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Abstract. Functional error estimates are well-established tools for a posteriori error
estimation and related adaptive mesh-refinement for the finite element method (FEM).
The present work proposes a first functional error estimate for the boundary element
method (BEM). One key feature is that the derived error estimates are independent
of the BEM discretization and provide guaranteed lower and upper bounds for the
unknown error. In particular, our analysis covers Galerkin BEM and the collocation
method, what makes the approach of particular interest for scientific computations and
engineering applications. Numerical experiments for the Laplace problem confirm the
theoretical results.
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1. Introduction

Let Ω ⊂ Rd, d ≥ 2, be a bounded Lipschitz domain with polygonal boundary Γ := ∂Ω. To
present the main ideas and our first numerical results, we consider the Poisson problem
with inhomogeneous Dirichlet boundary data g, i.e.,

∆u = 0 in Ω, u = g on Γ. (1)

Throughout the paper, we assume that d ∈ {2, 3}. However, all results can easily be
extended to higher dimensions. For the numerical solution of (1), we employ the boundary
element method (BEM); see, e.g., [48, 46, 28]. Again for the ease of presentation, let us
consider an indirect ansatz based on the single-layer potential

(Ṽ φ)(x) :=

∫
Γ

G(x− y)φ(y) dy = u(x) for all x ∈ Ω (2)

with unknown integral density φ, where, for z ∈ Rd\{0}, G(z) = − 1
2π

log |z| for d = 2

resp. G(z) = 1
4π
|z|−1 for d = 3 denotes the fundamental solution of the Laplacian. Taking

the trace on Γ, the potential ansatz leads to the weakly-singular integral equation

(V φ)(x) = g(x) for almost all x ∈ Γ, (3)

where the integral representation of g = V φ coincides with that of u = Ṽ φ (at least for
bounded densities) but is now evaluated on Γ (instead of inside Ω). For ellipticity of the
operator V , we suppose that diam(Ω) < 1 in case of d = 2, which can always be achieved
by scaling. Given a triangulation FΓ

h of the boundary Γ, the latter equation is solved by
the lowest-order BEM and provides some piecewise constant approximation φh, i.e.,

φ ≈ φh ∈ P0(FΓ
h ), (4)

where the precise discretization (e.g., Galerkin BEM, collocation, etc.) will not be ex-
ploited by our analysis. However, as a BEM inherent characteristic, we obtain an ap-
proximation of the potential u ≈ uh := Ṽ φh, which satisfies the Laplace problem

∆uh = 0 in Ω. (5)

Note that here — contrary to the usual notations — uh is not a discrete function but
computed by an integral operator applied to a discrete function, i.e., uh is data sparse.
We emphasize that (5) is the key argument for the error identity

max
τ∈L2(Ω)
div τ=0

(
2 〈g − uh|Γ , n · τ |Γ〉Γ − ||τ ||2L2(Ω)

)
=
∣∣∣∣∇(u− uh)

∣∣∣∣2
L2(Ω)

= min
w∈H1(Ω)

w|Γ=g−uh|Γ

||∇w||2L2(Ω), (6)

where 〈· , ·〉Γ denotes the extended L2(Γ) scalar product (see Theorem 4 below). The
identities (6) generate a posteriori error estimates of the functional type that are inde-
pendent of the discretization and provide fully guaranteed lower and upper bounds for
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the unknown error without any constants at all. In general, these functional type a pos-
teriori estimates involve only constants in basic functional inequalities associated with
the concrete problem (e.g., Poincaré–Friedrichs type or trace inequalities) and are appli-
cable for any approximation from the admissible energy class (see [43, 1, 2, 39] or the
monograph [44] and the references cited therein). In particular, the equations (6) have
also been used in [44] for the analysis of errors arising in the Trefftz method.

From (6), constant-free (i.e., with known constant 1) lower and upper bounds for the
unknown potential error ||∇(u−uh)||L2(Ω) can be obtained by choosing arbitrary instances
of τ and w. In the present work, we compute these bounds by solving problems in a
suitable boundary layer S ⊂ Ω along Γ by use of the finite element method (FEM).
Moreover, these bounds are then employed to drive an adaptive mesh-refinement for
the triangulation FΓ

h of Γ and, as novelty, also quantify the accuracy ||∇(u − uh)||L2(Ω)

of the BEM induced potential uh = Ṽ φh in each step of the adaptive algorithm. In
particular, the latter quantification is essentially constant-free (up to data oscillations
terms arising for the FEM majorant) and can thus also be used as reasonable stopping
criterion for adaptive BEM computations. Especially for practical applications, this is
an important step forward, since there exist neither a posteriori error estimates with
constant 1 nor estimates for physically relevant errors. While available results focus on
the density φh (see, e.g., [13, 10, 37, 12, 18, 24] for some prominent results or the surveys
[11, 21] and the references therein), estimating rather the energy error of uh circumvents,
in particular, BEM-natural challenges like the localization of non-integer Sobolev norms.
It is quite natural that these serious advantages of the proposed error estimation strategy
are associated with certain technical complications that arise because we need to generate
a volume mesh at least for some boundary layer S ⊂ Ω along Γ on which we solve auxiliary
FEM problems. However, the ratio between the number of degrees of freedom (DoF) for
obtaining the error estimates and the BEM DoF remains bounded, so that additional
computational expenditures remain limited. Moreover, examples show that very good
error bounds can be obtained when the ratio is between one and three. Finally, we note
that the generation of the volume mesh appears to be a standard problem for FEM mesh
generation, where usually, like in computer aided design (CAD), only the surface Γ is
given.

Outline. The remainder of this work is organized as follows: In Section 2, we collect
the necessary notations as well as the fundamental properties of (Galerkin) BEM. In Sec-
tion 3, we formulate our approach for functional a posteriori error estimation. Theorem 4
states the error identity (6). Theorem 5 provides a computable upper bound on (6) by
means of an H1-conforming FEM approach as well as a computable lower bound on (6) by
means of an H(div)-conforming mixed FEM approach. Section 4 shows how these findings
can be used to steer an adaptive mesh-refinement. Algorithm 10 formulates such a strat-
egy with reliable error control on ||∇(u−uh)||L2(Ω). In Section 5, we employ the proposed
adaptive algorithm to underpin our theoretical findings by some numerical experiments
with lowest-order Galerkin BEM in 2D. Section 6 concludes the work with natural ex-
tensions of our approach (even covered by our analytical results) like higher-order BEM,
alternative BEM discretizations like collocation, direct BEM formulations, and error con-
trol for exterior domain problems (where Ω is unbounded), underlining the independence
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of our error estimators of the actual problem and approximation method. The final Sec-
tion 7 summarizes the contributions of the present work and addresses possible topics for
future research.

2. Preliminaries and notation

2.1. Domains and function spaces. Throughout this paper, let Ω ⊂ Rd, d ∈ {2, 3},
be a bounded Lipschitz domain (i.e., locally below the graph of some Lipschitz function)
with boundary Γ = ∂Ω and exterior unit normal vector field n. For all numerical results
involving discretisations, we assume that Γ is a polygon. We denote by 〈· , ·〉L2(Ξ) and
|| · ||L2(Ξ) the standard inner product and norm in L2(Ξ), respectively, where, e.g., Ξ ∈
{Ω,Γ}. Based on L2(Ω), we define the Hilbert spaces

H1(Ω) :=
{
ϕ ∈ L2(Ω) : ∇ϕ ∈ L2(Ω)

}
,

H(div,Ω) :=
{
σ ∈ L2(Ω) : divσ ∈ L2(Ω)

}
.

The corresponding inner products and (induced) norms are 〈· , ·〉H1(Ω) and || · ||H1(Ω) resp.
〈 · , · 〉H(div,Ω) and || · ||H(div,Ω). Moreover, introducing the scalar trace operator (·)|Γ :

H1(Ω)→ L2(Γ), our analysis also employs the closed subspace of H1(Ω)

H1
0(Ω) :=

{
ϕ ∈ H1(Ω) : ϕ|Γ = 0

}
and the trace space H1/2(Γ) :=

{
ϕ|Γ : ϕ ∈ H1(Ω)

}
equipped with the natural quotient

norm

||f ||H1/2(Γ) := inf
{
||ϕ||H1(Ω) : ϕ ∈ H1(Ω) with ϕ|Γ = f

}
for all f ∈ H1/2(Γ).

A standard construction (see the subsequent Remark 1) yields a harmonic extension
operator (̂·) : H1/2(Γ)→ H1(Ω) which satisfies ||∇f̂ ||L2(Ω) ≤ ||f ||H1/2(Γ) for all f ∈ H1/2(Γ).

Remark 1. In fact, the minimal extension ϕ ∈ H1(Ω) of f ∈ H1/2(Γ) satisfies ||f ||H1/2(Γ) =
||ϕ||H1(Ω) and can be found as the unique weak solution of

−∆ϕ+ ϕ = 0 in Ω, ϕ|Γ = f on Γ. (7)

The ansatz f̂ = ϕ + ϕ0 with ϕ0 ∈ H1
0(Ω) solving ∆ϕ0 = −ϕ yields a harmonic extension

f̂ ∈ H1(Ω) of f ∈ H1/2(Γ), i.e.,

∆f̂ = 0 in Ω, f̂ |Γ = f on Γ. (8)

From ||∇f̂ ||2
L2(Ω)

= 〈∇f̂ , ∇ϕ〉L2(Ω), it follows that ||∇f̂ ||L2(Ω) ≤ ||∇ϕ||L2(Ω) ≤ ||f ||H1/2(Γ). �

Finally, we need the dual space H−1/2(Γ) := H1/2(Γ)′ equipped with the natural norm

||f ||H−1/2(Γ) := sup
06=ψ∈H1/2(Γ)

〈ψ , f〉Γ
||ψ||H1/2(Γ)

,

where the H1/2(Γ) × H−1/2(Γ)-duality product 〈· , ·〉Γ extends, as usual, the L2(Γ) scalar
product 〈· , ·〉L2(Γ). We stress that Γ = ∂Ω and hence H1/2(Γ) = H̃1/2(Γ). We recall the
Gelfand triple H1/2(Γ) ⊂ L2(Γ) ⊂ H−1/2(Γ) and refer to [9] for the fact that H−1/2(Γ) can
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also be characterised as the range of normal traces n · (·)|Γ : H(div,Ω) → H−1/2(Γ) of
H(div,Ω)-vector fields, i.e.,

H−1/2(Γ) =
{
n · σ|Γ : σ ∈ H(div,Ω)

}
.

Definition 2 (Boundary layer). A subset S ⊂ Ω is called a boundary layer, if
it is a Lipschitz domain with Γ ⊂ ∂S, which admits a conforming triangulation T Sh into
simplices. We then define Γc := ∂S\Γ. In particular, we define the corresponding induced
triangulation of Γ by

FΓ
h := T Sh |Γ :=

{
F : F ⊂ Γ and F is a face of some simplex T ∈ T Sh

}
. (9)

For q ∈ N0 and Pq being the space of polynomials of degree q, we define

Pq(T Sh ) :=
{
ϕh ∈ L∞(S) : ϕh|T ∈ Pq for all T ∈ T Sh

}
,

Pq(FΓ
h ) :=

{
ψh ∈ L∞(Γ) : ψh|F ∈ Pq for all F ∈ FΓ

h

}
.

Moreover, for p ∈ N, we employ the standard H1-conforming FEM spaces

Sp(T Sh ) :=
{
ϕh ∈ C0(S) : ϕh|T ∈ Pp for all T ∈ T Sh

}
⊂ H1(S),

Sp0 (T Sh ) :=
{
ϕh ∈ Sp(T Sh ) : ϕh|∂S = 0

}
⊂ H1

0(S),

SpΓc(T Sh ) :=
{
ϕh ∈ Sp(T Sh ) : ϕh|Γc = 0

}
.

Let FSh denote the set of all interior faces, i.e., all F ∈ FSh admit unique T+, T− ∈ T Sh
with F = T+ ∩ T−. For q ∈ N0, we define the H(div)-conforming Raviart–Thomas space

RTq(T Sh ) =
{
σh ∈ L∞(S) : ∀T ∈ T Sh ∃ (a, b) ∈ Pq(Rd)d × Pq(Rd) ∀x ∈ T
σh(x) = a(x) + b(x)x and ∀F ∈ FSh nF · [σh]F = 0

}
⊂ H(div, S),

where nF is a normal vector for the face F ∈ FSh and [σh]F := σh|T+ − σh|T− denotes
the jump of σh across F . Based on that, we let

RTqΓc(T Sh ) :=
{
σh ∈ RTq(T Sh ) : n · σh|Γc = 0

}
.

Remark 3. In the proofs of Section 3 below, we exploit that for arbitrary vh ∈ SpΓc(T Sh )
and σh ∈ RTqΓc(T Sh ) the definitions

v̌h :=

{
vh in S
0 in Ω \ S and σ̌h :=

{
σh in S
0 in Ω \ S (10)

provide conforming extensions v̌h ∈ H1(Ω) and σ̌h ∈ H(div,Ω). In particular, we will
implicitly identify vh (resp. σh) with its zero-extension v̌h (resp. σ̌h). �

2.2. General problem setting. From now on, we assume that Ω, Γ, and a boundary
layer S together with Γc and corresponding FEM spaces are given. Let g ∈ H1/2(Γ) and
let u ∈ H1(Ω) be the unique solution of the homogeneous Dirichlet–Laplace problem

∆u = 0 in Ω, (11a)
u = g on Γ. (11b)
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In particular, we have ∇u ∈ H(div,Ω) with div∇u = 0. Note that u = ĝ ∈ H1(Ω) is the
unique harmonic extension of g with ||∇u||L2(Ω) ≤ ||g||H1/2(Γ); see (8).

2.3. Weakly-singular integral equation. The single-layer potential (2) provides a
continuous linear operator Ṽ : H−1/2(Γ) → H1(Ω). Moreover, its concatenation with the
trace defines a continuous linear operator V : H−1/2(Γ) → H1/2(Γ), which is elliptic on
H−1/2(Γ) (under the scaling condition diam(Ω) < 1 for d = 2). Hence, the Lax–Milgram
lemma guarantees existence and uniqueness of φ ∈ H−1/2(Γ) such that

〈V φ , ψ〉Γ = 〈g , ψ〉Γ for all ψ ∈ H−1/2(Γ). (12)

According to the Hahn–Banach theorem, the latter variational formulation is equivalent
to the identity V φ = g in H1/2(Γ) from (3). For details on elliptic boundary integral
equations, we refer, e.g., to the monographs [35, 31].

2.4. Galerkin boundary element method. Given a triangulation FΓ
h of Γ, the

lowest-order Galerkin BEM seeks φh ∈ P0(FΓ
h ), which solves the discretized weak form

〈V φh , ψh〉L2(Γ) = 〈g , ψh〉L2(Γ) for all ψh ∈ P0(FΓ
h ). (13)

The Lax–Milgram lemma also applies to the conforming Galerkin discretization and
proves existence and uniqueness of φh ∈ P0(FΓ

h ). We note that in the discrete ver-
sion (13) of (12) the H1/2(Γ)×H−1/2(Γ) duality product coincides, in fact, with the L2(Γ)
scalar product. For details on the (Galerkin) boundary element method, we refer, e.g.,
to the monographs [48, 46, 28].

3. Functional a posteriori BEM error estimation

In this section, we prove the error identity (6) and provide efficiently computable upper
and lower bounds for the potential error ||∇(u − uh)||L2(Ω), where u ∈ H1(Ω) solves (11)
and uh := Ṽ φh is defined in (2).

3.1. Functional error identity. The fact that the error u−uh satisfies (11a) exactly
is a powerful tool. However, the consideration of the potential uh from a BEM comes
with a drawback: it is not a discrete function and lacks further a priori knowledge like
the Galerkin orthogonality, which is obviously never available for any approximation
uh := Ṽ φh ≈ u ∈ H1(Ω). Functional a posteriori error estimates are eminently suitable
for the BEM, since they do not require any such a priori assumption. On top of that, for
problems with homogeneous (volume) right-hand sides, they provide constant-free error
identities. For the Laplacian, the key argument is the Dirichlet principle:

Harmonic functions are minimisers of the Dirichlet energy ||∇w||2
L2(Ω)

.

Note that the boundary residual g− uh|Γ ∈ H1/2(Γ) is essential for both the majorant M
and the minorant M, see (14) in Theorem 4 for definitions, and comprises all relevant
information about the error.
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Theorem 4 (Functional a posteriori error identities). Let g ∈ H1/2(Γ) and let
u ∈ H1(Ω) be the unique solution of (11). For any approximation v ∈ H1(Ω) with ∆v = 0,
the equalities (6) hold true. More precisely,

max
τ∈L2(Ω)
div τ=0

M(τ ; v|Γ, g) =
∣∣∣∣∇(u− v)

∣∣∣∣2
L2(Ω)

= min
w∈H1(Ω)
w|Γ=g−v|Γ

M(∇w), (14a)

where

M(τ ; v|Γ, g) := 2 〈g − v|Γ , n · τ |Γ〉Γ − ||τ ||2L2(Ω), M(∇w) := ||∇w||2L2(Ω). (14b)

The unique maximiser is τ = ∇(u− v). The unique minimiser is w = u− v.

Proof. The proof is split into two parts.
• Upper bound: Let w̃ ∈ H1(Ω) with w̃|Γ = u|Γ = g. Since we have ∆(u − v) = 0

and u− w̃ ∈ H1
0(Ω), integration by parts shows that∣∣∣∣∇(u− v)
∣∣∣∣2
L2(Ω)

=
〈
∇(u− w̃) , ∇(u− v)

〉
L2(Ω)︸ ︷︷ ︸

=0

+
〈
∇(w̃ − v) , ∇(u− v)

〉
L2(Ω)

.

This yields ||∇(u− v)||L2(Ω) ≤ ||∇(w̃ − v)||L2(Ω). The substitution w := w̃ − v proves that∣∣∣∣∇(u− v)
∣∣∣∣
L2(Ω)

≤ inf
w∈H1(Ω)
w|Γ=g−v|Γ

||∇w||L2(Ω).

The unique infimum is attained at w = u− v.
• Lower bound: In any Hilbert space H with inner product 〈· , ·〉H and induced norm
|| · ||H, it holds that

||a||2H = max
b∈H

(
2 〈a , b〉H − ||b||2H

)
for all a ∈ H,

where the maximum is unique and attained for b = a. Since

∇(u− v) ∈ H :=
{
σ ∈ H(div,Ω) : divσ = 0

}
,

we have∣∣∣∣∇(u− v)
∣∣∣∣2
L2(Ω)

=
∣∣∣∣∇(u− v)

∣∣∣∣2
H = max

τ∈L2(Ω)
div τ=0

(
2
〈
∇(u− v) , τ

〉
L2(Ω)

− ||τ ||2L2(Ω)

)
= max
τ∈L2(Ω)
div τ=0

(
2 〈g − v|Γ , n · τ |Γ〉Γ − ||τ ||2L2(Ω)

)
.

In particular, the maximum is attained for τ = ∇(u− v). This concludes the proof. �

To ease the readability, the remainder of this chapter focusses on our numerical setup.
For the functional analytic framework in a Sobolev space setting, which might be of
independent interest, we refer to to the appendix of the extended preprint [33] of this
work.
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3.2. Computable error bounds. We aim at error bounds obtained by solving FEM
problems on a boundary layer S ⊂ Ω. For the maximization problem in (14), the con-
straint div τ = 0 can be realized by a mixed formulation (see also [33, Lemma 15] of the
extended preprint of this work). However, the boundary condition w|Γ = g−v|Γ cannot be
satisfied exactly by any piecewise polynomial solution wh corresponding to (14). There-
fore, the upper bound involves an additional oscillation term given by a discretisation
operator Jh, which will be the L2(Γ)-orthogonal projection in the numerical experiments
of Sections 5 and 6 below.

Theorem 5 (Computable bounds via boundary layer). Let v ∈ H1(Ω) with
∆v = 0. Let p ∈ N and let Jh : H1/2(Γ) → Sp(FΓ

h ) :=
{
ϕh|Γ : ϕh ∈ Sp(T Sh )

}
be an

arbitrary projection operator. Moreover, let wh ∈ Sp(T Sh ) be the unique solution of

〈∇wh , ∇ϕh〉L2(S) = 0 for all ϕh ∈ Sp0 (T Sh ) with wh|∂S =

{
Jh(g − v|Γ) on Γ,

0 on Γc.
(15)

For q ∈ N0, let the pair (τ h, ωh) ∈ RTqΓc(T Sh )× Pq(T Sh ) be the unique solution of

〈τ h , σh〉L2(S) + 〈divσh , ωh〉L2(S) = 〈g − v|Γ , n · σh|Γ〉L2(Γ), (16a)
〈div τ h , ψh〉L2(S) = 0 (16b)

for all pairs (σh, ψh) ∈ RTqΓc(T Sh )× Pq(T Sh ). Then, it holds that

2 〈g − v|Γ , n · τ h|Γ〉L2(Γ) − ||τ h||2L2(S) ≤ ||∇(u− v)||2L2(Ω) (17a)

≤ ||∇wh||L2(S) +
∣∣∣∣(1− Jh)(g − v|Γ)

∣∣∣∣
H1/2(Γ)

. (17b)

Proof. It is well-known that (15) admits a unique solution wh ∈ Sp(T Sh ), being the natural
FEM discretization of an homogeneous Dirichlet–Laplace problem with inhomogeneous
Dirichlet conditions; see, e.g., [7, 45, 5]. To prove the upper bound (17b), let f̂h ∈ H1(Ω)
be the (unique) harmonic extension of fh := (1 − Jh)(g − v|Γ); see Remark 1. Then,
Theorem 4 and ||∇f̂h||L2(Ω) ≤ ||fh||H1/2(Γ) lead to∣∣∣∣∇(u− v)

∣∣∣∣
L2(Ω)

= min
w∈H1(Ω)
w|Γ=g−v|Γ

||∇w||L2(Ω) ≤ min
w∈H1(Ω)
w|Γ=g−v|Γ

∣∣∣∣∇(w − f̂h)
∣∣∣∣
L2(Ω)

+ ||∇f̂h||L2(Ω)

≤ min
w∈H1(Ω)

w|Γ=Jh(g−v|Γ)

||∇w||L2(Ω) + ||fh||H1/2(Γ),

where we have finally employed the substitution w− f̂h  w. Since the zero-extension of
wh belongs to H1(Ω) according to Remark 3 and satisfies the correct boundary condition,
this proves the computable upper bound (17b).

For existence and uniqueness of (16), we refer, e.g., to [9, 6]. Since div τ h ∈ Pq(T Sh ) ⊂
L2(Ω) by definition of RTq(T Sh ), it follows from (16b) that τ h ∈ RTqΓc(T Sh ) ⊂ H(div, S)
with div τ h = 0 in S. According to Remark 3, the zero-extension of τ h belongs to
H(div,Ω) with div τ h = 0 in Ω. The computable lower bound (17a) thus follows from
Theorem 4. �
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In order to circumvent the implementation of the constraint div τ = 0, it is also an
option to reformulate the maximization problem in (14) by means of potentials. While
the 3D case involves vector potentials, for 2D such an approach is particularly attractive
due to the possible use of scalar potentials. In the following, we thus concentrate on
d = 2 (and refer, for d = 3, to the appendix of the extended preprint [33] of this work).
To this end, we recall the definitions of the 2D curl operators

curlϕ =

[
−∂2ϕ
∂1ϕ

]
for ϕ : Ω→ R resp. curl ϕ = ∂1ϕ2 − ∂2ϕ1 for ϕ : Ω→ R2.

Note that div curlϕ = 0. For ϕ ∈ H1(Ω), we thus have curlϕ ∈ H(div,Ω) so that the
Neumann trace n · curlϕ|Γ ∈ H−1/2(Γ) is well-defined. In particular, we have

〈∇ϕ , ∇ψ〉L2(Ω) = 〈curlϕ , curlψ〉L2(Ω) for all ϕ, ψ ∈ H1(Ω).

Corollary 6 (Computable lower bound via boundary layer — H1-conforming).
Suppose that d = 2. Let v ∈ H1(Ω) with ∆v = 0. For p ∈ N, let w̃h ∈ SpΓc(T Sh ) be the
unique solution of

〈∇w̃h , ∇ϕh〉L2(S) = 〈g − v|Γ , n · curlϕh|Γ〉L2(Γ) for all ϕh ∈ SpΓc(T Sh ). (18)

Then, it holds that

2〈g − v|Γ , n · curl w̃h|Γ〉L2(Γ) − ||∇w̃h||2L2(S) ≤
∣∣∣∣∇(u− v)

∣∣∣∣2
L2(Ω)

. (19)

Proof. It is well-known that (18) admits a unique solution w̃h ∈ SpΓc(T Sh ) being the
natural FEM discretization of a mixed Dirichlet–Neumann–Laplace problem; see, e.g., [7].
According to Remark 3, the zero-extension of w̃h belongs to H1(Ω) and hence τ̃ h :=
curl w̃h ∈ H(div,Ω) satisfies that div τ̃ h = 0 with n ·curl w̃h|Γ = n · τ̃ h|Γ and ||τ̃ h||L2(Ω) =
||curl w̃h||L2(Ω) = ||∇w̃h||L2(Ω). The claim thus follows from Theorem 4. �

4. Adaptive algorithm

4.1. Triangulations and mesh-refinement. In our numerical experiments, we start
from a conforming simplicial triangulation Th such that Γ ⊂ ⋃T∈Th T ⊆ Ω. We obtain
the boundary layer S ⊂ Ω as the second-order patch of Γ with respect to Th, i.e.,
T Sh :=

{
T ∈ Th : ∃T ′ ∈ Th, T ′ ∩ Γ 6= ∅ 6= T ∩ T ′

}
and S := interior

( ⋃
T∈T S

h

T
)
. (20)

Moreover, recall the BEM mesh FΓ
h := T Sh |Γ = Th|Γ from (9). These definitions are

illustrated in Figure 1.
For (local) mesh-refinement, we employ newest 2D vertex bisection [49, 32]; see also [26,

Section 5.2] for a short but precise statement of the algorithm and the MATLAB im-
plementation we build on. The adaptive strategy will only mark elements of T Sh , but
refinement will be done with respect to the full triangulation Th. In particular, we stress
that the second-order patch S will generically change, if the triangulation Th is refined;
see, e.g., Figure 2. In this way, we guarantee that the number of degrees of freedom with
respect to T Sh will increase proportionally to those with respect to FΓ

h ; see also Tables 2–5
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Figure 1. Example geometry Ω = (0, 1/2)2 with FEM triangulation Th (gray, left), in-
duced BEM mesh FΓ

h on Γ = ∂Ω (red), generated boundary layer S with mesh T Sh
(blue), and interior boundary Γc (green), illustrated from left to right.

below, where #FΓ
h denotes the number of BEM elements, while #T Sh denotes the number

of FEM elements in the boundary layer S ⊂ Ω.

4.2. Data oscillations. The upper bound (17b) in Theorem 5 involves the data ap-
proximation term

∣∣∣∣(1− Jh)(g − uh|Γ)
∣∣∣∣
H1/2(Γ)

, where uh := Ṽ φh. Besides the fact that we
still have to specify the operator Jh : H1/2(Γ) → Sp(FΓ

h ) from Theorem 5, we note that
the nonlocal nature of the H1/2(Γ)-norm makes this term hardly computable.

In the following, we choose

Jh : L2(Γ)→ Sp(FΓ
h ) =

{
ϕh|Γ : ϕh ∈ Sp(Th)

}
, (21a)

as the L2(Γ)-orthogonal projection onto Sp(FΓ
h ), which is uniquely determined by

〈Jhϕ , ψh〉L2(Γ) = 〈ϕ , ψh〉L2(Γ) for all ϕ ∈ L2(Γ) and all ψh ∈ Sp(FΓ
h ). (21b)

For d = 2, it follows under mild conditions on FΓ
h that Jh is H1(Γ)-stable, i.e.,

||∇Jhf ||L2(Γ) ≤ Cstab||∇f ||L2(Γ) for all f ∈ H1(Γ); (22)

see [16]. We note that these conditions are automatically satisfied for FΓ
h = Th|Γ, since

Th is only refined by newest vertex bisection. For d = 3, the H1(Γ)-stability (22) is known
for low-order FEM (on the 2D manifold Γ); see [32] for p = 1 and [27] for p ∈ {1, . . . , 12}.
We recall the following result from [4]:

Lemma 7. If the L2(Γ)-orthogonal projection Jh : L2(Γ) → Sp(FΓ
h ) from (21) is H1(Γ)-

stable (22), then it holds for all f ∈ H1(Γ) that

C−1
osc

∣∣∣∣(1− Jh)f ∣∣∣∣H1/2(Γ)
≤ min

fh∈Sp(FΓ
h )

∣∣∣∣f − fh∣∣∣∣H1/2(Γ)
≤ Cosc min

fh∈Sp(FΓ
h )

∣∣∣∣h1/2∇Γ(f − fh)
∣∣∣∣
L2(Γ)

,

where h ∈ L∞(Ω) is the local mesh-width function defined by h|F := diam(F ) for all
F ∈ FΓ

h . The constant Cosc > 0 depends only on Cstab and the shape regularity of Th.
Provided that the given Dirichlet boundary data satisfy g ∈ H1(Γ), the foregoing lemma

allows to dominate the data approximation term by

C−2
osc

∣∣∣∣(1− Jh)(g − uh|Γ)
∣∣∣∣
H1/2(Γ)

≤
∣∣∣∣h1/2∇Γ((1− Jh)(g − uh|Γ))

∣∣∣∣
L2(Γ)

=: osch, (23)
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where osch is, in fact, computable, while the constant Cosc is generic and hardly accessible.
With v = uh, the upper bound (17b) becomes∣∣∣∣∇(u− uh)

∣∣∣∣
L2(Ω)

≤ ||∇wh||L2(S) +
∣∣∣∣(1− Jh)(g − uh|Γ)

∣∣∣∣
H1/2(Γ)

≤ ||∇wh||L2(S) + C2
osc osch,

(24)

where wh ∈ Sp(T Sh ) solves (15). For the use in the adaptive algorithm, we note that

osc2
h =

∑
T∈T S

h

osch(T )2, where osch(T )2 :=
∑
F∈FΓ

h
F⊂T

diam(F ) ||∇Γ((1−Jh)(g−uh|Γ))||2L2(F ). (25)

Remark 8. In our numerical experiments, we will consider p = 1 as well as p = 2 to
compute the uppermost bound in (24). Since the lower bound (17a) is independent of the
data approximation, we did only implement the lowest-order case q = 0. �

Remark 9. Instead of the L2(Γ)-orthogonal projection, one can also employ the Scott–
Zhang projector; see [5, 22]. Then, Lemma 7 as well as (23) hold accordingly. For d = 2,
one can also employ nodal projection. While generic H1/2(Γ) functions do not have to be
continuous and Lemma 7 fails, one can still prove (23); see [23, 22]. �

4.3. Adaptive algorithm. The above discussed estimates and relations yield the
following adaptive algorithm, whose performance is verified in a series of numerical tests
presented in the next section.

Algorithm 10. Let p ∈ N and let 0 < θ ≤ 1 be a fixed marking parameter. Let Th be
a conforming initial triangulation of Ω. Let ε > 0 be the tolerance for the energy error∣∣∣∣∇(u− uh)

∣∣∣∣
L2(Ω)

with uh = Ṽ φh. Then, perform the following steps (i) – (ix):

(i) Extract the BEM triangulation FΓ
h = Th|Γ from (9).

(ii) Extract the patch S ⊂ Ω of Γ and the corresponding triangulation T Sh from (20).
(iii) Compute the BEM solution φh ∈ P0(FΓ

h ) of (13).
(iv) Compute Jh(g−uh|Γ) together with its oscillations osch(T ) of (25) for all T ∈ Th.
(v) Compute the FEM solution wh ∈ Sp(T Sh ) of (15) for the majorant (17b).
(vi) Compute the error indicators

ηh(T ) =

{
||∇wh||L2(T ) for T ∈ T Sh ,
0 for T ∈ Th \ T Sh .

(26)

(vii) If M(∇wh) =
∑

T∈T S
h
ηh(T )2 ≤ ε2, then break.

(viii) Otherwise, determine a setMh ⊆ T Sh of minimal cardinality such that

θ
∑
T∈T S

h

[
ηh(T )2 + osch(T )2

]
≤
∑
T∈Mh

[
ηh(T )2 + osch(T )2

]
. (27)

(ix) Refine (at least) all T ∈ Mh ⊆ Th by newest vertex bisection to obtain a new
triangulation Th.

Remark 11 (evaluation of uh = Ṽ φh). A subtle point in our approach is the com-
putation of Jh(g − uh|Γ) to solve the auxiliary FEM problem (15) and the computation
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of osch from (23) to compute the upper bound (24) in Theorem 5. Similarly, the solu-
tion of the auxiliary FEM problem (16) and the computation of the lower bound (17a)
require to compute 〈g − uh|Γ , n · σh|Γ〉L2(Γ) for the basis functions σh ∈ RTqΓc(T Sh ) (and
analogous comments apply for the alternative lower bound (18)–(19) from Corollary 6).
All of this is subtle, since uh = Ṽ φh is not a discrete function (but data sparse, since φh
is discrete). At these points, our implementation follows the approach of [3], which can
briefly be sketched as follows:

(i) Note that, due to the mapping properties of the single-layer potential, uh = Ṽ φh is
continuous (since φh ∈ L∞(Γ)), and that, at least for affine boundaries in 2D and piece-
wise polynomial φh, closed formulae for point evaluations uh(x) = Ṽ φh(x) at arbitrary
x ∈ R2 are known.

(ii) To compute Jh(g − uh|Γ) ∈ Sp(FΓ
h ), we approximate g − uh|Γ ≈ q ∈ Pp′(FΓ

h ) by a
FΓ
h -piecewise interpolation polynomial q of degree p′ > p. Replacing g − uh|Γ ≈ q in (21)

so that all arising integrals can be computed exactly (by quadrature), we approximate
Jh(g − uh|Γ) ≈ Jhq. Moreover, we approximate the local contributions of osch from (25)
via ||∇Γ((1 − Jh)(g−uh|Γ))||2

L2(F )
≈ ||∇Γ(q − Jhq)||2L2(F )

, where again the right-hand side
can be computed exactly by means of quadrature which only relies on point evaluations of
q(x) (and hence g − uh|Γ).

(iii) It is an empirical observation in [3] that p′ := p + 1 is sufficiently accurate. If
g − uh|Γ is smooth, one can even show that the quadrature error is of higher order.
Moreover, one can optimize the interpolation nodes (per element) and the quadrature
nodes (to compute the approximate integrals in (21) and (23)) to minimize the number
of (expensive) point evaluations of uh = Ṽ φh.

(iv) Similar ideas must also be used for any BEM error estimator which involves the
residual (see, e.g., [3]). By means of matrix compression techniques like planel clustering
or H-matrices (see, e.g., [29] and the references therein), one can even lower the cost
of the point evaluations of uh = Ṽ φh. However, this is not exploited by our current
implementation.

(v) Analogous ideas are used to compute the lower error bounds of Theorem 5 resp.
Corollary 6. �

Remark 12 (comments on the minorant). (i) We stress that a reliable adaptive
algorithm requires only a computable upper error bound. From that perspective, the mi-
norant should be viewed as an option for eventual practical applications, which might be
computed in one final step, i.e., after having achieved the error tolerance by the stopping
criterion of Algorithm 10(vii). If desired, as in [47], the minorant can then be improved
by solving (16) or (18) adaptively (by only a few post-processing steps), while uh is fixed
and the additional mesh refinement of T Sh (resp. Th) is only steered by the minorant.

(ii) Another option is to include the computation of the lower bound into each step of
the algorithm to provide guaranteed intervals for the error: For instance, computing the
FEM solution (τ h, φh) ∈ RT0

Γc(T Sh )× P0(T Sh ) of (16), we can also assemble the discrete
minorant

Mh(τ h;uh|Γ, g) = 2 〈g − uh|Γ , n · τ h|Γ〉L2(Γ) − ||τ h||2L2(S) (28)
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from Theorem 5. Then again, at least in terms of Algorithm 10, the minorant is computed
on a mesh (and in particular on the boundary layer S) steered by the majorant alone; see
Figure 2. This procedure already leads to a satisfying minorant (see all experiments in
Section 5), but obviously not to the most accurate minorant possible.

(iii) The latter approach can be improved in several ways: First, one can solve (15)
and (16) (resp. (18)) by adaptive FEM on separate (generically) different boundary layers.
Second, one can consider higher-order elements for the auxiliary FEM problems. Finally,
another option is to include the local contributions of (28),

νh(T ) := 2 〈g − uh|Γ , n · τ h|Γ〉L2(Γ∩T ) − ||τ h||2L2(T ) (29)

for all T ∈ T Sh , into the marking procedure. Figure 5 visualizes some results, where
(instead of the marking strategy in Algorithm 10(viii)) the mesh is now steered by the size
of the confidence interval of the error, i.e., ηh(T ) + osch(T ) − νh(T ), and the minorant
improves. Overall, all these approaches are computationally more costly and only make
sense, if sharp confidence intervals of the error are needed during the full runtime of
the adaptive algorithm. In our understanding of reliable algorithms, there are not many
practical situations in which the minorant becomes relevant before the final solution uh
has been computed and fixed. �

5. Numerical experiments

This section reports on some 2D numerical experiments to underline the accuracy of the
introduced error estimates and the performance of the proposed adaptive strategy from
Algorithm 10. All computations are done in Matlab, where we build on the toolbox
Hilbert from [3] for the lowest-order BEM, on [26] for P1-FEM (p = 1 in (21)) resp. [25]
for P2-FEM (p = 2 in (21)), and on [6] for the lowest-order RT-FEM. Throughout, we
consider Algorithm 10 for uniform mesh-refinement (i.e., θ = 1) as well as for adaptive
mesh-refinement (i.e., 0 < θ < 1).

` #FΓ
h

#T S
h

#FΓ
h
||∇(u− uh)||L2(Ω) ||∇wh||L2(S)

||∇wh||L2(S)

||∇(u−uh)||L2(Ω)

||∇wh||L2(S)

M(τh)1/2

0 32 2.25 8.01e− 2 5.75e− 2 0.71 19.16
1 64 2.63 5.12e− 2 3.63e− 2 0.71 28.67
2 128 2.81 3.23e− 2 2.30e− 2 0.71 31.96
3 256 2.91 2.03e− 2 1.45e− 2 0.71 32.56
4 512 2.95 1.28e− 2 9.11e− 3 0.71 32.66
5 1024 2.98 8.08e− 3 5.74e− 3 0.71 32.67
6 2048 2.99 5.09e− 3 3.62e− 3 0.71 32.67
7 4096 3.00 3.21e− 3 2.28e− 3 0.71 32.67

Table 1. Uniform mesh-refinement in Example 5.1. We focus on the
degrees of freedom, the potential error ||∇(u−uh)||L2(Ω), the accuracy of the
P1-FEM majorant ||∇wh||L2(S) from (17b), and the quotient of the majorant
and minorant.
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a) #T Sh = 72, #FΓ
h = 32, ` = 0 b) #T Sh = 314, #FΓ

h = 119, ` = 17

c) #T Sh = 923, #FΓ
h = 352, ` = 27 d) #T Sh = 3176, #FΓ

h = 1148, ` = 38

Figure 2. Adaptively generated meshes in Example 5.1 for p = 1 and θ =
0.6. We indicate the boundary layer S (blue), the boundary Γ (red), and
the interior boundary Γc = ∂S \ Γ (green). The triangles T ∈ T Sh ⊂ Th
are indicated in blue. The triangles T ∈ Th\T Sh are indicated in gray.

Example 5.1 (Smooth potential in square domain). We consider problem (1)
with prescribed exact solution

u(x) = cosh(x1) cos(x2) for all x ∈ Ω := (0, 1/2)2 (30)
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Figure 3. Comparison of adaptive mesh-refinement with θ = 0.4 (solid)
vs. uniform mesh-refinement (dashed) in Example 5.1. The majorant is
computed by P1-FEM (left) and P2-FEM (right). We compare the poten-
tial error ||∇(u − uh)||L2(Ω), the majorant ||∇wh||L2(Ω) from (17b), the data
oscillations osch from (23), and the minorant M(τ h)

1/2 from (28).

102 103
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10−3

10−2

10−1

O(N−3/2)
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θ = 0.2
θ = 0.4
θ = 0.6
θ = 0.8

102 103 104

10−6

10−5

10−4

10−3

10−2

10−1

O(N−3/2)

# BEM-elements N

θ = 0.2
θ = 0.4
θ = 0.6
θ = 0.8

Figure 4. Influence of the marking parameter θ ∈ {0.2, 0.4, 0.6, 0.8} on
adaptive mesh-refinement in Example 5.1. The majorant is computed by
P1-FEM (left) and P2-FEM (right). We compare the potential error (solid)
||∇(u− uh)||L2(Ω) as well as the majorant (dashed) ||∇wh||L2(Ω) from (17b).

on the square domain Ω with diameter diam(Ω) =
√

1/2. We start Algorithm 10 with
an initial triangulation Th of Ω into #Th = 128 right triangles.

Even though u as well as its Dirichlet data g = u|Γ are smooth, we note that the sought
integral density φ ∈ H−1/2(Γ) of the indirect formulation (3) has no physical meaning
and usually lacks smoothness (by inheriting the generic singularities from the interior
as well as the exterior domain problem). Consequently, one may expect that uniform
mesh-refinement (on the boundary) will not reveal the optimal convergence behavior
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` #FΓ
h

#T S
h

#FΓ
h

dof(T S
h ) ||∇(u− uh)||L2(Ω) ||∇wh||L2(S)

||∇wh||L2(S)

||∇(u−uh)||L2(Ω)

||∇wh||L2(S)

M(τh)1/2

0 32 2.25 15 8.01e− 2 5.75e− 2 0.71 19.16
4 40 2.33 28 4.97e− 2 3.58e− 2 0.72 16.17
10 59 2.44 60 2.33e− 2 1.65e− 2 0.71 9.78
16 77 2.66 103 9.95e− 3 7.29e− 3 0.73 4.50
22 112 2.60 148 3.81e− 3 3.48e− 3 0.91 2.51
28 165 2.82 234 1.88e− 3 2.03e− 3 1.08 2.11
34 253 2.83 343 8.27e− 4 8.92e− 4 1.08 2.80
40 383 2.81 512 4.18e− 4 4.91e− 4 1.18 1.89
46 575 2.70 707 1.66e− 4 1.89e− 4 1.14 2.20
52 860 2.63 978 6.96e− 5 7.94e− 5 1.14 2.78
58 1072 2.61 1389 3.92e− 5 4.92e− 5 1.25 2.15
64 1869 2.61 2008 2.04e− 5 2.55e− 5 1.25 1.82
70 2748 2.58 2803 1.06e− 5 1.34e− 5 1.27 1.73
76 4007 2.55 3976 5.00e− 6 6.12e− 6 1.22 2.16
80 5259 2.53 5077 3.50e− 6 4.58e− 6 1.31 1.90

Table 2. Adaptive mesh-refinement with θ = 0.4 in Example 5.1. We
focus on the degrees of freedom, the potential error ||∇(u − uh)||L2(Ω), the
accuracy of the P1-FEM majorant ||∇wh||L2(Ω) from (17b), and the quotient
of the majorant and minorant.

||φ − φh||H−1/2(Γ) = O(h3/2) = O(N−3/2), where N = #FΓ
h is the number of elements of

a uniform mesh FΓ
h of Γ and 3/2 is the best possible convergence rate for a piecewise

constant approximation φ ≈ φh ∈ P0(FΓ
h ).

The initial meshes and some adaptively generated meshes are visualized in Figure 2.
Figure 3 shows the resulting potential error and the computed minorant (17a) and ma-
jorant (17b), as well as the corresponding data oscillations (23) for p = 1 resp. p = 2.
Here, the potential error ||∇(u−uh)||L2(Ω) ≈ ||∇Ih(u−uh)||L2(Ω) is computed by numerical
quadrature. More precisely, we employ the P2-nodal interpolant Ih : C(Ω) → S2(T unif

h )
on a (three times) uniform refinement T unif

h of the finest adaptive mesh Th. We stress that
the plot neglects the non-accessible constant Cosc from (23). The results for p = 1 and
p = 2 are similar. For uniform mesh-refinement, we obtain the expected reduced order of
convergence. For adaptive mesh-refinement, we regain the optimal order of convergence.
Moreover, for adaptive mesh-refinement, we see that the majorant is, in fact, a sharp
estimate for the (in general unknown) potential error.

The computed minorant is less accurate. With reference to Remark 12, we stress that
the minorant is always computed with lowest-order Raviart-Thomas elements on the same
boundary layer as the majorant (which is obtained by adaptivity driven by the majorant).
In Figure 5, we even see that the minorant hardly enhances when the mixed problem (16)
is solved on the full domain Th. In our view, this indicates that the numerical treatment
of the boundary residual g− uh|Γ and its oscillations is a key-point for accuracy, i.e., one
should consider higher-order elements for the minorant.
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minorantηh+osch

majorantηh+osch−νh
errorηh+osch−νh
minorantηh+osch−νh

Figure 5. Left: Comparison of two versions of the minorant by either
solving (16) with RT0-elements or (18) with P1-elements on both T Sh and Th
with respect to the adaptive mesh-refinement with θ = 0.4 in Example 5.1.
We observe that solving on full Th instead of the boundary layer T Sh leads
only to a marginal improvement of the minorant. Right: We compute
two versions of the triple (majorant, error, minorant) in Example 5.1 with
θ = 0.4. First, we repeat the computations obtained by Algorithm 10
(solid lines). In the second case, we add the local contributions −νh of the
minorant from (29) to the error indicator in (27), i.e., the minorant is now
part of the adaptive mesh-refinement strategy (dashed).

` = 0

#T S
h = 168, #FΓ

h = 64

` = 17

#T S
h = 532, #FΓ

h = 193

` = 27

#T S
h = 1505, #FΓ

h = 562

` = 38

#T S
h = 4943, #FΓ

h = 1835

Figure 6. Adaptively generated meshes in Example 5.2 for p = 1 and
θ = 0.6; see Figure 2 for the color code.

The empirical values for uniform (resp. adaptive) mesh-refinement are also provided
in Table 1 (resp. Table 2). In particular, we note that the ratio between the FEM DoF
for obtaining the error estimates and the BEM DoF remains bounded, so that additional
computational expenditures remain limited. The same observation is made if we compare
the corresponding expenditures in terms of CPU time. Figure 4 compares the numerical
results for different choices of the adaptivity parameter θ ∈ {0.2, 0.4, 0.6, 0.8}. We observe
that any choice of θ regains, in fact, the optimal convergence rate.
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Figure 7. Comparison of adaptive vs. uniform mesh-refinement in Ex-
ample 5.2. The majorant is computed by P1-FEM. Left: We compare
the potential error ||∇(u− uh)||L2(Ω), the majorant ||∇wh||L2(Ω) from (17b),
the data oscillations osch from (23), and the minorant M(τ h)

1/2 from (28)
for uniform (dashed) and adaptive mesh-refinement (solid) with θ = 0.4.
Right: We compare the potential error (solid) and the majorant (dashed)
for adaptive mesh-refinement for various choices of θ.

Example 5.2 (Smooth potential in L-shaped domain). We consider problem (1)
with prescribed exact solution

u(x) = cosh(x1) cos(x2) for all x ∈ Ω := (0, 1/2)2\
(
[(1/4, 1/2]× [0, 1/4]

)
(31)

on the L-shaped domain Ω with diameter diam(Ω) =
√

1/2. We start Algorithm 10 with
an initial triangulation Th of Ω into #T0 = 384 right triangles.

As in Section 5.1, the potential u is smooth, but the sought density φ of the indirect
BEM formulation lacks regularity. The initial meshes as well as some adaptively generated
meshes are visualized in Figure 6. Figure 7 visualizes some numerical results for uniform
and adaptive mesh-refinement, where we proceed as in Section 5.1. Since p = 1 and p = 2
lead to similar results (not displayed), we only report the results for p = 1.

As expected from theory, the shape of Ω does not impact the functional error estimates:
Overall, the results obtained correspond to those from Section 5.1, where uniform mesh-
refinement leads to a suboptimal convergence behavior, which is cured by means of the
proposed adaptive strategy.

Example 5.3 (Non-smooth potential in L-shaped domain). We consider prob-
lem (1) with prescribed exact solution

u(x) = r2/3 cos(2ϕ/3) for all x ∈ Ω := (0, 1/2)2\
(
[(1/4, 1/2]× [0, 1/4]

)
(32)

given in standard polar coordinates x = x(r, ϕ) on the L-shaped domain Ω with diameter
diam(Ω) =

√
1/2. We start Algorithm 10 with an initial triangulation T0 of Ω into

#T0 = 384 right triangles.
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Figure 8. Adaptively generated meshes in Example 5.3 for p = 1 and
θ = 0.6; see Figure 2 for the color code.
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Figure 9. Comparison of adaptive vs. uniform mesh-refinement in Ex-
ample 5.3. The majorant is computed by P1-FEM. Left: We compare
the potential error ||∇(u− uh)||L2(Ω), the majorant ||∇wh||L2(Ω) from (17b),
the data oscillations osch from (23), and the minorant M(τ h)

1/2 from (28)
for uniform (dashed) and adaptive mesh-refinement (solid) with θ = 0.4.
Right: We compare the potential error (solid) and the majorant (dashed)
for adaptive mesh-refinement for various choices of θ.

Unlike Section 5.1 and Section 5.2, the potential u is non-smooth at (0, 0). The initial
meshes as well as some adaptively generated meshes are visualized in Figure 8. Numerical
convergence results are visualized in Figure 9. Moreover, Table 3 provides some empiri-
cal values for adaptive mesh-refinement. Our observations are the same as in Section 5.1
and Section 5.2 and underline that the functional error bounds do not rely on any a pri-
ori smoothness of the unknown potential u: While uniform mesh-refinement leads to a
suboptimal convergence behavior, the proposed adaptive strategy regains the optimal
convergence rate.

Figure 10 provides some estimator competition. We consider the functional error es-
timator proposed in the present work, the residual estimator µR from [13, 10, 12], the
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Figure 10. Numerical results for adaptive mesh-refinement (θ = 0.4) in
Example 5.3 for different a posteriori BEM error estimators. Left: We plot
both the potential error ||∇(u− uh)||L2(Ω) (solid) as well as the correspond-
ing error estimator (dashed), which drives the adaptive strategy. Our func-
tional estimator is the majorant ||∇wh||L2(Ω) from (17b) based on P1-FEM.
Right: For either estimator µh, we plot the quotient µh/||∇(u−uh)||L2(Ω) to
visualize the accuracy of the estimator with respect to the potential error.

h− h/2 error estimator µH from [24], the two-level error estimator µT from [37, 30, 18],
and Faermann’s residual estimator µF from [19, 20]. For lowest-order BEM, all these
estimators are provided by the Matlab toolbox Hilbert [3]. We recall that

µT ' µH . ||φ− φh||H−1/2(Γ) ' µF . µR,

where the constants hidden in ' and . depend only on Γ; see, e.g., [11, 17]. In addition,
we stress that the converse estimate ||φ − φh||H−1/2(Γ) . µT ' µH is equivalent to a
saturation assumption [17]. Moreover, as mentioned earlier, there always holds the bound
||∇(u − uh)||L2(Ω) . ||φ − φh||H−1/2(Γ), where the hidden constant depends on Γ. We
consider Algorithm 10 (with θ = 0.4), where instead of ηh(T ) from (26), we use ηh(T )2 :=∑

F∈FΓ
h ,F⊂T

µh(F )2, where µh(F ) denote the local contributions of µh ∈ {µR, µH , µT , µF}.
Figure 10 provides the numerical results. All adaptive strategies yield optimal decay
||∇(u − uh)||L2(Ω) = O(N−3/2) with N = #FΓ

h . At the same time, we also see that the
proposed functional estimator provides the most accurate bound on the potential error
||∇(u− uh)||L2(Ω).

6. Extension of the analysis

So far, we have considered functional a posteriori error estimation for an indirect BEM
formulation (12) discretized by Galerkin BEM (13). The following sections address some
obvious extensions of our analysis. While the subsequent numerical experiments (as well
as those from Section 5) focus on d = 2, we again stress that the theoretical results also
apply to arbitrary dimensions, in particular to d = 3. However, 3D experiments are
beyond the scope of this work and left to future research.
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` #FΓ
h

#T S
h

#FΓ
h

dof(T S
h ) ||∇(u− uh)||L2(Ω) ||∇wh||L2(S)

||∇wh||L2(S)

||∇(u−uh)||L2(Ω)

||∇wh||L2(S)

M(τh)1/2

0 64 2.63 33 5.87e− 2 3.72e− 2 0.64 2.79
6 76 2.57 39 3.32e− 2 2.30e− 2 0.69 6.41
12 93 2.62 46 1.75e− 2 1.21e− 2 0.69 7.60
18 116 2.60 81 8.65e− 3 6.16e− 3 0.71 5.40
24 141 2.68 132 3.80e− 3 2.95e− 3 0.78 4.04
30 201 2.68 215 1.65e− 3 1.49e− 3 0.90 3.28
36 300 2.65 336 7.26e− 4 7.74e− 4 1.07 3.02
42 454 2.59 491 3.34e− 4 3.82e− 4 1.14 3.31
48 667 2.62 715 1.51e− 4 1.69e− 4 1.12 3.21
54 961 2.60 1023 7.66e− 5 8.95e− 5 1.17 2.85
60 1412 2.56 1447 3.76e− 5 4.55e− 5 1.21 3.06
66 2042 2.57 2048 1.88e− 5 2.30e− 5 1.22 2.73
72 3031 2.53 2927 9.28e− 6 1.18e− 5 1.27 3.00
78 4548 2.51 4283 4.40e− 6 4.80e− 6 1.23 3.38
80 5232 2.49 4835 3.61e− 6 4.54e− 6 1.26 3.39

Table 3. Adaptive mesh-refinement with θ = 0.4 in Example 5.3. We
focus on the degrees of freedom, the potential error ||∇(u − uh)||L2(Ω), the
accuracy of the P1-FEM majorant ||∇wh||L2(Ω) from (17b), and the quotient
of the majorant and minorant.

6.1. Collocation BEM. It is worth noting that all results of Section 3 hold, in par-
ticular, for any v = Ṽ φh with arbitrary φh ∈ H−1/2(Γ). Consequently, the computable
bounds of Theorem 5 (resp. Corollary 6) hold for any approximation φh ≈ φ. In par-
ticular, Algorithm 10 can also be applied to (e.g., lowest-order) collocation BEM, where
φh ∈ P0(FΓ

h ) is determined by collocation conditions

(V φh)(xF ) = g(xF ) for all F ∈ FΓ
h , (33)

where xF ∈ F is an appropriate collocation node (e.g., the center of mass). We stress
that well-posedness of collocation BEM is non-obvious (see, e.g., [14, 15, 36]). However,
this does not affect our developed functional a posteriori error bounds.

6.2. Other BEM ansatz spaces. With the same argument as for collocation BEM,
one can replace the discrete BEM ansatz space P0(FΓ

h ) 3 φh by an arbitrary discrete space
Ph ⊆ H−1/2(Γ) (e.g., higher-order piecewise polynomials, splines, isogeometric NURBS,
etc.). For r ∈ N0 and Ph = Pr(FΓ

h ), we expect that the choices p = r + 1 and q = r
will lead to accurate computable upper and lower bounds in Theorem 5. The numerical
validation of this expectation is, however, beyond the scope of the present work.

6.3. Direct BEM approach. The indirect BEM approach makes ansatz (12) for the
unknown solution of (11). Unlike this, the direct BEM approach is based on the Green’s
third identity: Any solution of (11) can be written as the sum of a single-layer and a
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Figure 11. Numerical results for adaptive mesh-refinement (θ = 0.4) in
Example 6.4 (left) and Example 6.5 (right). We plot the potential error
||∇(u− uh)||L2(Ω), the majorant ||∇wh||L2(Ω) from (17b) based on P1-FEM,
the data oscillations osch from (38), and the minorant M(τ h)

1/2 from (28).

` #FΓ
h

#T S
h

#FΓ
h

dof(T S
h ) ||∇(u− uh)||L2(Ω) ||∇wh||L2(S)

||∇wh||L2(S)

||∇(u−uh)||L2(Ω)

||∇wh||L2(S)

M(τh)1/2

0 32 2.25 15 2.30e− 3 1.92e− 3 0.83 0.78
5 49 2.61 54 1.61e− 3 1.43e− 3 0.89 0.88
11 88 2.76 110 8.68e− 4 9.12e− 4 1.05 1.09
17 147 2.79 161 3.61e− 4 3.53e− 4 0.98 1.15
23 172 2.76 203 1.98e− 4 1.90e− 4 0.96 1.00
29 295 2.93 387 1.23e− 4 1.25e− 4 1.02 1.15
35 377 2.85 442 6.23e− 5 6.68e− 5 1.07 1.24
41 599 2.89 743 4.25e− 5 4.50e− 5 1.06 1.15
47 770 2.88 901 2.12e− 5 2.26e− 5 1.06 1.20
53 1210 2.93 1533 1.33e− 5 1.40e− 5 1.06 1.16
59 1652 2.96 2005 7.09e− 6 7.64e− 6 1.08 1.23
65 2500 2.99 3228 4.36e− 6 4.69e− 6 1.08 1.18
71 3696 2.91 4988 2.38e− 6 2.55e− 6 1.07 1.18
77 5099 2.99 6483 1.50e− 6 1.66e− 6 1.11 1.18

Table 4. Adaptive mesh-refinement with θ = 0.4 in Example 6.4. We
focus on the degrees of freedom, the potential error ||∇(u − uh)||L2(Ω), the
accuracy of the P1-FEM majorant ||∇wh||L2(Ω) from (17b), and the quotient
of the majorant and minorant.

double-layer potential, i.e.,

u(x) = [Ṽ φ](x)− [K̃g](x) := [Ṽ φ](x)−
∫

Γ

∂n(y)G(x− y) g(y) dy for all x ∈ Ω, (34)
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` #FΓ
h

#T S
h

#FΓ
h

dof(T S
h ) ||∇(u− uh)||L2(Ω) ||∇wh||L2(S)

||∇wh||L2(S)

||∇(u−uh)||L2(Ω)

||∇wh||L2(S)

M(τh)1/2

0 64 2.63 33 1.74e− 2 1.61e− 2 0.93 0.74
6 69 2.62 37 5.30e− 3 4.64e− 3 0.88 0.80
12 77 2.69 42 2.20e− 3 2.22e− 3 1.01 0.95
18 100 2.57 46 9.06e− 4 1.04e− 3 1.15 1.21
24 140 2.50 79 5.07e− 4 5.60e− 4 1.10 1.16
30 208 2.58 159 3.25e− 4 3.76e− 4 1.16 1.16
36 279 2.61 248 1.88e− 4 2.21e− 4 1.18 1.20
42 404 2.59 381 1.10e− 4 1.20e− 4 1.09 1.19
48 549 2.62 531 6.35e− 5 7.14e− 5 1.12 1.30
54 780 2.67 790 3.93e− 5 4.33e− 5 1.10 1.23
60 1085 2.67 1131 2.28e− 5 2.46e− 5 1.08 1.33
66 1550 2.73 1695 1.35e− 5 1.42e− 5 1.05 1.29
72 2203 2.71 2372 7.78e− 6 7.92e− 6 1.02 1.32
78 3166 2.74 3442 4.80e− 6 5.20e− 6 1.08 1.29

Table 5. Adaptive mesh-refinement with θ = 0.4 in Example 6.5. We
focus on the degrees of freedom, the potential error ||∇(u − uh)||L2(Ω), the
accuracy of the P1-FEM majorant ||∇wh||L2(Ω) from (17b), and the quotient
of the majorant and minorant.

where g = u|Γ ∈ H1/2(Γ) is the trace of u (i.e., the Dirichlet data) and φ = n · ∇u|Γ ∈
H−1/2(Γ) is the normal derivative (i.e., the Neumann data). Taking the trace of this
identity and respecting the jump properties of the double-layer potential (see, e.g., [35,
48, 31, 46, 28]), one sees that

g = V φ− (K − 1/2)g in H1/2(Γ),

where K formally coincides with K̃, but is evaluated for x ∈ Γ instead. Elementary
calculations then lead to the variational formulation

〈V φ , ψ〉Γ = 〈(K + 1/2)g , ψ〉Γ for all ψ ∈ H−1/2(Γ). (35)

We stress that the factor 1/2 is only valid almost everywhere on Γ and hence correct for
the variational formulation and Galerkin BEM, while collocation BEM would require a
modification at corners (and additionally along edges in 3D); see [35, 48, 31].

Usual implementations approximate g ≈ gh ∈ Sp(FΓ
h ) so that the integral operators

in (35) are only evaluated for discrete functions. Overall, the lowest-order Galerkin BEM
formulation then reads

〈V φh , ψh〉L2(Γ) = 〈(K + 1/2) gh , ψh〉L2(Γ) for all ψh ∈ P0(FΓ
h ). (36)

As above, the Lax–Milgram lemma proves that (35) (resp. (36)) admit unique solutions
φ ∈ H−1/2(Γ) (resp. φh ∈ P0(FΓ

h )). Moreover, the computed density φh is now indeed an
approximation of the Neumann data n · ∇u|Γ = ∂nu|Γ = φ ≈ φh. Defining

uh(x) = [Ṽ φh](x)− [K̃gh](x) for x ∈ Ω, (37)
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Figure 12. Adaptively generated meshes (θ = 0.6) in Example 6.7. We
indicate the boundary layer S (blue), the boundary Γ (red), and the
interior boundary Γc = ∂S \ Γ (green); see Figure 2 for the color code.

one obtains an approximation uh of the solution u = Ṽ φ − K̃g of (11) (resp. (34)). We
stress that uh|Γ = V φh+(1/2−K)gh so that the data oscillation term in the upper bound
of Theorem 5 reads

||∇(u− uh)||L2(Ω) ≤ min
w∈H1(Ω)

w|Γ=Jh(g−uh|Γ)

||∇w||L2(Ω) + ||(1− Jh)
(
g − V φh − (1/2−K)gh

)
||H1/2(Γ)

≤ min
w∈H1(Ω)

w|Γ=Jh(g−uh|Γ)

||∇w||L2(Ω) + C2
osc osch, (38a)

where Jh : L2(Γ)→ S1(FΓ
h ) is the L2(Γ)-orthogonal projection and

osch := ||h1/2∇Γ

[
(1− Jh)

(
g − V φh − (1/2−K)gh

)]
||L2(Γ); (38b)

see Section 4.2. In our implementation, we also employed gh = Jhg ∈ S1(FΓ
h ).

Example 6.4 (Direct BEM for smooth potential in square domain). We
consider the setting (30) from Section 5.1. Applying the direct BEM approach (35), we
know that φh ≈ φ = n · ∇u|Γ, where φ (as well as the potential u) is smooth. In this
particular situation, we know that uniform mesh-refinement would already lead to the
optimal convergence behavior (not displayed). The same is observed for the proposed
adaptive strategy, where we even observe that the majorant ||∇wh||L2(Ω) from (17b) as
well as the minorant M(τ h)

1/2 from (28) provide sharp error bounds for the potential
error ||∇(u− uh)||L2(Ω); see Figure 11 (left) as well as Table 4.

Example 6.5 (Direct BEM for non-smooth potential in L-shaped domain).
We consider the setting (32) from Section 5.3. Applying the direct BEM approach (35),
we know that φh ≈ φ = n ·∇u|Γ, where φ (as well as the potential u) is only non-smooth
with a singularity at (0, 0). Also for this case, the proposed adaptive strategy regains
the optimal convergence rate; see Figure 11 (right) as well as Table 5. Even though
the quotient ||∇wh||L2(Ω)/M(τ h)

1/2 of the computable upper and lower bound is larger
than for the smooth problem of Section 6.4, we observe that the lower bound is, in fact,
much more accurate for the direct BEM than for the indirect BEM computations from
Section 5.
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Figure 13. Comparison of adaptive vs. uniform mesh-refinement in Ex-
ample 6.7, The majorant is computed by P1-FEM. Left: Since the po-
tential error ||∇(u − uh)||L2(Ω) is unknown and osch = 0, we only compare
the majorant ||∇wh||L2(Ω) from (17b) and the minorant M(τ h)

1/2 from (28)
for uniform (dashed) and adaptive mesh-refinement (solid) with θ = 0.4.
Right: We compare the majorant for adaptive mesh-refinement for various
choices of θ.

6.6. Exterior domains. One particular strength of BEM is that it naturally allows
to consider also exterior domain problems formulated on unbounded Lipschitz domains
Ωc := Rd\Ω. In this case, the homogeneous Dirichlet–Laplace problem subject to given
inhomogeneous boundary data g reads

∆u = 0 in Ωc, u = g on Γ, (39a)

supplemented by the radiation (decay) condition (for |x| → ∞)

u(x) = O(log |x|) for d = 2 resp. u(x) = O(1/|x|) for d = 3. (39b)

We note that the latter radiation condition is naturally incorporated into the potential
operators (due to the choice of the fundamental solution with right decay) arising in
BEM, e.g., any single-layer potential Ṽ φh satisfies (39b).

We note that the functional error identities from Theorem 4 (with Ω being replaced by
the exterior domain Ωc) remain valid (in principal) for any

v ∈ L2
loc(Ω

c) :=
{
ϕ : ϕ|Ξ∩Ωc ∈ L2(Ξ ∩ Ωc) for all compact Ξ ⊂ Rd

}
with ∇v ∈ L2(Ωc) and ∆v = 0. More precisely, a proper solution theory for (39) is
available in the weighted Sobolev space H1

−1(Ωc) defined by, e.g., for d = 3,

H1
−1(Ωc) :=

{
ϕ : ϕ(·)/| · | ∈ L2(Ωc), ∇ϕ ∈ L2(Ωc)

}
;

see, e.g., [40, 34], where also functional a posteriori error estimates for corresponding exte-
rior domain problems for the Poisson equation ∆u = f have been proved. Consequently,
the computable upper and lower bounds of Theorem 5 (resp. Corollary 6) hold (with
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appropriate modifications) for any approximation φh ≈ φ and v := Ṽ φh. In particular,
Algorithm 10 can also be applied to BEM for exterior domain problems.

Example 6.7 (Direct BEM for exterior problem). To illustrate the latter ob-
servation, we consider the exterior domain

Ωc := R2\Ω, Ω = (0, 1/2)2\
(
[(1/4, 1/2]× [0, 1/4]

)
,

where Ω is the L-shaped domain from Section 5.2. We consider (39) with constant
Dirichlet data

g = 1 = (1/2−K)1 on Γ, (40)

where K is the double-layer integral operator. Consequently, the corresponding indirect
BEM formulation (12) turns out to be a direct BEM formulation for the exterior domain
problem [35, 46], where all data oscillation terms vanish. Thus, one can expect that the
sought density φ ∈ H−1/2(Γ) has singularities at the convex corners of Ω (but not at the
reentrant corner).

We employ Algorithm 10 (with Galerkin BEM). The initial mesh Th with #Th =
416 right triangles is a triangulation of (−1/4, 3/4)2\Ω ⊂ Ωc; see Figure 12. Some
numerical results are shown in Figure 13. Since the exact potential u is unknown, we
cannot compute the potential error ||∇(u−uh)||L2(Ω). However, adaptive mesh-refinement
leads to the optimal convergence behavior of majorant and minorant (and hence also of
||∇(u− uh)||L2(Ω)).

7. Conclusion

We have presented, for the first time, functional error estimates for BEM. Not only
that the presented estimates are independent of the specific discretization method (i.e.,
Galerkin or collocation), they also provide guaranteed upper and lower bounds for the
unknown energy error. This is in contrast to existing techniques, which usually contain
generic constants. The error bounds are obtained by solving auxiliary variational prob-
lems by FEM on a boundary layer S ⊂ Ω. One possible disadvantage of our approach is
that it needs a volume mesh for S to solve the auxiliary FEM problems. However, this
appears to be a standard problem for FEM mesh generation.

In the paper, we consider the Dirichlet problem of the Laplace equation, but the
approach is expected to generalize to other boundary value problems. In the considered
case, the upper error bound is based on the Dirichlet principle, while the lower error bound
is based either on a variational problem in terms of a potential (scalar stream function
in 2D and vector potential in 3D) or a mixed problem (in 2D and 3D). The upper bound
is localized and drives an adaptive refinement of the boundary mesh. Since S contains
always two layers of elements, it geometrically shrinks towards the boundary during
refinement. This way, the ratio between the FEM DoF for obtaining the error estimates
and the BEM DoF remains bounded. We have examined various 2D test problems on
square and L-shaped domains, with and without singular potential, including exterior
problems. The proposed adaptive algorithm exhibited excellent performance. In all
cases, the optimal convergence rates could be achieved.

Ongoing work concerns the further analysis of the oscillations of g − uh|Γ and the
implementation of higher-order L2-projections, which may overcome the lack of accuracy
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of the majorant and minorant observed in our numerical experiments for very coarse
BEM meshes. An implementation of the proposed algorithm in 3D and the extension to
electromagnetic problems is also the subject of future research.
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Appendix: Some remarks on the analysis

We recall the notations introduced in Section 2.1, in particular, the harmonic extension
operator (̂·) : H1/2(Γ)→ H1(Ω) from (8). Moreover, we add the definitions of

H1
Γc(S) :=

{
ϕ|S : ϕ ∈ C∞(Rd), suppϕ compact, dist(suppϕ,Γc) > 0

}H1(S)

=
{
ϕ ∈ H1(S) : ϕ|Γc = 0

}
,

see, e.g., [8], for the density result, and

HΓc(div, S) :=
{
σ|S : σ ∈ C∞(Rd), suppσ compact, dist(suppσ,Γc) > 0

}H(div,S)
.

The latter space generalizes the (partial) homogeneous boundary condition n · σ|Γc = 0
to functions σ ∈ H(div, S). Note that the natural trace n · σ|∂S can be ’restricted’ to,
e.g., Γ in the following sense.

Remark 13. Functions in H1
Γc(S) vanish at Γc. In particular, any function ϕ ∈ H1

Γc(S)
can be extended by zero to a function ϕ ∈ H1(Ω). Analogously, vector fields in HΓc(div, S)
have vanishing normal component at Γc in a weak sense. In particular, any vector field
σ ∈ HΓc(div, S) can be extended by zero to a vector field σ ∈ H(div,Ω). Hence, the
normal trace n · σ|∂S ∈ H−1/2(∂S) of σ may be identified with a well defined element
n · σ|Γ ∈ H−1/2(Γ) vanishing on Γc in a weak sense.

Let us discuss the minimiser w = u−v of the upper bound and the maximiser τ = ∇w
of the lower bound from Theorem 4 in more detail. Note that1

w = u− v ∈ H1(Ω), τ = ∇w ∈ H(div,Ω) ∩ H(curl,Ω),

∆w = 0 in Ω, div τ = 0 in Ω, (41)
curl τ = 0 in Ω,

w|Γ = g − v|Γ on Γ, n× τ |Γ = ∇Γ(g − v|Γ) in H−1/2(Γ).

1As the exterior derivative commutes with the trace operator, which is simply the pull-back of the
canonical embedding of the boundary manifold Γ into Ω (i.e., ι∗d = dι∗), we see for the special case of
ϕ ∈ H1(Ω) that n × ∇ϕ|Γ = ∇Γϕ|Γ in H−1/2(Γ), where n × (·)|Γ : H(curl,Ω) → H−1/2(Γ) denotes the
tangential trace and ∇Γ : H1/2(Γ)→ H−1/2(Γ) the surface gradient.
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Moreover, by replacing w with w + εϕ and by replacing τ with τ + εσ in (14), where
ϕ ∈ H1

0(Ω) and σ ∈ H(div,Ω) with divσ = 0 as well as ε ∈ R, we obtain the variational
formulations

∀ϕ ∈ H1
0(Ω) 〈∇w , ∇ϕ〉L2(Ω) = 0, (42a)

∀σ ∈ H(div,Ω) with divσ = 0 〈τ , σ〉L2(Ω) = 〈g − v|Γ , n · σ|Γ〉Γ. (42b)

Let ψ ∈ H1/2(Γ) and let ψ̂ ∈ H1(Ω) be its harmonic extension. Testing the second
variational formulation (42b) with σ = ∇ψ̂ shows

〈ψ , n · τ |Γ〉Γ = 〈g − v|Γ , n · ∇ψ̂|Γ〉Γ.
Thus, additionally to the scalar and tangential boundary conditions for w and τ in (41),
respectively, we have also found a normal boundary condition for τ = ∇w, namely

n · τ |Γ =
〈
g − v|Γ,n · ∇(̂ · )|Γ

〉
Γ

in H−1/2(Γ). (43)

This shows that there are different options for computing w and τ .

Remark 14. Note that

∂n(̂ · )|Γ = n · ∇(̂ · )|Γ : H1/2(Γ)→ H−1/2(Γ)

is the well known Dirichlet-to-Neumann operator for the homogeneous Laplacian. More-
over, the normal trace of τ in (43) does not depend on the harmonic extension as

〈g − v|Γ , n · ∇ψ̂|Γ〉Γ = 〈ψ , n · τ |Γ〉Γ =
〈
ψ,n · ∇(u− v)|Γ

〉
Γ

for all ψ ∈ H1/2(Γ).

Recalling Theorem 4 and Theorem 5, we note the following.

Remark 15 (Minimiser of the upper bound). The unique minimiser w of the upper
bound is the unique harmonic extension of g − v|Γ to Ω, i.e., w ∈ H1(Ω) is the unique
solution of the Dirichlet–Laplace problem

∆w = 0 in Ω, w|Γ = g − v|Γ on Γ.

It holds 〈∇w , ∇ϕ〉L2(Ω) = 0 for all ϕ ∈ H1
0(Ω). Moreover, w ∈ H1(Ω) solves the Neumann

Laplace problem

∆w = 0 in Ω, n · ∇w|Γ =
〈
g − v|Γ,n · ∇(̂ · )|Γ

〉
Γ

in H−1/2(Γ).

It holds 〈∇w , ∇ϕ〉L2(Ω) =
〈
g − v|Γ,n · ∇(̂ϕ|Γ)|Γ

〉
Γ
for all ϕ ∈ H1(Ω). Note that, at least

analytically, both formulations can also be used to find the unique maximiser τ = ∇w of
the upper bound. For numerical purposes the Dirichlet–Laplace problem is the better and
easier choice to compute w.

Next we want to find equations and variational formulations for τ not involving w. For
this, let us introduce Dirichlet and Neumann fields

HD(Ω) :=
{
σ ∈ H0(curl,Ω) ∩ H(div,Ω) : curlσ = 0, divσ = 0

}
,

HN(Ω) :=
{
σ ∈ H(curl,Ω) ∩ H0(div,Ω) : curlσ = 0, divσ = 0

}
,
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where

H0(curl,Ω) :=
{
σ ∈ C∞(Ω) : suppσ compact in Ω

}H(curl,Ω)
,

H0(div,Ω) :=
{
σ ∈ C∞(Ω) : suppσ compact in Ω

}H(div,Ω)
.

We compute

∀σ ∈ HD(Ω) 〈τ , σ〉L2(Ω) = 〈g − v|Γ , n · σ|Γ〉Γ,
∀σ ∈ HN(Ω) 〈τ , σ〉L2(Ω) = 0.

Remark 16 (Maximiser of the lower bound). The unique maximiser τ = ∇w of
the lower bound is the unique solution of the electro-static Maxwell problem

curl τ = 0 in Ω,

div τ = 0 in Ω,

n× τ |Γ = ∇Γ(g − v|Γ) in H−1/2(Γ),

〈τ , σ〉L2(Ω) = 〈g − v|Γ , n · σ|Γ〉Γ for all σ ∈ HD(Ω),

as well as the unique solution of the magneto-static Maxwell problem

curl τ = 0 in Ω,

div τ = 0 in Ω,

n · τ |Γ =
〈
g − v|Γ,n · ∇(̂ · )|Γ

〉
Γ

in H−1/2(Γ),

〈τ , σ〉L2(Ω) = 0 for all σ ∈ HN(Ω).

See [41, 42, 38, 8] for proper solution theories.
As τ ∈ H(div,Ω) with div τ = 0, by (42b) the vector field τ solves for all ω ∈ L2(Ω)

the mixed problem

〈τ , σ〉L2(Ω) + 〈divσ , ω〉L2(Ω) = 〈g − v|Γ , n · σ|Γ〉Γ,
〈div τ , ψ〉L2(Ω) = 0

for all (σ, ψ) ∈ H(div,Ω) × L2(Ω) with divσ = 0. On the other hand, especially for
numerical reasons, we want to skip the solenoidal conditions, which leads to the following
mixed variational saddle point formulation (cf. Theorem 5).

Lemma 17 (Mixed problem for the lower bound). Let v ∈ H1(Ω) with ∆v = 0.
Then the mixed problem

〈τ , σ〉L2(Ω) + 〈divσ , ω〉L2(Ω) = 〈g − v|Γ , n · σ|Γ〉Γ,
〈div τ , ψ〉L2(Ω) = 0

for all (σ, ψ) ∈ H(div,Ω) × L2(Ω), admits a unique solution (τ , ω) ∈ H(div,Ω) × L2(Ω).
Moreover, (τ , ω) = (τ , w), i.e., the latter mixed formulation can be used to compute the
unique maximiser τ = ∇w and the unique minimiser w simultaneously.

Remark 18. The mixed formulation in Lemma 17 is the mixed formulation of the
Dirichlet–Laplace problem from Remark 15. For numerical purposes the latter mixed
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formulation is only a good choice to compute τ , since the numerical approximations will
only satisfy (τ , ω) ∈ H(div,Ω)× L2(Ω) but in general not ω ∈ H1(Ω).

Proof of Lemma 17. The inner product 〈 · , · 〉L2(Ω) is positive on the kernel
{
σ ∈ H(div,Ω) :

divσ = 0
}
and the inf-sup-condition is satisfied as for ψ ∈ L2(Ω)

sup
σ∈H(div,Ω)

〈divσ , ψ〉L2(Ω)

||σ||H(div,Ω)||ψ||L2(Ω)

≥
||ψ||L2(Ω)√

||σψ||2L2(Ω)
+ ||ψ||2

L2(Ω)

≥ 1√
c2
F + 1

.

This follows by solving a Dirichlet–Laplace problem, i.e., by finding the unique solution
ωψ ∈ H1

0(Ω) of

∆ωψ = ψ in Ω, ωψ|Γ = 0 on Γ,

and setting σψ = ∇ωψ. Note that the estimate ||σψ||L2(Ω) ≤ cF ||ψ||L2(Ω) holds true,
where 0 < cF ≤ diam(Ω)/π is the Friedrichs constant for the gradient operator on
H1

0(Ω). Therefore, the standard saddle point theory for mixed problems shows the unique
solvability, see, e.g., [9]. Moreover, we have div τ = 0 by the second line of the mixed
formulation. Testing the first line with compactly supported test vector fields σ shows
that ω ∈ H1(Ω) with ∇ω = τ . Hence ∆ω = div τ = 0. Furthermore, the first line implies

〈ω|Γ , n · σ|Γ〉Γ = 〈g − v|Γ , n · σ|Γ〉Γ
for all σ ∈ H(div,Ω), yielding ω|Γ = g − v|Γ by the surjectivity of the normal trace
operator n · (·)|Γ. Thus ω = u− v = w and τ = ∇ω = ∇w = τ . �

Remark 19. The continuous version of (18) in Corollary 6 reads: Find w ∈ H1
Γc(S)

such that

〈∇w , ∇ϕ〉L2(S) = 〈g − v|Γ , n · curlϕ|Γ〉Γ for all ϕ ∈ H1
Γc(S). (44)

Then w ∈ H1(S) is the unique solution of the mixed Dirichlet–Neumann–Laplace problem

∆w = 0 in S, w|Γc = 0 on Γc, n · ∇w|Γ =
〈
g − v|Γ,n · curl (̂ · )∂S|Γ

〉
Γ
in H−1/2(Γ).

To see this, we pick different test functions. Testing (44) with compactly supported (in
S) smooth functions shows ∆w = 0 in S, and by definition, i.e., w ∈ H1

Γc(S), it is clear
that w|Γc = 0 on Γc. Let φ ∈ H1/2(Γ), define

φ∂S :=

{
φ on Γ,

0 on Γc,

and let ϕ := φ̂∂S ∈ H1(S) be the unique harmonic extension to S of φ∂S, compare to (8).
Then ϕ ∈ H1

Γc(S) and testing (44) with ϕ yields

〈g − v|Γ , n · curl φ̂∂S|Γ〉Γ = 〈φ , n · ∇w|Γ〉Γ,

i.e., n · ∇w|Γ =
〈
g − v|Γ,n · curl (̂ · )∂S|Γ

〉
Γ
in H−1/2(Γ).

By construction, w̃, the extension by zero to Ω, belongs to H1(Ω) and hence we have
τ := curl w̃ ∈ H(div,Ω) with div τ = 0. Theorem 4 shows

2〈g − v|Γ , n · curl w̃|Γ〉Γ − ||∇w||2L2(S) ≤
∣∣∣∣∇(u− v)

∣∣∣∣2
L2(Ω)

.
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