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On Korn’s First Inequality for Mixed Tangential and Normal Boundary Conditions

on Bounded Lipschitz Domains in R
N

SEBASTIAN BAUER AND DIRK PAULY

Abstract. We prove that for bounded Lipschitz domains in R
N Korn’s first inequality holds for vector

fields satisfying homogeneous mixed tangential and normal boundary conditions.
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1. Introduction

Recently, motivated by [3, 4] and inspired by the ideas and techniques presented in [9, 11, 10] for
estimating the Maxwell constants, we have shown in [2] that Korn’s first inequality, i.e.,

|∇v|
L2(Ω)

≤ ck | sym∇v|L2(Ω)
,(1)

holds with ck =
√
2 for all vector fields v ∈ H1(Ω) satisfying (possibly mixed) homogeneous normal or

homogenous tangential boundary conditions and for all piecewise C1,1-domains Ω ⊂ R
N , N ≥ 2, with

concave boundary parts. In this contribution, we extend (1) to any bounded (strong) Lipschitz domain
Ω ⊂ R

N , N ≥ 2. As pointed out in [4], this Korn inequality has an important application in statistical
physics, more precisely in the study of relaxation to equilibrium of rarefied gases modeled by Boltzmann’s
equation.

2. Preliminaries

We will utilize the notations from [2]. Throughout this paper and unless otherwise explicitly stated,
let Ω ⊂ R

N , N ≥ 2, be a bounded domain with strong Lipschitz boundary Γ := ∂Ω, i.e., locally Γ can
be represented as a graph of a Lipschitz function. As in [2], we introduce the standard scalar valued

Lebesgue and Sobolev spaces by L
2(Ω) and H

1(Ω) as well as

◦

H
1(Ω) :=

◦

C∞(Ω)

H
1(Ω)

,

respectively, where
◦

C∞(Ω) denotes the test functions yielding the usual Sobolev space
◦

H1(Ω) with zero
boundary traces. These definitions extend component-wise to vector or matrix, or more general tensor
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2 SEBASTIAN BAUER AND DIRK PAULY

fields and we will use the same notations for these spaces. Moreover, we will consistently denote functions

by u and vector fields by v. We define the vector valued H1-Sobolev space
◦

H1
t (Ω) resp.

◦

H1
n(Ω) as closure

in H1(Ω) of the set of test vector fields

◦

C
∞
t (Ω) :=

{

v|Ω : v ∈
◦

C
∞(RN ), vt = 0

}

,
◦

C
∞
n (Ω) :=

{

v|Ω : v ∈
◦

C
∞(RN ), vn = 0

}

,(2)

respectively, generalizing homogeneous tangential resp. normal boundary conditions. Here, ν denotes
the a.e. defined outer unit normal at Γ giving a.e. the normal resp. tangential component

vn := ν · v|Γ, vt := v|Γ − vnν
of v on Γ. We assume additionally that Γ is decomposed into two relatively open subsets Γt and Γn := Γ\Γt

and introduce the vector valued H1-Sobolev space of mixed boundary conditions
◦

H1
t,n(Ω) as closure in

H1(Ω) of the set of test vector fields

◦

C
∞
t,n(Ω) :=

{

v|Ω : v ∈
◦

C
∞(RN ), vt|Γt

= 0, vn|Γn
= 0

}

.(3)

2.1. Korn’s Second Inequality. It is well known that Korn’s second inequality can easily be proved

by a simple H−1-argument using Nec̆as inequality. Let us illustrate a simple and short proof: In the sense

of distributions we have e.g. for all vector fields v ∈ L2(Ω) that the components of ∇∇vi consist only of
components of ∇ sym∇v, i.e.,

∀ i, j, k = 1, . . . , N ∂i∂jvk = ∂i symj,k∇v + ∂j symi,k∇v − ∂k symi,j ∇v,(4)

where symj,k T := (symT )j,k. By e.g. [12, 1.1.3 Lemma] we have (for scalar functions) the Nec̆as estimate

∃ c > 0 ∀u ∈ L
2(Ω) c |u|

L2(Ω)
≤ |∇u|

H−1(Ω)
+ |u|

H−1(Ω)
≤ (
√
N + 1)|u|

L2(Ω)
,(5)

where H−1(Ω) :=
(
◦

H1(Ω)
)′

and e.g. by using the full H1(Ω)-norm

|u|
H−1(Ω)

:= sup

06=ϕ∈
◦

H1(Ω)

〈u, ϕ〉
L2(Ω)

|ϕ|
H1(Ω)

, |∇u|
H−1(Ω)

:= sup

06=φ∈
◦

H1(Ω)

〈u, div φ〉
L2(Ω)

|φ|
H1(Ω)

.

For the original results of (5) see the works of Nec̆as, e.g. [7, 8], from the 1960s.

Remark 1. Nec̆as’ estimate (5) can be refined to

∃ c > 0 ∀u ∈ L
2
0(Ω) := {u ∈ L

2(Ω) : 〈u, 1〉
L2(Ω)

= 0} c |u|
L2(Ω)

≤ |∇u|
H−1(Ω)

≤
√
N |u|

L2(Ω)
.(6)

The best constant c > 0 in (6) is also called inf-sup- or LBB-constant as by using the H
1(Ω)-half norm

c = inf
06=u∈L2

0
(Ω)

|∇u|
H−1(Ω)

|u|
L2(Ω)

= inf
06=u∈L2

0
(Ω)

sup

v∈
◦

H1(Ω)

〈u, div v〉
L2(Ω)

|u|
L2(Ω)

|∇v|
L2(Ω)

= cLBB.

We note that the LBB-constant can be bounded from below by the inverse of the continuity constant cA

of the H
1-potential operator (often called Bogovskii operator) A : L20(Ω)→

◦

H
1(Ω) with divAu = u, i.e.,

∀u ∈ L
2
0(Ω) |∇Au|

L2(Ω)
≤ cA|u|L2(Ω)

.

This follows directly by setting v := Au (note that ∇Au 6= 0 for 0 6= u ∈ L20(Ω)) and

cLBB ≥ inf
06=u∈L2

0
(Ω)

|u|2
L2(Ω)

|u|
L2(Ω)

|∇Au|
L2(Ω)

≥ 1

cA
.

We immediately get:

iWe denote by ∇v the transpose of the Jacobian of v and by ∇∇v the tensor of second derivatives of v.



On Korn’s First Inequality 3

Theorem 2 (Korn’s second inequality). There exists c > 0 such that for all v ∈ H1(Ω)

|∇v|
L2(Ω)

≤ c
(

| sym∇v|
L2(Ω)

+ |v|
L2(Ω)

)

.

Proof. Let v ∈ H1(Ω). Combining (4) and (5) we estimate

|∇v|
L2(Ω)

≤ c
(

|∇∇v|
H−1(Ω)

+ |∇v|
H−1(Ω)

)

≤ c
(

|∇ sym∇v|
H−1(Ω)

+ |∇v|
H−1(Ω)

)

≤ c
(

| sym∇v|
L2(Ω)

+ |v|
L2(Ω)

)

,

showing the stated result. �

By standard mollification we see that the restrictions of
◦

C∞(RN )-vector fields to Ω are dense in

S(Ω) := {v ∈ L
2(Ω) : sym∇v ∈ L

2(Ω)},

even if Ω just has the segment property. Especially H
1(Ω) is dense in S(Ω). This shows immediately:

Theorem 3 (H1-regularity). It holds S(Ω) = H1(Ω).

Proof. Let v ∈ S(Ω). By density, there exists a sequence (vn) ⊂ H1(Ω) converging to v in S(Ω). By

Theorem 2 (vn) is a Cauchy sequence in H1(Ω) converging to v, yielding v ∈ H1(Ω). �

Remark 4. The latter arguments show, that for any domain allowing for Nec̆as’ estimate (5) Korn’s

second inequality Theorem 2 holds. In these domains we have also the H1-regularity Theorem 3, provided
that the segment property holds.

Remark 5. (5) is well known to hold also in the Lq/W−1,q-setting for 1 < q < ∞. As (4) and the
mollification techniques are available for general q, it follows that Theorem 2 and Theorem 3 immediately
extend to the Lq/W1,q/ Sq-setting for all 1 < q <∞.

2.2. Poincaré Inequality for Elasticity. To apply standard solution theories for linear elasticity, such
as Fredholm’s alternative for bounded domains or Eidus’ limiting absorption principle [5] for exterior
domains, it is most important to ensure for bounded domains the compact embedding

S(Ω) →֒ L
2(Ω).(7)

As long as Korn’s second inequality, i.e., the continuous embedding S(Ω) →֒ H1(Ω), holds true, the
compact embedding (7) follows immediately by Rellich’s selection theorem, i.e., the compact embedding

H1(Ω) →֒ L2(Ω). As shown in [13], there are bounded irregular domains, more precisely bounded domains
with the p-cusp property (Hölder boundaries), see [14, Definition 3] or [13, Definition 2], with 1 < p < 2,

for which Korn’s second inequality fails and so the embedding S(Ω) ⊂ H1(Ω) by the closed graph theoremii,
but the important compact embedding (7) remains valid. More precisely, by [13, Theorem 2] the compact
embedding (7) holds for bounded domains having the p-cusp property with 1 ≤ p < 2iii, and (7) implies
immediately a Poincaré type inequality for elasticity by a standard indirect argument. For this we define

S0(Ω) := {v ∈ S(Ω) : sym∇v = 0} = {v ∈ L
2(Ω) : sym∇v = 0}.

It is well known that even for any domain Ω

S0(Ω) = R
holds, where R := {Sx + a : S ∈ so ∧ a ∈ R

N} is the space rigid motions and so = so(N) the vector
space of constant skew-symmetric matrices. This follows easily for v ∈ S0(Ω) by approximating Ω by
smooth domains Ωn, in each of which vn := v|Ωn

equals the same rigid motion r ∈ R.

iiThe identity mapping idS : S(Ω) → H1(Ω) is continuous, if and only if idS is closed, if and only if S(Ω) ⊂ H1(Ω).
iiiFor p = 1 the 1-cusp property equals the strict cone property, which itself holds for strong Lipschitz domains.
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Theorem 6 (Poincaré inequality for elasticity). Let Ω be bounded and possess the p-cusp property with
some 1 ≤ p < 2. Then there exists c > 0 such that for all v ∈ S(Ω) ∩R⊥

|v|
L2(Ω)

≤ c | sym∇v|
L2(Ω)

.

Equivalently, for all v ∈ S(Ω)

|v − rv|L2(Ω)
≤ c | sym∇v|

L2(Ω)
, rv := πRv.

Here and throughout the paper, we denote orthogonality in L2(Ω) by ⊥. Moreover, πR denotes the

L2(Ω)-orthogonal projector onto the rigid motions R.
Proof. If the assertion was wrong, there exists a sequence (vn) ⊂ S(Ω) ∩ R⊥ with |vn|L2(Ω)

= 1 and

| sym∇vn|L2(Ω)
→ 0. By (7) we can assume without loss of generality that (vn) converges in L2(Ω) to

some v ∈ L2(Ω). But then v ∈ S0(Ω) ∩R⊥ = {0}, in contradiction to 1 = |vn|L2(Ω)
→ |v|

L2(Ω)
= 0. �

Under the assumptions of Theorem 6, the variational static linear elasticity problem, for f ∈ L
2(Ω)

find v ∈ S(Ω) ∩R⊥ such that

∀φ ∈ S(Ω) ∩R⊥ 〈sym∇v, sym∇φ〉
L2(Ω)

= 〈f, φ〉
L2(Ω)

,

is uniquely solvable with continuous resp. compact inverse L2(Ω) → S(Ω) resp. L2(Ω) → L2(Ω), which
shows that Fredholm’s alternative holds for the corresponding reduced operators.

3. Korn’s First Inequality

By Rellich’s selection theorem, Theorem 2 and an indirect argument we can easily prove:

Theorem 7 (Korn’s first inequality without boundary conditions). There exists c > 0 such that for all

v ∈ H1(Ω) with ∇v⊥ so

|∇v|
L2(Ω)

≤ c | sym∇v|
L2(Ω)

.(8)

Equivalently for all v ∈ H1(Ω)

|∇v − Sv|L2(Ω)
≤ c | sym∇v|

L2(Ω)
, Sv :=

1

|Ω| skw
ˆ

Ω

∇v.

Here, Sv = πso∇v is the L2(Ω)-orthogonal projection of ∇v onto so.

Proof. The equivalence is clear by the orthogonal projection.iv If (8) was wrong, there exists a sequence

(vn) ⊂ H1(Ω) with ∇vn⊥ so and |∇vn|L2(Ω)
= 1 and | sym∇vn|L2(Ω)

→ 0. Without loss of generality we

can assume vn⊥R
N . By Poincare’s inequality (vn) is bounded in H1(Ω). Thus, by Rellich’s selection

theorem we can assume without loss of generality that (vn) converges in L2(Ω) to some v ∈ L2(Ω). By

Theorem 2 (vn) is a Cauchy sequence in H1(Ω). Therefore (vn) converges in H1(Ω) to v ∈ H1(Ω)∩ (RN )⊥

with sym∇v = 0 and ∇v⊥ so. But then ∇v is even constant and belongs to so. Hence ∇v = 0v in
contradiction to 1 = |∇vn|L2(Ω)

→ |∇v|
L2(Ω)

= 0. �

ivWe can also compute it by hand: For v ∈ H1(Ω) with ∇v⊥ so we see

|Sv|
2 =

1

|Ω|
〈skw

ˆ

Ω
∇v, Sv〉 =

1

|Ω|
〈∇v, Sv〉

L2(Ω)
= 0

since Sv ∈ so. For v ∈ H1(Ω) and T ∈ so we have

〈∇v − Sv, T 〉
L2(Ω)

=

ˆ

Ω
〈skw∇v, T 〉 − 〈Sv , T 〉

L2(Ω)
= 〈

ˆ

Ω
skw∇v, T 〉 − |Ω|〈Sv, T 〉 = 0,

implying v+sv ∈ H1(Ω) with ∇(v+sv) = (∇v−Sv)⊥ so and sym∇(v+sv) = sym(∇v−Sv) = sym∇v, where sv(x) := Svx.
vWe note that even v ∈ R

N holds and thus v = 0.
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Using Poincare’s inequality we immediately obtain:

Corollary 8 (Korn’s first inequality without boundary conditions). There exists c > 0 such that for all

v ∈ H1(Ω) ∩ (RN )⊥ with ∇v⊥ so

|v|
H1(Ω)

≤ c | sym∇v|
L2(Ω)

.

In order to prove Korn’s first inequality in
◦

H1
t,n(Ω) we need a Poincaré type estimate on this space. It

should be noted that in general mixed boundary conditions are not sufficient to rule out a kernel of the
gradient operator. For example, consider the cube Ω := (0, 1)3 ⊂ R

3 with Γt being the union of the top

and bottom together with the constant vector field r(x) := (0, 0, 1)t. Then r ∈
◦

H1
t,n(Ω). On this account,

such constant vector fields have to be excluded separately.

Lemma 9 (Poincaré inequality with tangential or normal boundary conditions). There exists c > 0 such

that for all v ∈
◦

H1
t,n(Ω) ∩

(
◦

H1
t,n(Ω) ∩ R

N
)⊥

|v|
L2(Ω)

≤ c |∇v|
L2(Ω)

.

Proof. If the assertion was wrong, there exists some sequence (vn) ⊂
◦

H1
t,n(Ω) ∩

(
◦

H1
t,n(Ω) ∩ R

N
)⊥

with
|vn|L2(Ω)

= 1 and |∇vn|L2(Ω)
→ 0. Thus, by Rellich’s selection theorem we can assume without loss of

generality that (vn) converges in L2(Ω) to some v ∈ L2(Ω). Hence, (vn) is a Cauchy sequence in H1(Ω)

and converges in H1(Ω) to v ∈
◦

H1
t,n(Ω) ∩

(
◦

H1
t,n(Ω) ∩ R

N
)⊥

with ∇v = 0. Therefore, v is a constant in
◦

H1
t,n(Ω) ∩R

N and must vanish in contradiction to 1 = |vn|L2(Ω)
→ |v|

L2(Ω)
= 0. �

As an easy consequence we get

Corollary 10. ∇
◦

H1
t,n(Ω) is a closed subspace of L2(Ω).

Proof. Let (vn) ⊂
◦

H
1
t,n(Ω) such that ∇vn → G ∈ L

2(Ω) in L
2(Ω). Without loss of generality we can

assume (vn) ⊂
◦

H1
t,n(Ω) ∩

(
◦

H1
t,n(Ω) ∩ R

N
)⊥

, otherwise we replace vn by

ṽn := vn − π◦

H1
t,n(Ω)∩RN

vn ∈
◦

H
1
t,n(Ω) ∩

(
◦

H
1
t,n(Ω) ∩ R

N
)⊥
,

where π◦

H1
t,n(Ω)∩RN

is the orthogonal projector onto
◦

H
1
t,n(Ω) ∩ R

N . Because of Lemma 9 (vn) is a Cauchy

sequence in
◦

H1
t,n(Ω), which converges in H1(Ω) to v ∈

◦

H1
t,n(Ω). Hence, G← ∇vn → ∇v ∈ ∇

◦

H1
t,n(Ω). �

To exclude the kernel of the sym∇-operator on
◦

H
1
t,n(Ω), we define

K := {∇v : v ∈
◦

H
1
t,n(Ω), sym∇v = 0} = ∇

(

R∩
◦

H
1
t,n(Ω)

)

= so ∩ ∇
◦

H
1
t,n(Ω).

Theorem 11 (Korn’s first inequality with tangential or normal boundary conditions). There exists c > 0

such that for all v ∈
◦

H1
t,n(Ω) with ∇v⊥K

|∇v|
L2(Ω)

≤ c | sym∇v|
L2(Ω)

.(9)

Equivalently, for all v ∈
◦

H
1
t,n(Ω)

|∇v − πK∇v|L2(Ω)
≤ c | sym∇v|

L2(Ω)
.

Here, πK denotes the L2(Ω)-orthogonal projector onto K.
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Proof. Equivalence is again clear by the orthogonal projection. If (9) was wrong, there exists a sequence

(vn) ⊂
◦

H1
t,n(Ω) with ∇vn⊥K and |∇vn|L2(Ω)

= 1 and | sym∇vn|L2(Ω)
→ 0. Without loss of generality

we can assume (vn) ⊂
◦

H
1
t,n(Ω) ∩

(
◦

H
1
t,n(Ω) ∩ R

N
)⊥

. By Lemma 9 (vn) is bounded in H
1(Ω), and thus,

using Rellich’s selection theorem, we can assume without loss of generality that (vn) converges in L2(Ω)

to some v ∈ L2(Ω). By Theorem 2 (vn) is a Cauchy sequence in H1(Ω). Therefore, (vn) converges in

H1(Ω) to v ∈
◦

H1
t,n(Ω) with sym∇v = 0 and ∇v⊥K. But then, ∇v is even a constant in so, i.e., ∇v ∈ K,

in contradiction to 1 = |∇vn|L2(Ω)
→ |∇v|

L2(Ω)
= 0. �

Remark 12. Similar to Remark 5, all the results from Theorem 7 to Theorem 11 extend to the Lq/W1,q-
setting for all 1 < q <∞ with the obvious modifications. The same holds true for all results presented in
the subsequent sections.

3.1. Discussing the Set K. In this section we shall discuss which combinations of domains Ω and

boundary parts Γt allow for a non-constant rigid motion r ∈
◦

H1
t,n(Ω) ∩ R, i.e., K 6= {0}. We start with

the case Γt = Γ, i.e, with the full tangential boundary condition.

Theorem 13. If Γt = Γ, then K = {0} and there exists a constant c > 0 such that for all v ∈
◦

H1
t (Ω)

|∇v|
L2(Ω)

≤ c | sym∇v|
L2
.

Proof. We give a proof by contradiction. Assume r ∈ R ∩
◦

H1
t (Ω) and r 6= 0. Let us define the null

space Nr :=
{

x ∈ R
N : r(x) = 0

}

. Then Nr is an empty set or an affine plane in R
N with dimension

dNr
≤ N−2. We recall that ν is the outer unit normal at Γ defined a.e. on Γ w.r.t. the (N−1)-dimensional

Lebesgue measure. Since r is normal on Γ, we conclude for almost all x ∈ Γ \ Nr

ν(x) = ± r(x)

|r(x)| .(10)

Because Ω is locally on one side of the boundary Γ, the unit normal ν cannot change sign in (10) in any
connected component of Γ \ Nr. But since dNr

≤ N − 2, it follows that Γ \ Nr is connected, and w.l.o.g.

ν(x) =
r(x)

|r(x)| for almost all x ∈ Γ \ Nr.(11)

As Γ ∩ Nr has measure zero, we can replace Γ \ Nr by Γ in (11). With Gauß’ theorem we conclude

0 =

ˆ

Ω

div r =

ˆ

Γ

ν · r =
ˆ

Γ

|r| > 0,

a contradiction. �

Next we turn to the full normal boundary condition, i.e. Γt = ∅. In [3] it is proved that for smooth

bounded domains Ω ⊂ R
N Korn’s first inequality holds for all v ∈

◦

H1
n(Ω), i.e. K = {0}, if and only if Ω is

not axisymmetric. Furthermore an explicit upper bound on the constant is given.vi In that contribution
and here axisymmetry is defined as follows.

Definition 14. Ω is called axisymmetric if there is a non-trivial rigid motion r ∈ R tangential to the

boundary Γ of Ω, i.e. 0 6= r ∈
◦

H1
n(Ω).

In a more elementary and canonical approach in R
3 a domain is called axisymmetric w.r.t. an axis a if

it is a body of rotation around this axis. In order to show that in R
3 both concepts coincide for bounded

Lipschitz domains, we make use of the invariance of a Lipschitz boundary under the flow of a tangential
vector field.

viIn [3] a C1-boundary is assumed, but it seems that for the proof of [3, Lemma 4] actually a C2-boundary is needed in

order to guaranty H1-regularity of ∇φ, where φ is the solution of [3, (14)].
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Proposition 15. Let Ω ⊂ R
N be a (not necessarily bounded) domain with a (strong) Lipschitz boundary

Γ and r : RN → R
N a locally Lipschitz continuous vector field that is tangential on Γ a.e. w.r.t. the

(N − 1)-dimensional Lebesgue measure on Γ. Let p ∈ Γ and let t 7→ γ(t) the maximal solution of the
ordinary differential equation

(12) γ̇ = r(γ), γ(0) = p

existing on the interval Ip. Then for all t ∈ Ip
(13) γ(t) ∈ Γ.

This proposition is a variant of Nagumo’s invariance theorem, see [1, Theorem 2, p. 180], c.f. also [6],
where the tangential condition on r is defined in terms of a so called ’Bouligand contingent cone’. As we
need this statement for a Lipschitz boundary we give a self-contained proof in the Appendix.

The next lemma states that for bounded domains in R
3 both definitions of axisymmetry coincide. An

elementary proof is provided in the appendix.

Lemma 16. Let Ω ⊂ R
3 be a bounded Lipschitz domain.

(i) Assume σ, b ∈ R
3, |σ| = 1 and let g = {λσ + b : λ ∈ R}. Assume that Ω is axisymmetric

w.r.t. the axis g. Then the vector field r with r(x) := σ ∧ (x − b) is a rigid motion, which is

tangential at Γ, i.e. r ∈ R ∩
◦

H1
n(Ω).

(ii) Let r ∈ R ∩
◦

H1
n(Ω), r(x) = ω σ ∧ x + b for all x ∈ R

3 with σ, b ∈ R
3, |σ| = 1 and ω ∈ R. Then

ω 6= 0, 〈b, σ〉 = 0, and Ω is axisymmetric w.r.t. the axis g =
{

λσ + 1
wσ ∧ b : λ ∈ R

}

.

Remark 17. There are rigid motions tangential to the boundary of some unbounded domains in R
3,

which do not exhibit any axis of symmetry. Consider, for example, a domain Ω built from a plane square
which simultaneously is lifted along and rotated around the axis perpendicular to it, e.g.

Ω :=
{(

x1 cos(t)− x2 sin(t), x1 sin(t) + x2 cos(t), t
)t

: |x1|+ |x2| < 1, t ∈ R
}

.

Then r(x) := (−x2, x1, 1)t is tangential to Γ.

Using Definition 14, Korn’s first inequality for normal boundary conditions is more or less obvious.

Theorem 18. Let Γt = ∅. Then Korn’s first inequality holds for all v ∈
◦

H1
n(Ω), if and only if K = {0},

if and only if Ω is not axisymmetric.

Proof. The first ’if and only if’ is just the assertion of Theorem 11. For the second ’if and only if’
according to the definition of axisymmetry the only remaining issue is to prove that there is no constant
vector field tangential to a bounded Lipschitz domain (in that case we would have a non-trivial rigid
motion, which gives no contribution to K). Assume that a constant vector 0 6= a ∈ R

N tangential to Γ

exists, i.e. a ∈
◦

H1
n(Ω), and let x̂ ∈ Γ. Then according to Proposition 15 the unbounded curve t 7→ x̂+ ta

would remain in Γ, which contradicts the boundedness of Ω. �

Remark 19. The latter proof shows that a bounded domain is axisymmetric if and only if there is a
non-constant rigid motion tangential to the boundary.

For mixed boundary conditions there are domains of rather special type with K 6= {0}. Consider, for
example, a half cylinder

Ω :=
{

x ∈ R
3 : x1 > 0, x21 + x22 < 1, 0 < x3 < 1

}

,

or more generally, the domain

Ω :=
{

(r cosφ, r sinφ, x3)
t : φ1 < φ < φ2, 0 < x3 < 1, 0 < r < h(x3)

}

with Γt := Γ ∩
{

(r cosφ1/2, r sinφ1/2, x3)
t : 0 ≤ r, 0 < x3 < 1

}

and for some positive Lipschitz function
h : R → R and some −π < φ1 < φ2 < π. Define r(x) := (−x2, x1, 0)t. Then r is a rigid motion and

r ∈
◦

H1
t,n(Ω). In the next theorem we will show that in R

3 all bounded domains Ω with K 6= {0} are
compositions of subdomains of this kind.
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Theorem 20. Let Ω ⊂ R
3 be a bounded Lipschitz domain and let ∅ 6= Γt 6= Γ. Assume that there is a

non-constant rigid motion r ∈ R ∩
◦

H1
t,n(Ω), r(x) = ω σ ∧ x + b for all x ∈ R

3 with ω ∈ R and |σ| = 1.

Define gr ⊂ R
3 by gr :=

{

λσ + 1
ω σ ∧ b : λ ∈ R

}

. Then 〈σ, b〉 = 0, Γt is a subset of a union of affine
planes, where each of these planes contains gr. Every connected component of Γn is a subset of a surface
which is axisymmetric w.r.t. gr.

By this theorem the aforementioned cube, i.e. Ω = (0, 1)3 ⊂ R
3 with Γt being the union of the top

and bottom faces, has a trivial kernel K = {0}, which means Korn’s first inequality Theorem 11 holds on
◦

H
1
t,n(Ω), while Poincaré’s inequality Lemma 9 only holds on

◦

H
1
t,n(Ω) ∩

(

(0, 0, 1)t
)⊥

.

Proof. First we note that the scalar-product 〈σ, b〉 is independent of the chosen Cartesian coordinates,
i.e. if we choose another positively oriented Euclidian coordinate system (y1, y2, y3) and represent the
vector field r by means of the y-coordinates, then there exist vectors σy, by ∈ R

3 with |σy| = 1 and
r(y) = ω σy ∧ y + by for all y ∈ R

3. Furthermore 〈σy, by〉 = 〈σ, b〉. In the same way the representation of
the axis gr associated to r is independent of the Cartesian coordinates chosen; in y-coordinates we have
gr =

{

λσy +
1
ωσy ∧ by : λ ∈ R

}

.

Suppose r ∈ R∩
◦

H1
t,n(Ω) and that r is not constant. We fix some p ∈ Γt together with a neighborhood

U ⊂ R
3 of p, an open subset V ⊂ R

2, Euclidian coordinates (x1, x2, x3) = (x′, x3) and a Lipschitz map
h : V ⊂ R

2 → R, such that for all x ∈ U we have x = (x′, x3) ∈ Γt if and only if x3 = h(x′). Since r is
normal and by Rademacher’s theorem, we have

r(x′, h(x′)) = f(x′)
(

∇x′h(x′),−1
)t

(14)

with some function f : V ⊂ R
2 → R a.e. in V .

In x-coordinates r can be represented by r(x) = ω σ∧x+b with some b, σ ∈ R
3, |σ| = 1 and 0 6= ω ∈ R.

From (14) we conclude

b1 + ω σ2h(x
′)− ω σ3x2 = f(x′)∂1h(x

′),(15)

b2 + ω σ3x1 − ω σ1h(x′) = f(x′)∂2h(x
′),(16)

b3 + ω σ1x2 − ω σ2x1 = −f(x′).(17)

We differentiate (in the sense of distributions) (15) w.r.t. x2 and (16) w.r.t. x1, compute the difference
as well as the sum of the resulting equations, and conclude using (17)

σ3 = σ1∂1h+ σ2∂2h,(18)

0 = f∂1∂2h.(19)

Differentiating (15) w.r.t. x1 and (16) w.r.t. x2 yields

(20) f∂21h = f∂22h = 0.

Now we multiply (15) by σ1, (16) by σ2, equate the resulting equations for σ1σ2h, use (17), (18), and
obtain

(21) 0 = 〈b, σ〉.
From (19), (20) we conclude that ∇x′h is constant on connected components of V ∩ {f 6= 0}. Therefore,
h is an affine function on each part and continuous on the whole of V . Note that {f = 0} is a subset
of the line Nσ,b :=

{

x′ ∈ R
2 : b3 + ω σ1x2 − ω σ2x1 = 0

}

. Now we extend the affine function from one

connected component of V ∩ {f 6= 0} to R
2 and call the resulting affine function h̃. Because of (18) the

plane Eh̃ :=
{

(x′, h̃(x′)) : x′ ∈ R
2
}

is collinear to gr. Recalling 〈σ, b〉 = 0, it is straightforward to check
that gr is the affine kernel of r. Now we use this fact together with the collinearity of Eh̃ and gr in order
to prove gr ⊂ Eh̃. It is sufficient to show that Eh̃ ∩ {r = 0} is not void. But in view of (17) and (14) this
is obvious.

Now let p ∈ Γn. Since 〈σ, b〉 = 0, the solutions γ of γ̇ = r(γ) are circles, contained in planes per-
pendicular to gr and with centers on gr (See also the computations in the proof of Lemma 16.). Hence,
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applying Proposition 15, every connected component is a subset of some hyper surface being axisymmetric
w.r.t. gr. �

4. Appendix

Proof of Proposition 15. Clearly, it is sufficient to prove the invariance locally. Since Γ is Lipschitz, after
rotation there is a neighborhood U = V × I of p with V ⊂ R

N−1, I ⊂ R, orthonormal coordinates
(x1, . . . , xN ) = (x′, xN ) ∈ V × I, a point x′0 ∈ V and a Lipschitz continuous function h : V → I such
that p = (x′0, h(x

′
0)), and for all x ∈ U we have x ∈ Γ iff xN = h(x′). By Rademacher’s theorem h is

differentiable a.e. with respect to the (N − 1)-dimensional Lebesgue measure on V , and ∇x′h ∈ L∞(V ).
Furthermore, the set of the N − 1 vectors

t1(x
′) :=

(

1, 0, . . . , 0, ∂1h(x
′)
)t
, . . . , tN−1(x

′) :=
(

0, . . . , 0, 1, ∂N−1h(x
′)
)t

gives a basis of the tangential space of Γ in the point (x′, h(x′)) for almost all x′ ∈ V . Therefore, on
Γ ∩ U we have two representations of the vector field r, one representation in the coordinate vectors of
x1, . . . , xN holding on the whole of U ,

r(x) = rU (x) =
(

r1U (x), . . . , r
N
U (x)

)t
,

and the functions riU , i = 1, . . . , N , are Lipschitz continuous functions on U . On the other hand, for
almost all x′ ∈ V

r(x′, h(x′)) = r1V (x
′)t1(x

′) + · · ·+ rN−1
V (x′)tN−1(x

′).

We define rV := (r1V , . . . , r
N−1
V )t. Comparison yields a.e. on V and for all i = 1, . . . , N − 1

(22) riU (x
′, h(x′)) = riV (x

′).

Hence, rV is Lipschitz continuous on V . Furthermore,

(23) rNU (x′, h(x′)) = r1V (x
′)∂1h(x

′) + · · ·+ rN−1
V (x′)∂N−1h(x

′) = rV (x
′) · ∇x′h(x′)

holds for almost all x′ ∈ V . Since h is Lipschitz on V and rNU is Lipschitz on U , rV ·∇x′h is also Lipschitz
on V . Now we define the flow of rV : For x

′ ∈ V we set ψ( ·, x′) as the solution of the ordinary differential
equation

(24) ψ̇(t, x′) = rV
(

ψ(t, x′)
)

, ψ(0, x′) = x′.

Since rV is Lipschitz on V , we can restrict the flow such that for some ǫ > 0 and some neighborhood
V̄ ⊂ V of x′0 the solution ψ is Lipschitz continuous on (−ǫ, ǫ) × V̄ . Next we lift up this flow to Γ and
define

γV (t) :=
(

ψ(t, x′0), h(ψ(t, x
′
0))

)t
.

By definition γV (0) = p and γV (t) ∈ Γ for all t ∈ (−ǫ, ǫ).
In the next step we have to prove that γV is also a solution of (12) on (−ǫ, ǫ). With regard to (22)

it only remains to prove that the mapping t 7→ h(ψ(t, x′0)) is classically differentiable with derivative
∂t
(

h(ψ(t, x′0))
)

= rNU
(

ψ(t, x′0), h(ψ(t, x
′
0))

)

. We denote the l-dimensional Lebesgue measure by Ll. For
all t ∈ (−ǫ, ǫ) it holds that ψ(t, · ) is a bi-Lipschitz homeomorphism with inverse Lipschitz transformation

ψ(t, · )−1 = ψ(−t, · ). Therefore, if LN−1(ψ(t, · )(Ṽ )) = 0 for some set Ṽ ⊂ V̄ , then also LN−1(Ṽ ) = 0,

because Ṽ = ψ(−t, · )
(

ψ(t, · )(Ṽ )
)

. Fix a measurable set V0 ⊂ V such that LN−1(V0) = 0 and h is
classically differentiable for every x′ ∈ V \ V0. Let us define

W0 :=
{

(t, x) ∈ (−ǫ, ǫ)× V̄ : ψ(t, x) ∈ V0
}

.

Then W0 is measurable and using Tonelli’s and Fubini’s theorems and the change of variable formula we
obtain

LN (W0) =

ˆ

(−ǫ,ǫ)×V̄

1W0
≤ c
ˆ

(−ǫ,ǫ)

ˆ

V0

1 = 0.

Therefore, and since ψ is differentiable w.r.t. t everywhere, we have by using (23)

(25) ∂th(ψ(t, x
′)) = ∇h(ψ(t, x′)) · ∂tψ(t, x′) = rNU

(

ψ(t, x′), h(ψ(t, x′))
)
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for almost all (t, x′) ∈ (−ǫ, ǫ)× V̄ . Consequently this formula holds in the distributional sense. Because
h ◦ ψ is continuous and its distributional derivative w.r.t. t is also continuous, it is also differentiable
w.r.t. t in the classical sense. This can be seen as follows: We define

v(t, x′) := h(ψ(0, x′)) +

ˆ t

0

rN
(

ψ(τ, x′), h(ψ(τ, x′))
)

dτ.

The vector field v is classically differentiable w.r.t. t and ∂tv(t, x
′) = rNU

(

ψ(t, x′), h(ψ(t, x′))
)

holds for all

(t, x′) ∈ (−ǫ, ǫ)× V̄ . Furthermore, for all φ ∈
◦

C∞
(

(−ǫ, ǫ)× V̄
)

ˆ

(−ǫ,ǫ)×V̄

(v − h ◦ ψ)∂tφ = 0.

This yields h ◦ ψ(t, x′) = v(t, x′) + w(x′). Since for all x′ ∈ V̄ we have h ◦ ψ(0, x′) = v(0, x′), we finally
conclude w = 0 on V̄ and hence v = h ◦ ψ. �

Proof of Lemma 16. For (i) we choose σ1, σ2 ∈ R
3 such that the set {σ1, σ2, σ} gives a positively oriented

orthonormal basis of R3. Let x ∈ Γ and define d := dist(g, x). Since Ω is axisymmetric w.r.t. g, for all
t ∈ R

γ(t) := 〈x, σ〉σ +
(

〈b, σ1〉+ d cos(t)
)

σ1 +
(

〈b, σ2〉+ d sin(t)
)

σ2 ∈ Γ.

Therefore, γ̇(t) is a tangential vector at Γ located in x. On the other hand

r(x) = σ ∧ (x− b) = σ2〈x− b, σ1〉 − σ1〈x− b, σ2〉
= σ2

〈(

〈b, σ1〉+ d cos(t)
)

σ1 − b, σ1
〉

− σ1
〈(

〈b, σ2〉+ d sin(t)
)

σ2 − b, σ2
〉

= σ2d cos (t)− σ1d sin (t) = γ̇ (t) ,

which yields r ∈
◦

H1
n(Ω) ∩R.

No we turn to the proof of (ii). If ω = 0 then x(t) = x0+ tb remains in Γ for all t if x0 ∈ Γ (Proposition
15) and Ω would be unbounded. Therefore, we have ω 6= 0. We choose again σ1, σ2 ∈ R

3 such that the
set {σ1, σ2, σ} gives an orthonormal basis of R3 with positive orientation. The solution of the ordinary
differential equation system

ṡ1 = −ωs2 + 〈b, σ1〉, ṡ2 = ωs1 + 〈b, σ2〉, ṡ3 = 〈b, σ〉,
s1(0) = 〈x̂, σ1〉, s2(0) = 〈x̂, σ2〉, s3(0) = 〈x̂, σ〉

is given by

s1(t) = c1 cos(ωt)− c2 sin(ωt)−
1

ω
〈b, σ2〉,

s2(t) = c1 sin(ωt) + c2 cos(ωt) +
1

ω
〈b, σ1〉,

s3(t) = 〈x̂, σ〉+ t〈b, σ〉,
where c1 and c2 are uniquely defined by the initial conditions on s1 and s2. Then

x(t) := s1(t)σ1 + s2(t)σ2 + s3(t)σ

is the unique solution of

ẋ = r(x), x(0) = x̂.

Due to Proposition 15 and since r ∈
◦

H1
n(Ω), we have x(t) ∈ Γ for all t ∈ R. Because Ω is bounded, we

conclude 〈b, σ〉 = 0. Therefore, the trajectory t 7→ x(t) is a circle lying in a plane perpendicular to σ with
center

− 1

ω
〈b, σ2〉σ1 +

1

ω
〈b, σ1〉σ2 + 〈x̂, σ〉σ.

Consequently, Ω is axisymmetric w.r.t. to g. �
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[13] N. Weck. Local compactness for linear elasticity in irregular domains. Math. Methods Appl. Sci., 17:107–113, 1994.
[14] K.-J. Witsch. A remark on a compactness result in electromagnetic theory. Math. Methods Appl. Sci., 16:123–129,

1993.

Fakultät für Mathematik, Universität Duisburg-Essen, Campus Essen, Germany

E-mail address, Sebastian Bauer: sebastian.bauer.seuberlich@uni-due.de
E-mail address, Dirk Pauly: dirk.pauly@uni-due.de


	1. Introduction
	2. Preliminaries
	2.1. Korn's Second Inequality
	2.2. Poincaré Inequality for Elasticity

	3. Korn's First Inequality
	3.1. Discussing the Set K

	4. Appendix
	References

