathrm{L}^{2}(\Gamma)\right\} .
\end{aligned}
$$

where we will later state precisely what we mean by $\pi_{\tau} f=0$ on Γ and $\pi_{\tau} f \in \mathrm{~L}^{2}(\Gamma)$. In particular we are interested in $\hat{\mathrm{H}}_{\Gamma}(\operatorname{curl}, \Omega)$. Similar to Sobolev spaces there are two approaches to $\pi_{\tau} f \in \mathrm{~L}^{2}(\Gamma)$: A weak approach by representation in an inner product and a strong approach by limits of regular functions. We use the weak approach as definition, see Definition 4.1. The question that immediately arises is: "Do both approaches lead to the same space?"

In [WS13, eq. (5.20)] the authors observed this problem and concluded that it can cause ambiguity for boundary conditions, if the approaches don't coincide. In

[^0]fact they stated this issue at the end of section 5 in [WS13] as an open problem. This problem can actually be viewed as a more general question that arises for quasi Gelfand triples, see [Skr23b, Conjecture 6.7].

We will not explicitly define the strong approach, but show that the most regular functions (C^{∞} functions) are already dense in the weakly defined space, which immediately implies that any strong approach with less regular functions (e.g., H^{1}) will lead to the same space. This is exactly what was done in [BBBCD97] for $\Gamma=\partial \Omega$. Hence, we present a generalization of [BBBCD97] for partial L^{2} tangential traces. In particular, we aim to prove the following two main theorems.

Theorem 1.1. Let Ω be a bounded strongly Lipschitz domain and $\Gamma_{1} \subseteq \partial \Omega$ such that $\left(\Omega, \Gamma_{1}\right)$ is a strongly Lipschitz pair, then $\mathrm{C}^{\infty}\left(\mathbb{R}^{3}\right)$ is dense in $\hat{\mathrm{H}}_{\Gamma_{1}}(\operatorname{curl}, \Omega)$ with respect to $\|\cdot\|_{\hat{\mathrm{H}}_{\Gamma_{1}}(\operatorname{curl}, \Omega)}$.

Theorem 1.2. Let Ω be a bounded strongly Lipschitz domain and $\Gamma_{0} \subseteq \partial \Omega$ such that $\left(\Omega, \Gamma_{0}\right)$ is a strongly Lipschitz pair, then ${\stackrel{\mathrm{C}}{\Gamma_{0}}}_{\infty}^{\left(\mathbb{R}^{3}\right)}$ is dense in $\hat{\mathrm{H}}_{\partial \Omega}(\operatorname{curl}, \Omega) \cap$ $\stackrel{\circ}{\mathrm{H}}_{\Gamma_{0}}(\operatorname{curl}, \Omega)$ with respect to $\|\cdot\|_{\hat{\mathrm{H}}_{\partial \Omega}(\operatorname{curl}, \Omega)}$.

However, it turned out that it is best to prove them in reversed order.
The importance of our density results lies in the context of Maxwell's equations with boundary conditions that involve a mixture of π_{τ} and γ_{τ} in the sense of linear combination, e.g., this simplified instance of Maxwell's equations

$$
\begin{aligned}
\partial_{t} E(t, \zeta) & =\operatorname{curl} H(t, \zeta), & & t \geq 0, \zeta \in \Omega, \\
\partial_{t} H(t, \zeta) & =-\operatorname{curl} E(t, \zeta), & & t \geq 0, \zeta \in \Omega, \\
\pi_{\tau} E(t, \xi)+\gamma_{\tau} H(t, \xi) & =0, & & t \geq 0, \xi \in \Gamma_{1}, \\
\pi_{\tau} E(t, \zeta) & =0, & & t \geq 0, \xi \in \Gamma_{0} .
\end{aligned}
$$

In order to properly formulate the boundary conditions we need to know what functions E, H have tangential traces that allow such a linear combination. Especially when it comes to well-posedness our density results are needed to avoid the ambiguity that was observed in [WS13].

As suspected by Weiss and Staffans in [WS13] the regularity of the interface of $\Gamma_{0} \subseteq \partial \Omega$ and $\Gamma_{1}:=\partial \Omega \backslash \overline{\Gamma_{0}}$ seems to play a role. At least for our answer we need that the boundary of Γ_{0} is also strongly Lipschitz.

In particular our strategy is based on the following decomposition from [PS22a, Thm. 5.2]

$$
\begin{equation*}
\stackrel{\circ}{\mathrm{H}}_{\Gamma_{0}}(\operatorname{curl}, \Omega)=\stackrel{\circ}{\mathrm{H}}_{\Gamma_{0}}^{1}(\Omega)+\nabla \stackrel{\circ}{\mathrm{H}}_{\Gamma_{0}}^{1}(\Omega), \tag{1}
\end{equation*}
$$

which requires $\left(\Omega, \Gamma_{0}\right)$ to be a strongly Lipschitz pair. Every element of $\mathrm{H}_{\Gamma_{0}}^{1}(\Omega)$ can be approximated by a sequence in ${\stackrel{C}{\Gamma_{0}}}_{\infty}^{\left(\mathbb{R}^{3}\right)}$ w.r.t. $\|\cdot\|_{\mathrm{H}^{1}(\Omega)}$ (see [BPS16, Lmm. 3.1]), which is a stronger norm than the "natural" norm of $\hat{\mathrm{H}}_{\partial \Omega}(\operatorname{curl}, \Omega)$. Hence, the challenging part will be finding an approximation by $\mathrm{C}_{\Gamma_{0}}^{\infty}\left(\mathbb{R}^{3}\right)$ elements for all elements in

$$
\hat{\mathrm{H}}_{\partial \Omega}(\operatorname{curl}, \Omega) \cap \nabla \mathrm{H}_{\Gamma_{0}}^{1}(\Omega) .
$$

It even turned out that, if we can prove the decomposition (1) also for less regular Γ_{0}, then our main theorems would automatically generalize for those less regular partitions of $\partial \Omega$, since this is the only occasion where the regularity of Γ_{0} is used.

2. Preliminary

For $\Omega \subseteq \mathbb{R}^{d}$ open and $\Gamma \subseteq \partial \Omega$ open we use the following notation (as in [BPS16])

$$
\begin{aligned}
& \stackrel{\circ}{\mathrm{C}}^{\infty}(\Omega):=\left\{f \in \mathrm{C}^{\infty}(\Omega) \mid \operatorname{supp} f \text { is compact in } \Omega\right\} \\
& \stackrel{\circ}{\mathrm{C}}_{\Gamma}^{\infty}(\Omega):=\left\{\left.f\right|_{\Omega} \mid f \in \dot{\mathrm{C}}^{\infty}\left(\mathbb{R}^{d}\right), \operatorname{dist}(\Gamma, \operatorname{supp} f)>0\right\}
\end{aligned}
$$

and $\mathrm{H}^{1}(\Omega)$ denotes the usual Sobolev space and $\mathrm{H}_{\Gamma}^{1}(\Omega)$ is the subspace of $\mathrm{H}^{1}(\Omega)$ with homogeneous boundary data on Γ, i.e., $\stackrel{\circ}{\mathrm{H}}_{\Gamma}^{1}(\Omega)=\overline{\mathrm{C}}_{\Gamma}^{\infty}(\Omega){ }^{\mathrm{H}^{1}(\Omega)}$.

Note that the trace operators π_{τ} and γ_{τ} are called tangential traces, because $\nu \cdot \pi_{\tau} f=0$ and $\nu \cdot \gamma_{\tau} f=0$. Hence, it is natural to introduce the tangential L^{2} space on $\Gamma \subseteq \partial \Omega$ by

$$
\mathrm{L}_{\tau}^{2}(\Gamma)=\left\{f \in \mathrm{~L}^{2}(\Gamma) \mid \nu \cdot f=0\right\}
$$

This space is again a Hilbert space with the $\mathrm{L}^{2}(\Gamma)$ inner product. Moreover, both $\pi_{\tau} \dot{\mathrm{C}}_{\partial \Omega \backslash \Gamma}^{\infty}\left(\mathbb{R}^{3}\right)$ and $\gamma_{\tau} \stackrel{C}{\mathrm{C}}_{\partial \Omega \backslash \Gamma}^{\infty}\left(\mathbb{R}^{3}\right)$ are dense in that space.

Next we recall the definition of a strongly Lipschitz domain, see e.g., [Gri85]. Moreover, we need H^{1} spaces on strongly Lipschitz boundaries, see e.g, [Skr23a] for a careful treatment.
Definition 2.1. Let Ω be an open subset of \mathbb{R}^{d}. We say Ω is a strongly Lipschitz domain, if for every $p \in \partial \Omega$ there exist $\epsilon, h>0$, a hyperplane $W=$ $\operatorname{span}\left\{w_{1}, \ldots, w_{d-1}\right\}$, where $\left\{w_{1}, \ldots, w_{d-1}\right\}$ is an orthonormal basis of W, and a Lipschitz continuous function $a:(p+W) \cap \mathrm{B}_{\epsilon}(p) \rightarrow\left(-\frac{h}{2}, \frac{h}{2}\right)$ such that

$$
\begin{aligned}
\partial \Omega \cap C_{\epsilon, h}(p) & =\left\{x+a(x) v \mid x \in(p+W) \cap \mathrm{B}_{\epsilon}(p)\right\} \\
\Omega \cap C_{\epsilon, h}(p) & =\left\{x+s v \mid x \in(p+W) \cap \mathrm{B}_{\epsilon}(p),-h<s<a(x)\right\}
\end{aligned}
$$

where v is the normal vector of W and $C_{\epsilon, h}(p)$ is the cylinder $\{x+\delta v \mid x \in(p+$ $\left.W) \cap \mathrm{B}_{\epsilon}(p), \delta \in(-h, h)\right\}$.

The boundary $\partial \Omega$ is then called strongly Lipschitz boundary.

Figure 1. Lipschitz boundary
Corresponding to a strongly Lipschitz domain we define the following bi-Lipschitz continuous mapping

$$
k:\left\{\begin{array}{rll}
\partial \Omega \cap C_{\epsilon, h}(p) & \rightarrow & \mathrm{B}_{\epsilon}(0) \subseteq \mathbb{R}^{d-1} \\
\zeta & \mapsto & W^{\top}(\zeta-p)
\end{array}\right.
$$

where we used W as the matrix [$w_{1} \ldots w_{d-1}$]. We call this mapping a regular Lipschitz chart of $\partial \Omega$ and we call its domain the chart domain. Its inverse is given
by

$$
k^{-1}:\left\{\begin{aligned}
\mathrm{B}_{\epsilon}(0) \subseteq \mathbb{R}^{d-1} & \rightarrow \partial \Omega \cap C_{\epsilon, h}(p) \\
x & \mapsto p+W x+a(x) v
\end{aligned}\right.
$$

where we will use $a(x)$ also as shortcut for $a(p+W x)$, which is then a Lipschitz continuous function from $\mathrm{B}_{\epsilon}(0) \subseteq \mathbb{R}^{d-1}$ to \mathbb{R}. Charts are used to regard the surface of Ω locally as a flat subset of \mathbb{R}^{d-1}. Every restriction of a chart k to an open $\Gamma \subseteq \partial \Omega$ is again a chart. The shape of $k(\Gamma)$, which is the image of the restricted chart, can be less "regular" than the nice shape of the ball $\mathrm{B}_{\epsilon}(0)$, which was the original image. Hence, for some investigations such restricted charts are not suitable. Therefore, we call such a restricted chart in general just Lipschitz chart in contrast to regular Lipschitz charts.

Definition 2.2. Let Ω be a strongly Lipschitz domain in \mathbb{R}^{d}. Then we say that an open $\Gamma_{0} \subseteq \partial \Omega$ is strongly Lipschitz, if $k\left(\Gamma_{0}\right)$ is strongly Lipschitz domain in \mathbb{R}^{d-1} for all regular Lipschitz charts k of $\partial \Omega$.

The boundary $\partial \Gamma_{0}$ is then called strongly Lipschitz boundary.
Note that it is sufficient that the image of Γ_{0} under k (in the previous definition) is strongly Lipschitz for a set of regular Lipschitz charts, whose chart domains cover Γ_{0} (or even just $\partial \Gamma_{0}$).

Definition 2.3. We call $\left(\Omega, \Gamma_{0}\right)$ a strongly Lipschitz pair, if Ω is a strongly Lipschitz domain and $\Gamma_{0} \subseteq \partial \Omega$ is strongly Lipschitz.

Note that if $\Gamma_{0} \subseteq \partial \Omega$ is strongly Lipschitz, then also $\Gamma_{1}:=\partial \Omega \backslash \overline{\Gamma_{0}}$ is strongly Lipschitz. Hence, if $\left(\Omega, \Gamma_{0}\right)$ is a strongly Lipschitz pair, then also $\left(\Omega, \Gamma_{1}\right)$ is.

Since we only deal with strongly Lipschitz domains and boundaries, we will omit the term "strongly" and just say Lipschitz domain and Lipschitz boundary.

Recall the definition of a H^{1} function on the boundary of a Lipschitz domain, see e.g., [Skr23a].
Definition 2.4. Let $\Omega \subseteq \mathbb{R}^{d}$ be a Lipschitz domain. We say $f \in \mathrm{~L}^{2}(\partial \Omega)$ is in $\mathrm{H}^{1}(\partial \Omega)$, if for every Lipschitz chart $k: \Gamma \rightarrow U$ the mapping

$$
f \circ k^{-1} \text { is in } \mathrm{H}^{1}(U) .
$$

3. Density results for $W(\Omega)$

Definition 3.1. Let $\Omega \subseteq \mathbb{R}^{d}$ be a Lipschitz domain. Then we define

$$
\begin{aligned}
W(\Omega) & :=\left\{f \in \mathrm{H}^{1}(\Omega) \mid \gamma_{0} f \in \mathrm{H}^{1}(\partial \Omega)\right\} \\
\|f\|_{W(\Omega)} & :=\left(\|f\|_{\mathrm{H}^{1}(\Omega)}^{2}+\left\|\gamma_{0} f\right\|_{\mathrm{H}^{1}(\partial \Omega)}^{2}\right)^{1 / 2}
\end{aligned}
$$

The next lemma a is a crucial tool in our construction. The basic idea is: Take a smooth function with compact support on a flat domain $\left(U \subseteq \mathbb{R}^{d-1}\right)$ extend it on the entire hyperplane \mathbb{R}^{d-1} by 0 , and then extend is constantly in the orthogonal direction, i.e., $f\left(\zeta+\lambda e_{d}\right)=f(\zeta)$, where $\lambda \in \mathbb{R}$ and e_{d} is the d-th unit vector. A multiplication with a cutoff function makes sure that this extension has compact support. By rotation and translation this can be done for arbitrary hyperplanes. Figure 2 illustrates the construction.
Lemma 3.2. Let $k: \Gamma \rightarrow U$ be a Lipschitz chart, $f \in \mathrm{H}^{1}(\partial \Omega)$ with compact support in $\Gamma^{\prime} \subseteq \Gamma$. Then there exists an $F \in \mathrm{H}^{1}\left(\mathbb{R}^{d}\right) \cap W(\Omega) \cap \mathrm{H}_{\partial \Omega \backslash \Gamma^{\prime}}^{1}(\Omega)$ such that $\left.F\right|_{\partial \Omega}=f$. Moreover, there exists a sequence $\left(F_{n}\right)_{n \in \mathbb{N}}$ in $\dot{\mathrm{C}}_{\partial \Omega \backslash \Gamma^{\prime}}^{\infty}\left(\mathbb{R}^{d}\right)$ that converges to F w.r.t. $\|\cdot\|_{H^{1}\left(\mathbb{R}^{d}\right)}+\|\cdot\|_{W(\Omega)}$, i.e., F_{n} converges to F in $\mathrm{H}^{1}\left(\mathbb{R}^{d}\right)$ and $\left.F_{n}\right|_{\partial \Omega}$ converges to $\left.F\right|_{\partial \Omega}$ in $\mathrm{H}^{1}(\partial \Omega)$.

Figure 2. Illustration of the construction of Lemma 3.2

Proof. Let p, W and v be the point, hyperplane and normal vector, respectively, to the chart k. In particular k^{-1} is given by

$$
k^{-1}:\left\{\begin{aligned}
U \subseteq \mathbb{R}^{d-1} & \rightarrow \Gamma \\
x & \mapsto p+W x+a(x) v,
\end{aligned}\right.
$$

where U is open and a is the Lipschitz function. Let $\chi \in \check{C}^{\infty}(\mathbb{R})$ be a cut-off function such that

$$
\chi(\lambda) \in\left\{\begin{array}{ll}
\{1\}, & |\lambda|<3 / 2\|a\|_{\infty}, \\
{[0,1],} & |\lambda| \in(3 / 2,2)\|a\|_{\infty}, \\
\{0\}, & |\lambda|>2\|a\|_{\infty} .
\end{array} \quad \chi \quad \begin{array}{l}
\frac{1}{3 / 2}\|a\|_{\infty} 2\|a\|_{\infty}
\end{array}\right.
$$

By definition $\hat{f}=f \circ k^{-1}$ is in $\mathrm{H}^{1}(U)$ and since f has compact support in Γ^{\prime} we conclude $\hat{f} \in \stackrel{\mathrm{H}}{ }^{1}(U)$ with support in $U^{\prime}:=k\left(\Gamma^{\prime}\right)$ Note that we can extend $\hat{f} \in \mathrm{H}^{1}(U)$ on \mathbb{R}^{d} by 0 . We define

$$
F(\zeta)=\chi(v \cdot(\zeta-p)) \hat{f}\left(W^{\top}(\zeta-p)\right) \quad \text { for } \quad \zeta \in \mathbb{R}^{d}
$$

The support of F is inside of a rotated and translated version of $U^{\prime} \times \operatorname{supp} \chi$, in particular

$$
\operatorname{supp} F \subseteq p+\left[\begin{array}{ll}
W & v
\end{array}\right] U^{\prime} \times \operatorname{supp} \chi=: \Xi
$$

Note that by construction of χ we have $\operatorname{supp} F \cap \partial \Omega \subseteq \Gamma^{\prime}$, therefore $\left.F\right|_{\partial \Omega \backslash \Gamma^{\prime}}=$ 0 . Since $\hat{f} \in \mathrm{H}^{1}\left(\mathbb{R}^{d-1}\right)$ it is straight forward that F possess $\mathrm{L}^{2}\left(\mathbb{R}^{d}\right)$ directional derivatives in W directions. Moreover, by construction (and the Leibniz product rule) $\frac{\partial}{\partial v} F=\chi^{\prime} \hat{f}\left(W^{\top}(\cdot-p)\right)$, which implies $F \in \mathrm{H}^{1}\left(\mathbb{R}^{d}\right)$. By definition of a Lipschitz chart we have $|v \cdot(\zeta-p)| \leq\|a\|_{\infty}$ for $\zeta \in \Gamma$ and hence

$$
F(\zeta)=\underbrace{\chi(v \cdot(\zeta-p))}_{=1} \hat{f}\left(W^{\top}(\zeta-p)\right)=\hat{f} \circ k(\zeta)=f(\zeta) \quad \text { for } \quad \zeta \in \Gamma
$$

(a.e. w.r.t. the surface measure).

By assumption on \hat{f} there exists a sequence $\left(\hat{f}_{n}\right)_{n \in \mathbb{N}}$ in $\dot{C}^{\infty}(U)$ that converges to \hat{f} w.r.t. $\|\cdot\|_{H^{1}(U)}$. Note that \hat{f}_{n} is also in $\dot{C}^{\infty}\left(\mathbb{R}^{d-1}\right)$. We define

$$
F_{n}(\zeta)=\chi(v \cdot(\zeta-p)) \hat{f}_{n}\left(W^{\top}(\zeta-p)\right) \quad \text { for } \quad \zeta \in \mathbb{R}^{d}
$$

Note that F_{n} is the composition of C^{∞} mappings and therefore in $\mathrm{C}^{\infty}\left(\mathbb{R}^{d}\right)$. Again, the support of F_{n} is contained in the bounded set Ξ and therefore compact, which implies $F_{n} \in \stackrel{\circ}{\mathrm{C}}^{\infty}\left(\mathbb{R}^{d}\right)$. Note that $F_{n} \circ k^{-1}=\hat{f}_{n}$, which implies $\left(F_{n} \circ k^{-1}\right)_{n \in \mathbb{N}}$ converges to \hat{f} w.r.t. $\|\cdot\|_{\mathrm{H}^{1}(U)}$. Since $\left.F_{n}\right|_{\partial \Omega \backslash \Gamma}=0=\left.F\right|_{\partial \Omega \backslash \Gamma}$ we conclude $\left.F_{n}\right|_{\partial \Omega} \rightarrow$ $\left.F\right|_{\partial \Omega}$ in $\mathrm{H}^{1}(\partial \Omega)$. Finally,

$$
\begin{aligned}
\left\|F_{n}-F\right\|_{\mathrm{H}^{1}\left(\mathbb{R}^{3}\right)} \leq\left\|\chi^{\prime}\right\|_{\infty} \|\left(\hat{f}_{n}-\hat{f}\right)\left(W^{\top}(\right. & \cdot-p)) \|_{\mathrm{H}^{1}(\Xi)} \\
& \leq 2\|a\|_{\infty}\left\|\chi^{\prime}\right\|_{\infty}\left\|\hat{f}_{n}-\hat{f}\right\|_{\mathrm{H}^{1}(U)} \rightarrow 0
\end{aligned}
$$

We will formulate a generalization of [BBBCD97, 2. Preliminaries].
Theorem 3.3. $\dot{\mathrm{C}}_{\Gamma}^{\infty}\left(\mathbb{R}^{d}\right)$ is dense in $W(\Omega) \cap \dot{\mathrm{H}}_{\Gamma}^{1}(\Omega)$ w.r.t. $\|\cdot\|_{W(\Omega)}$.
Proof. Since Ω is a Lipschitz domain we find for every $p \in \partial \Omega$ a cylinder $C_{\epsilon, h}(p)(\epsilon$ and h depend on p) and a Lipschitz chart $k: \partial \Omega \cap C_{\epsilon, h}(p) \rightarrow \mathrm{B}_{\epsilon}(0) \subseteq \mathbb{R}^{d-1}$.

Hence we can cover $\partial \Omega$ by $\bigcup_{p \in \partial \Omega} C_{\epsilon, h}(p)$ and by compactness of $\partial \Omega$ there are already finitely many $p_{i}, i \in\{1, \ldots m\}$ such that

$$
\partial \Omega \subseteq \bigcup_{i=1}^{m} \underbrace{C_{\epsilon_{i}, h_{i}}\left(p_{i}\right)}_{=: \Omega_{i}}
$$

We employ a partition of unity and obtain $\left(\alpha_{i}\right)_{i=1}^{m}$, subordinate to this cover, i.e.,

$$
\alpha_{i} \in \dot{\mathrm{C}}^{\infty}\left(\Omega_{i}\right), \quad \alpha_{i}(\zeta) \in[0,1], \quad \text { and } \quad \sum_{i=1}^{m} \alpha_{i}(\zeta)=1 \quad \text { for all } \quad \zeta \in \partial \Omega
$$

For $f \in W(\Omega) \cap \stackrel{\circ}{H}_{\Gamma}^{1}(\Omega)$ we define $f_{i}:=\alpha_{i} f$. It is straightforward to show $f_{i} \in$ $W(\Omega) \cap \stackrel{\circ}{\mathrm{H}}_{\Gamma}^{1}(\Omega)$. For every Ω_{i} there is a Lipschitz chart $k_{i}: \Gamma_{i} \rightarrow U_{i} \subseteq \mathbb{R}^{d-1}$, where $\Gamma_{i}=\partial \Omega \cap \Omega_{i}$. Moreover, $\left.f_{i}\right|_{\partial \Omega}$ has support in $\Gamma_{i} \cap \Gamma^{\complement}$, where $\Gamma^{\complement}=(\partial \Omega \backslash \Gamma)$.

By Lemma 3.2 there is an $F_{i} \in \mathrm{H}^{1}\left(\mathbb{R}^{d}\right) \cap W(\Omega) \cap \stackrel{\circ}{\mathrm{H}}_{\partial \Omega \backslash\left(\Gamma_{i} \cap \Gamma^{\mathrm{C}}\right)}$ such that $\left.F_{i}\right|_{\partial \Omega}=$ $\left.f_{i}\right|_{\partial \Omega}$ and a sequence $\left(F_{i, n}\right)_{n \in \mathbb{N}}$ in $\dot{\mathrm{C}}_{\partial \Omega \backslash\left(\Gamma_{i} \cap \Gamma^{\mathrm{C}}\right)}^{\infty}\left(\mathbb{R}^{d}\right) \subseteq \dot{\mathrm{C}}_{\Gamma}^{\infty}\left(\mathbb{R}^{d}\right)$ that converges to F_{i} in $\mathrm{H}\left(\mathbb{R}^{d}\right)$ and in $W(\Omega)$. Hence, we have

$$
f-\sum_{i=1}^{m} F_{i} \in \stackrel{\circ}{\mathrm{H}}^{1}(\Omega),
$$

which can be approximated by $\left(F_{0, n}\right)_{n \in \mathbb{N}}$ in $\dot{C}^{\infty}(\Omega)$. Hence, $\left(\sum_{i=0}^{m} F_{i, n}\right)_{n \in \mathbb{N}}$ is a sequence in $\check{C}_{\Gamma}^{\infty}\left(\mathbb{R}^{d}\right)$ and converges to f in $W(\Omega)$.

4. Density result with homogeneous part

In this section we will finally define the Sobolev spaces with homogeneous and L^{2} partial tangential traces, respectively, and prove one of our main theorems. We assume $\Omega \subseteq \mathbb{R}^{3}$ to be a Lipschitz domain.

We will use a weak definition for the tangential trace and twisted tangential trace as, e.g., in [PS22b].

Definition 4.1. Let Ω be a Lipschitz domain and $\Gamma \subseteq \partial \Omega$ open (in $\partial \Omega$).

- We say $f \in \mathrm{H}(\operatorname{curl}, \Omega)$ has a $\mathrm{L}_{\tau}^{2}(\Gamma)$ tangential trace, if there exists a $q \in \mathrm{~L}_{\tau}^{2}(\Gamma)$ such that

$$
\langle f, \operatorname{curl} \phi\rangle_{\mathrm{L}^{2}(\Omega)}-\langle\operatorname{curl} f, \phi\rangle_{\mathrm{L}^{2}(\Omega)}=\left\langle q, \gamma_{\tau} \phi\right\rangle_{\mathrm{L}_{\tau}^{2}(\Gamma)} \quad \forall \phi \in \dot{\mathrm{C}}_{\partial \Omega \backslash \Gamma}^{\infty}\left(\mathbb{R}^{3}\right) .
$$

In this case we say $\pi_{\tau} f \in \mathrm{~L}_{\tau}^{2}(\Gamma)$ and $\pi_{\tau} f=q$ on Γ or more precisely $\pi_{\tau}^{\Gamma} f=q$.

- We say $f \in \mathrm{H}(\operatorname{curl}, \Omega)$ has a $\mathrm{L}_{\tau}^{2}(\Gamma)$ twisted tangential trace, if there exists a $q \in \mathrm{~L}_{\tau}^{2}(\Gamma)$ such that

$$
\langle\operatorname{curl} f, \phi\rangle_{\mathrm{L}^{2}(\Omega)}-\langle f, \operatorname{curl} \phi\rangle_{\mathrm{L}^{2}(\Omega)}=\left\langle q, \pi_{\tau} \phi\right\rangle_{\mathrm{L}_{\tau}^{2}(\Gamma)} \quad \forall \phi \in \dot{\mathrm{C}}_{\partial \Omega \backslash \Gamma}^{\infty}\left(\mathbb{R}^{3}\right)
$$

In this case we say $\gamma_{\tau} f \in \mathrm{~L}_{\tau}^{2}(\Gamma)$ and $\gamma_{\tau} f=q$ on Γ or more precisely $\gamma_{\tau}^{\Gamma} f=q$.
Note that the previous definition does not say anything about $\pi_{\tau} f$ on $\partial \Omega \backslash \Gamma$.
Remark 4.2. Note that $\nu \times \gamma_{\tau} \phi=-\pi_{\tau} \phi$ and $\left\langle q, \gamma_{\tau} \phi\right\rangle_{\mathrm{L}_{\tau}^{2}(\Gamma)}=\left\langle\nu \times q, \nu \times \gamma_{\tau} \phi\right\rangle_{\mathrm{L}_{\tau}^{2}(\Gamma)}$. Hence, we can easily see that $\pi_{\tau} f \in \mathrm{~L}^{2}(\Gamma)$ is equivalent to $\gamma_{\tau} f \in \mathrm{~L}^{2}(\Gamma)$ and $\gamma_{\tau} f=\nu \times \pi_{\tau} f$.

Definition 4.3. Let Ω be a Lipschitz domain and $\Gamma \subseteq \partial \Omega$ open (in $\partial \Omega$). Then we define the space

$$
\hat{\mathrm{H}}_{\Gamma}(\operatorname{curl}, \Omega):=\left\{f \in \mathrm{H}(\operatorname{curl}, \Omega) \mid \pi_{\tau} f \in \mathrm{~L}_{\tau}^{2}(\Gamma)\right\}
$$

with its norm

$$
\|f\|_{\hat{\mathrm{H}}_{\Gamma}(\operatorname{curl}, \Omega)}:=\left(\|f\|_{\mathrm{L}^{2}(\Omega)}^{2}+\|\operatorname{curl} f\|_{\mathrm{L}^{2}(\Omega)}^{2}+\left\|\pi_{\tau} f\right\|_{\mathrm{L}^{2}(\Gamma)}^{2}\right)^{1 / 2}
$$

For $\Gamma=\partial \Omega$ we will just write $\hat{\mathrm{H}}(\operatorname{curl}, \Omega)$ instead of $\hat{\mathrm{H}}_{\partial \Omega}(\operatorname{curl}, \Omega)$.
Definition 4.4. Let Ω be a Lipschitz domain and $\Gamma \subseteq \partial \Omega$ open (in $\partial \Omega$). Then we define the space

$$
\stackrel{\circ}{\mathrm{H}}_{\Gamma}(\operatorname{curl}, \Omega)=\left\{f \in \hat{\mathrm{H}}_{\Gamma}(\operatorname{curl}, \Omega) \mid \pi_{\tau}^{\Gamma} f=0\right\} .
$$

For $\Gamma=\partial \Omega$ we will just write $\stackrel{\circ}{\mathrm{H}}(\operatorname{curl}, \Omega)$ instead of $\stackrel{\circ}{\mathrm{H}}_{\partial \Omega}(\operatorname{curl}, \Omega)$.
In $[\operatorname{BPS} 16, T h m .4 .5]$ it is shown that $\mathrm{C}_{\Gamma}^{\infty}(\Omega)$ is dense in $\stackrel{\circ}{H}_{\Gamma}(\operatorname{curl}, \Omega)$ w.r.t. $\|\cdot\|_{\mathrm{H}(\mathrm{curl}, \Omega)}$, i.e.,

$$
\stackrel{\circ}{\mathrm{H}}_{\Gamma}(\operatorname{curl}, \Omega)=\overline{\mathrm{C}}_{\Gamma}^{\infty}(\Omega) \mathrm{H}(\operatorname{curl}, \Omega)
$$

Hence, for homogeneous tangential traces there is already a version of the desired density result.

Note that the hat on top of the H indicates partial L^{2} boundary conditions and the circle on top indicates partial homogeneous boundary conditions.
Remark 4.5. We can immediately see

$$
\stackrel{\circ}{\mathrm{H}}_{\Gamma}(\operatorname{curl}, \Omega) \subseteq \hat{\mathrm{H}}_{\Gamma}(\operatorname{curl}, \Omega) .
$$

Since $\pi_{\tau} f \in \mathrm{~L}^{2}(\Gamma)$ is equivalent to $\gamma_{\tau} f \in \mathrm{~L}^{2}(\Gamma)$ we have

$$
\hat{\mathrm{H}}_{\Gamma}(\operatorname{curl}, \Omega)=\left\{f \in \mathrm{H}(\operatorname{curl}, \Omega) \mid \gamma_{\tau} f \in \mathrm{~L}^{2}(\Gamma)\right\}
$$

Since $\pi_{\tau} f=\gamma_{\tau} f \times \nu$, we have $\left\|\pi_{\tau} f\right\|_{\mathrm{L}^{2}(\Gamma)}=\left\|\gamma_{\tau} f\right\|_{\mathrm{L}^{2}(\Gamma)}$ and

$$
\|f\|_{\hat{\mathrm{H}}_{\Gamma}(\operatorname{curl}, \Omega)}=\left(\|f\|_{\mathrm{L}^{2}(\Omega)}^{2}+\|\operatorname{curl} f\|_{\mathrm{L}^{2}(\Omega)}^{2}+\left\|\gamma_{\tau} f\right\|_{\mathrm{L}^{2}(\Gamma)}^{2}\right)^{1 / 2}
$$

Remark 4.6. Since we use representation in an inner product, one can say that we have defined $\hat{H}_{\Gamma}($ curl,$\Omega)$ weakly. Another approach could have been to regard $\overline{\mathrm{C}}^{\infty}\left(\mathbb{R}^{3}\right){ }^{\hat{\mathrm{H}}_{\Gamma}(\text { curl }, \Omega)}$, which could be called a strong approach. From this perspective the result we are going to show basically tells us that the weak and the strong approach to $\mathrm{H}(\operatorname{curl}, \Omega)$ fields that possess a $\mathrm{L}_{\tau}^{2}(\Gamma)$ tangential trace coincide.

From now on we assume that $\left(\Omega, \Gamma_{0}\right)$ is a Lipschitz pair. Recall the decomposition (1):

$$
\stackrel{\circ}{\mathrm{H}}_{\Gamma_{0}}(\operatorname{curl}, \Omega)=\stackrel{\circ}{\mathrm{H}}_{\Gamma_{0}}^{1}(\Omega)+\nabla \stackrel{\circ}{\mathrm{H}}_{\Gamma_{0}}^{1}(\Omega) .
$$

Note that every element in ${\stackrel{\circ}{\Gamma_{\Gamma_{0}}}}_{1}^{(\Omega)}$ is already in $\hat{\mathrm{H}}(\operatorname{curl}, \Omega) \cap \stackrel{\circ}{\mathrm{H}}_{\Gamma_{0}}(\operatorname{curl}, \Omega)$. Moreover, by [BPS16, Lmm. 3.1] $\mathrm{C}_{\Gamma_{0}}^{\infty}\left(\mathbb{R}^{3}\right)$ is dense in ${\stackrel{\circ}{\Gamma_{0}}}_{1}^{(}(\Omega)$ w.r.t. $\|\cdot\|_{H^{1}(\Omega)}$ and therefore also w.r.t. $\|\cdot\|_{\hat{\mathrm{H}}(\mathrm{curl}, \Omega)}$.

Hence, it is left to show that every

$$
f \in \nabla{\stackrel{\mathrm{H}}{\Gamma_{0}}}_{1}^{1}(\Omega) \cap \hat{\mathrm{H}}(\operatorname{curl}, \Omega)
$$

can be approximated by a $\mathrm{C}_{\Gamma_{0}}^{\infty}\left(\mathbb{R}^{3}\right)$ function (w.r.t. $\left.\|\cdot\|_{\hat{\mathrm{H}}(\mathrm{curl}, \Omega)}\right)$.
The following result is basically [Skr23a, Thm. 4.2].
Lemma 4.7. Let $f \in \mathrm{H}_{\Gamma_{0}}^{1}(\Omega)$ such that $\nabla f \in \hat{\mathrm{H}}(\operatorname{curl}, \Omega)$ (in particular $\pi_{\tau} \nabla f \in$ $\mathrm{L}_{\tau}^{2}(\partial \Omega)$. Then $\pi_{\tau} \nabla f=\left.\nabla_{\tau} f\right|_{\partial \Omega}$ and $f \in W(\Omega) \cap \dot{\mathrm{H}}_{\Gamma_{0}}^{1}(\Omega)$.
Proof. Since $\nabla f \in \hat{H}($ curl,$\Omega)$, we know that $\pi_{\tau} \nabla f \in \mathrm{~L}^{2}(\partial \Omega)$ which implies $\left.f\right|_{\partial \Omega} \in$ $\mathrm{H}^{1}(\partial \Omega)$ and $\left.\nabla_{\tau} f\right|_{\partial \Omega}=\pi_{\tau} \nabla f$, see [Skr23a, Thm. 4.2]. Therefore, we conclude $f \in W(\Omega)$.

This brings us to our first main theorem.
Theorem 4.8. $\stackrel{\circ}{\mathrm{C}}_{\Gamma_{0}}^{\infty}\left(\mathbb{R}^{3}\right)$ is dense in $\hat{\mathrm{H}}(\operatorname{curl}, \Omega) \cap \stackrel{\circ}{\mathrm{H}}_{\Gamma_{0}}(\operatorname{curl}, \Omega)$ w.r.t. $\|\cdot\|_{\hat{\mathrm{H}}(\operatorname{curl}, \Omega)}$.
Proof. Let $f \in \hat{\mathrm{H}}(\operatorname{curl}, \Omega) \cap \stackrel{\circ}{\mathrm{H}}_{\Gamma_{0}}(\operatorname{curl}, \Omega)$ be arbitrary. Then we can decompose f into $f=f_{1}+f_{2}$, where $f_{1} \in \mathrm{H}_{\Gamma_{0}}^{1}(\Omega)$ and $f_{2} \in \hat{\mathrm{H}}(\operatorname{curl}, \Omega) \cap \nabla \mathrm{H}_{\Gamma_{0}}^{1}(\Omega)$.

By [BPS16, Lmm. 3.1] f_{1} can be approximated by ${\stackrel{\circ}{\Gamma_{0}}}_{\infty}^{\infty} \mathbb{R}^{3})$ functions w.r.t. $\|\cdot\|_{H^{1}(\Omega)}$ and therefore also w.r.t. $\|\cdot\|_{\hat{\mathrm{H}}(\mathrm{curl}, \Omega)}$.

By Lemma 4.7 we know that $f_{2} \in W(\Omega) \cap \mathrm{H}_{\Gamma_{0}}^{1}(\Omega)$. Hence, we can apply Theorem 3.3 and obtain a sequence $\left(f_{2, n}\right)_{n \in \mathbb{N}}$ that converges to f_{2} w.r.t. $\|\cdot\|_{W(\Omega)}$. This gives

$$
\begin{aligned}
\| \nabla f_{2} & -\nabla f_{2, n} \|_{\hat{\mathrm{H}}(\operatorname{curl}, \Omega)}^{2} \\
& =\left\|\nabla\left(f_{2}-f_{2, n}\right)\right\|_{\mathrm{L}^{2}(\Omega)}^{2}+\|\underbrace{\operatorname{curl} \nabla\left(f_{2}-f_{2, n}\right)}_{=0}\|_{\mathrm{L}^{2}(\Omega)}^{2}+\left\|\pi_{\tau} \nabla\left(f_{2}-f_{2, n}\right)\right\|_{\mathrm{L}^{2}(\partial \Omega)}^{2} \\
& \leq\left\|f_{2}-f_{2, n}\right\|_{\mathrm{H}^{1}(\Omega)}^{2}+\left\|\left.f_{2}\right|_{\partial \Omega}-\left.f_{2, n}\right|_{\partial \Omega}\right\|_{\mathrm{H}^{1}(\partial \Omega)}^{2} \\
& =\left\|f_{2}-f_{2, n}\right\|_{W(\Omega)}^{2} \rightarrow 0,
\end{aligned}
$$

which finishes the proof.

5. Density result without homogeneous part

Since we already know that $\mathrm{C}_{\Gamma_{0}}^{\infty}\left(\mathbb{R}^{3}\right)$ is dense in $\hat{\mathrm{H}}(\operatorname{curl}, \Omega) \cap \mathrm{H}_{\Gamma_{0}}(\operatorname{curl}, \Omega)$, we can show the density of $\mathrm{C}^{\infty}\left(\mathbb{R}^{3}\right)$ in $\hat{\mathrm{H}}_{\Gamma_{1}}(\operatorname{curl}, \Omega)$ by a duality argument, which we will present in this section. This argument can be done in just a few lines within the notion of quasi Gelfand triples [Skr23b]. However, in order to stay relatively elementary we extract the essence and build a proof that avoids the introduction of this notion.

Basically we mimic the abstract boundary space for the tangential trace by $\mathrm{H}(\operatorname{curl}, \Omega)^{\perp}$, which can also be viewed as the boundary space as it is isometrically isomorphic.

Our standing assumption in this section is that $\left(\Omega, \Gamma_{0}\right)$ is Lipschitz pair and $\Gamma_{1}:=\partial \Omega \backslash \overline{\Gamma_{0}}$.

Corollary 5.1. If $f \in \hat{\mathrm{H}}_{\Gamma_{1}}(\operatorname{curl}, \Omega)$, then

$$
\left\langle\gamma_{\tau} f, \pi_{\tau} g\right\rangle_{\mathrm{L}^{2}\left(\Gamma_{1}\right)}=\langle\operatorname{curl} f, g\rangle_{\mathrm{L}^{2}(\Omega)}-\langle f, \operatorname{curl} g\rangle_{\mathrm{L}^{2}(\Omega)}
$$

for all $g \in \hat{\mathrm{H}}(\operatorname{curl}, \Omega) \cap \stackrel{\circ}{\mathrm{H}}_{\Gamma_{0}}(\operatorname{curl}, \Omega)$.
Proof. For $f \in \hat{\mathrm{H}}_{\Gamma_{1}}(\operatorname{curl}, \Omega)$ we have by definition

$$
\left\langle\gamma_{\tau} f, \pi_{\tau} g\right\rangle_{\mathrm{L}^{2}\left(\Gamma_{1}\right)}=\langle\operatorname{curl} f, g\rangle_{\mathrm{L}^{2}(\Omega)}-\langle f, \operatorname{curl} g\rangle_{\mathrm{L}^{2}(\Omega)}
$$

for all $g \in \dot{C}_{\Gamma_{0}}^{\infty}\left(\mathbb{R}^{3}\right)$. Since this equation is continuous in g w.r.t. $\|\cdot\|_{\hat{\mathrm{H}}(\mathrm{curl}, \Omega)}$, we can extend it by continuity to $g \in \overline{\mathrm{C}_{\Gamma_{0}}^{\infty}\left(\mathbb{R}^{3}\right)} \hat{\mathrm{H}}(\operatorname{curl}, \Omega)$ and by Theorem 4.8 to $g \in$ $\hat{\mathrm{H}}(\operatorname{curl}, \Omega) \cap \stackrel{\circ}{\mathrm{H}}_{\Gamma_{0}}(\operatorname{curl}, \Omega)$.
Lemma 5.2. We have the following identity

$$
\stackrel{\circ}{\mathrm{H}}(\operatorname{curl}, \Omega)^{\perp}=\{f \in \mathrm{H}(\operatorname{curl}, \Omega) \mid \operatorname{curl} \operatorname{curl} f=-f\},
$$

where the orthogonal complement is taken in $\mathrm{H}(\operatorname{curl}, \Omega)$, i.e., w.r.t. $\langle\cdot, \cdot\rangle_{\mathrm{H}(\mathrm{curl}, \Omega)}$. Moreover, curl leaves the space $\mathrm{H}(\operatorname{curl}, \Omega)^{\perp}$ invariant.

Proof. Note that by density of $\dot{C}^{\infty}(\Omega)$ in $\stackrel{\circ}{\mathrm{H}}(\operatorname{curl}, \Omega)$ both spaces have the same orthogonal complement. Hence,

$$
\begin{aligned}
f \in \stackrel{\circ}{\mathrm{H}}(\operatorname{curl}, \Omega)^{\perp} & \Leftrightarrow 0=\langle f, g\rangle_{\mathrm{L}^{2}(\Omega)}+\langle\operatorname{curl} f, \operatorname{curl} g\rangle_{\mathrm{L}^{2}(\Omega)} \quad \forall g \in \dot{\mathrm{C}}^{\infty}(\Omega) \\
& \Leftrightarrow \quad \operatorname{curl} f \in \mathrm{H}(\operatorname{curl}, \Omega) \quad \text { and } \quad \operatorname{curl} \operatorname{curl} f=-f .
\end{aligned}
$$

Lemma 5.3. Let P the orthogonal projection on $\stackrel{\circ}{\mathrm{H}}(\operatorname{curl}, \Omega)^{\perp}($ in $\mathrm{H}(\operatorname{curl}, \Omega))$. Then $\hat{\mathrm{H}}(\operatorname{curl}, \Omega) \cap \stackrel{\circ}{\mathrm{H}}_{\Gamma_{0}}(\operatorname{curl}, \Omega)$ is invariant under P, i.e., $f \in \hat{\mathrm{H}}(\operatorname{curl}, \Omega) \cap \stackrel{\circ}{\mathrm{H}}_{\Gamma_{0}}(\operatorname{curl}, \Omega)$ implies $\operatorname{Pf} \in \hat{\mathrm{H}}(\operatorname{curl}, \Omega) \cap \mathrm{H}_{\Gamma_{0}}(\operatorname{curl}, \Omega)$.
Proof. Since I $-P$ is the orthogonal projection on $\stackrel{\circ}{\mathrm{H}}(\operatorname{curl}, \Omega)$ and $\stackrel{\circ}{\mathrm{H}}(\operatorname{curl}, \Omega)$ is a subspace of $\hat{\mathrm{H}}(\operatorname{curl}, \Omega) \cap \dot{\mathrm{H}}_{\Gamma_{0}}(\operatorname{curl}, \Omega)$, we conclude that $(\mathrm{I}-P) f \in \hat{\mathrm{H}}(\operatorname{curl}, \Omega) \cap$ $\stackrel{\circ}{\mathrm{H}}_{\Gamma_{0}}(\operatorname{curl}, \Omega)$ for every $f \in \mathrm{H}(\operatorname{curl}, \Omega)$. Now for every $f \in \hat{\mathrm{H}}(\operatorname{curl}, \Omega) \cap \stackrel{\circ}{\mathrm{H}}_{\Gamma_{0}}(\operatorname{curl}, \Omega)$ we have

$$
P f=f-(\mathrm{I}-P) f
$$

which is in $\hat{\mathrm{H}}(\operatorname{curl}, \Omega) \cap \stackrel{\circ}{\mathrm{H}}_{\Gamma_{0}}(\operatorname{curl}, \Omega)$, since $\hat{\mathrm{H}}(\operatorname{curl}, \Omega) \cap \stackrel{\circ}{\mathrm{H}}_{\Gamma_{0}}(\operatorname{curl}, \Omega)$ is a subspace.
Lemma 5.4. For every $q \in \pi_{\tau}\left(\hat{\mathrm{H}}(\operatorname{curl}, \Omega) \cap \stackrel{\circ}{\mathrm{H}}_{\Gamma_{0}}(\operatorname{curl}, \Omega)\right)$ there exists a $g \in$ $\stackrel{\mathrm{H}}{ }(\operatorname{curl}, \Omega)^{\perp}$ such that

$$
\operatorname{curl} g \in \hat{\mathrm{H}}(\operatorname{curl}, \Omega) \cap \stackrel{\circ}{\mathrm{H}}_{\Gamma_{0}}(\operatorname{curl}, \Omega) \cap \stackrel{\circ}{\mathrm{H}}(\operatorname{curl}, \Omega)^{\perp} \quad \text { and } \quad \pi_{\tau} \operatorname{curl} g=q .
$$

In particular,

$$
\pi_{\tau}\left(\hat{\mathrm{H}}(\operatorname{curl}, \Omega) \cap \stackrel{\circ}{\mathrm{H}}_{\Gamma_{0}}(\operatorname{curl}, \Omega)\right)=\pi_{\tau}\left(\hat{\mathrm{H}}(\operatorname{curl}, \Omega) \cap \stackrel{\circ}{\mathrm{H}}_{\Gamma_{0}}(\operatorname{curl}, \Omega) \cap \mathrm{H}(\operatorname{curl}, \Omega)^{\perp}\right)
$$

Proof. By assumption we have $q=\pi_{\tau} f$ for $f \in \hat{\mathrm{H}}(\operatorname{curl}, \Omega) \cap \stackrel{\circ}{\mathrm{H}}_{\Gamma_{0}}(\operatorname{curl}, \Omega)$. Let P denote the orthogonal projection on $\mathrm{H}(\operatorname{curl}, \Omega)^{\perp}$. Then by Lemma 5.3 we can decompose f into $f=P f+(\mathrm{I}-P) f$, where both $P f$ and $(\mathrm{I}-P) f$ are also in $\hat{\mathrm{H}}(\operatorname{curl}, \Omega) \cap \stackrel{\circ}{\mathrm{H}}_{\Gamma_{0}}(\operatorname{curl}, \Omega)$. Moreover, $(\mathrm{I}-P) f \in \mathrm{H}(\operatorname{curl}, \Omega)$, which gives $\pi_{\tau}(\mathrm{I}-P) f=$ 0 and therefore

$$
q=\pi_{\tau} f=\pi_{\tau} P f
$$

Since $P f \in \dot{\mathrm{H}}(\operatorname{curl}, \Omega)^{\perp}$, we have curl curl $P f=-P f$. Thus defining $g=-\operatorname{curl} P f$ finishes the proof.

Now we finally come to our second main theorem.
Theorem 5.5. $\stackrel{\circ}{\mathrm{C}}^{\infty}\left(\mathbb{R}^{3}\right)$ is dense in $\hat{\mathrm{H}}_{\Gamma_{1}}(\operatorname{curl}, \Omega)$ w.r.t. $\|\cdot\|_{\hat{\mathrm{H}}_{\Gamma_{1}}(\operatorname{curl}, \Omega)}$.

Proof. By the definition of the norm of $\hat{\mathrm{H}}_{\Gamma_{1}}(\operatorname{curl}, \Omega)$ the mapping $\gamma_{\tau}: \hat{\mathrm{H}}_{\Gamma_{1}}(\operatorname{curl}, \Omega) \subseteq$ $\mathrm{H}(\operatorname{curl}, \Omega) \rightarrow \mathrm{L}_{\tau}^{2}\left(\Gamma_{1}\right)$ is closed. We define the following restriction of γ_{τ}

$$
\hat{\gamma_{\tau}}:\left\{\begin{array}{rll}
\mathrm{C}^{\infty}\left(\mathbb{R}^{3}\right) \subseteq \mathrm{H}(\operatorname{curl}, \Omega) & \rightarrow & \mathrm{L}_{\tau}^{2}\left(\Gamma_{1}\right) \\
f & \mapsto & \gamma_{\tau} f
\end{array}\right.
$$

Since $\hat{\gamma_{\tau}} \subseteq \gamma_{\tau}$ we conclude

$$
\hat{\gamma}_{\tau}^{*} \supseteq \gamma_{\tau}^{*}
$$

1. Step: Calculate $\operatorname{dom} \hat{\gamma}_{\tau}{ }^{*}$. Let $q \in \operatorname{dom} \hat{\gamma}_{\tau}{ }^{*}$. Then there exists a $g \in \mathrm{H}(\operatorname{curl}, \Omega)$ such that

$$
\begin{equation*}
\left\langle\hat{\gamma}_{\tau} f, q\right\rangle_{\mathrm{L}^{2}\left(\Gamma_{1}\right)}=\langle f, g\rangle_{\mathrm{H}(\operatorname{curl}, \Omega)}=\langle f, g\rangle_{\mathrm{L}^{2}(\Omega)}+\langle\operatorname{curl} f, \operatorname{curl} g\rangle_{\mathrm{L}^{2}(\Omega)} \tag{2}
\end{equation*}
$$

for all $f \in \dot{\mathrm{C}}^{\infty}\left(\mathbb{R}^{3}\right)$. For $f \in \dot{\mathrm{C}}_{\Gamma_{1}}^{\infty}\left(\mathbb{R}^{3}\right)$, we obtain

$$
0=\langle f, g\rangle_{\mathrm{L}^{2}(\Omega)}+\langle\operatorname{curl} f, \operatorname{curl} g\rangle_{\mathrm{L}^{2}(\Omega)}
$$

which implies curl $g \in \stackrel{\circ}{\mathrm{H}}_{\Gamma_{0}}(\operatorname{curl}, \Omega)$ and curl $\operatorname{curl} g=-g$, and by Lemma $5.2 g \in$ $\stackrel{\circ}{\mathrm{H}}(\operatorname{curl}, \Omega)^{\perp}$. Hence, we revisit (2), where we extend q by 0 outside of Γ_{1} in $\partial \Omega$

$$
\left\langle\hat{\gamma_{\tau}} f, q\right\rangle_{\mathrm{L}^{2}(\partial \Omega)}=-\langle f, \operatorname{curl} \operatorname{curl} g\rangle_{\mathrm{L}^{2}(\Omega)}+\langle\operatorname{curl} f, \operatorname{curl} g\rangle_{\mathrm{L}^{2}(\Omega)}
$$

for all $f \in \dot{\mathrm{C}}^{\infty}\left(\mathbb{R}^{3}\right)$, which implies $\operatorname{curl} g \in \hat{\mathrm{H}}(\operatorname{curl}, \Omega)$ and $q=\pi_{\tau} \operatorname{curl} g$. Consequently,

$$
\begin{aligned}
\operatorname{dom} \hat{\gamma}_{\tau}^{*} & \subseteq \pi_{\tau}\left(\hat{\mathrm{H}}(\operatorname{curl}, \Omega) \cap \stackrel{\circ}{\mathrm{H}}_{\Gamma_{0}}(\operatorname{curl}, \Omega) \cap \stackrel{\circ}{\mathrm{H}}(\operatorname{curl}, \Omega)^{\perp}\right) \\
& =\pi_{\tau}\left(\hat{\mathrm{H}}(\operatorname{curl}, \Omega) \cap \stackrel{\circ}{\mathrm{H}}_{\Gamma_{0}}(\operatorname{curl}, \Omega)\right)
\end{aligned}
$$

2. Step: Calculate $\operatorname{dom} \gamma_{\tau}^{*}$. If $q \in \pi_{\tau}\left(\hat{\mathrm{H}}(\operatorname{curl}, \Omega) \cap \mathrm{H}_{\Gamma_{0}}(\operatorname{curl}, \Omega)\right)$, then by Lemma 5.4 there exists a $g \in \stackrel{\circ}{\mathrm{H}}(\operatorname{curl}, \Omega)^{\perp}$ such that $\operatorname{curl} g \in \hat{\mathrm{H}}(\operatorname{curl}, \Omega) \cap \stackrel{\circ}{\mathrm{H}}_{\Gamma_{0}}(\operatorname{curl}, \Omega)$ and $\pi_{\tau} \operatorname{curl} g=q$. Hence, by Corollary 5.1 for $f \in \hat{\mathrm{H}}_{\Gamma_{1}}(\operatorname{curl}, \Omega)$ and $\operatorname{curl} g$ we have

$$
\langle\gamma_{\tau} f, \underbrace{\gamma_{\tau} \operatorname{curl} g}_{=q}\rangle_{\mathrm{L}^{2}\left(\Gamma_{1}\right)}=\langle\operatorname{curl} f, \operatorname{curl} g\rangle_{\mathrm{L}^{2}(\Omega)}-\langle f, \underbrace{\operatorname{curl} \operatorname{curl} g}_{=-g}\rangle_{\mathrm{L}^{2}(\Omega)}=\langle f, g\rangle_{\mathrm{H}(\operatorname{curl}, \Omega)},
$$

which implies $q \in \operatorname{dom} \gamma_{\tau}^{*}$. Consequently,

$$
\operatorname{dom} \gamma_{\tau}^{*} \supseteq \pi_{\tau}\left(\hat{\mathrm{H}}(\operatorname{curl}, \Omega) \cap \stackrel{\circ}{\mathrm{H}}_{\Gamma_{0}}(\operatorname{curl}, \Omega)\right)
$$

3. Step: Combining the results of the previous steps yields

$$
\begin{aligned}
\pi_{\tau}\left(\hat{\mathrm{H}}(\operatorname{curl}, \Omega) \cap \stackrel{\circ}{\mathrm{H}}_{\Gamma_{0}}(\operatorname{curl}, \Omega)\right) \supseteq \operatorname{dom} \hat{\gamma}_{\tau}{ }^{*} & \\
& \supseteq \operatorname{dom} \gamma_{\tau}^{*} \supseteq \pi_{\tau}\left(\hat{\mathrm{H}}(\operatorname{curl}, \Omega) \cap \stackrel{\circ}{\mathrm{H}}_{\Gamma_{0}}(\operatorname{curl}, \Omega)\right) .
\end{aligned}
$$

Hence, $\hat{\gamma}_{\tau}{ }^{*}=\gamma_{\tau}^{*}$ and therefore

$$
\overline{\gamma_{\tau}}={\hat{\gamma_{\tau}}}^{* *}=\gamma_{\tau}^{* *}=\gamma_{\tau}
$$

which implies $\stackrel{\circ}{\mathrm{C}}^{\infty}\left(\mathbb{R}^{3}\right)$ is dense in $\hat{\mathrm{H}}_{\Gamma_{1}}(\operatorname{curl}, \Omega)$ w.r.t. the graph norm of γ_{τ} with is $\|\cdot\|_{\hat{H}_{\Gamma_{1}}(\operatorname{curl}, \Omega)}$.

6. Conclusion

We have defined $\mathrm{H}(\operatorname{curl}, \Omega)$ fields that possess an L^{2} tangential trace on $\Gamma_{1} \subseteq \partial \Omega$ via a weak approach (by representation in the $\mathrm{L}^{2}\left(\Gamma_{1}\right)$ inner product) and showed that the C^{∞} fields are dense in this space. This is a generalization of [BBBCD97], where the case $\Gamma_{1}=\partial \Omega$ was regarded. In fact for partial tangential traces there is the second question about the density with additional homogeneous boundary conditions on $\Gamma_{0}=\partial \Omega \backslash \overline{\Gamma_{1}}$. This was exactly the open problem in [WS13, Sec. 5], which we could solve. In particular they were asking whether $\mathrm{H}_{\Gamma_{0}}^{1}(\Omega)$ is dense in $\hat{\mathrm{H}}(\operatorname{curl}, \Omega) \cap \stackrel{\circ}{\mathrm{H}}_{\Gamma_{0}}(\operatorname{curl}, \Omega)$, which is in fact a weaker version of Theorem 4.8.

References

[BBBCD97] Faker Ben Belgacem, Christine Bernardi, Martin Costabel, and Monique Dauge. A density result for Maxwell's equations. C. R. Acad. Sci., Paris, Sér. I, 324(6):731736, 1997. doi:10.1016/S0764-4442(97)86998-4.
[BCS02] A. Buffa, M. Costabel, and D. Sheen. On traces for \mathbf{H} (curl, Ω) in Lipschitz domains. J. Math. Anal. Appl., 276(2):845-867, 2002. doi:10.1016/S0022-247X (02)00455-9.
[BPS16] Sebastian Bauer, Dirk Pauly, and Michael Schomburg. The Maxwell compactness property in bounded weak Lipschitz domains with mixed boundary conditions. SIAM J. Math. Anal., 48(4):2912-2943, 2016. doi:10.1137/16M1065951.
[Gri85] P. Grisvard. Elliptic problems in nonsmooth domains, volume 24 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston, MA, 1985.
[PS22a] Dirk Pauly and Michael Schomburg. Hilbert complexes with mixed boundary conditions part 1: de Rham complex. Math. Methods Appl. Sci., 45(5):2465-2507, 2022. doi:10.1002/mma. 7894.
[PS22b] Dirk Pauly and Nathanael Skrepek. A compactness result for the div-curl system with inhomogeneous mixed boundary conditions for bounded lipschitz domains and some applications. ANNALI DELL'UNIVERSITA' DI FERRARA, 2022. doi:10.1007/s11565-022-00444-3.
[Skr21] Nathanael Skrepek. Well-posedness of linear first order port-Hamiltonian systems on multidimensional spatial domains. Evol. Equ. Control Theory, 10(4):965-1006, 2021. doi:10.3934/eect. 2020098.
[Skr23a] Nathanael Skrepek. Characterizations of the Sobolev space H^{1} on the boundary of a strong Lipschitz domain in 3-D, 2023. arXiv:2304.06386.
[Skr23b] Nathanael Skrepek. Quasi Gelfand triples, 2023. arXiv:2301.04610.
[WS13] George Weiss and Olof J. Staffans. Maxwell's equations as a scattering passive linear system. SIAM J. Control Optim., 51(5):3722-3756, 2013. doi:10.1137/120869444.

TU Bergakademie Freiberg, Institute of Applied Analysis, Akademiestrasse 6, D09596 Freiberg, Germany

Email address: nathanael.skrepek@math.tu-freiberg.de
Technische Universität Dresden (TUDD), Fakultät Mathematik, Institut für Analysis, Zellescher Weg 12-14, 01069 Dresden, Germany

Email address: dirk.pauly@tu-dresden.de

[^0]: 2020 Mathematics Subject Classification. 46E35, 35Q61.
 Key words and phrases. Maxwell's equations, tangential traces, boundary traces, Lipschitz domains, Lipschitz boundary, density.

 E-mail: nathanael.skrepek@math.tu-freiberg.de.

