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Abstract

We address the applicability of quantum-classical hybrid solvers
for practical railway dispatching/conflict management problems, with
a demonstration on real-life metropolitan-scale network traffic. The
railway network includes both single-and double segments and covers
all the requirements posed by the operator of the network. We build
a linear integer model for the problem and solve it with D-Wave’s
quantum-classical hybrid solver as well as with CPLEX for compari-
son. The computational results demonstrate the readiness for applica-
tion and benefits of quantum-classical hybrid solvers in the a realistic
railway scenario: they yield acceptable solutions on time; a critical re-
quirement in a dispatching situation. Though they are heuristic they
offer a valid alternative and outperform classical solvers in some cases.

1 Introduction

Rail transport is expected to experience an increase in capacity demands due
to changes in mobility needs resulting from climate policy, leading to traffic
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challenges in passenger and cargo rail transport. The situation is aggravated
by the fact that the rolling stock and especially railway infrastructure cannot
keep up with the increase in transport needs, which makes railway systems
overloaded.

Rail transport, due to its technical and organisational characteristics is
very sensitive to disturbances in traffic: these extraordinary events have an
impact on railway operations, typically resulting in delays [1]. Examples
of such disturbances include: late train departures/arrivals, extended dwell
times, or (partial) track closures1. These can last from several minutes up
to hours. The impact of disturbances can propagate to multiple sections
in the railway network (cf. [2] and references therein). Thus, ensuring sta-
ble railway traffic and providing reliable service for passengers, rail cargo
companies, and their clients is in the best common interest of railway in-
frastructure managers, and train operators. To limit these impacts as much
as possible it is necessary to make proper dispatching decisions quickly. The
dispatchers need to reschedule and partially reroute the trains, aiming at
the minimisation of negative consequences. Still, in many places, dispatch-
ers are using their own intuition or simple heuristics like FCFS (First Come
First Served); resulting in decisions far from the objective of consequence
minimisation. In the last decades, there has been a growing research interest
in mathematical optimisation methods in support of rail dispatchers in de-
cision making. While doing so, diverse objective functions were addressed,
such as the (weighted) sum of delays [3], the maximal delay that cannot be
avoided [4], or fuel consumption measures [5].

As a railway network is a complex non-local structure, modeling a big-
ger portion of it is necessary for efficient suppression of the consequences of
disturbances. Hence, large-scale dispatching problems have to be addressed,
and as the time to come up with a decision is limited, they have to be
solved almost real time. Therefore it is vital to develop efficient algorithms.
However, the current conventional rescheduling optimisation models have
difficulties addressing complex and large-scale instances in suitable compu-
tation time [6, 7, 8].

The railway dispatching problem can broadly be recognised as being
equivalent to job-shop scheduling with blocking and no-wait constraints [9,
10]. A possible modeling approach is based on alternative graphs employing
order and precedence variables [3], facilitating the formulation as a mixed
integer linear program which is often large, hence, specialised algorithms
are often used instead [8, 11]. An alternative approach is to use time-
indexed models: discrete-time units and binary decision variables that assign
events to particular time instants. While this approach leads to very large
problems, this approach is applied both in timetabling as well as dispatch-
ing/rescheduling [6, 12, 7, 13].

1Closures may be referred to as disruptions.
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As time indexed models result in integer or 0-1 programs, they are
suitable [14] for to be solved on new types of hardware: quantum an-
nealers [15, 16]. These physical devices can be considered as stochastic
heuristic solvers for Quadratic Unconstrained Binary Optimisation (QUBO)
problems, and there are few commercially available options, including D-
Wave [17]. The exploration of their potential applications attracts a growing
research interest (c.f. Section 2.2), in which railway applications are not yet
strongly represented.

In this paper, we address the train rescheduling problem in complex
railway networks with mixed infrastructure including single, double, and
multiple track railway lines with given planned train paths. We consider
shunting as movement of rolling stock between depots and stations followed
by rolling stock connections. We apply a new hybrid dispatching algorithm
combining classical-quantum modelling and based on quantum annealing.
This work extends on a particular linear modeling strategy, partly explored
on a toy model in [18]. We develop an integer linear programming (ILP)
model, which is solved with proprietary D-Wave solvers as well as with
CPLEX for comparison.. The D-Wave approach is analysed in detail, with
respect to its applicability and performance in a practically relevant situa-
tion. The results suggest that quantum computing and QA in particular,
although an early-stage technology, are ready for tackling challenging rail-
way dispatching problems.

The main contributions of the present work are the following:

• A railway traffic dispatching model is introduced for rescheduling trains
due to disturbances and disruptions taking into account given timetable,
rolling stock connections and a network with single or multi-track seg-
ments.

• Quantum annealing-based hybrid heuristics are, for the first time, ap-
plied to real-life problems of railway dispatching optimisation on a
metropolitan scale.

• The performance of the hybrid (quantum classical) D-Wave solver is
demonstrated on a real-life network in Poland and diverse disturbance
scenarios of different sizes and types.

• It is found that the D-Wave hybrid solver provides good quality solu-
tions in short time, also for the complex instances in limited compu-
tational time.

• It is found that for certain instances (and particular setting of pa-
rameter of minimal processing time) the hybrid (quantum classical)
D-Wave solver outperforms classical solvers in terms of computational
time, yielding still feasible solutions.
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The paper is organised as follows. In Section 2 we review state of art lit-
erature and identify scientific gaps we intend to fill, in Section 3 we describe
problem under investigation, in Section 4 we evaluate our model, in Section 5
we discuss the hybrid solver we use, in Section 6 we present computational
results.

2 Literature review

In this section, we present time-indexed models known from the literature,
comparing them briefly with our modelling approach. For a general review
of railway timetabling and rescheduling we refer to [19, 20]. Second, we
review recent quantum annealing applications in optimisation in general,
and also in the rail/transport domain. Finally, we summarise the existing
scientific gaps.

2.1 Classical railway dispatching

Time-indexed modelling of railway scheduling and rescheduling is quite com-
mon in literature for routing [12, 6] and scheduling [21, 5, 7, 22] . Caimi et
al. [6], who focus on determining train’s path for a complex central railway
station area (called the blocking - stairway), used a discrete-time model re-
sulting in a 0 − 1 program. Their model is successfully demonstrated on an
operational day at the central railway station area Berne, Switzerland. Sim-
ilarly, Lusby et al. [12] consider train movements in a single major (and thus
complex) railway junction, including a freight yard and a few minor stations.
They build a mixed integer programming model that can also be solved close
to optimal in case of practically relevant instances. They address the train
movements on the level of detail of acceleration and deceleration strategies,
hence adopting a significantly finer discrete time scale than our one-minute
resolution. When compared to our problem, these two models addressed
a high traffic in a complex station area. Instead, we are concerned more
with a bigger area, multiple stations, and mixed track, but a lower train
density and complexity. Our train routes fixed within the stations, and we
also model shunting movements that is not a subject of the cited reference.

Caprara et al. [21] proposed a graph theoretic formulation for the
problem using a directed multigraph in which nodes correspond to depar-
tures/arrivals at a certain station at a given time instant. This formulation
is used to derive an integer linear programming model that is solved using
a Lagrangian relaxation. Sasso et al. [22] introduced a new pure 0-1 pro-
gramming formulation, and call it Tick Formulation, to model the Deadlock
Detection (DD) problem. Meng and Zhou [7] focused “on the train dis-
patching problem on an N-track network, with the main challenge of how
to formulate specific retiming, reordering, retracking and rerouting options
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in combination”. Their model was demonstrated on generic networks of dif-
ferent structure than what we address. In our situation we are limited to
retiming and reordering of trains. Structurally, their model shows similari-
ties to ours, including the role of binary variables and also the introduction
of ”cells” that generalise the objects the occupancy of which can be con-
trolled: they can be one or more blocks, stations, etc. In our model, the
decision variables will be explicitly linked to a subset of stations.

2.2 Quantum annealing and its applications

Quantum annealing [23] is an optimisation method analogous to simulated
annealing (SA). Both can be used for the unconstrained minimisation of a
quadratic function of ±1-valued variables, which represents the energy con-
figuration for a set of spins of the Ising model [24, 25]; an important and cel-
ebrated problem in physics. The Ising problem can be equivalently rewritten
in a form of a Quadratic Unconstrained Binary Optimisation (QUBO) prob-
lem with binary (0−1) variables. The Max-Cut problem [26] is also equiva-
lent to the Ising model or QUBO. The problem is NP-hard, has tremendous
literature in classical optimisation, and there is significant ongoing progress
in the development of algorithms to solve it [27, 28]. An extensive list of
Ising problems and their formulations are presented in [29].

Hardware quantum annealers, like the D-Wave machine, implement a
quantum version of the Ising model, assigning a quantum bit, i.e. a two-
level physical quantum system to each bit. The system employs real physical
tow-level quantum systems with a tunable energy operator (Hamiltonian),
the energy being the objective function of the optimisation problem. An
adiabatic evolution of the quantum system is implemented: the interactions
between the spins are slowly changed from an initial Hamiltonian with a sim-
ple minimal-energy state to the Hamiltonian corresponding to the objective
according to the rules of quantum mechanics. According to the adiabatic
theorem of quantum mechanics [30], under certain conditions the physical
system remains in its lowest energy state during the evolution, and an opti-
mal, minimum-energy solution can be possibly read out at the end.

An ideal adiabatic quantum computer would be a device with a large
number of perfect quantum bits completely decoupled from their environ-
ment, very close to zero temperature. Any pair of qubits could be coupled,
and even, more general couplings, e.g. involving 3 or more spins could take
place. Such a system would exhibit perfect quantum coherence and entan-
glement. Even in such an ideal system, the time required for the evolution
to reach at a minimum energy state with high enough probability depends
on the gap between the minimal energy configuration and the one closest to
it in energy; the time required is inverse proportional to the gap. Certainly
this is not known in advance, it is determined by experimenting in practice.
A more severe issue is that the gap can be very small , hence, it is not pos-
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sible to solve all possible hard problems on such a setup. In spite of that,
there are problems in which this approach can be efficient.

Meanwhile, the state-of-the-art physical quantum annealers are smaller
systems of a few hundred quantum bits in which not all qubits are coupled,
and the arrangement operates at a finite temperature. The fixed topology
of qubit couplings means that the problem’s graph defined by the nonzero
coupling has to be embedded as an induced subgraph of the topology of
the system. This embedding is a hard problem itself [31]. It often requires
to couple multiple physical qubits to represent a logical bit of the problem.
As for the finite temperature, the adiabatic evolution works also in systems
that interact with their environment [32]. However, the finite temperature
results in noise, and with the larger system size the impact of the noise
increases [33].

Operationally the optimiser’s point of view quantum annealers can be
viewed as probabilistic heuristic solvers returning a statistical sample [34] of
configurations which are supposed to be optimal or close to optimal. It must
be stressed that the quantum annealers are not algorithms running on digi-
tal computers; they are analog devices implemented physically. This latter
implies that the coefficients of the problem are encoded with a limited accu-
racy, and the algorithmic properties of the particular optimisation problem
such as its complexity class will not determine the solver’s behaviour.

To overcome the problem of limited size and accuracy, quantum anneal-
ers of the present state of the art are often used in hybrid (quantum - classi-
cal) solvers, orchestrating classical algorithms and using quantum annealing
as a subroutine in order to address hard problem instances more efficiently.
Solvers available in D-Wave’s ’Leap hybrid solver service (HSS)’ [35], in-
cluding the one used in the present work, belong to this family. Meanwhile,
quantum technology keeps on developing, systems of bigger size and better
topology are regularly announced, they are more and more affordable, and
there is a growing community around them.

Currently, the applicability of quantum annealing technologies is being
explored. Benchmark problems are solved [36, 37], comparisons with digi-
tal computers are made [38], etc. The application of quantum annealers in
transportation optimisation is a new area with only a few contributions so
far. There is an apparent interest in this research direction in the aviation
domain [39, 40, 41], which relates also to the already mentioned benchmark-
ing of annealers [36]. Shipment rerouting was also addressed in the context
of quantum annealing [42].

In railway context, the first applications of QA can be found in train
dispatching [43, 18] and rolling stock planning [44]. In particular, [13] was
the first proof-of-concept demonstration of a (pure) quantum computing ap-
proach to railway dispatching. A followup paper [18] laid down the principles
of a more general modeling approach to railway rescheduling in light of QA,
introducing a suitable QUBO / HOBO (higher-order binary optimisation)
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encoding of these problems.
Finally, there are a few examples of hybrid solvers applications including

traffic flow optimisation [45], multi-car paint shop optimisation [46], tail
assignment problem [47], and vehicle optimisation [48].

2.3 Scientific gaps

We recognise several important scientific gaps. First, existing optimisation
models suffer from the curse of dimensionality, and inability to solve larger
real-life instances. Second, current QA models [43, 18] represent pure QA
implementations and demonstrated only on simple network setups. Third,
no hybrid QA-based models have been used for real-life railway, or even
other schedule-based modes, like public transport and air traffic planning
and/or rescheduling.

In this paper we demonstrate the quantum readiness of medium-scale
railway dispatching models: we successfully apply quantum methods in the
dispatching problem of a metropolitan-scale real-life railway network. To do
so, we use a hybrid approach combining quantum and classical computing.
For a fair comparison of current and future QA approaches with state-of-
the-art classical approaches, we elaborate the railway model readily suitable
for both classical and hybrid (quantum-classical) solvers in a comparable
manner. Quantum computing is believed to develop rapidly in near future.
Hence, demonstration quantum readiness for railway problems right now
is step forward towards the demonstration of quantum advantage in future.
On future quantum devices the comparison with classical solvers is expected
to be in strong favour for the quantum ones. In this way we also contribute
in developing a novel general set of railway dispatching models that has a
potential to scale well with the size of the problem, aiming to overcome the
curse of dimensionality.

3 Problem description

Stations Lines

- Tracks

- Interlocking area

- Double

- Single

S1

S3

S2

Figure 1: Exemplary network. Interlocking areas of stations in green.
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We consider a railway dispatching problem that includes train reschedul-
ing, retiming, and shunting movements with rolling stock circulation at sta-
tions. Also, we consider an urban railway network with mixed tracks from
single, double, up to quadruple tracks.

We model a railway network with edges and nodes. Figure 1 depicts
an exemplary network layout composed of nodes (station or junction) and
edges (single, double, multiple track lines). Each edge is composed of one
or more tracks. Each track consists of blocks sections defined by pairs of
signals [12]. Each block section can be occupied by at most one train at a
time. A subsequent train is allowed to enter the block only after a minimal
headway : minimal time span between the trains. We assume a 2-block
signalling system, meaning that two free blocks are required between the
consecutive trains. We also assume green way policy (trains have the free
way to move at the maximal allowed speed between stations) and constant
running times.

Each node is composed of station tracks (blocks) and interlocking ar-
eas. One station track can be occupied by one train at a time. Routing
dependencies between pairs of trains competing for the same resource in in-
terlocking areas are considered in order to to guarantee that only one train
from the pair can occupy the area at the time.

A train’s route is the sequence of blocks the train passes during its jour-
ney. A train path is a sequence of arrival and departure times of a particular
train assigned to a train route. We assume a one-minute resolution for all
time parameters such as timetable time, running and dwell time minimal
headway time or passing time, resulting in integer variables. This assump-
tion of discretised time is needed to enable the use of quantum-based solvers,
and, more importantly, introduces the possibility of pruning the inherently
binary variables. The relaxation of integer constraints on time variables is
not expected to improve computation time significantly, as the real difficulty
is tied to precedence of trains, encoded later on precedence binary variables.

In the network, two trains can follow each other, i.e. keep the given
order, meet and pass (M-P) when going the opposite directions, and meet
and overtake (M-O), i.e. change the order, when going the same direction.
Single tracks are designed for bidirectional traffic, double-tracks for unidi-
rectional, one for each direction, and multi-track lines can be combination
of unidirectional and bidirectional. On single-track lines, M-Ps and M-Os
are only possible at stations. To prevent M-P on single-track lines, we de-
termine the set J 2

single as the set of all pairs of trains that can potentially
meet on the single track line heading in opposite directions.

Trains in the same direction preserve their order between stations, and
keep the minimal headway time between each other. To prescribe these we
determine set J 2

headway: the set of all pairs of trains that can potentially
violate the minimal headway condition.

The train traffic is scheduled on the basis of the given timetable. The
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timetable contains all the train paths. In the train dispatching problem,
we are given an initial timetable that is conflict-free. However, conflicts
may appear due to disturbances such as late departures and/or arrivals due
to excessive passenger demand, malfunctioning rolling stock, etc. Following
[49], a conflict is an inadmissible situation when at least a pair of trains claim
the same resource (e.g., block section, switch) simultaneously. We assume
that the conflict may occur either on the railway line or at the station.
Hence, the conflicts have to be solved by modifying the original timetable,
applying decisions on the train sequencing and retiming for trains claiming
for the same resource.

Let us denote by Ŝ the set of all stations. As an initial step of our
approach, we determine a subset S ⊂ Ŝ, the decision stations, and assume
that the direct decisions implied by our model affect these stations only. As
decision stations we select those stations, where routes of trains intersect,
where trains start or terminate, or where selected part network is bounded.
The motivation is that if the routes of trains are fixed, the decisions on
modifying their train paths has to be made with respect to these stations. (If
we change some of the trains’ routes in a re-routing process, new model with
new parameters if developed, e.g. additional decision stations may appear.)
In what follows, by a station we always mean a decision station. This
also means that non-decision stations appear only through the parameter
values in the model, they do not appear as indices of decision variables
or parameters. Headways, for instance, are calculated between decision
stations, taking into account all the line blocks and station blocks of non-
decision stations in between.

On the station where a train terminates or sets off, shunting is also mod-
eled. The goal of shunting is to move the train from the passengers’ service
track to the depot or vice versa. The depot is treated as the station, and
consider it as a black box, without detailed layout. We treat shunting move-
ments as service train from depot to the starting station of the service train,
or from the terminating station to the depot. The rolling stock circulation
condition is applied to ensure the precedence between the service train and
the actual train.

4 Methods and Model

In the following we describe our model in detail. Section 4.1 defines sets,
parameters and decision variables. Section 4.2 describes our integer linear
programming (ILP) formulation.

4.1 Sets, parameters and decisions

To formulate our decision variables, constraints and the objective function,
we determine sets of index tuples needed to find the actual index sets of
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variables, from the given infrastructure data, timetable data, and the rolling
stock circulation plan. Also, we introduce parameters calculated from the
same input.

4.1.1 Sets

The main objects of our model for railway dispatching are the trains j ∈ J
and the stations s ∈ Sj in their path. Set Sj includes decision stations
only and it is an ordered set. In addition to J and Sj , the relevant sets

are the following. Set J 2 (turn)
s ⊂ J × J (∀s ∈ S) is the set of all pairs of

trains so that the first train of the pair terminates at station s and its rolling
stock continues as the second train of the pair. This set is deduced from
the rolling stock circulation plan and the timetable. Set J 2 (close) ⊂ J × J
is the set of trains which are close enough to each other in time so that
precedence variables have to be defined for them. More details will be given
at the description of the parameter dmax which this set depends on. Set
J 2 (headway) ⊂ J 2 (close) is the set of train pairs that can potentially violate
the minimal headway time between two subsequent trains on a line segment.
For a pair of trains to be in J 2 (headway), both their routes need to include
the same line segment so that the trains are moving in the same direction on
it and can meet there according to model parameters, i.e. maximal allowed
delay. Set J 2 (single) ⊂ J 2 (close) is the set of all trains that share at least
one single-track line segment as a common part of their routes so that they

are heading in the opposite direction. Set (∀s ∈ S) J 2 (track)
s ⊂ J 2 (close) is

the set of train pairs that are planned to occupy the same track on station
s anytime during the planning horizon, thereby competing for the same

track. Set (∀s ∈ S) J 2 (switch,out)
s ⊂ J 2 (close) is the set of train pairs that

are planned to pass the same interlocking area of s upon their departure

from station s. Set
(
∀(s, s′) ∈ S×2

)
J 2 (switch,out,in)
s,s′ ⊂ J 2 (close) is the set

of train pairs that are planned to pass the same interlocking area of s in
order to have j to departure s while j′ arrive s from the direction of s′. Set(
∀s ∈ S×2

)
J 2 (switch,in,noMP)
s,s′ ⊂ J 2 (close) is the set of train pairs that are

planned to pass the same interlocking area of s upon their arrival at s from
the direction of s′, and there is no M-P possibility for them between s and

s′ Set
(
∀s ∈ S×2

)
J 2 (switch,in,MP)
s,s′ ⊂ J 2 (close) is the set of train pairs that

are planned to pass the same interlocking area of s upon their arrival at s
so that either they both come from the direction of s′ but there is a M-P
possibility for them between s and s′, or one of them is approaching s from
a direction other than s′. Set (∀j ∈ J ) C2

j is the set of all station pairs that

are subsequent in the route of j. Set
(
∀(j, j′) ∈ J ×2

)
C2 (common)
j,j′ is the set

of all station pairs that appear as subsequent stations in the route of both j

and j′ heading in the same direction. Set
(
∀(j, j′) ∈ J ×2

)
C2 (common, single)
j,j′

is the set of all station pairs that appear as subsequent stations in the route
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of both j and j′ which are connected with a single-track line segment, and
trains are heading in opposite directions. The order within the pairs is
determined by j. All these sets can be enumerated on the basis of the input
data in a straightforward manner.

4.1.2 Parameters

The parameters that appear in our model are the following:

• τ (pass)(j, s → s′) is the running time of j from s to s′.

• τ (headway)(j, j′, s → s′) is the minimal headway time for j′ following j
from s to s′.

• τ (switch)(j, j′, s) is the running time of j over a interlocking area of s,
where j may be in conflict with j′. (In our examples we do not consider
cases when, e.g., on bigger stations there are multiple switches with
different technological times. The model could trivially be extended
to cover such scenarios by adding extra indices if relevant.)

• τ (dwell)(s, j) is the minimal dwell time of j at s.

• τ (turn)(s, j, j′) is the minimum turnaround time for the rolling stock of
a train j terminating at s to continue its journey as train j′.

• σ(j, s) is the scheduled departure time of s from j, given by the original
timetable.

• υ(j, s) is the earliest possible departure time of j from s when a distur-
bance and/or disruption in the network happens. It is the maximum
of σ(j, s) and the technically feasible earliest departure time, and may
be more constraining than the first depending on the initial delays.
The latter is calculated assuming that the train follows its planned
route at minimum running time, and that there are no other trains
present on the network.

• dmax is an upper bound assumed for the secondary delay t(out)(j, s) −
υ(j, s). This parameter sets an upper limit for the possible secondary
delays that can arise on the particular part of the network. Setting
such a bound is common in the literature, see e.g. [11]. We set the
same value of this parameter for all our testing instances. It has to
be big enough so that no secondary delay exceeds it (e.g. dmax = 40
excludes the possibility of a one-hour delay due to waiting for another
delayed train). Meanwhile it is desirable to set its value as small as
possible; restricting the time variables to small intervals decreases the
number of binary decision variables in the mode.
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A small number of binary decision variables has benefits when using a solver
based on quantum annealing: the current NISQ devices are of limited size,
and their noise significantly increases with the problem size [33]. Unneces-
sary variables would generate additional constraints, which, in addition to
the increase in size, also increase the connectivity of the graphs which can
lead to embedding problems in quantum systems. Therefore, even when
using hybrid (classical + quantum) algorithms, maintaining a small model
is desirable. In our case, the reduction of the model size by the choice of
a small dmax parameter is achieved via defining the set J2 (close). A pair of
trains (j, j′) is included in this set if and only if they can meet on any sta-
tion, given the original timetable, the disturbed/disrupted timetable, and
assuming that no train can have a secondary delay greater than dmax. The
number of constraints will be proportional to the average number of trains
that can meet another train at a station; this will be linear in dmax.

4.1.3 Decision variables

Our decision variables are the following. First, we use departure time vari-
ables:

t(out)(j, s) ∈ N (1)

defining the departure time of train j ∈ J from station s ∈ Sj . Such a
variable is defined for all decision stations Sj . In the case of trains that
terminate within the modeled part of the network, the last station is not
included in Sj . The arrival time of the trains at stations, t(in)(j, s) ∈ N
are trivially related to the t(out)(j, s) variables through a constant offset (c.f.
Eq. (3)), given the fixed running time assumption.

Second, in addition to the time variables, we use three sets of binary
precedence variables. Decision variables y(out)(j, j′, s) ∈ {0, 1} determine the
order of trains to leave stations: the variable takes the value 1 if train j leaves
station s before train j′, and 0 otherwise. The (j, j′, s) tuples for which an y
variable is defined will be specified later. Similarly, the precedence variables
y(in)(j, j′, s) ∈ {0, 1} prescribe the order on the entry to stations; the value
is 1 if j arrives to s before j′. The last set of precedence variables describes
the precedence of trains at some resource located between stations s and
s′ (e.g. single track used by j and j′ heading in opposite direction). The
binary variable z(j, j′, s, s′) ∈ {0, 1} will be 1 if j uses the given resource
before j′. Also in this case, the quadruples (j, j′, s, s′) for which we have
such a variable will be specified later.

4.2 ILP formulation

Given the index sets, variables, and the parameters and decision variables of
the model, now we formulate the optimisation objective and the constraints.
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4.2.1 Objective function

As our model is restricted to a metropolitan-scale part of the whole railway
network, our goal is to minimise the secondary delays generated within this
part. Hence, a suitable objective function is the weighted sum of secondary
delays at the destination station:

f(t) =
1

dmax

∑
j∈J

w(j)
(
t(out)(j, s∗) − υ(j, s∗)

)
. (2)

where s∗ is the last element of Sj , and wj are weights for each train repre-
senting its priority. The constant multiplier 1/dmax is optional; we use it for
better comparability of different instances.

4.2.2 Constraints

The constraints of the model are the following.

Minimal running time Each train needs a minimal time to get to the
subsequent station:

∀j ∈ J ∀(s, s′) ∈ Cj t(in)(j, s′) = t(out)(j, s) + τ (pass)(j, s → s′) (3)

Headways A minimal headway time is required between subsequent train
pairs on the common part of their route as

∀(j, j′) ∈ J 2 (headway) ∀(s, s′) ∈ C2 (common)
j,j′ t(out)(j′, s) ≥

t(out)(j, s) + τ (headway)(j, j′, s → s′) − C · y(out)(j′, j, s), (4)

where C is a constant big enough to make the constraint satisfied whenever
the binary variable y(out)(j′, j, s) takes the value of 1. In our implementation
we calculate and use the smallest suitable value of C given particular dmax

value, i.e.

C = −min(t(out)(j′, s)) + max(t(out)(j, s)) + τ (headway)(j, j′, s → s′) (5)

Single-track occupancy Trains moving in opposite directions cannot
meet on the same single-track line segment:

∀(j, j′) ∈ J 2 (single) ∀(s, s′) ∈ C2 (common, single)
j,j′

t(out)(j′, s′) ≥ t(in)(j, s′) − C · z(j′, j, s′, s), (6)

where C is a big enough constant chosen similarly to that in Eq. (4).
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Minimal dwell time Each train has to occupy the station node for a
prescribed time duration at each station:

∀j ∈ J∀s ∈ Sj t(out)(j, s) ≥ t(in)(j, s) + τ (dwell)(j, s). (7)

Timetable No train is allowed to depart before its scheduled departure
time:

∀j ∈ J∀s ∈ Sj t(out)(j, s) ≥ σ(j, s). (8)

Station track occupancy Station tracks can be occupied by at most one
train at a time:

∀s ∈ S∀(j, j′) ∈ J 2 (track)
s t(in)(j′, s) ≥ t(out)(j, s) − C · y(out)(j′, j, s), (9)

where C is chosen similarly to that in Eq. (4) again. Note that this require-
ment may not be needed for depot tracks; the exceptions can be handled by

the proper definition of J 2 (track)
s .

Interlocking area occupancy These ensure that trains cannot meet in
interlocking area:

∀s ∈ S∀(j, j′) ∈ J 2 (switch,out)
s t(out)(j′, s) ≥

t(out)(j, s) + τ (switch)(j, j′, s) − C · y(out)(j′, j, s), (10)

∀(s, s′) ∈ S×2∀(j, j′) ∈ J 2 (switch,out,in)
s,s′ t(in)(j′, s) ≥

t(out)(j, s) + τ (switch)(j, j′, s) − C · z(j′, j, s′, s), (11)

∀(s, s′) ∈ S×2∀(j, j′) ∈ J 2 (switch,in,noMP)
s,s′ t(in)(j′, s) ≥

t(in)(j, s) + τ (switch)(j, j′, s) − C · y(out)(j′, j, s′), (12)

∀(s, s′) ∈ S×2∀(j, j′) ∈ J 2 (switch,in,MP)
s,s′ t(in)(j′, s) ≥

t(in)(j, s) + τ (switch)(j, j′, s) − C · y(in)(j′, j, s), (13)

with a choice of C similar again to that in Eq. (4).

Rolling stock circulation constraints are used to bind the train with
the shunting movement called also service train. If the train set of train j
which terminates at s is supposed to continue its trip as (service train) j′

or vice versa, a precedence of these trains including a minimum turnaround
time has to be ensured:

∀s ∈ S∀(j, j′) ∈ J 2 (turn)
s t(out)(j′, s) ≥ t(in)(j, s) + τ (turn)(j, j′, s). (14)
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Order of trains We have additional conditions on the y-variables, con-
cerning the case when M-O is not possible on the line or station.

∀(j, j′) ∈ J 2 (headway) ∀(s, s′) ∈ C2 (common)
j,j′

∀(j, j′) ∈ J 2 (headway) ∩ J 2 (track)
s′

y(out)(j, j′, s) = y(out)(j, j′, s′)

∀(s, s′) ∈ S×2∀(j, j′) ∈ J 2 (switch,in,MP)
s,s′ ∩ J 2 (track)

s′

y(in)(j, j′, s′) = y(out)(j, j′, s′)

(15)

The objective function in Eq. (2), together with the constraints in Eq. (3)-
(14) define our mathematical programming model.

The model yields an integer linear program, and the time variables can
be constrained even into a finite range using the parameter dmax. Note that
the binary variables have the obvious symmetry property

y(out)(j′, j, s) = 1 − y(out)(j, j′, s)

z(j′, j, s′, s) = 1 − z(j, j′, s, s′),
(16)

reducing number of variables to use independent binary variables only.
As for the scaling of our model, the number of time variables i.e. #t

is bounded by number of trains times number of stations #J#S (see also
Section 3.1 of [18]). To estimate more precisely number of these variables,
we observe that in our model trains does not visits all stations. We assume
that in average each train visits α ∈ (0, 1) fraction of the stations, we have
then

#(t) ≈ α#J#S. (17)

as a tighter bound, see Tabs.1 2.
Suppose, that most of the network is composed mainly of double track

lines. Then there will be typically a single precedence variable per train and
station (y(out)(j, j′, s)), and thus their number can be estimated by:

#y + #z ≈ #y ≈ αN(dmax)#J#S, (18)

where N(dmax) is number of trains the train can meet at a station on average.
Under such assumptions the total number of variables grows linearly with
number of trains and stations:

#vars = #t + #y + #z ≈ const#J#S. (19)

If, on the other hand, the network has dominantly single track lines, two
precedence variables per train and station (y(out)(j, j′, s) and z(j, j′, s, s′))
will be needed, and thus

#y = #z ≈ αN(dmax)#J#S. (20)
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In both cases we assume that there are not many (y(in)(j, j′, s)) variables,
as they are tied certain particular interlocking area conditions.

Based on Eq. (16) there are typically 2 constraints per each y variable
as headway and station track occupation constraints, and 2 constraints per
each z variable as single track occupation constraints. For the interlocking
area occupation constraints it is more complicated as it involves both z and y
variables; a good assumption is to consider 2 constraints for each y variable.
For the running time and minimal dwell time we expect one constraint per
train and station. Thus number of constraints can be estimated by

#constr. ≈ 6#y + 2#z + 2#J#S (21)

where the second term is tied to single track line conditions (one condition
per z variable).

#constr. ≈

{
α(6N(dmax) + 2)#J#S for double track

α(8N(dmax) + 2)#J#S for single track.
(22)

Henceforth, because of the limitations in time imposed by dmax the model
can be viewed as linear in number of trains and number of stations. Hence,
as expected, the model is more complex for the network in which single
track lines dominate. Although, analysed network is mostly composed of
the double track lines, we will analyse certain use-cases with the fraction of
single track lines increased.

Observe that without limiting the secondary delays by dmax, the value
of N(dmax) will only be bounded by #J − 1 (as each train is considered
to possibly meet each other), which makes the scaling of the number of
precedence variables and number of constraints quadratic in the number of
trains. This would increase the model size which we want to avoid.

5 Hybrid quantum-based approach

To overcome the limitations described in in Section II of current hardware
quantum annealers, we apply hybrid quantum-based solver. In particular,
we use the ’Leap hybrid solver service (HSS)’ [35]; a cloud-based propri-
etary solver which is developed by the market leader of quantum annealing
hardware and is available as a service. It utilises a hybrid approach that
combines classical computational power with quantum processing.

In particular, we used Constrained Quadratic Model (CQM)[50] Solver.
The CQM accepts constrained problem in its input, which it is handling
internally using penalty methods. Hence, we submit the constraints and the
solver’s internal preprocessing mechanism adds them to the model automat-
ically.
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After the preprocessing, which includes subproblem identification and
decomposition to smaller instances [51], the hybrid solver implement a work-
flow that combines a portfolio of various classical heuristics (including tabu
search, simulated annealing, etc.) running on powerful CPUs and GPUs. In
the course of the solution process the hardware quantum annealer is invoked.
This inputs a smaller quadratic unconstrained binary optimisation (QUBO)
problem or problems, computed similarly to state-of-the-art transformation
method [52], that is general for ILP problems, performs the required em-
bedding, runs the QUBO subproblem on the physical annealing, and returns
a sample of potential solutions. After these readouts, the sample is incor-
porated into the solution workflow. In this way, even though the physical
annealer supports problems with limited size (e.g. the Pegasus machine has
5500 physical qubits [53], and several of these may be needed to represent
a binary variable because of the embedding), the approximate solution of
small subproblems can boost the classical heuristics. The workflow results
in a solution that is not guaranteed to be optimal, so it can be considered
as a heuristic solver.

While D-Wave’s proprietary solvers hide the exact details of the de-
scribed process process from the user, the output is supplemented with tim-
ing parameters, including run time: the total elapsed time including system
overhead, and QPU access time which is is the time spent accessing the ac-
tual quantum hardware. These parameters enable a comparison with other
solvers.

In addition to the actual problem input, the CQM solver has an optional
input parameter, t min, which is a time limit for the heuristics running in
parallel[50]. Each thread is stopped at the actual best solution if this time
has been reached. We have sampled the CQM problems with various settings
of t min and uncovered the impact of this setting to the model performance
and solution quality for our problem.

The CQM Solver can solve problems encoded in the form of Eq. (2) – (15)
(c.f. Section 4.2) with up to 5000 binary or integer variables and 100, 000
constraints. Computational results of railway dispatching problems were
obtained using classical as well as hybrid quantum-classical solvers. As a
classical solver, IBM ILOG CPLEX Interactive Optimizer (version 22.1.0.0)
was used. The CPLEX computation was performed on 16 cores of Intel(R)
Core(TM) i7-10700kF CPU 3.80GHz with 64GBs of memory.

6 Computational results

In this section, we demonstrate the performance of the discussed hybrid
quantum-based approach on a network at Polish railways - central part of
the Upper Silesia Metropolis. The purpose of experiments is compare the
hybrid approach with the state of art commercial solver, CPLEX. This is
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performed for various experiment settings: single track line, double track
line, network, disturbances from outside the network, disturbances within
the network (e.g. closures). As the objective is tied to secondary delays, we
can roughly apply it to asses the degree of difficulty of the problem.

Section 6.1 describes the considered network and traffic characteristics.
Section 6.2 presents the results of comparison between CPLEX and hybrid
quantum-classical CQM solver on generic examples on the core line of the
network, this is performed to compare double track line scenarios with single
track line scenarios and closure scenarios. Section 6.3 presents analogous
results for larger network with real live timetable. Here the case studies
concerns various scenarios with different degree of difficulty.

6.1 Considered network

We use the Open Railway Map2 representation of the selected part of the
Polish railway network located in the central part of the Metropolis GZM
(Poland), presented in Fig 2. It comprises 25 nodes including 11 stations and
3 branch junctions, 146 blocks, and 2 depots. The infrastructure is managed
by Polish state infrastructure manager PKP PLK; for further details of the
traffic management consult [54].
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Figure 2: The network under consideration.

The decision stations include junction stations {KO, KO(STM), CB,
KL}, stations bounding the analysed part of the network {GLC, CM, KZ,
Ty, Mi}, depots {KO(KS), KO(IC)} from which regional and intercity trains

2https://www.openrailwaymap.org/, visited 2022-11-25
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are being shunted to and from {KO}, and stations on the single track line
– {MJ} to allow meet and pass (M-P) or meet and overtake (M-O) there.
As described before, the decision stations are the only ones that will appear
explicitly in our model. Due to operational reasons resulting from track
design, the decisions on train departure times (and thus on trains’ order)
are, in the current operational practice, de facto made with respect to the
decision stations.

All other stations and station-like objects are treated as line blocks as
long as no rerouting or retracking is considered; they will appear in the
model implicitly via parameters. These stations include:

• stations {ZZ,CB} in which usually there are rigid assignments of the
platform tracks to the traffic direction (i.e., track 1 towards {GLC};
track 2 towards {KO})

• branch junctions {KTC,Bry,Mc} in which usually there is a rigid
assignment to the tracks.

As an example, let for a particular train j,
Ŝj = {KZ, KO(STM), KO, KTC, CB, RCB, ZZ, GLC} be the ordered set
of stations. Then, the dispatching decisions de facto will be made in above
mentioned decision stations Sj = {KZ, KO(STM), KO, CB, GLC}. If such
approach is not satisfactory, following [18], we will retrack trains not only
at the decision stations Sj , but also beyond.

In all computation priority weights in Eq. (2) we use wj = 1 for stopping
(local) trains wj = 1.5 for intercity (fast) trains wj = 1.75 for express trains,
and wj = 0 for shunting (is applicable).

6.2 Generic examples on a selected railway line

As the first set of experiments we address generic instances on a part of the
network in Fig 2; line KO-GLC in particular, which is double track line.
The goal with presenting this scenarios is to compare the solvers for the
double track line (case 1), the double track line with closures (case 2), and
single track line (case 3). Shunting movement, and rolling stock circulation
are not considered in this set of experiments.

1. Case 1, the double track line with dense traffic. We use cyclic 3-hour
timetable with 10 trains each hour and each direction, i.e. we have 59
trains. (The decision stations are KO, CB and GLC).

2. Case 2, similar to case 1, but with the additional disturbance of one
of the tracks between ZZ and RCB being closed, what is not included
in the timetable. We use a cyclic 2-hour timetable with 10 trains each
hour and each direction, i.e. we have 40 trains. (The decision stations
are KO, CB, RCB, ZZ, and GLC and timetable is not feasible due to
the closure).
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c. #S #J # int vars # precedence vars # constraints

act.
mean

est.
≈ act.

mean

est. ≈
doub./sing.

act.
mean

est. ≈
doub./sing.

1 3 59 118 118 1538 1415 / - 7889 8731 / -

2 5 40 142 133 1394 1600/3200 8491 6867/13067

3 5 21 79 70 592 - / 840 3057 - / 3499

Table 1: Estimated and real number of variables and constraints (we use
α = 2/3 see Eq. (17))

3. Case 3, the whole line is considered as a single track, with a feasible
timetable of 3 hours traffic and 21 trains (decision stations are KO,
CB, RCB, ZZ, and GLC).

For each of the cases we compute 12 instances, each but first with different
initial delays of trains subsets (instance 0 yields no initial delays and is
feasible in cases 1 and 3). We use the parameter value dmax = 40 min, in all
cases.

To estimate the sizes of the problem and compare with real values (act.
mean) we expect each train to be in possible interaction with N(dmax) = 12,
for case 1 and 2, and N(dmax) = 6 for case 3 (less dense traffic to start from
the feasible timetable on the single track line). Given this, the estimated
and real numbers of variables are presented in Tab 1.

The computational results are presented in Figs. 3, 4, and 5 for cases 1,
2 and 3 respectively.

Case 2, namely the double track line with closures and dense traffic,
has appeared to be most challenging for both the classical solvers (in terms
of computational time) and for the quantum solver (in terms of objective).
Nevertheless, on this example, there are instances, where the current CQM
D-Wave hybrid solver outperforms CPLEX in terms of computational time.
In the next subsection, we will test the CQM solver on more realistic sce-
narios of the railway traffic on presented network. We will also focus on the
track closure situation (change double track line into the single track one
under dense traffic) to elaborate our findings from case 2.

6.3 Results for real railway situations

Our actual computations address various use cases of train delays outside the
network and within the network, numbered from 1 to 9. With the increase
of the number of the case the level of difficulty of the problem is expected
to increase (e.g., more trains ore involved or disturbances are spread more
over the network) - it is approximately reflected in the increasing objective
values of the optimal CPLEX solution, see Tab. 3. In details, cases 1 - 3
concern only delayed trains with no closures.
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Figure 3: Comparison of the performance of classical solver (CPLEX) with
that of the hybrid CQM for case 1. All the displayed solutions are feasible.
Total computational time (middle panel) and QPU times (lower panel) were
provided by the D-Wave output.
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Figure 4: Comparison of the performance of classical solver (CPLEX) with
that of the hybrid CQM for case 2. Note that the CQM is fast, even when
compared to CPLEX. The found solutions are suboptimal but can be use-
ful. Observe that all solutions were feasible, and the increment of t min

parameter in most cases boost the quality of solution, obviously at the cost
of computational time.
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Figure 5: Comparison of the performance of classical solvers (CPLEX) with
that of the hybrid CQM for case 3. All the displayed solutions are feasible.

Cases with number 4 or higher concern also rerouting of trains, due
to closures. Case 4 and 5 concerns rerouting trains from double track line
KTC-CB to the single track line with higher passing times, see Fig. 2 (trains
have no initial delays in case 3 and some initial delays in case 4). Case 6
concerns multiple closures, i.e. change of multiple line KZ-KO(STM) and
double track line KO-KL to single track lines. (Fig. 2, the justification may
come from upcoming reconstruction works on this part of network). Cases
7 -9 have closures of both case 5 and case 6, but with different initial delays
of trains. The intention of last 3 cases is to create a really challenging
dispatching problem. For comparison, case 0 is the default problem with no
disturbances.

The general rough estimated numbers of variables (from Eq. (17) -
Eq. (19) ) and constraints (Eq. (22)) for these cases, given #S = 10 ( #
decision stations without depots), #J = 27 N(dmax) = 4, and α = 0.5, are
presented in Tab. 2. The increasing number of closures, the bigger portion
of single-track parts in the network results in an increase in the number of
constraints and variables.

Results of optimisation with CPLEX and CQM hybrid solver are pre-
sented in Tab. 3. Observe that the CQM solver always returns a feasible
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network of single
track lines

network of double
track lines

# vars 1215 675
#constr. 4590 3510

Table 2: Estimated number of constraints and variables.

case
CPLEX

CQM hyb. t min = 5 s
mean value over 5 realisations

#vars /
# constr.

obj. ×
dmax

comp.
time [s]

obj. ×
dmax

comp.
time [s]

QPU
time [s]

0 556 /1756 0.0 0.072 0.0 5.19 0.026
1 556 / 1756 1.0 0.076 1.0 5.24 0.022
2 556 / 1740 6.0 0.079 6.0 5.37 0.032
3 556 / 1769 7.5 0.085 7.5 5.05 0.032
4 662 / 2210 78.25 0.196 82.70 5.10 0.026
5 662 / 2204 114.75 0.25 132.55 5.25 0.022
6 711 / 2599 91.25 0.41 142.3 5.14 0.026
7 817 / 3029 188.75 7.98 263.4 5.12 0.019
8 817 / 3074 157.75 3.70 271.65 5.12 0.022
9 817 / 3081 185.5 6.51 263.85 5.11 0.022

Table 3: Results of ILP optimisation on CPLEX and CQM D-Wave hybrid
solver. dmax = 40 was set for all cases. Computational times and QPU time
were reported in D-Wave’s output.

solution, however, the objective value is somewhat higher than the actual
optima obtained with the CPLEX solver. For hardest instances (e.g. case 7
and case 9) the CQM hybrid solver even outperforms CPLEX with respect
to computational time (given particular t min setting), but does not find
the actual optimum, just a feasible solution close to it. In conclusion, we
can expect benefits from application of the hybrid solver on medium scale
railway network given scenarios with multiple closures (leading to one track
lines) that are not involved in the timetable, as in cases 7 - 9. These results
coincide with analogical use-case on synthetic data in Fig. 4.

Let us analyse in more detail the role of the t min solver parameter. For
the cases 7 and 9 we have performed runs with t min sweeping over a range;
the results are presented in in Fig. 6 and Fig. 7. The right choice of t min can
improve results meaningfully. Observe that for small t min parameter values
the computational time is shorter, whereas for large t min the improvement
in the objective is overwhelmed by the increase of the computational time.
The objective value is roughly log-linear in computational time. This is
important form the point of view of the algorithm layout, as it may be tied
to a power law scaling. Such a behaviour is plausible in the case of quantum
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Figure 6: The sweep over t min parameter for case 7 from Tab.3, all solutions
were feasible. For higher t min we expect the objective to fall but at the
cost of measured total computational time. For each parameter value there
were 5 realisations of the experiment were performed. Interestingly, a linear
(negatively sloped) relation between the objective and the logarithm of t min

can be observed, suggesting some power law scaling.

25



200

225

250

275

300

ob
je

ct
iv

e
x

d
m

ax
[m

in
]

mean

envelope

log linear fit

CPLEX solver

20

40

60

co
m

p
.

ti
m

e
[s

]

mean hybrid solver

CPLEX solver

5 6 7 10 15 20 25 30 40 60

t min parameter [s]

0.00

0.01

0.02

0.03

0.04

Q
P

U
ac

es
s

ti
m

e
[s

]

envelope

Figure 7: The sweep over t min parameter for case 9 from Tab.3. All
solutions were feasible, with results similar to those in Fig. 6.
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annealing methods [33, 34].

7 Conclusions

We have demonstrated that quantum annealers can be readily applicable in
train dispatching optimisation on a metropolitan scale. While they do not
outperform classical solvers in general, we have found examples in which
they were actually better. This supports the expectation that future quan-
tum devices will be efficient in solving larger railway problems, e.g. on the
country scale; even in the range that are beyond the scope of current exact
models and heuristics.

While the quantum-based solvers can possibly return suboptimal solu-
tions, they can still outperform the solutions obtained manually or based on
smaller scale models. Importantly for hybrid solvers the QPU times were
never zero, meaning that QPU always gave some contribution, though it was
not big in particular (compared to the total computational time). Hence, we
believe that such a little help from the QPU must have boosted the classical
heuristics in the hybrid solver.

Recall that quantum annealer devices are subjects of many debates: pre-
vious studies claim that the quantum nature of their operation is limited [55],
while recent works argue that their operation relies more on the thermali-
sation with a cold environment in place of actual quantum adiabatic evolu-
tion [56]. They are often criticised for the small size of problems they can
address and various classical solvers do outperform them on certain problems
at the present state of the art. In spite of all these, however, our computa-
tional results demonstrate the readiness of hybrid quantum-classical solvers
to handle real-life railway problems.

Data availability

The code and the data used for generating the numerical results can be
found in https://github.com/iitis/railways_dispatching_silesia
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[28] N. Gusmeroli, T. Hrga, B. Lužar, J. Povh, M. Siebenhofer, and
A. Wiegele, “BiqBin: A parallel branch-and-bound solver for binary
quadratic problems with linear constraints,” ACM Trans. Math.
Softw., vol. 48, no. 2, pp. 1–31, jun 2022. [Online]. Available:
https://doi.org/10.1145/3514039

[29] A. Lucas, “Ising formulations of many np problems,” Frontiers in
physics, p. 5, 2014.

[30] J. E. Avron and A. Elgart, “Adiabatic theorem without a gap
condition,” Commun. Math. Phys., vol. 203, no. 2, pp. 445–463, 1999.
[Online]. Available: https://doi.org/10.1007/s002200050620
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