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Abstract

This paper is concerned with the derivation of computable and guaranteed up-
per bounds of the difference between the exact and the approximate solution of an
exterior domain boundary value problem for a linear elliptic equation. Our analysis
is based upon purely functional argumentation and does not attract specific proper-
ties of an approximation method. Therefore, the estimates derived in the paper at
hand are applicable to any approximate solution that belongs to the corresponding
energy space. Such estimates (also called error majorants of the functional type)
have been derived earlier for problems in bounded domains of RN (see [2, 3]).
Key Words A posteriori error estimates of functional type, elliptic boundary value
problems in exterior domains
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Figure 1: exterior domain Ω with artificial interface Γ

1 Introduction

The main focus of our investigations is to suggest a method of deriving guaranteed and
computable upper bounds of the difference between the exact solution u of an elliptic
exterior domain boundary value problem and any approximation from the corresponding
energy space. We discuss the method with the paradigm of the prototypical elliptic
problem

− divA∇u = f in Ω, (1.1)

u|γ = g on γ := ∂ Ω. (1.2)

We assume that Ω ⊂ RN with N ≥ 1 is an exterior domain, i.e. RN \Ω is compact, with
Lipschitz continuous boundary γ (see Figure 1).

Throughout this paper we will use the weighted Lebesgue function spaces

L2
s(Ω) :=

{
ϕ | ρsϕ ∈ L2(Ω)

}
, s ∈ R.

Here ρ := (1 + r2)1/2 and r(x) := |x| denotes the radius vector. L2
s(Ω) is a Hilbert space

equipped with the scalar product

〈ϕ, ψ〉s,Ω := 〈ρsϕ, ρsψ〉Ω :=

∫
Ω

ρ2sϕψ dλ,

where ϕ and ψ belong to L2
s(Ω) and λ is Lebesgue’s measure. We denote the corresponding

norms by ||ϕ||s,Ω = ||ρsϕ||Ω. If s = 0 then L2
s(Ω) coincides with the usual Lebesgue space
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L2(Ω). For the sake of simplicity we keep the same notation for spaces of vector-valued
functions. Moreover, we introduce the weighted Sobolev space

H1
−1(Ω) :=

{
ϕ ∈ L2

−1(Ω) | ∇ϕ ∈ L2(Ω)
}
,

which is a Hilbert space as well with respect to the scalar product

(ϕ, ψ) 7→ 〈ϕ, ψ〉−1,Ω + 〈∇ϕ,∇ψ〉Ω .

By
◦
H1
−1(Ω) we denote the closure of

◦
C∞(Ω), the space of compactly supported smooth

test functions, in the norm of H1
−1(Ω). Whenever we consider Sobolev spaces of bounded

domains we use the usual unweighted L2-scalar products and -norms.
For dimensions N ≥ 3 the solution theory for the problem (1.1)-(1.2) is based on

the weighted Poincare/Friedrich estimate (see Corollary 16 (i) and Remark 17 of the
appendix)

||ϕ||−1,Ω ≤
2

N − 2
||∇ϕ||Ω ∀ϕ ∈

◦
H1
−1(Ω), (1.3)

the Lax-Milgram theorem and, if needed, an adequate extension operator for the boundary
data. Let uγ be some function in H1

−1(Ω) satisfying the boundary condition (1.2). The

weak solution u ∈
◦
H1
−1(Ω) + uγ ⊂ H1

−1(Ω) of (1.1)-(1.2) is then defined by the variational
formulation

〈A∇u,∇w〉Ω = 〈f, w〉Ω ∀w ∈
◦
H1
−1(Ω). (1.4)

By (1.3) the left hand side of (1.4) is a strongly coercitive sesqui-linear form over
◦
H1
−1(Ω)

provided that the real-matrix-valued function A is measurable, bounded a.e., symmetric
and uniformly strongly elliptic, i.e.

∃ cA > 0 ∀ ξ ∈ RN ∀x ∈ Ω cA|ξ|2 ≤ A(x)ξ · ξ. (1.5)

If f ∈ L2
1(Ω) then by the Cauchy-Scharz inequality the right hand side of (1.4) is a linear

and continuous functional over
◦
H1
−1(Ω). Thus, under these assumptions the problem (1.4)

is uniquely solvable in
◦
H1
−1(Ω) + uγ by Lax-Milgram’s theorem.

If N = 1, 2 one can apply the same arguments with the difference that (1.3) has to be
modified. For N = 1 and, for example, Ω ⊂ R+ we have by Corollary 16 (iii) and Remark
17

||ϕ||−1,Ω ≤ 2 ||ϕ′||Ω ∀ϕ ∈
◦
H1
−1(Ω). (1.6)

Hence, we get the same solution theory with tiny restrictions on Ω, which easily can be
removed by a translation. For N = 2 the singularities are stronger and additionally we
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have to utilize logarithmic terms. By Corollary 16 (ii) and Remark 17 we have for domains
Ω ⊂ R2, such that the complement R2 \ Ω contains the unit ball,

||ϕ/(r ln r)||Ω ≤ 2 ||∇ϕ||Ω ∀ϕ ∈
◦
H1
−1,ln(Ω), (1.7)

where
H1
−1,ln(Ω) :=

{
ϕ | ϕ/(r ln r),∇ϕ ∈ L2(Ω)

}
is a Hilbert space equipped with the natural scalar product

(ϕ, ψ) 7→ 〈ϕ/(r ln r), ψ/(r ln r)〉Ω + 〈∇ϕ,∇ψ〉Ω

and again
◦
H1
−1,ln(Ω) denotes the closure of

◦
C∞(Ω) in the norm of H1

−1,ln(Ω). Consequently,

we obtain for all f with r ln rf ∈ L2(Ω) and all uγ in H1
−1,ln(Ω) satisfying the boundary

condition (1.2) a unique solution u belonging to
◦
H1
−1,ln(Ω) + uγ.

We summarize the results in the following

Theorem 1 Let N ≥ 3 as well as f ∈ L2
1(Ω) and uγ ∈ H1

−1(Ω) satisfying the boundary
condition (1.2). Then the exterior boundary value problem (1.1)-(1.2) is uniquely weakly

solvable in
◦
H1
−1(Ω) + uγ. The solution operator is continuous.

From the above discussion, it is clear that for N = 1, 2 the existence of weak solutions
in suitable spaces can also be proved.

Remark 2 The boundary data g and its extension uγ can be described in more detail. In
the bounded domain case it is well known that there exists a bounded linear trace operator
and a corresponding bounded linear extension operator (right inverse) mapping H1(Ω) to

H1/2(γ) and vice verse. Hence, by restriction we get a bounded linear trace operator

τγ : H1
−1(Ω)→ H1/2(γ)

and by extension and applying an obvious cutting technique we obtain a bounded linear
extension operator

E : H1/2(γ)→ H1
−1(Ω)

for our exterior domain Ω, which even maps to functions with (arbitrarily thin) compact
support. As in the bounded domain case, E is a right inverse of τγ. Then we may specify

g ∈ H1/2(γ) and uγ := Eg ∈ H1
−1(Ω) as well as our variational formulation for u = ũ+Eg:

Find ũ ∈
◦
H1
−1(Ω), such that

B(ũ, w) := 〈A∇ũ,∇w〉Ω = 〈f, w〉Ω − 〈A∇Eg,∇w〉Ω =: F (w) ∀w ∈
◦
H1
−1(Ω).

Finally, we introduce

D(Ω) :=
{
ϕ ∈ L2(Ω) | divϕ ∈ L2

1(Ω)
}
,

which is a Hilbert space with respect to the canonical scalar product

(ϕ, ψ) 7→ 〈ϕ, ψ〉Ω + 〈divϕ, divψ〉1,Ω .
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2 Upper bounds for the deviation from the exact so-

lution in dimensions N ≥ 3

Let v be an approximation of u ∈
◦
H1
−1(Ω) + uγ ⊂ H1

−1(Ω), where v is assumed just to

belong to H1
−1(Ω) since the boundary condition may not be satisfied exactly. Our goal is

to obtain upper bounds for the difference between ∇u and ∇v in terms of the norm

||ϕ||A,Ω :=
∣∣∣∣A1/2ϕ

∣∣∣∣
Ω

= 〈Aϕ,ϕ〉1/2Ω .

We use (1.4) and get for all w ∈
◦
H1
−1(Ω)

〈A∇(u− v),∇w〉Ω = 〈f, w〉Ω − 〈A∇v,∇w〉Ω . (2.1)

Before we proceed we note two useful results.

Theorem 3 Let u, v ∈ H1
−1(Ω) be as above. Moreover, let Φ be a linear and continuous

functional over
◦
H1
−1(Ω) and cΦ > 0, such that for all w ∈

◦
H1
−1(Ω)

〈A∇(u− v),∇w〉Ω = Φ(w) ≤ cΦ ||∇w||A,Ω

holds. Then

||∇(u− v)||A,Ω ≤ cΦ + 2 ||∇(û− v̂)||A,Ω (2.2)

for all û, v̂ ∈ H1
−1(Ω), for which û−v̂ coincides with u−v on the boundary γ. If additionally

u− v belongs to
◦
H1
−1(Ω) then

||∇(u− v)||A,Ω ≤ cΦ. (2.3)

Proof We consider

w := u− v − (û− v̂) ∈
◦
H1
−1(Ω).

Using Cauchy-Schwarz’ inequality we obtain

||∇w||2A,Ω = 〈A∇(u− v),∇w〉Ω − 〈A∇(û− v̂),∇w〉Ω
≤
(
cΦ + ||∇(û− v̂)||A,Ω

)
||∇w||A,Ω

and thus ||∇w||A,Ω ≤ cΦ + ||∇(û− v̂)||A,Ω. By the triangle inequality we get (2.2). (2.3) is
trivial since we can set w := u− v, i.e. û := v̂ := 0. �

We may be more specific using the trace and extension operators from Remark 2.
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Corollary 4 Let the assumptions of Theorem 3 be satisfied. Then

||∇(u− v)||A,Ω ≤ cΦ + 2 ||∇E(g − τγv)||A,Ω ≤ cΦ + 2cγ ||g − τγv||H1/2(γ)
.

Here cγ > 0 is the constant in the inequality

||∇Eϕ||A,Ω ≤ cγ ||ϕ||H1/2(γ)
∀ϕ ∈ H1/2(γ). (2.4)

Proof Setting û := Eg and v̂ := Eτγv as well as using (2.4) proves the inequalities. We
note that (2.3) follows directly from the corollary as well. �

In the subsequent sections we introduce and discuss some different functionals Φ and
corresponding constants cΦ.

2.1 First estimate

For any y ∈ D(Ω) and any w ∈
◦
H1
−1(Ω) we have

〈div y, w〉Ω + 〈y,∇w〉Ω = 0. (2.5)

Combining (2.1) and (2.5) we obtain for all w ∈
◦
H1
−1(Ω) and all y ∈ D(Ω)

〈A∇(u− v),∇w〉Ω = 〈f + div y, w〉Ω + 〈y − A∇v,∇w〉Ω =: Φ(w). (2.6)

By Cauchy-Schwarz’ inequality, (1.3) with cN := 2/(N − 2) and (1.5) we estimate the
right hand side Φ(w) of (2.6) as follows:

|〈f + div y, w〉Ω| ≤ ||f + div y||1,Ω ||w||−1,Ω ≤ cN ||f + div y||1,Ω ||∇w||Ω (2.7)

≤ cN√
cA
||f + div y||1,Ω ||∇w||A,Ω

|〈y − A∇v,∇w〉Ω| ≤ ||y − A∇v||A−1,Ω ||∇w||A,Ω (2.8)

By Corollary 4 we arrive at the following result.

Proposition 5 Let u, v be as in Theorem 3. Then

||∇(u− v)||A,Ω ≤
cN√
cA
||f + div y||1,Ω + ||y − A∇v||A−1,Ω + 2cγ ||g − τγv||H1/2(γ)

, (2.9)

where y is an arbitrary vector field in D(Ω).

Remark 6 If v satisfies the prescribed boundary condition, then (2.9) implies

||∇(u− v)||A,Ω ≤
cN√
cA
||f + div y||1,Ω + ||y − A∇v||A−1,Ω . (2.10)

The estimates (2.9) and (2.10)) show that deviations from exact solutions of exterior
boundary value problems have the same structure as for problems in bounded domains,
namely they contain weighted residuals of basic relations with weights given by constants
in the corresponding embedding inequalities.
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2.2 Second estimate

Assume that Ω is decomposed into two subdomains Ωi and Ωe with interface Γ := ∂ Ωe

(see Figure 1) and that the fields y ∈ D(Ω) exactly satisfy the relation

div y + f = 0 in Ωe. (2.11)

In particular, this situation may arise if the source term f has compact support and y is
represented (in the exterior domain Ωe) as a linear combination of solenoidal fields having
proper decay at infinity. In this case, the estimate of Proposition 5 turns trivially to

||∇(u− v)||A,Ω ≤ co ||f + div y||Ωi
+ ||y − A∇v||A−1,Ω + 2cγ ||g − τγv||H1/2(γ)

, (2.12)

which holds for all y ∈ D(Ω) additionally satisfying (2.11), where the weight constant is

co :=
cN(1 + ||r||∞,Ωi

)
√
cA

, (2.13)

which follows directly from

||f + div y||1,Ω = ||f + div y||1,Ωi
≤ |ρ|∞,Ωi

||f + div y||Ωi
≤ (1 + |r|∞,Ωi

) ||f + div y||Ωi
.

But we also may derive another estimate. We rewrite (2.7) and use Cauchy-Schwarz’
inequality in Ωi

|〈f + div y, w〉Ω| =
∣∣〈f + div y, w〉Ωi

∣∣ ≤ ||f + div y||Ωi
||w||Ωi

(2.14)

and estimate
||w||Ωi

≤ cΩi
||∇w||Ωi

≤ cΩi√
cA
||∇w||A,Ω . (2.15)

Here cΩi
denotes a Poincare/Friedrich constant associated with the bounded domain Ωi,

i.e. the best constant of the inequality

||ϕ||Ωi
≤ cΩi

||∇ϕ||Ωi
∀ϕ ∈

{
ψ ∈ H1(Ωi) | τ∂ Ωi

ψ|γ = 0 on γ
}
,

where τ∂ Ωi
: H1(Ωi)→ H1/2(∂ Ωi) denotes the trace operator. In this case, we have again

(2.12) but now with the (optional) weight constant

co :=
cΩi√
cA
. (2.16)

We note that the constant (2.13) may also be achieved by (2.7) and the argument (2.14)
if we replace the estimate (2.15) by

||w||Ωi
≤ (1 + |r|∞,Ωi

) ||w||−1,Ωi
≤ (1 + |r|∞,Ωi

) ||w||−1,Ω ≤
cN√
cA

(1 + |r|∞,Ωi
) ||∇w||A,Ω .

We summarize and get our second a posteriori error estimate.
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Proposition 7 For all y ∈ D(Ω) with (2.11) we have

||∇(u− v)||A,Ω ≤ co ||f + div y||Ωi
+ ||y − A∇v||A−1,Ω + 2cγ ||g − τγv||H1/2(γ)

,

where co is defined either by (2.13) or by (2.16).

Remark 8 In general, the number cΩi
will be smaller and thus provides a better bound

than cN(1 + ||r||∞,Ωi
). On the other hand, the number cN(1 + ||r||∞,Ωi

)/
√
cA is an easily

computable upper bound for the best possible constant co.

2.3 Third estimate

Let yi and ye be the restrictions of some y ∈ L2(Ω) to Ωi and Ωe, respectively. Assuming
yi ∈ D(Ωi) and ye ∈ D(Ωe) but not necessarily y ∈ D(Ω) we use the equations

〈yi,∇w〉Ωi
+ 〈div yi, w〉Ωi

= 〈τn,Γyi, τΓw〉Γ , (2.17)

〈ye,∇w〉Ωe
+ 〈div ye, w〉Ωe

= −〈τn,Γye, τΓw〉Γ , (2.18)

which hold for all w ∈
◦
H1
−1(Ω) and in the sense of the traces τΓ : H1

−1(Ω) → H1/2(Γ) and

τn,Γ : D(Ωi) → H−1/2(Γ) respectively τn,Γ : D(Ωe) → H−1/2(Γ). At this point we assume
that the interface Γ is Lipschitz (in order to guarantee that the traces are well defined).

By 〈ϕ, ψ〉Γ we denote the duality product of H−1/2(Γ) and H1/2(Γ). We recall that the

normal traces τn,Γyi and τn,Γye possess weak surface divergences in H−1/2(Γ) as well. If
y ∈ D(Ω), then div yi = div y in Ωi and div ye = div y in Ωe. Hence, in this case adding
(2.17) and (2.18) we obtain by (2.5)

〈τn,Γyi − τn,Γye, τΓw〉Γ = 〈y,∇w〉Ωi
+ 〈div y, w〉Ω = 0

for all w ∈
◦
H1
−1(Ω). Therefore, we get

τn,Γyi = τn,Γye

for all y ∈ D(Ω) since τΓ is surjective.
On our way to find Φ like in (2.6) we now insert (2.17), (2.18) instead of (2.5) into

(2.1) and obtain

〈A∇(u− v),∇w〉Ω = 〈f + div yi, w〉Ωi
+ 〈f + div ye, w〉Ωe

(2.19)

+ 〈y − A∇v,∇w〉Ω + 〈τn,Γye − τn,Γyi, τΓw〉Γ =: Φ(w).

The third term of Φ(w) will be estimated by (2.8) and for the last term we may use
the continuity of the trace operator τΓ in combination with a Poincare/Friedrich estimate,
i.e.

||τΓϕ||H1/2(Γ)
≤ cΓ ||∇ϕ||A,Ω ∀ϕ ∈

◦
H1
−1(Ω), (2.20)
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and obtain ∣∣〈τn,Γye − τn,Γyi, τγw〉Γ∣∣ ≤ ||τn,Γye − τn,Γyi||H−1/2(Γ)
||τΓw||H1/2(Γ)

(2.21)

≤ cΓ ||τn,Γye − τn,Γyi||H−1/2(Γ)
||∇w||A,Ω .

To estimate the second term of Φ(w) we again use (1.3) and (1.5) and obtain∣∣〈f + div ye, w〉Ωe

∣∣ ≤ ||f + div ye||1,Ωe
||w||−1,Ωe

≤ ||f + div ye||1,Ωe
||w||−1,Ω (2.22)

≤ cN√
cA
||f + div ye||1,Ωe

||∇w||A,Ω .

Considering the first (and last) term of Φ(w) we have once more at least two options
as in section 2.2 to obtain the estimate∣∣〈f + div yi, w〉Ωi

∣∣ ≤ co ||f + div yi||Ωi
||∇w||A,Ω (2.23)

with co defined either by (2.13) or (2.16).
Finally with (2.19) and (2.8), (2.21), (2.22), (2.23) we get by Corollary 4 the third

estimate.

Proposition 9 For all y ∈ L2(Ω) with yi ∈ D(Ωi) and ye ∈ D(Ωe) we have

||∇(u− v)||A,Ω ≤ co ||f + div yi||Ωi
+

cN√
cA
||f + div ye||1,Ωe

+ ||y − A∇v||A−1,Ω (2.24)

+ cΓ ||τn,Γye − τn,Γyi||H−1/2(Γ)
+ 2cγ ||g − τγv||H1/2(γ)

with co from Proposition 7. The right hand side of (2.24) vanishes if and only if v
coincides with u and y with A∇u.

Remark 10 There are many ways to deduce (2.20). We just mention that τΓϕ can be
considered as a trace of a function defined in Ωi or Ωe or even of a function, which is just
defined in a small neighborhood of Γ. Thus, we may adjust the constant cΓ according to
our needs.

Remark 11 This estimate suggests even a solution method: We construct approxima-
tions using locally supported trial functions in Ωi, e.g. FEM, and utilize global approxima-
tions properly behaving at infinity for Ωe. These two types of approximations are usually
difficult to meet together exactly on the artificial boundary Γ. However, Proposition 9
shows that this is not required because we can use instead the penalty term with known
penalty factor cΓ. In addition, we have one more parameter, the ‘radius’ of the interface
Γ. Since Γ is artificial and arbitrary we can use this parameter in the algorithm in order
to obtain better results.

Remark 12 At this point we shall note that all our estimates are sharp, which easily
can be seen by setting v := u ∈ H1

−1(Ω) and y := A∇u ∈ D(Ω).

Remark 13 In Propositions 5, 7, 9 we can always replace the last summand of the right
hand side by 2 ||∇(û− v̂)||A,Ω or 2 ||∇E(g − τγv)||A,Ω using Theorem 3 and Corollary 4.
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3 Upper bounds in dimension N = 2

Of course, Theorem 3 holds for N = 2 as well and the modifications on the estimates
depend just on the Poincare/Friedrich estimate and thus they are obvious using the proper
Cauchy-Schwarz inequality. We achieve

Proposition 14 Let Ω ⊂ R2, such that R2 \ Ω contains the unit ball.

(i) For all y ∈ D(Ω)

||∇(u− v)||A,Ω ≤
2
√
cA
||r ln r(f + div y)||Ω + ||y − A∇v||A−1,Ω + 2cγ ||g − τγv||H1/2(γ)

.

(ii) For all y ∈ D(Ω) with div y + f = 0 in Ωe

||∇(u− v)||A,Ω ≤ co ||f + div y||Ωi
+ ||y − A∇v||A−1,Ω + 2cγ ||g − τγv||H1/2(γ)

,

where co = min
{

2 ||r ln r||∞,Ωi
, cΩi

}
/
√
cA.

(iii) For all y ∈ L2(Ω) with yi ∈ D(Ωi) and ye ∈ D(Ωe)

||∇(u− v)||A,Ω ≤ co ||f + div yi||Ωi
+

2
√
cA
||r ln r(f + div ye)||1,Ωe

+ ||y − A∇v||A−1,Ω

+ cΓ ||τn,Γye − τn,Γyi||H−1/2(Γ)
+ 2cγ ||g − τγv||H1/2(γ)

.

Analogously, Remarks 8, 10, 11, 12, 13 hold.

A Appendix

A.1 Lower bounds for the error

We note by a standard variational argument

||∇(u− v)||2A,Ω = sup
y∈L2(Ω)

(
2 〈A∇(u− v), y〉Ω − ||y||

2
A,Ω

)
.

Thus, we obtain for all w ∈ H1
−1(Ω) the estimate

||∇(u− v)||2A,Ω ≥ 2 〈A∇(u− v),∇w〉Ω − ||∇w||
2
A,Ω

= 2 〈A∇u,∇w〉Ω − 〈A∇(2v + w),∇w〉Ω ,

which is sharp since one can put w = u− v. But to exclude the unknown exact solution

u from the right hand side we need w ∈
◦
H1
−1(Ω) since then by (1.4)

||∇(u− v)||2A,Ω ≥ 2 〈f, w〉Ω − 〈A∇(2v + w),∇w〉Ω . (A.1)
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But this estimate is no longer sharp because we can not put w = u− v anymore. In fact,
with A∇u ∈ D(Ω) and divA∇u = −f we get for w ∈ H1

−1(Ω)

〈A∇u,∇w〉Ω = 〈f, w〉Ω + 〈τn,γA∇u, τγw〉γ .

Hence, we obtain the estimate

||∇(u− v)||2A,Ω ≥ 2 〈f, w〉Ω − 〈A∇(2v + w),∇w〉Ω + 2 〈τn,γA∇u, τγw〉γ

for all w ∈ H1
−1(Ω), which is sharp and coincides with (A.1) if w ∈

◦
H1
−1(Ω). But the

unknown exact solution u still appears on the right-hand side, i.e. the normal trace of
A∇u on γ. Furthermore, if 〈τn,γA∇u, τγw〉γ > 0 then (A.1) can not be sharp.

A.2 Poincare type estimates for exterior domains

We introduce the radial derivative ∂r := ξ ·∇, where ξ(x) := x/r(x). Furthermore, Bε and
Sε denote the open ball and sphere of radius ε centered at the origin in RN , respectively.
We will use the ideas of [4, Lemma 4.1] and [1, Poincare’s estimate III, p. 57] with some
minor useful modifications.

Lemma 15 Let Ω ⊂ RN , N ≥ 1, be a domain and β ∈ R. For all u ∈
◦
C∞(Ω) the

following Poincare estimates hold:

(i) If β > 1−N/2 then

(2β +N − 2)
∣∣∣∣rβ−1u

∣∣∣∣
Ω
≤ 2

∣∣∣∣rβ ∂r u∣∣∣∣Ω .
(ii) Let B1 ⊂ RN \ Ω. If β ≥ (3−N)/2 or β ≤ 1−N/2 then

|2β +N − 3|
∣∣∣∣∣∣∣∣rβ−1

ln r
u

∣∣∣∣∣∣∣∣
Ω

≤ 2
∣∣∣∣rβ ∂r u∣∣∣∣Ω .

(iii) If N = 1 then

|2β − 1|
∣∣∣∣(1 + r)β−1u

∣∣∣∣
Ω
≤ 2

∣∣∣∣(1 + r)β ∂r u
∣∣∣∣

Ω
+ |2 min{0, 2β − 1}|1/2 |u(0)|,

where u will be extended by zero to R.

For the estimates derived in this paper it suffices to set β = 0. In this particular case,
the above lemma implies

Corollary 16 Let Ω ⊂ RN , N ≥ 1, be a domain. For all u ∈
◦
C∞(Ω) the following

Poincare estimates hold:
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(i) If N ≥ 3 then

||u||−1,Ω ≤ ||u/(1 + r)||Ω ≤ ||u/r||Ω ≤
2

N − 2
||∂r u||Ω ≤

2

N − 2
||∇u||Ω .

(ii) If N = 2 and B1 ⊂ R2 \ Ω then

||u/(r ln r)||Ω ≤ 2 ||∂r u||Ω ≤ 2 ||∇u||Ω .

(iii) If N = 1 then

||u||−1,Ω ≤ ||u/(1 + r)||Ω ≤ 2 ||∂r u||Ω +
√

2|u(0)| ≤ 2 ||u′||Ω +
√

2|u(0)|.

Hence, if Ω ⊂ R± we have

||u||−1,Ω ≤ ||u/(1 + r)||Ω ≤ 2 ||∂r u||Ω ≤ 2 ||u′||Ω .

Remark 17 Of course, by continuity all these estimates extend to appropriate weighted
H1-Sobolev spaces.

Proof Let Ω ⊂ RN , N ≥ 1, be a domain and u ∈
◦
C∞(Ω). By partial integration we get

for all α ∈ R and ε > 0

2

∫
Ω\Bε

rαu ∂r u dλ =

∫
Ω\Bε

rα ∂r |u|2 dλ

= −(α +N − 1)

∫
Ω\Bε

rα−1|u|2 dλ− εα
∫
Sε

|u|2 dσ.

Thus, for all γ ∈ R and β := (α + 1)/2∣∣∣∣rβ ∂r u+ γrβ−1u
∣∣∣∣2

Ω\Bε

=
∣∣∣∣rβ ∂r u∣∣∣∣2Ω\Bε

+ |γ|2
∣∣∣∣rβ−1u

∣∣∣∣2
Ω\Bε

+ 2γ
〈
rβ ∂r u, r

β−1u
〉

Ω\Bε︸ ︷︷ ︸
=

∫
Ω\Bε

rαu ∂r u dλ

=
∣∣∣∣rβ ∂r u∣∣∣∣2Ω\Bε

+ γ(γ − 2β −N + 2)
∣∣∣∣rβ−1u

∣∣∣∣2
Ω\Bε
− γε2β−1

∫
Sε

|u|2 dσ.

Now the left hand side of this equality converges by the monotone convergence theorem.
Since rν ∈ L1(U1), if and only if ν > −N , and |

∫
Sε
|u|2 dσ| ≤ cεN−1 the right hand side

converges for β > 1 − N/2 by Lebesgue’s dominated convergence theorem in R. Hence,
for ε→ 0 we obtain∣∣∣∣rβ ∂r u+ γrβ−1u

∣∣∣∣2
Ω

=
∣∣∣∣rβ ∂r u∣∣∣∣2Ω + γ(γ − 2β −N + 2)

∣∣∣∣rβ−1u
∣∣∣∣2

Ω
.
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Choosing γ := 2β +N − 2 > 0 we finally get by the triangle inequality

γ
∣∣∣∣rβ−1u

∣∣∣∣
Ω
≤ 2

∣∣∣∣rβ ∂r u∣∣∣∣Ω .
Since we are especially interested in the case β = 0 this estimate is only applicable in
dimensions N ≥ 3.

For N = 1 we proceed as follows: For all α ∈ R we have

2

∫
R±

(1 + r)αu ∂r u dλ = ±2

∫
R±

(1± t)αu(t)u(t)′ dt

= ±2

∫
R±

(1± t)α
(
|u(t)|2

)′
dt = −α

∫
R±

(1± t)α−1|u(t)|2 dt− |u(0)|2

and thus

2

∫
R
(1 + r)αu ∂r u dλ = −α

∫
R
(1 + r)α−1|u(t)|2 dλ− 2|u(0)|2.

Hence, for all γ ∈ R and β := (α + 1)/2∣∣∣∣(1 + r)β ∂r u+ γ(1 + r)β−1u
∣∣∣∣2

Ω

=
∣∣∣∣(1 + r)β ∂r u

∣∣∣∣2
Ω

+ |γ|2
∣∣∣∣(1 + r)β−1u

∣∣∣∣2
Ω

+ 2γ
〈
(1 + r)β ∂r u, (1 + r)β−1u

〉
Ω︸ ︷︷ ︸

=

∫
Ω

(1 + r)αu ∂r u dλ

=
∣∣∣∣(1 + r)β ∂r u

∣∣∣∣2
Ω

+ γ(γ − 2β + 1)
∣∣∣∣(1 + r)β−1u

∣∣∣∣2
Ω
− 2γ|u(0)|2.

As before the triangle inequality and the choice γ := 2β − 1, but now without any
restrictions on β, lead to

|γ|
∣∣∣∣(1 + r)β−1u

∣∣∣∣
Ω
≤
∣∣∣∣(1 + r)β ∂r u

∣∣∣∣
Ω

+
(∣∣∣∣(1 + r)β ∂r u

∣∣∣∣2
Ω
− 2γ|u(0)|2

)1/2

≤ 2
∣∣∣∣(1 + r)β ∂r u

∣∣∣∣
Ω

+ |2 min{0, γ}|1/2 |u(0)|.

The remaining case N = 2 requires the use of logarithms. Moreover, the origin is now
a problematic singularity, which has to be removed from our domain. Therefore, we may
assume B1 ⊂ RN \Ω and N ≥ 1, having N = 2 in mind. We start once more for all α ∈ R
with

2

∫
Ω

rα

ln r
u ∂r u dλ =

∫
Ω

rα

ln r
∂r |u|2 dλ

= −(α +N − 1)

∫
Ω

rα−1

ln r
|u|2 dλ+

∫
Ω

rα−1

ln2 r
|u|2 dλ.
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Now our usual procedure gives for γ ∈ R and β := (α + 1)/2 ≥ 0∣∣∣∣∣∣∣∣rβ ∂r u+ γ
rβ−1

ln r
u

∣∣∣∣∣∣∣∣2
Ω

=
∣∣∣∣rβ ∂r u∣∣∣∣2Ω + |γ|2

∣∣∣∣∣∣∣∣rβ−1

ln r
u

∣∣∣∣∣∣∣∣2
Ω

+ 2γ

〈
rβ ∂r u,

rβ−1

ln r
u

〉
Ω︸ ︷︷ ︸

=

∫
Ω

rα

ln r
u ∂r u dλ

=
∣∣∣∣rβ ∂r u∣∣∣∣2Ω + γ(γ + 1)

∣∣∣∣∣∣∣∣rβ−1

ln r
u

∣∣∣∣∣∣∣∣2
Ω

− γ(N + 2β − 2)

∣∣∣∣∣∣∣∣ rβ−1

√
ln r

u

∣∣∣∣∣∣∣∣2
Ω

.

Thus, for γ(N + 2β − 2) ≥ 0 we can estimate∣∣∣∣∣∣∣∣rβ ∂r u+ γ
rβ−1

ln r
u

∣∣∣∣∣∣∣∣2
Ω

≤
∣∣∣∣rβ ∂r u∣∣∣∣2Ω + γ(γ − 2β −N + 3)

∣∣∣∣∣∣∣∣rβ−1

ln r
u

∣∣∣∣∣∣∣∣2
Ω

,

which leads to the estimate∣∣∣∣∣∣∣∣rβ ∂r u+ γ
rβ−1

ln r
u

∣∣∣∣∣∣∣∣2
Ω

≤
∣∣∣∣rβ ∂r u∣∣∣∣2Ω

if we set γ := 2β + N − 3 with the additional constraint γ(γ + 1) ≥ 0, i.e. γ ≥ 0 or
γ ≤ −1. Finally, again by the triangle inequality

|γ|
∣∣∣∣∣∣∣∣rβ−1

ln r
u

∣∣∣∣∣∣∣∣
Ω

≤ 2
∣∣∣∣rβ ∂r u∣∣∣∣Ω

follows for all β ≥ (3−N)/2 or β ≤ (2−N)/2. �
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Faculty of Information Technology Faculty of Information Technology
Department of Department of
Mathematical Information Technology Mathematical Information Technology
P.O. Box 35 (Agora) P.O. Box 35 (Agora)
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