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THE STATIONARY STOKES PROBLEM IN EXTERIOR DOMAINS:

ESTIMATES OF THE DISTANCE TO SOLENOIDAL FIELDS

AND FUNCTIONAL A POSTERIORI ERROR ESTIMATES

DIRK PAULY AND SERGEY REPIN

Abstract. This paper is concerned with the analysis of the inf-sup condition arising in
the stationary Stokes problem in exterior domains. We deduce values of the constant in
the stability lemma, which yields fully computable estimates of the distance to the set
of divergence free fields defined in exterior domains. Using these estimates we obtain
computable majorants of the difference between the exact solution of the Stokes problem
in exterior domains and any approximation from the admissible (energy) class of functions
satisfying the Dirichlet boundary condition exactly.

Dedicated to the 110th anniversary of Solomon Grigor’evich Mikhlin
(April 23, 1908 – August 29, 1990)
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1. Introduction

Let ω ⊂ R
d, d ≥ 2, be a bounded domain with Lipschitz boundary γ, which is composed

of two open and disjoint parts γD, γN ⊂ γ (Dirichlet and Neumann part) with γ = γD ∪γN .
Let the usual Lebesgue and Sobolev spaces (scalar, vector, or tensor valued) be introduced
by L2(ω) and H1(ω), respectively. The standard inner product, norm, resp. orthogonality
in L2(ω) will be denoted by 〈 · , · 〉0,ω, ‖ · ‖0,ω, resp. ⊥0,ω. For γD 6= ∅ let H1

γD(ω) denote

the subspace of H1(ω) with vanishing full traces on γD. Moreover, we define spaces with
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vanishing mean value byi

L2⊥(ω) := L2(ω) ∩ R
⊥0,ω =

{
ϕ ∈ L2(ω) :

∫

ω

ϕ = 0
}
,

H1
⊥(ω) := H1(ω) ∩ L2⊥(ω) =

{
ϕ ∈ H1(ω) :

∫

ω

ϕ = 0
}

and introduce

L2γD (ω) :=

{

L2(ω) , if γD 6= γ,

L2⊥(ω) , if γD = γ,
H1
γD (ω) :=

{

H1
γD(ω) , if γD 6= ∅,

H1
⊥(ω) , if γD = ∅.

Furthermore, let us define solenoidal (divergence free) subspaces of H1(Ω) by

S(ω) :=
{
φ ∈ H1(ω) : div φ = 0

}
, SγD (ω) := H1

γD (ω) ∩ S(ω).

For further notation we refer to Section 2. From results of Babuska and Aziz, Ladyzhenskaya
and Solonnikov, Brezzi, Necas [1, 5, 13, 14, 18], for mixed boundary conditions see, e.g., the
recent results in [2, 3], we have the following very important lemma in the theory of fluid
dynamics and other fields of partial differential equations:

Lemma 1.1 (stability lemma). There exists c > 0 such that for any g ∈ L2γD (ω) there is a

vector field u ∈ H1
γD(ω) with div u = g and ‖∇u‖0,ω ≤ c‖g‖0,ω. The best constant c will be

denoted by κ(ω, γD).

Remark 1.2. Let us note the following:

(i) In the theory of electrodynamics u is called a regular potential as it admits for
Maxwell’s equations an unphysically high regularity and a very unphysical bound-
ary condition, much stronger than the usual normal boundary condition related to
the divergence operator.

(ii) For u ∈ H1
γD (ω) we have the Friedrichs/Poincaré inequality ‖u‖0,ω ≤ c‖∇u‖0,ω.

The best constant c is the Friedrichs/Poincaré constant and will be denoted by
cfp(ω, γD). Hence we conclude for u from Lemma 1.1

1

cfp(ω, γD)
‖u‖0,ω ≤ ‖∇u‖0,ω ≤ κ(ω, γD)‖ div u‖0,ω.

(iii) Note that κ(ω, γD) is the norm of the right inverse g 7→ u.

Lemma 1.1 is a keystone fact in the theory of incompressible fluids. It generates several
important corollaries. First of all, Lemma 1.1 guarantees the solvability of the stationary
Stokes problem (in the velocity-pressure posing). Indeed by solving g = div u Lemma 1.1
yields immediately the following famous inf-sup of LBB condition:

Corollary 1.3 (inf-sup lemma). It holds

inf
g∈L2

γD
(ω)

sup
u∈H1

γD
(ω)

〈g, div u〉0,ω
‖g‖0,ω‖∇u‖0,ω

≥ 1

κ(ω, γD)
.

A solution theory for the Stokes problem follows. The stationary Stokes problem reads
as follows: For given ν > 0, G ∈ L2(ω), uD ∈ S(ω), σN find a velocity field u and a pressure
function p solving the first order system

iThroughout the paper we do not express the respective measure in the notation of integrals, so that,
e.g., with often used notations

∫

ω
f =

∫

ω
fdλ =

∫

ω
fdx,

∫

γ
f =

∫

γ
fdo =

∫

γ
fds.
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−Div σ = G in ω,

σ = ν∇u− p I in ω,

− div u = 0 in ω,

u = uD on γD,

σn = σN on γN .

Equivalently, by removing the additional stress tensor σ, we have the second order formula-
tion

−ν∆u +∇ p = G in ω,

− div u = 0 in ω,

u = uD on γD,

(ν∇u− p)n = σN on γN .

It is worth noting that the Dirichlet boundary term uD satisfies
∫

γ

n · uD =

∫

ω

div uD = 0.(1)

Hence, if the boundary datum is given by some ũD ∈ H1/2(γ) any solenoidal extension uD
to ω of ũD must satisfy the normal mean value property

∫

γ

n · ũD = 0.

On the other hand, one can always find a continuous and solenoidal lifting of a boundary
term ũD ∈ H1/2(γ) as long as (1) holds, see also our more general Corollary 1.6. In the
smooth case we have for φ ∈ C∞

γD (ω)

− ν〈∆u, φ〉0,ω = ν〈∇u,∇φ〉0,ω − ν
〈
(∇ u)n, φ

〉

0,γN

= 〈G,φ〉0,ω − 〈∇ p, φ〉0,ω = 〈G,φ〉0,ω + 〈p, div φ〉0,ω −
〈
pn, φ

〉

0,γN
,

i.e.,
ν〈∇ u,∇φ〉0,ω = 〈G,φ〉0,ω + 〈p, div φ〉0,ω + 〈σN , φ〉0,γN .

Let us for simplicity assume σN = 0. A possible variational formulation is given by the
following: Find u ∈ uD + SγD (ω) such that for all φ ∈ SγD (ω)

ν〈∇u,∇φ〉0,ω = 〈G,φ〉0,ω .
Using the ansatz u = uD+ û with û ∈ SγD (ω) we reduce this formulation to find û ∈ SγD(ω)
such that for all φ ∈ SγD (ω)

ν〈∇ û,∇φ〉0,ω = 〈G,φ〉0,ω − ν〈∇ uD,∇φ〉0,ω .
Note that the pressure p is not involved in this formulation. Another formulation taking the
pressure into account and removing the unpleasant solenoidal condition from the Hilbert
space is the following saddle point formulation: Find (û, p) ∈ H1

γD (ω) × L2γD (ω) such that

for all (φ, ϕ) ∈ H1
γD(ω)× L2γD (ω)

ν〈∇ û,∇φ〉0,ω − 〈p, div φ〉0,ω = 〈G,φ〉0,ω − ν〈∇uD,∇φ〉0,ω ,
−〈div û, ϕ〉0,ω = 0,

which reads in formal matrix notation (boundary conditions are indicated as subscripts) as
[
−ν divγN ∇γD ∇γN

− divγD 0

] [
û
p

]

=

[
G+ ν divγN ∇γD uD

0

]

.

Corollary 1.4 (Stokes lemma). For ν > 0, G ∈ L2γN (ω), uD ∈ S(ω) the Stokes system is

uniquely solvable with u = uD + û ∈ uD + SγD (ω) ⊂ S(ω) and p ∈ L2γD (ω). Moreover,

ν‖∇ û‖0,ω ≤ cfp(ω, γD)‖G‖0,ω + ν‖∇uD‖0,ω,
ν‖∇u‖0,ω ≤ cfp(ω, γD)‖G‖0,ω + 2ν‖∇uD‖0,ω,
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‖p‖0,ω ≤ 2κ(ω, γD)
(
cfp(ω, γD)‖G‖0,ω + ν‖∇uD‖0,ω

)
.

Note that here in the vector valued case

L2γN (ω) =

{

L2(ω) , if γD 6= ∅,
L2⊥(ω) , if γD = ∅,

L2⊥(ω) = L2(ω) ∩ (Rd)⊥0,ω =
{
φ ∈ L2(ω) :

∫

ω

φi = 0
}
.

Proof. Standard saddle point theory and the inf-sup lemma, Corollary 1.3, shows existence
and the estimates follow by standard arguments, which provide also uniqueness. Note that
we solve p = div φ by Lemma 1.1 to get the estimates for the pressure p. �

Another direct consequence of Lemma 1.1 is an estimate for the distance of vector fields
to solenoidal fields, more precisely:

Corollary 1.5 (distance lemma). For any u ∈ H1
γD(ω) there exists a solenoidal u0 ∈ SγD(ω)

such that

dist
(
u, SγD(ω)

)
= inf

φ∈SγD
(ω)

∥
∥∇(u − φ)

∥
∥
0,ω

≤
∥
∥∇(u − u0)

∥
∥
0,ω

≤ κ(ω, γD)‖ div u‖0,ω.

Proof. For u ∈ H1
γD(ω) solve div ũ = div u ∈ L2γD(ω) with ũ ∈ H1

γD (ω) and the stability
estimate ‖∇ ũ‖0,ω ≤ κ(ω, γD)‖ div u‖0,ω by Lemma 1.1. Note that for γD = γ it holds

∫

ω

div u =

∫

γ

n · u = 0.

Then u0 := u− ũ ∈ SγD (ω) and
∥
∥∇(u− u0)

∥
∥
0,ω

=
∥
∥∇ ũ

∥
∥
0,ω

≤ κ(ω, γD)‖ div u‖0,ω. �

This result can be extended to vector fields satisfying non-homogeneous Dirichlet bound-
ary conditions provided that such a vector field u satisfies div u ∈ L2γD (Ω), the mean value
condition, i.e.,

∫

ω

div u = 0 , if γD = γ.(2)

Corollary 1.6 (inhomogeneous distance lemma). For any u ∈ H1(ω) with div u ∈ L2γD(ω)

there exists a solenoidal u0 ∈ S(ω) such that u0 − u ∈ H1
γD (ω), i.e., u0|γD = u|γD , and

∥
∥∇(u0 − u)

∥
∥
0,ω

≤ κ(ω, γD)‖ div u‖0,ω.

Similar estimates for vector fields defined in W1,q(Ω) spaces for q ∈ (1,∞) have been
obtained in [36, 37]. In the literature, results like Corollary 1.6 are often called lifting
lemmas, since a boundary datum u|γD is lifted to the domain ω, in this case with a solenoidal
representative. Note that

∫

γ

n · u =

∫

ω

div u = 0 , if γD = γ.

Proof. For u ∈ H1(ω) solve by Lemma 1.1 div ũ = div u ∈ L2γD (ω) with ũ ∈ H1
γD (ω) and

‖∇ ũ‖0,ω ≤ κ(ω, γD)‖ div u‖0,ω. Note that (2) holds for γD = γ. Then u0 := u − ũ ∈ S(ω)
with u− u0 = ũ ∈ H1

γD (ω) and
∥
∥∇(u0 − u)

∥
∥
0,ω

=
∥
∥∇ ũ

∥
∥
0,ω

≤ κ(ω, γD)‖ div u‖0,ω. �

Estimates of the distance to SγD (ω) have not only theoretical meaning. They are also
important for the a posteriori analysis of numerical solutions which usually satisfy the diver-
gence free condition only approximately. If the constant κ(ω, γD) is known, then by using
Corollary 1.5 we can deduce guaranteed and fully computable error bounds for approxima-
tions of problems arising in the theory of viscous incompressible fluids. For problems in
bounded Lipschitz domains the respective results are presented in [33, 34].

In this contribution we extend Lemma 1.1 and its corollaries to the case of exterior
domains Ω ⊂ R

d and investigate applications to estimate the distance of vector fields to
solenoidal fields. These estimates allows us to deduce new functional a posteriori error
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estimates valid for a wide class of approximate solutions to the stationary Stokes problem
in exterior domains.

2. Preliminaries

Let D ⊂ R
d, d ≥ 2, be a domain (an open and connected set) with Lipschitz boundary

B, which is composed of two open and disjoint parts BD,BN ⊂ B with B = BD ∪ BN
(Dirichlet and Neumann part). We note that D can be bounded or unbounded, especially
an exterior domain (a domain with compact complement). We introduce the usual Lebesgue
and Sobolev spaces of square integrable functions or vector/tensor fields by L2(D) and H1(D),
respectively. The standard inner product, norm, resp. orthogonality in L2(D) are denoted
by 〈 · , · 〉0,D, ‖ · ‖0,D, resp. ⊥0,D. Moreover, let

L2BD
(D) :=

{

L2(D) ∩ R
⊥0,D , if BD = B,

L2(D) , else,

provided that D is bounded. If BD 6= ∅, homogeneous Dirichlet boundary conditions are
encoded in H1

BD
(D), defined as closure of

C∞
BD

(D) :=
{
φ|D : u ∈ C∞(Rd), suppφ compact, dist(supp φ,BD) > 0

}

in H1(D). Moreover, we introduce the polynomially weighted spaces

L2±1(D) :=
{
φ ∈ L2loc(D) : ρ±1φ ∈ L2(D)

}
,

H1
−1(D) :=

{
φ ∈ L2−1(D) : ∇φ ∈ L2(D)

}
,

where the weight function ρ is defined by ρ(r) := (1 + r2)1/2, r(x) := |x|. Inner product,
norm, resp. orthogonality in L2±1(D) is defined and denoted by 〈 · , · 〉±1,D :=

〈
ρ±2 · , ·

〉

0,D
,

‖ · ‖±1,D, resp. ⊥±1,D. As before, if BD 6= ∅, homogeneous (full, tangential, resp. nor-
mal) Dirichlet boundary conditions are introduced in H1

−1,BD
(D), the closure of C∞

BD
(D) in

H1
−1(D). Finally, in particular for the Stokes equations, we introduce spaces of solenoidal

fields

S(D) :=
{
φ ∈ H1(D) : div φ = 0

}
, SBD

(D) := H1
BD

(D) ∩ S(D),

S−1(D) :=
{
φ ∈ H1

−1(D) : div φ = 0
}
, S−1,BD

(D) := H1
−1,BD

(D) ∩ S−1(D).

Note that in the case of a bounded domain, there is no difference between the unweighted
and weighted spaces, meaning that the spaces coincide as sets and possess different inner
products.

Throughout the paper we assume that Ω ⊂ R
d, where d ≥ 3 (the special case d = 2

is considered in Section 4.4 and in Appendix II), is an exterior domain with a Lipschitz
boundary Γ, which is composed of two open and disjoint parts ΓD,ΓN ⊂ Γ (Dirichlet and
Neumann part) with Γ = ΓD ∪ ΓN . Moreover, let Rd \ Ω ⊂ Br1 for some r2 > r1 > 0 and

ω := Ωr2 := Ω ∩Br2 , γ = Γ ∪ Sr2 , γD := ΓD ∪ Sr2 ,
where Br and Sr denote the open ball and the sphere of radius r centered at the origin in
R
d, respectively. We also pick some cut-off Lipschitz continuous function ξ ∈ W1,∞(R; [0, 1])

satisfying ξ|(−∞,0] = 0 and ξ|[1,∞) = 1 and set

ξ′∞ := ess sup[0,1] |ξ′|.

Then the function ξ̃ defined by ξ̃(z) := ξ
(
(z − r1)/(r2 − r1)

)
belongs to W1,∞(R; [0, 1]) as

well and satisfies ξ̃|(−∞,r1] = 0 and ξ̃|[r2,∞) = 1. Thus

η := ξ̃ ◦ r ∈ W1,∞(Rd)(3)

with η|Br1
= 0 and η|Rd\Br2

= 1. Finally, we define the constant

cd :=
2

d− 2
.
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ω

Ω

η = 1

η = 0

∇ η 6= 0

R
d \ Ω

Γ

Γ
ΓD

ΓDSr2

Sr1

Figure 1. R
d \Ω (gray) surrounded by the boundary Γ (thin black lines),

the boundary part ΓD (thick black lines), and the artificial boundary spheres
(dashed lines)

The two main ingredients for our proofs are Lemma 1.1 and a few results from the theory
of rot-div-systems in exterior domains, which can be summarised in the two subsequent
lemmas as follows:

Lemma 2.1 (Friedrichs/Poincaré lemma for exterior domains). The following weighted
Friedrichs/Poincaré estimates hold:

(i) There exists c > 0 such that for all v ∈ H1
−1,ΓD

(Ω) it holds

‖v‖−1,Ω ≤ c‖∇ v‖0,Ω.
The best constant c is the Friedrichs/Poincaré constant and is denoted by cfp(Ω,ΓD).

(ii) If ΓD = Γ, then cfp(Ω,Γ) is the Friedrichs constant cf (Ω) and can be estimates by

cfp(Ω,Γ) = cf (Ω) ≤ cd.

Especially, for all v ∈ H1
−1,Γ(Ω) it holds ‖v‖−1,Ω ≤ cd‖∇ v‖0,Ω.

(ii’) If ΓD = ∅, then cfp(Ω, ∅) is the Poincaré constant cp(Ω). Particularly, for all
v ∈ H1

−1(Ω) it holds ‖v‖−1,Ω ≤ cp(Ω)‖∇ v‖0,Ω.
(iii) If Ω = R

d, then the Friedrichs and Poincaré constants coincide and, moreover,

cfp(R
d) = cf (R

d) = cp(R
d) ≤ cd.

Especially, for all v ∈ H1
−1(R

d) it holds

‖v‖−1,Rd ≤ cd‖∇ v‖0,Rd .

Note that no boundary or mean value conditions are needed in Lemma 2.1, since the
constants are not integrableii in L2−1(Ω) for d ≥ 3. For d = 3, Lemma 2.1 follows immediately
from [15, Poincaré’s estimate IV, p. 62] by approximation. Nevertheless, we present a simple
and self-contained proof.

Proof. From [24, Appendix 4.2, Lemma 4.1, Corollary 4.2, Remark 4.3], see also [15, Poincaré’s
estimate III, p. 57] and [38, Lemma 4.1], we have for alliii u ∈ C∞

Γ (Ω)

‖u‖−1,Ω ≤ ‖r−1u‖0,Ω ≤ cd‖∇u‖0,Ω
iiMore precisely, it holds (1 + r2)t/2 ∈ L2

−1
(Ω), if and only if t − 1 < −d/2. Putting t = 0 shows the

assertion.
iiiNote that r−1 ∈ L2(B1) if and only if d ≥ 3.



THE STATIONARY STOKES PROBLEM IN EXTERIOR DOMAINS 7

and hence by density and continuity for all u ∈ H1
−1,Γ(Ω)

‖u‖−1,Ω ≤ cd‖∇u‖0,Ω.(4)

For all u ∈ H1
−1(Ω) we see ηu ∈ H1

−1,Γ(Ω) and ‖ηu‖−1,Ω ≤ cd‖∇(ηu)‖0,Ω by (4). Hence

‖u‖−1,Ω ≤ cd‖∇u‖0,Ω + cd‖u∇ η‖0,Ω + ‖(1− η)u‖−1,Ω ≤ cd‖∇u‖0,Ω + c̃d‖u‖0,ω,(5)

whereiv c̃d := cdξ
′
∞/(r2 − r1) + 1. Now we can prove (i), even the stronger result (ii’). If

the estimate in (ii’) is false, there is a sequence (un) ⊂ H1
−1(Ω) with ‖un‖−1,Ω = 1 and

‖∇un‖0,Ω < 1/n. Hence, (un) is bounded in H1(ω) as well. By Rellich’s selection theorem
we can assume w.l.o.g. that (un) already converges in L2(ω). Thus, by (5) (un) is a Cauchy
sequence in L2−1(Ω) and hence also in H1

−1(Ω). Therefore, (un) converges in H1
−1(Ω) to some

u ∈ H1
−1(Ω) with ∇u = 0. We conclude that u is constant. But then u ∈ L2−1(Ω) must

vanish, which implies a contradiction by 1 = ‖un‖−1,Ω → 0. �

Lemma 2.2 (rot-div lemma for the whole space). For any f ∈ L2(Rd) there exists a unique
v ∈ H1

−1(R
d) such that rot v = 0, div v = f , and

1

cd
‖v‖−1,Rd ≤ ‖∇ v‖0,Rd = ‖ div v‖0,Rd = ‖f‖0,Rd.

Note that the equation −∆ = rot∗ rot−∇div implies

‖∇Φ‖20,Rd = ‖ rotΦ‖20,Rd + ‖ divΦ‖20,Rd(6)

for all Φ ∈ C∞(Rd) having compact support and extends to all Φ ∈ H1
−1(R

d) by density and
continuity. Hence the equality ‖∇ v‖0,Rd = ‖ div v‖0,Rd in Lemma 2.2 follows immediately.
The results of Lemma 2.2 are well known and can be found, e.g., in [26, 27, 28] or in [12, 21].
In particular, Lemma 2.2 follows from Lemma 2.1 (iii), (6), and [12, Theorem A.7, Theorem
3.2 (ii)], see also [21, Lemma 3.5, Lemma 3.6, Theorem 4.1].

3. The Stability Lemma for Exterior Domains

First we define our upper bound related to the geometry presented in Figure 1.

κ̂(Ω,ΓD) := (1 + κ)
(
1 + cd

ξ′∞ρ(r2)

r2 − r1

)
, κ := min

{
κ(ω, γD), κ(ω, γ)

}
.(7)

Especially for r2 = r1 + 1 and ξ′∞ ≤ 1 we have the simple upper bound

κ̂(Ω,ΓD) = (1 + κ)
(
1 + cdρ(r2)

)
.

The above constants contain the stability constants κ(ω, γD), κ(ω, γ) associated with the
bounded domain ω and respective parts of its boundary γD and γ.

Remark 3.1. κ(ω, γD) and κ(ω,ΓD) depend on r2, so that the best value of r2 (which
minimises the constant) is not known a priori and has to be optimized by some algebraic
procedure. We emphasize that

κ ≤ κ(ω, γD), κ ≤ κ(ω, γ).

and that a bound in the simple situation from above is given by

κ̂(Ω,ΓD) = (1 + κ)
(
1 +

2
√
2

d− 2
r2
)

Now we can proceed to prove the stability lemma for exterior domains. First we observe
a trivial case for compactly supported right hand sides:

ivFor r2 = r1 + 1 and ξ′∞ ≤ 1 we have c̃d ≤ cd + 1.
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Remark 3.2. There exists c > 0 such that for all f ∈ L2(Ω) with supp f ⊂ ω and in the
case ΓD = Γ, additionally,

∫

Ω
f = 0, there is a vector field v ∈ H1

−1,ΓD
(Ω) with div v = f

and ‖∇ v‖0,Ω ≤ c‖f‖0,Ω. The best constant is denoted by κ(Ω,ΓD). Moreover, v can be
chosen with compact support in ω, in particular, v ∈ H1

γD (ω) ⊂ H1
ΓD

(Ω). In this case,

κ(Ω,ΓD) = κ(ω, γD). For a short proof, we set g := f |ω ∈ L2γD (ω) and by Lemma 1.1 there

exist κ(ω, γD) > 0 and u ∈ H1
γD (ω) with

div u = g, ‖∇u‖0,ω ≤ κ(ω, γD)‖g‖0,ω.
Then v, which is the extension by zero of u to Ω, belongs to H1

ΓD
(Ω) and supp v = suppu ⊂ ω.

Moreover, div v = f and ‖∇ v‖0,Ω = ‖∇u‖0,ω ≤ κ(ω, γD)‖g‖0,ω = κ(ω, γD)‖f‖0,Ω.
Our main result reads as follows:

Lemma 3.3 (stability lemma for exterior domains). There exists c > 0 such that for all
f ∈ L2(Ω) there is a vector field v ∈ H1

−1,ΓD
(Ω) with

div v = f and ‖∇ v‖0,Ω ≤ c‖f‖0,Ω.
The best constant is denoted by κ(Ω,ΓD) which equals the norm of the corresponding right
inverse f 7→ v. Moreover with (7)

κ(Ω,ΓD) ≤ κ̂(Ω,ΓD).

Note that no mean value condition is imposed on f .

Proof. We extend f by 0 to R
d \ Ω and identify f ∈ L2(Rd). By Lemma 2.2 we get some

v ∈ H1
−1(R

d) with rot v = 0 solving div v = f in R
d and

‖v‖−1,Rd ≤ cd‖∇ v‖0,Rd , ‖∇ v‖0,Rd = ‖ div v‖0,Rd = ‖f‖0,Ω.(8)

Then ηv ∈ H1
−1,Γ(Ω) with (3) and supp(ηv) ⊂ R

d \Br1 . We are searching for v ∈ H1
−1,ΓD

(Ω)
solving div v = f in the form

v := ηv + vω ,

where vω ∈ H1
ΓD

(Ω) with supp vω ⊂ ω is the extension by zero to Ω of some vector field

u ∈ H1
γD(ω). Hence, v and vω should satisfy

f = div v = ηf +∇ η · v + div vω in Ω

and we have to find u ∈ H1
γD (ω) with

div u = g := (1− η)f −∇ η · v ∈ L2(ω) in ω.

Note that indeed supp(1−η) ⊂ Br2 , supp∇ η ⊂ Br2 \Br1 and hence supp g ⊂ ω. Moreover,

g = (1− η)f +∇(1− η) · v = div
(
(1− η)v

)
in R

d

and therefore
∫

ω

g =

∫

γ

(1− η)n · v =

∫

Γ

n · v = −
∫

Rd\Ω

div v = −
∫

Rd\Ω

f = 0.

Thus, g has mean value zero independent of the particular boundary condition on ΓD, i.e.,
g ∈ L2γD (ω). Lemma 1.1 provides such a u ∈ H1

γD(ω) with ‖∇u‖0,ω ≤ κ(ω, γD)‖g‖0,ω. We

can even pick u ∈ H1
γ(ω) ⊂ H1

γD (ω) with ‖∇u‖0,ω ≤ κ(ω, γ)‖g‖0,ω. Hence, generally, we

obtain u ∈ H1
γ(ω) ⊂ H1

γD (ω) with the stability estimate

‖∇u‖0,ω ≤ κ‖g‖0,ω, κ = min
{
κ(ω, γD), κ(ω, γ)

}
,

see (7). Thus v ∈ H1
−1,ΓD

(Ω) solves div v = f . It remains to show the estimates. Using

‖∇ η · v⊤‖0,Rd , ‖∇ η · v‖0,Rd ≤ ξ′∞
r2 − r1

‖v‖0,Br2
\Br1

and by (8) we compute
∥
∥∇(ηv)

∥
∥
0,Ω

≤ ‖∇ v‖0,Rd

︸ ︷︷ ︸

=‖f‖0,Ω

+‖∇ η v⊤‖0,Rd ,
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‖∇ vω‖0,Ω = ‖∇u‖0,ω ≤ κ(ω, γD)‖g‖0,ω ≤ κ(ω, γD)
(
‖f‖0,Ω + ‖∇ η · v‖0,Rd

)
,

‖v‖0,Br2
\Br1

≤ ρ(r2)‖v‖−1,Rd ≤ cdρ(r2) ‖∇ v‖0,Rd

︸ ︷︷ ︸

=‖f‖0,Ω

,

which finally proves ‖∇ v‖0,Ω ≤ κ̂(Ω,ΓD)‖f‖0,Ω, finishing the proof. �

4. Applications for Exterior Domains

4.1. Inf-Sup Lemma and Estimates of the Distance to Solenoidal Fields. A direct
consequence of Lemma 3.3 is an estimate for the distance of vector fields to solenoidal fields:

Corollary 4.1 (distance lemma for exterior domains). For any v ∈ H1
−1,ΓD

(Ω) there exists

a solenoidal v0 ∈ S−1,ΓD
(Ω) such that

dist
(
v, S−1,ΓD

(Ω)
)
= inf

φ∈S−1,ΓD
(Ω)

∥
∥∇(v − φ)

∥
∥
0,Ω

≤
∥
∥∇(v − v0)

∥
∥
0,Ω

≤ κ(Ω,ΓD)‖ div v‖0,Ω.

Proof. For v ∈ H1
−1,ΓD

(Ω) solve div ṽ = div v with ṽ ∈ H1
−1,ΓD

(Ω) and the stability estimate

‖∇ ṽ‖0,Ω ≤ κ(Ω,ΓD)‖ div v‖0,Ω by Lemma 3.3. Then v0 := v − ṽ ∈ S−1,ΓD
(Ω) and we have

∥
∥∇(v − v0)

∥
∥
0,Ω

=
∥
∥∇ ṽ

∥
∥
0,Ω

≤ κ(Ω,ΓD)‖ div v‖0,Ω. �

Corollary 4.2 (inhomogeneous distance lemma for exterior domains). For any v ∈ H1
−1(Ω)

there exists a solenoidal v0 ∈ S−1(Ω) such that v0 − v ∈ H1
−1,ΓD

(Ω), i.e., v0|ΓD
= v|ΓD

, and
∥
∥∇(v0 − v)

∥
∥
0,Ω

≤ κ(Ω,ΓD)‖ div v‖0,Ω.

Proof. For v ∈ H1
−1(Ω) we solve by Lemma 3.3 div ṽ = div v with some ṽ ∈ H1

−1,ΓD
(Ω) and

‖∇ ṽ‖0,Ω ≤ κ(Ω,ΓD)‖ div v‖0,Ω. Then v0 := v − ṽ ∈ S(Ω) with v − v0 = ṽ ∈ H1
ΓD

(Ω) and
∥
∥∇(v0 − v)

∥
∥
0,Ω

=
∥
∥∇ ṽ

∥
∥
0,Ω

≤ κ(Ω,ΓD)‖ div v‖0,Ω. �

As in the case of a bounded domain, Corollary 4.2 can be seen as a lifting lemma, lifting
the boundary datum v|ΓD

to the domain Ω, in this case with a solenoidal representative.
By solving g = div v Lemma 3.3 yields immediately also the following inf-sup result:

Corollary 4.3 (inf-sup lemma for exterior domains). It holds

inf
f∈L2(Ω)

sup
v∈H1

−1,ΓD
(Ω)

〈f, div v〉0,Ω
‖f‖0,Ω‖∇ v‖0,Ω

≥ 1

κ(Ω,ΓD)
.

4.2. Solution Theory for the Stationary Stokes System. For ν > 0, F ∈ L21(Ω),
vD ∈ S−1(Ω) a solution theory for the stationary Stokes problem follows. The equations or
first resp. second order systems are the same as in the case of a bounded domain, e.g.,

−Div σ = F in Ω,

σ = ν∇ v − p I in Ω,

− div v = 0 in Ω,

v = vD on ΓD,

σn = 0 on ΓN

(for simplicity we assume again σN = 0) resp.

−ν∆v +∇ p = F in Ω,

− div v = 0 in Ω,

v = vD on ΓD,

(ν∇ v − p)n = 0 on ΓN

with additional proper decay conditions at infinity v ∈ L2−1(Ω) and ∇ v ∈ L2(Ω) which read
in classical point wise terms (more vaguely) as

v(x)
|x|→∞−−−−→ 0.
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Note that (1) is no longer a necessary condition in the case of an exterior domain due to the
possible lack of integrability. Therefore, our lifting lemma Corollary 4.2 does not need an
additional assumption on div v as in Corollary 1.6. Let us assume a slightly more general
viscosityv ν ∈ L∞(Ω), bounded from below and above by two positive constants ν− amd ν+,
respectively. A possible variational formulation (see, e.g., [13, 9]) is given by the following:
Find v ∈ vD + S−1,ΓD

(Ω) such that for all φ ∈ S−1,ΓD
(Ω)

〈ν∇ v,∇φ〉0,Ω = 〈F, φ〉0,Ω.
Note that by 〈F, φ〉0,Ω =

〈
ρF, ρ−1φ

〉

0,Ω
the right hand side is well defined. Using the ansatz

v = vD + v̂ with v̂ ∈ S−1,ΓD
(Ω) we reduce this formulation to find v̂ ∈ S−1,ΓD

(Ω) such that
for all φ ∈ S−1,ΓD

(Ω)

〈ν∇ v̂,∇φ〉0,Ω = 〈F, φ〉0,Ω − 〈ν∇ vD,∇φ〉0,Ω.
Again, another formulation taking the pressure into account and removing the unpleasant
solenoidal condition from the Hilbert space is the following saddle point formulation: Find
(v̂, p) ∈ H1

−1,ΓD
(Ω)× L2(Ω) such that for all (φ, ϕ) ∈ H1

−1,ΓD
(Ω)× L2(Ω)

〈ν∇ v̂,∇φ〉0,Ω − 〈p, div φ〉0,Ω = 〈F, φ〉0,Ω − 〈ν∇ vD,∇φ〉0,Ω,
−〈div v̂, ϕ〉0,Ω = 0.

(9)

Corollary 4.4 (Stokes lemma for exterior domains). For ν, F ∈ L21(Ω), vD ∈ S−1(Ω)
the Stokes system is uniquely solvable with v = vD + v̂ ∈ vD + S−1,ΓD

(Ω) ⊂ S−1(Ω) and
p ∈ L2(Ω). Moreover,

ν‖∇ v̂‖0,Ω ≤ cfp(Ω,ΓD)‖F‖1,Ω + ν‖∇ vD‖0,Ω,
ν‖∇ v‖0,Ω ≤ cfp(Ω,ΓD)‖F‖1,Ω + 2ν‖∇ vD‖0,Ω,

‖p‖0,Ω ≤ 2κ(Ω,ΓD)
(
cfp(Ω,ΓD)‖F‖1,Ω + ν‖∇ vD‖0,Ω

)
.

Proof. Standard saddle point theory and the inf-sup lemma, Corollary 4.3, shows existence
and the estimates follow by standard arguments, which provide also uniqueness. Note that
by the Friedrichs/Poincaré estimates in Lemma 2.1 the principal part of the bilinear form
is positive over H1

−1,ΓD
(Ω), and that we solve p = div φ by Lemma 3.3 to get the estimates

for the pressure p. �

4.3. A Posteriori Error Estimates for Stationary Stokes Equations. Before pro-
ceeding, we need one more polynomial weighted Sobolev space. For this, we recall Div
acting as usual row wise on R

d×d-tensor fields and define

D̃(Ω) :=
{
Θ ∈ L2(Ω) : DivΘ ∈ L21(Ω)

}
, D̃ΓN

(Ω),

where D̃ΓN
(Ω) is the closure of C∞

ΓN
(Ω)-tensor fields in the norm of the Sobolev space D̃(Ω).

Then we observe for all φ ∈ H1
−1,ΓD

(Ω) and all τ ∈ D̃ΓN
(Ω)

〈τ,∇ φ〉0,Ω = −〈Div τ, φ〉0,Ω.(10)

Note that the right hand side is well defined since 〈Div τ, φ〉0,Ω = 〈ρDiv τ, ρ−1φ〉0,Ω.
From now on we assume that we have approximations

ṽ ∈ L2−1(Ω), p̃ ∈ L2(Ω), T̃ ∈ L2(Ω), σ̃ ∈ L2(Ω)

of our exact solutions from (9) and Corollary 4.4

v = vD + v̂ ∈ vD + S−1,ΓD
(Ω) ⊂ S−1(Ω), T := ∇ v ∈ L2(Ω),

p ∈ L2(Ω), σ = ν∇ v − p I ∈ L2(Ω),

respectively, for given data ν, F ∈ L21(Ω), and vD ∈ S−1(Ω). We recall from (9) that (v, p)
solves for all φ ∈ H1

−1,ΓD
(Ω)

〈ν∇ v,∇φ〉0,Ω − 〈p, div φ〉0,Ω = 〈F, φ〉0,Ω.(11)

vThe viscosity ν can even be assumed to be a bounded, positive definite, symmetric tensor field. Moreover,
we note that ν−|T |2 ≤ |ν1/2T |2 = νT : T ≤ ν+|T |2 and thus also ν−|ν−1/2T |2 ≤ |T |2 ≤ ν+|ν−1/2T |2.
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4.3.1. A Posteriori Estimates for the Velocity Field: Solenoidal Approximations. First, we
assume the simplest case that

T̃ = ∇ ṽ, ṽ ∈ vD + S−1,ΓD
(Ω) ⊂ S−1(Ω),

i.e., ṽ − vD ∈ S−1,ΓD
(Ω). Then by (11) we have for all solenoidal φ ∈ S−1,ΓD

(Ω)
〈
ν∇(v − ṽ),∇ φ

〉

0,Ω
= 〈F, φ〉0,Ω − 〈ν∇ ṽ,∇φ〉0,Ω.

Let τ ∈ D̃ΓN
(Ω) and q ∈ L2(Ω). Using (10) and 〈q I,∇φ〉0,Ω = 0

(
actually this holds for all

φ ∈ S−1(Ω) since I : ∇φ = div φ
)
as well as the Friedrichs/Poincaré estimate from Lemma

2.1 we compute
〈
ν∇(v − ṽ),∇φ

〉

0,Ω

= 〈Div τ + F, φ〉0,Ω + 〈τ + q I− ν∇ ṽ,∇φ〉0,Ω
≤ ‖Div τ + F‖1,Ω‖φ‖−1,Ω +

∥
∥ν−1/2(τ + q I− ν∇ ṽ)

∥
∥
0,Ω

‖ν1/2 ∇φ‖0,Ω

≤
(

ν
−1/2
− cfp(Ω,ΓD)‖Div τ + F‖1,Ω +

∥
∥ν−1/2(τ + q I− ν∇ ṽ)

∥
∥
0,Ω

)

‖ν1/2 ∇φ‖0,Ω.

(12)

Choosing φv := v − ṽ = v̂ + vD − ṽ ∈ S−1,ΓD
(Ω) shows a first a posteriori estimate:

Theorem 4.5 (a posteriori error estimate I for exterior domains). Let ṽ ∈ vD +S−1,ΓD
(Ω).

Then for all τ ∈ D̃ΓN
(Ω) and all q ∈ L2(Ω) it holds

‖ν1/2 ∇(v − ṽ)‖0,Ω ≤ ν
−1/2
− cfp(Ω,ΓD)‖Div τ + F‖1,Ω +

∥
∥ν−1/2(τ + q I− ν∇ ṽ)

∥
∥
0,Ω
.

The upper bound coincides with the norm of the error on the left hand side, if τ = σ (i.e.,
τ coincides with the exact stress tensor) and q = p (i.e., q represents the exact pressure p),
i.e., we have

‖ν1/2 ∇(v − ṽ)‖0,Ω
= min

τ∈D̃ΓN
(Ω),

q∈L
2(Ω)

(

ν
−1/2
− cfp(Ω,ΓD)‖Div τ + F‖1,Ω +

∥
∥ν−1/2(τ + q I− ν∇ ṽ)

∥
∥
0,Ω

)

and the minimum is attained at (τ, q) = (σ, p). However, Theorem 4.5 has a drawback:
The estimate is valid only for those approximate vector fields ṽ, which exactly satisfy the
solenoidal condition and the boundary condition. In practice, the solenoidal requirement
is difficult to fulfill and approximations arising in ‘real life’ computations often satisfy the
solenoidal condition only approximately. Therefore, our next goal is to extend the estimate
to a wider class of non-solenoidal vector fields.

4.3.2. A Posteriori Estimates for the Velocity Field: Non-Solenoidal Approximations. Now
we assume only

T̃ = ∇ ṽ, ṽ ∈ vD + H1
−1,ΓD

(Ω) ⊂ H1
−1(Ω),

i.e., ṽ − vD ∈ H1
−1,ΓD

(Ω), this is ṽ is not solenoidal but satisfies the boundary condition

exactly. Utilizing the stability lemma, Lemma 3.3, there exists w ∈ H1
−1,ΓD

(Ω) such that

divw = − div ṽ and ‖∇w‖0,Ω ≤ κ(Ω,ΓD)‖ div ṽ‖0,Ω. Then ṽ0 := ṽ + w ∈ vD + S−1,ΓD
(Ω)

and by Theorem 4.5
∥
∥ν1/2 ∇(v − ṽ)

∥
∥
0,Ω

≤
∥
∥ν1/2 ∇(v − ṽ0)

∥
∥
0,Ω

+ ‖ν1/2 ∇w‖0,Ω
≤ ν

−1/2
− cfp(Ω,ΓD)‖Div τ + F‖1,Ω +

∥
∥ν−1/2(τ + q I− ν∇ ṽ0)

∥
∥
0,Ω

+ ‖ν1/2 ∇w‖0,Ω(13)

≤ ν
−1/2
− cfp(Ω,ΓD)‖Div τ + F‖1,Ω +

∥
∥ν−1/2(τ + q I− ν∇ ṽ)

∥
∥
0,Ω

+ 2‖ν1/2 ∇w‖0,Ω.
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Theorem 4.6 (a posteriori error estimate II for exterior domains). Let ṽ ∈ vD+H1
−1,ΓD

(Ω).

Then for all τ ∈ D̃ΓN
(Ω) and all q ∈ L2(Ω) it holds

‖ν1/2 ∇(v − ṽ)‖0,Ω ≤ ν
−1/2
− cfp(Ω,ΓD)‖Div τ + F‖1,Ω +

∥
∥ν−1/2(τ + q I− ν∇ ṽ)

∥
∥
0,Ω

+ 2ν
1/2
+ κ(Ω,ΓD)‖ div ṽ‖0,Ω.

If the approximation ṽ is solenoidal we get back Theorem 4.5 and, again, the upper
bound coincides with the norm of the error on the left hand side if τ = σ, q = p. If the
approximation ṽ is solenoidal just in, e.g., Rd \ Br2 then we get trivially an estimate by
Theorem 4.6, replacing the term ‖ div ṽ‖0,Ω by ‖ div ṽ‖0,ω. But with a moderate additional
assumption on the decay of the approximation we can even do better in this case, replacing
the stability constant κ(Ω,ΓD) by a stability constant of the bounded domain ω. For this
let ṽ = vD + w ∈ vD + H1

−1,ΓD
(Ω) with div ṽ = divw = 0 in R

d \ Br2 and additionally, if
γD = γ, i.e., ΓD = Γ,

|w| ≤ c r−m, m > d− 1(14)

for r → ∞ with some c > 0 independent of r. Note that for r−m ∈ L2−1(R
d \ B1) it is

sufficient that m > d/2− 1. We consider the ansatz

ṽ0 := ṽ +

{

u in ω,

0 in R
d \Br2 ,

with u ∈ H1
γD(ω) and div u = − div ṽ in ω. Utilizing Lemma 1.1 we find such a u together

with the stability estimate ‖∇u‖0,ω ≤ κ(ω, γD)‖ div ṽ‖0,ω, provided that in the case γD = γ,
i.e., ΓD = Γ, additionally div ṽ ∈ L2⊥(ω) holds. For this we notice (for ΓD = Γ) that for any
r > r2

∣
∣

∫

ω

div ṽ
∣
∣ =

∣
∣

∫

ω

divw
∣
∣ =

∣
∣

∫

Sr

n · w
∣
∣ ≤ c rd−1−m r→∞−−−→ 0.

Therefore, ṽ0 ∈ vD + S−1,ΓD
(Ω) is an admissible vector field for (13) showing

‖ν1/2 ∇(v − ṽ)‖0,Ω ≤ ν
−1/2
− cfp(Ω,ΓD)‖Div τ + F‖1,Ω +

∥
∥ν−1/2(τ + q I− ν∇ ṽ)

∥
∥
0,Ω

+ 2ν
1/2
+ ‖∇(ṽ0 − ṽ)‖0,Ω

︸ ︷︷ ︸

=‖∇u‖0,ω

.

Hence we have the following:

Corollary 4.7 (a posteriori error estimate III for exterior domains). Let ṽ ∈ vD+H1
−1,ΓD

(Ω)

with div ṽ = 0 in R
d \Br2 and, if ΓD = Γ, (14). Then for all τ ∈ D̃ΓN

(Ω) and all q ∈ L2(Ω)

‖ν1/2 ∇(v − ṽ)‖0,Ω ≤ ν
−1/2
− cfp(Ω,ΓD)‖Div τ + F‖1,Ω +

∥
∥ν−1/2(τ + q I− ν∇ ṽ)

∥
∥
0,Ω

+ 2ν
1/2
+ κ(ω, γD)‖ div ṽ‖0,ω.

Here the last term on the right hand side is a penalty for possible violation of the solenoidal
condition in ω.

4.3.3. A Posteriori Estimates for the Pressure Function. By Lemma 3.3 there exists a vector
field φp ∈ H1

−1,ΓD
(Ω) with div φp = p− p̃ and ‖∇φp‖0,Ω ≤ κ(Ω,ΓD)‖p− p̃‖0,Ω. (11) implies

for all ψ ∈ vD + H1
−1,ΓD

(Ω) and all τ ∈ D̃ΓN
(Ω)

‖p− p̃‖20,Ω = 〈p− p̃, div φp〉0,Ω
= 〈ν∇(v − ψ),∇φp〉0,Ω − 〈Div τ + F, φp〉0,Ω + 〈ν∇ψ − p̃ I− τ,∇φp〉0,Ω
≤

(

‖ν∇(v − ψ)‖0,Ω + cfp(Ω,ΓD)‖Div τ + F‖1,Ω + ‖ν∇ψ − p̃ I− τ‖0,Ω
)

‖∇φp‖0,Ω,
where we have used Lemma 2.1 for φp and the equation div φp = I : ∇φp. Therefore, we
obtain

‖p− p̃‖0,Ω ≤ κ(Ω,ΓD)
(

ν
1/2
+ ‖ν1/2 ∇(v − ψ)‖0,Ω + cfp(Ω,ΓD)‖Div τ + F‖1,Ω
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+ ν
1/2
+

∥
∥ν−1/2(τ + p̃ I− ν∇ψ)

∥
∥
0,Ω

)

and by Theorem 4.6 with ṽ := ψ, q := p̃ we get:

Theorem 4.8 (a posteriori error estimate IV for exterior domains). Let p̃ ∈ L2(Ω). Then

for all τ ∈ D̃ΓN
(Ω) and all ψ ∈ vD + H1

−1,ΓD
(Ω) it holds

‖p− p̃‖0,Ω ≤ κ(Ω,ΓD)
(

(ν
−1/2
− ν

1/2
+ + 1)cfp(Ω,ΓD)‖Div τ + F‖1,Ω

+ 2ν
1/2
+

∥
∥ν−1/2(τ + p̃ I− ν∇ψ)

∥
∥
0,Ω

+ 2ν+κ(Ω,ΓD)‖ divψ‖0,Ω
)

.

The upper bound consists of the same terms as the upper bound of Theorem 4.6 and
vanishes if ψ = v, τ = σ, p̃ = p. However, in this case, the quantity (error measure) on the
left hand side depends, e.g., on the stability constant κ(Ω,ΓD).

4.3.4. A Posteriori Estimates for Non-Conforming Approximations. Let us now assume that
we have a very non-conforming approximation of the strain tensor field

T := ∇ v, v = vD + v̂ ∈ vD + S−1,ΓD
(Ω) ⊂ S−1(Ω),

given just by some T̃ ∈ L2(Ω). An example could be a broken gradient tensor field as output
of some discontinous Galerkin method. By the triangle inequality, i.e.,

‖ν1/2(T − T̃ )‖0,Ω ≤ ‖ν1/2 ∇(v − ψ)‖0,Ω + ‖ν1/2(∇ψ − T̃ )‖0,Ω,
and Theorem 4.6 (ṽ = ψ), and Theorem 4.8 (and again triangle inequality) we obtain the
following result:

Theorem 4.9 (a posteriori error estimate V for exterior domains). Let T̃ ∈ L2(Ω) and

p̃ ∈ L2(Ω). Then for all ψ ∈ vD + H1
−1,ΓD

(Ω), all τ ∈ D̃ΓN
(Ω), and all q ∈ L2(Ω) it holds

‖ν1/2(T − T̃ )‖0,Ω ≤ ν
−1/2
− cfp(Ω,ΓD)‖Div τ + F‖1,Ω +

∥
∥ν−1/2(τ + q I− ν∇ψ)

∥
∥
0,Ω

+ 2ν
1/2
+ κ(Ω,ΓD)‖ divψ‖0,Ω + ‖ν1/2(∇ψ − T̃ )‖0,Ω

≤ ν
−1/2
− cfp(Ω,ΓD)‖Div τ + F‖1,Ω +

∥
∥ν−1/2(τ + q I− νT̃ )

∥
∥
0,Ω

+ 2ν
1/2
+ κ(Ω,ΓD)‖ divψ‖0,Ω + 2‖ν1/2(∇ψ − T̃ )‖0,Ω,

‖p− p̃‖0,Ω ≤ κ(Ω,ΓD)
(

(ν
−1/2
− ν

1/2
+ + 1)cfp(Ω,ΓD)‖Div τ + F‖1,Ω

+ 2ν
1/2
+

∥
∥ν−1/2(τ + p̃ I− νT̃ )

∥
∥
0,Ω

+ 2ν+κ(Ω,ΓD)‖ divψ‖0,Ω

+ 2ν
1/2
+ ‖ν1/2(∇ψ − T̃ )‖0,Ω

)

.

For T̃ = ∇ ṽ, ψ = ṽ ∈ vD + H1
−1,ΓD

(Ω) we get back Theorem 4.6 and Theorem 4.8. Let
us investigate the latter summands a bit closer and identify them in terms of parts of the
error. For this, we use the well known (row wise) Helmholtz decomposition, see (??) of the
Appendix, and decomposevi the error according to

T − T̃ = ∇w + T̃0 ∈ ∇H1
−1,ΓD

(Ω)⊕0,ν ν
−1

0DΓN
(Ω).

Note that due to orthogonality
∥
∥ν1/2(T − T̃ )

∥
∥
2

0,Ω
= ‖ν1/2 ∇w‖20,Ω + ‖ν1/2T̃0‖20,Ω(15)

and that T −∇ vD = ∇ v̂ ∈ ∇ S−1,ΓD
(Ω) ⊂ ∇H1

−1,ΓD
(Ω) already belongs to the first space.

Hence the latter decomposition is actually a decomposition of ∇ vD − T̃ , more precisely
∇ vD − T̃ = T −∇ v̂ − T̃ = ∇(w − v̂) + T̃0. For the second error part T̃0 we observe for all
φ ∈ H1

−1,ΓD
(Ω) by orthogonality

‖ν1/2T̃0‖20,Ω = 〈T − T̃ , νT̃0〉0,Ω =
〈
∇(vD + φ)− T̃ , νT̃0

〉

0,Ω

viNote that the decomposition is orthogonal with respect to the weighted 〈ν · , · 〉0,Ω-inner product.
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and thus ‖ν1/2T̃0‖0,Ω ≤
∥
∥ν1/2(∇(vD + φ)− T̃ )

∥
∥
0,Ω

. In other words,

‖ν1/2T̃0‖0,Ω = min
φ∈H1

−1,ΓD
(Ω)

∥
∥ν1/2(∇(vD + φ)− T̃ )

∥
∥
0,Ω

= min
ψ∈vD+H1

−1,ΓD
(Ω)

∥
∥ν1/2(∇ψ − T̃ )

∥
∥
0,Ω

(16)

and the minima are attained at

φ̂ = v̂ − w ∈ H1
−1,ΓD

(Ω), ψ̂ = vD + φ̂ = v − w ∈ vD + H1
−1,ΓD

(Ω),

as ∇ ψ̂− T̃ = T −∇w− T̃ = T̃0. Therefore, the minima of the last terms on the right hand
sides in Theorem 4.9 equal the error part ‖ν1/2T̃0‖0,Ω.
4.3.5. A Posteriori Estimates for the Stress Tensor Field. Error estimates for the stress
tensor field follow immediately from the above derived estimates for the velocity vector field
and the pressure function. Indeed, let σ̃ ∈ L2(Ω) be an approximation of the exact stress

tensor σ = ν∇ v − p I = νT − p I. Moreover, let T̃ ∈ L2(Ω) and p̃ ∈ L2(Ω). Then, the
respective error is simply subject to the triangle inequality

‖σ̃ − σ‖0,Ω ≤ ‖σ̃ − νT̃ + p̃ I‖0,Ω + ν
1/2
+ ‖ν1/2(T − T̃ )‖0,Ω + d1/2‖p− p̃‖0,Ω,

where we can also put T̃ = ∇ ṽ, ṽ ∈ vD + H1
−1,ΓD

(Ω). The first term on the right hand
side contains only known tensor fields and the second and third ones are estimated by, e.g.,
Theorem 4.6, Theorem 4.8, and Theorem 4.9.

4.3.6. Lower Bounds for the Velocity Field. Let ṽ ∈ vD+H1
−1,ΓD

(Ω), i.e., v− ṽ ∈ H1
−1,ΓD

(Ω).

Obviously, (as the subsequent max-property holds for any Hilbertvii space) we have by (11)

‖ν1/2 ∇(v − ṽ)‖20,Ω = max
φ∈H1

−1,ΓD
(Ω)

(
2
〈
ν∇(v − ṽ),∇φ

〉

0,Ω
− ‖ν1/2∇ φ‖20,Ω

)

≥ 2〈ν∇ v,∇φ〉0,Ω − 2〈ν∇ ṽ,∇φ〉0,Ω − ‖ν1/2 ∇φ‖20,Ω
= 2〈F, φ〉0,Ω + 2〈q, divφ〉0,Ω −

〈
ν∇(2ṽ + φ),∇ φ

〉

0,Ω

+ 2〈p− q, div φ〉0,Ω
and the maximum is attained at φ = v − ṽ ∈ H1

−1,ΓD
(Ω). The last term can simply and

roughly be estimated by Theorem 4.8 (p̃ = q) showing the following result.

Theorem 4.10 (a posteriori error estimate VI for exterior domains). Let ṽ ∈ vD+H1
−1,ΓD

(Ω).

Then for all φ ∈ H1
−1,ΓD

(Ω), all τ ∈ D̃ΓN
(Ω), all ψ ∈ vD + H1

−1,ΓD
(Ω), and all q ∈ L2(Ω)

‖ν1/2 ∇(v − ṽ)‖20,Ω
≥ 2〈F, φ〉0,Ω + 2〈q, div φ〉0,Ω −

〈
ν∇(2ṽ + φ),∇φ

〉

0,Ω

− 2κ(Ω,ΓD)‖ div φ‖0,Ω
(

(ν
−1/2
− ν

1/2
+ + 1)cfp(Ω,ΓD)‖Div τ + F‖1,Ω

+ 2ν
1/2
+

∥
∥ν−1/2(τ + q I− ν∇ψ)

∥
∥
0,Ω

+ 2ν+κ(Ω,ΓD)‖ divψ‖0,Ω
)

.

In particular, ψ = ṽ is possible.

For solenoidal φ, i.e., φ ∈ S−1,ΓD
(Ω) we simply get

‖ν1/2 ∇(v − ṽ)‖20,Ω ≥ 2〈F, φ〉0,Ω −
〈
ν∇(2ṽ + φ),∇ φ

〉

0,Ω

and equality holds for φ = v − ṽ, provided that the approximation ṽ is also solenoidal, i.e.,
ṽ ∈ vD + S−1,ΓD

(Ω). To handle a very non-conforming approximation T̃ ∈ L2(Ω) we can
simply utilize for all ϕ ∈ vD + H1

−1,ΓD
(Ω) the triangle inequality

‖ν1/2(∇ v − T̃ )‖0,Ω ≥ ‖ν1/2 ∇(v − ϕ)‖0,Ω − ‖ν1/2(∇ϕ− T̃ )‖0,Ω
in combination with Theorem 4.10 (ṽ = ϕ). More precisely, we note the following result:

viiIn any Hilbert space H it holds |x|2 = maxy∈H

(

2〈x, y〉 − |y|2
)

. Here H = ∇H1
−1,ΓD

(Ω).
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Theorem 4.11 (a posteriori error estimate VII for exterior domains). Let T̃ ∈ L2(Ω). Then

for all φ ∈ H1
−1,ΓD

(Ω), all τ ∈ D̃ΓN
(Ω), all ϕ, ψ ∈ vD + H1

−1,ΓD
(Ω), and all q ∈ L2(Ω)

‖ν1/2(∇ v − T̃ )‖0,Ω ≥ ‖ν1/2 ∇(v − ϕ)‖0,Ω − ‖ν1/2(∇ϕ− T̃ )‖0,Ω,
‖ν1/2 ∇(v − ϕ)‖20,Ω ≥ 2〈F, φ〉0,Ω + 2〈q, div φ〉0,Ω −

〈
ν∇(2ϕ+ φ),∇φ

〉

0,Ω

− 2κ(Ω,ΓD)‖ div φ‖0,Ω
(

(ν
−1/2
− ν

1/2
+ + 1)cfp(Ω,ΓD)‖Div τ + F‖1,Ω

+ 2ν
1/2
+

∥
∥ν−1/2(τ + q I− ν∇ψ)

∥
∥
0,Ω

+ 2ν+κ(Ω,ΓD)‖ divψ‖0,Ω
)

.

4.4. Applications for 2D Exterior Domains. For a Lipschitz domain D ⊂ R
2 we intro-

duce modified polynomially weighted spaces using logarithms by

L2±1,ln(D) :=
{
φ ∈ L2loc(D) :

(
ρ ln(e + ρ)

)±1
φ ∈ L2(D)

}
, e : Euler’s number,

H1
−1,ln(D) :=

{
φ ∈ L2−1,ln(D) : ∇φ ∈ L2(D)

}
.

Note that at infinity
(
ρ ln(e+ρ)

)±1
behaves like (r ln r)±1. The Inner product in L2±1,ln(D) is

defined and denoted by 〈 · , · 〉±1,ln,D :=
〈(
ρ ln(e+ ρ)

)±2 · , ·
〉

0,D
. All other weighted spaces

and norms etc. are modified and defined in the same way.
Let Ω ⊂ R

2 and ω ⊂ R
2 be defined as in Section 2, i.e., Ω ⊂ R

2 is an exterior Lipschitz
domain. The situation is now different from the case d ≥ 3 as the constants will be integrable
in our weighted spaces. More precisely, for 0 < ǫ < 1

(r ln r)−1 ∈ L2(Bǫ), (r ln r)−1 6∈ L2(B1+ǫ \B1−ǫ),

(r ln r)−1 ∈ L2(R2 \Be).
Introducing

H1
−1,ln,∅(Ω) := H1

−1,ln(Ω) ∩ R
⊥−1,ln,Ω

we have the following Friedrichs/Poincare estimate:

Lemma 4.12 (Friedrichs/Poincaré estimate for 2D exterior domains). There exists c > 0
such that ‖v‖−1,ln,Ω ≤ c‖∇ v‖0,Ω for all v ∈ H1

−1,ln,ΓD
(Ω). The best constant c will be

denoted by cfp(Ω,ΓD). In the special case Be ⊂ R
2 \Ω and ΓD = Γ it holds cfp(Ω,ΓD) ≤ 2.

Note that we need boundary or mean value conditions as in the case of a bounded domain.

Proof. From [24, Appendix 4.2, Lemma 4.1, Corollary 4.2, Remark 4.3], see also [38, Lemma
4.1], we have for all v ∈ C∞

Γ (Ω)

‖v‖−1,ln,Ω ≤ ‖(r ln r)−1v‖0,Ω ≤ 2‖∇ v‖0,Ω,
provided that, e.g., Be ⊂ R

2 \ Ω, which extends by density and continuity to H1
−1,ln,Γ(Ω),

i.e., all v ∈ H1
−1,ln,Γ(Ω),

‖v‖−1,ln,Ω ≤ 2‖∇ v‖0,Ω.(17)

Let v ∈ H1
−1,ln(Ω) and let us assume w.l.o.g. r1 > e, r2 := r1 + 1 and ξ′∞ ≤ 1. Then

ηv ∈ H1
−1,ln,Γ(supp η) and ‖ηv‖−1,ln,Ω ≤ 2‖∇(ηv)‖0,Ω by (17) for Ω = supp η. Hence

‖v‖−1,ln,Ω ≤ 2‖∇ v‖0,Ω + 2‖v∇ η‖0,Ω + ‖(1− η)v‖−1,ln,Ω

≤ 2‖∇ v‖0,Ω + 2‖v‖0,ω + ‖v‖0,ω,
showing for all v ∈ H1

−1,ln(Ω)

‖v‖−1,ln,Ω ≤ 2‖∇ v‖0,Ω + 3‖v‖0,ω.(18)

Now, if the assertion of Lemma 4.12 is false, there is a sequence (vn) ⊂ H1
−1,ln,ΓD

(Ω) with

‖vn‖−1,ln,Ω = 1 and ‖∇ vn‖0,Ω < 1/n. Hence, (vn) is bounded in H1(ω) as well. By Rellich’s
selection theorem we can assume w.l.o.g. that (vn) already converges in L2(ω). Thus, by
(18) (vn) is a Cauchy sequence in L2−1,ln(Ω) and hence also in H1

−1,ln,ΓD
(Ω). Therefore, (vn)
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converges in H1
−1,ln,ΓD

(Ω) to some v ∈ H1
−1,ln,ΓD

(Ω) with ∇ v = 0. We conclude that v is

constant and hence v = 0, which implies a contradiction by 1 = ‖vn‖−1,ln,Ω → 0. �

Now, all results from the sections for d ≥ 3 follow with the obvious modifications, where
we just present the most relevant ones.

Lemma 4.13 (stability lemma for 2D exterior domains). There exists c > 0 such that for
all f ∈ L2(Ω) there is a vector field v ∈ H1

−1,ln,ΓD
(Ω) with

div v = f and ‖∇ v‖0,Ω ≤ c‖f‖0,Ω.
The best constant is denoted by κ(Ω,ΓD) which equals the norm of the corresponding right
inverse f 7→ v. Moreover, with κ from (7)

κ(Ω,ΓD) ≤ κ̂(Ω,ΓD) := (1 + κ)
(
1 + cfp(R

2)
ξ′∞ρ(r2) ln

(
e+ ρ(r2)

)

r2 − r1

)
.

In particular, it holds κ̂(Ω,ΓD) ≤ (1 + κ)
(
1 + cfp(R

2)ρ(r2) ln(e + ρ(r2))
)
for r2 = r1 + 1

and ξ′∞ ≤ 1. If f has compact support in ω and if additionally
∫

ω
f =

∫

Ω
f = 0 in the case

ΓD = Γ, then v can be chosen with compact support in ω, especially v ∈ H1
γD(ω) ⊂ H1

ΓD
(Ω).

In this case, κ(Ω,ΓD) ≤ κ(ω, γD).

Corollary 4.14 (distance lemma for 2D exterior domains). For any v ∈ H1
−1,ln,ΓD

(Ω) there

exists a solenoidal v0 ∈ S−1,ln,ΓD
(Ω) such that

dist
(
v, S−1,ln,ΓD

(Ω)
)
= inf

φ∈S−1,ln,ΓD
(Ω)

∥
∥∇(v−φ)

∥
∥
0,Ω

≤
∥
∥∇(v−v0)

∥
∥
0,Ω

≤ κ(Ω,ΓD)‖ div v‖0,Ω.

Corollary 4.15 (inhomogeneous distance lemma for 2D exterior domains). For any vector
field v ∈ H1

−1,ln(Ω) there exists a solenoidal v0 ∈ S−1,ln(Ω) such that v0 − v ∈ H1
−1,ln,ΓD

(Ω),

i.e., v0|ΓD
= v|ΓD

, and
∥
∥∇(v0 − v)

∥
∥
0,Ω

≤ κ(Ω,ΓD)‖ div v‖0,Ω.
Corollary 4.16 (inf-sup lemma for 2D exterior domains). It holds

inf
f∈L2(Ω)

sup
v∈H1

−1,ln,ΓD
(Ω)

〈f, div v〉0,Ω
‖f‖0,Ω‖∇ v‖0,Ω

≥ 1

κ(Ω,ΓD)
.

Corollary 4.17 (Stokes lemma for 2D exterior domains). For ν, F ∈ L21,ln,ΓN
(Ω), and

vD ∈ S−1,ln(Ω) the 2D Stokes system is uniquely solvable with a solenoidal vector field
v = vD + ṽ ∈ vD + S−1,ln,ΓD

(Ω) ⊂ S−1,ln(Ω) and p ∈ L2(Ω). Moreover,

ν‖∇ ṽ‖0,Ω ≤ cfp(Ω,ΓD)‖F‖1,ln,Ω + ν‖∇ vD‖0,Ω,
ν‖∇ v‖0,Ω ≤ cfp(Ω,ΓD)‖F‖1,ln,Ω + 2ν‖∇ vD‖0,Ω,

‖p‖0,Ω ≤ 2κ(Ω,ΓD)
(
cfp(Ω,ΓD)‖F‖1,ln,Ω + ν‖∇ vD‖0,Ω

)
.

Here we have introduced

L21,ln,ΓN
(Ω) :=

{

L21,ln(Ω) , if ΓD 6= ∅,
L21,ln,⊥(Ω) , if ΓD = ∅,

L21,ln,⊥(Ω) := L21,ln(Ω) ∩ (R2)⊥0,Ω =
{
φ ∈ L21,ln(Ω) :

∫

Ω

φi = 0
}
.

4.4.1. A Posteriori Error Estimates for Stationary Stokes Equations in 2D. We introduce

D̃(Ω) :=
{
Θ ∈ L2(Ω) : Div Θ ∈ L21,ln(Ω)

}

and D̃ΓN
(Ω) as closure of C∞

ΓN
(Ω)-tensor fields in the norm of D̃(Ω).

For the approximation of the velocity field we have the following result:

Theorem 4.18 (a posteriori error estimate I for 2D exterior domains). Let the approxima-

tion ṽ belong to vD + H1
−1,ln,ΓD

(Ω). Then for all τ ∈ D̃ΓN
(Ω) and all q ∈ L2(Ω)

‖ν1/2 ∇(v − ṽ)‖0,Ω ≤ ν
−1/2
− cfp(Ω,ΓD)‖Div τ + F‖1,ln,Ω +

∥
∥ν−1/2(τ + q I− ν∇ ṽ)

∥
∥
0,Ω

+ 2ν
1/2
+ κ(Ω,ΓD)‖ div ṽ‖0,Ω.
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If additionally div ṽ = 0 in R
2 \ Br2 and, if ΓD = Γ, (14) holds, then κ(Ω,ΓD) can be

replaced by κ(ω, γD) in Theorem 4.18. If the approximation ṽ is solenoidal, i.e., div ṽ = 0 in
Ω, the upper bound coincides with the norm of the error on the left hand side if (τ, q) = (σ, p).

For the approximation of the pressure function we get:

Theorem 4.19 (a posteriori error estimate II for 2D exterior domains). Let p̃ ∈ L2(Ω).

Then for all τ ∈ D̃ΓN
(Ω) and all ψ ∈ vD + H1

−1,ln,ΓD
(Ω) it holds

‖p− p̃‖0,Ω ≤ κ(Ω,ΓD)
(

(ν
−1/2
− ν

1/2
+ + 1)cfp(Ω,ΓD)‖Div τ + F‖1,ln,Ω

+ 2ν
1/2
+

∥
∥ν−1/2(τ + p̃ I− ν∇ψ)

∥
∥
0,Ω

+ 2ν+κ(Ω,ΓD)‖ divψ‖0,Ω
)

.

For non-conforming approximations of the velocity field we see:

Theorem 4.20 (a posteriori error estimate III for 2D exterior domains). Let T̃ ∈ L2(Ω)

and p̃ ∈ L2(Ω). Then for all ψ ∈ vD + H1
−1,ln,ΓD

(Ω), all τ ∈ D̃ΓN
(Ω), and all q ∈ L2(Ω) it

holds

‖ν1/2(T − T̃ )‖0,Ω ≤ ν
−1/2
− cfp(Ω,ΓD)‖Div τ + F‖1,ln,Ω +

∥
∥ν−1/2(τ + q I− ν∇ψ)

∥
∥
0,Ω

+ 2ν
1/2
+ κ(Ω,ΓD)‖ divψ‖0,Ω + ‖ν1/2(∇ψ − T̃ )‖0,Ω

≤ ν
−1/2
− cfp(Ω,ΓD)‖Div τ + F‖1,ln,Ω +

∥
∥ν−1/2(τ + q I− νT̃ )

∥
∥
0,Ω

+ 2ν
1/2
+ κ(Ω,ΓD)‖ divψ‖0,Ω + 2‖ν1/2(∇ψ − T̃ )‖0,Ω,

‖p− p̃‖0,Ω ≤ κ(Ω,ΓD)
(

(ν
−1/2
− ν

1/2
+ + 1)cfp(Ω,ΓD)‖Div τ + F‖1,ln,Ω

+ 2ν
1/2
+

∥
∥ν−1/2(τ + p̃ I− νT̃ )

∥
∥
0,Ω

+ 2ν+κ(Ω,ΓD)‖ divψ‖0,Ω

+ 2ν
1/2
+ ‖ν1/2(∇ψ − T̃ )‖0,Ω

)

.

For T̃ = ∇ ṽ, ψ = ṽ ∈ vD + H1
−1,ln,ΓD

(Ω) we get back Theorem 4.18 and Theorem 4.19.
Moreover, using the Helmholtz decomposition

T − T̃ = ∇w + T̃0 ∈ ∇H1
−1,ln,ΓD

(Ω)⊕0,ν ν
−1

0DΓN
(Ω),

we observe

‖ν1/2T̃0‖0,Ω = min
ψ∈vD+H1

−1,ln,ΓD
(Ω)

∥
∥ν1/2(∇ψ − T̃ )

∥
∥
0,Ω
.

As before, error estimates for the stress tensor field σ follow immediately by the triangle
inequality. For a lower bound we have the following result:

Theorem 4.21 (a posteriori error estimate IV for 2D exterior domains). Let the approxi-

mation ṽ belong to vD + H1
−1,ln,ΓD

(Ω). Then for all φ ∈ H1
−1,ln,ΓD

(Ω), all τ ∈ D̃ΓN
(Ω), all

ψ ∈ vD + H1
−1,ln,ΓD

(Ω), and all q ∈ L2(Ω) it holds

‖ν1/2 ∇(v − ṽ)‖20,Ω
≥ 2〈F, φ〉0,Ω + 2〈q, div φ〉0,Ω −

〈
ν∇(2ṽ + φ),∇φ

〉

0,Ω

− 2κ(Ω,ΓD)‖ div φ‖0,Ω
(

(ν
−1/2
− ν

1/2
+ + 1)cfp(Ω,ΓD)‖Div τ + F‖1,ln,Ω

+ 2ν
1/2
+

∥
∥ν−1/2(τ + q I− ν∇ψ)

∥
∥
0,Ω

+ 2ν+κ(Ω,ΓD)‖ divψ‖0,Ω
)

.

In particular, ψ = ṽ is possible.

Again, for solenoidal φ, i.e., φ ∈ S−1,ln,ΓD
(Ω) we simply get

‖ν1/2 ∇(v − ṽ)‖20,Ω ≥ 2〈F, φ〉0,Ω −
〈
ν∇(2ṽ + φ),∇ φ

〉

0,Ω

and equality holds for φ = v − ṽ, provided that the approximation ṽ is also solenoidal,
i.e., ṽ ∈ vD + S−1,ln,ΓD

(Ω). Finally, to handle also very non-conforming approximations
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T̃ ∈ L2(Ω) we can simply utilize for all ϕ ∈ vD + H1
−1,ln,ΓD

(Ω) the triangle inequality

‖ν1/2(∇ v − T̃ )‖0,Ω ≥ ‖ν1/2 ∇(v − ϕ)‖0,Ω − ‖ν1/2(∇ϕ− T̃ )‖0,Ω
in combination with Theorem 4.21 (ṽ = ϕ).
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E-mail address, Sergey Repin: repin@pdmi.ras.ru


	1. Introduction
	2. Preliminaries
	3. The Stability Lemma for Exterior Domains
	4. Applications for Exterior Domains
	4.1. Inf-Sup Lemma and Estimates of the Distance to Solenoidal Fields
	4.2. Solution Theory for the Stationary Stokes System
	4.3. A Posteriori Error Estimates for Stationary Stokes Equations
	4.3.1. A Posteriori Estimates for the Velocity Field: Solenoidal Approximations
	4.3.2. A Posteriori Estimates for the Velocity Field: Non-Solenoidal Approximations
	4.3.3. A Posteriori Estimates for the Pressure Function
	4.3.4. A Posteriori Estimates for Non-Conforming Approximations
	4.3.5. A Posteriori Estimates for the Stress Tensor Field
	4.3.6. Lower Bounds for the Velocity Field

	4.4. Applications for 2D Exterior Domains
	4.4.1. A Posteriori Error Estimates for Stationary Stokes Equations in 2D


	References

