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Abstract

Using tools from functional analysis we show that for bounded and convex do-
mains in three dimensions, the Maxwell constants are bounded from below and
above by Friedrichs’ and Poincaré’s constants.
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1 Introduction and Preliminaries

Throughout this paper, let us fix a bounded domain  C R? with boundary I' := 992,
which is devided into two relatively open subsets I, and its complement I}, := I'\ .
The letters t and n should remind on homogeneous tangential and normal boundary
conditions.

It is well known that the Poincaré (or Friedrichs) inequality, i.e., for all u € Hf, (Q)

uliz) < el Vuliz(g), (1.1)

holds with some ¢, 1, - > 0, as long as Rellich’s selection theorem is valid, i.e., the embed-
ding

HY(Q) — L*(Q) (1.2)

is compact. Here, L*(Q) and H'(Q) denote the usual Lebesgue- and Sobolev (Hilbert)
spaces, respectively. Moreover, € : 2 — R3*3 denotes a symmetric and uniformly positive
definite L>-matrix field. We introduce L?(€2) as L*(2) equipped with the weighted inner

product (-, ) 2q) = (e, ->L2(Q)ﬂ For Iy # () the Sobolev space Hf, (Q) is defined as the

closure (taken in H'()) of test functions
CE(Q) = {pla : p € C*(R?), dist(supp ¢, T;) > 0}.

Otherwise we set Hj(Q2) := H'(Q2) N R*. Let us assume that we have chosen the best
constant in (LI]), this is

1 Vul 2
e Ve
CpIi e 0£ueH}, () |U| L2(Q)

Analogously, it is also well known that the (let’s call it) Maxwell inequality, i.e., for

all E € R, (Q) Ne~1Dy, (Q)

‘E — WDNE|Lg(Q) S Cm,Ft,s(‘ leEEﬁg(Q) + |I'Ot E|32(Q))1/2
or equivalently for all E' € Rp, (Q) Ne™'Dr, (2) N Hyy ()

. 1/
Blizioy < carve (| diveEag + | rot Bagy) ™ (1.3)

holds with some ¢y, . > 0, as long as the Maxwell selection theorem or the Maxwell
compactness property is given, i.e., the embedding

Rp (Q) Ne™ D (Q) — L*(Q) (1.4)

'Throughout this paper norms resp. scalar products will be denoted by | - |x resp. (-, - )x if X is a
normed space or a space featuring a scalar product.
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is compact, see Appendix [A.2.]] for details. Here, we introduce the Sobolev (Hilbert)
spaces

R(Q):={Ecl*Q) :rot E€L*Q)}, D) :={FEcl*Q) :divEcL*(Q)}

in the distributional sense. As above, if Iy # ), we define as closures (taken in R(Q)
resp. D(Q)) of test vector fields C3(€2) the Sobolev spaces Rp, (€2) and Dr, () (and of
course the same for I},). If Ty = () we set Ry(2) := R(Q) and Dy(92) := D(Q). Then, for

Iy # 0 in HE(Q), Ry (Q) and Dr, (2) homogeneous scalar, tangential and normal traces
at Iy are generalized, respectively. Moreover, we define the closed subspaces

Ro(Q) :={E € L*(Q) : tot E =0}, Do(Q) :={F € L*Q) : divE = 0}

as well as R, o(2) := R (©2) NRy(2) and Dr, ¢(€2) := D, (2) N Dy(£2). Finally, we have
the harmonic Dirichlet-Neumann fields

How (€)== Rp, 0(2) N e~ 'Dp, 0(92),

which are finite dimensional since by ([L.4]) the unit ball is compact in Hp, _(€2). The L2(€2)-
orthogonal projector onto them will be denoted by mpy : L2(Q2) — Hpy () and L. means

€

orthogonality in L*(Q). If Iy = I resp. I, = I' we have the classical Dirichlet resp. Neu-
mann fields and write H, _(€2) resp. Hy _(2). We also need the Neumann-Dirichlet fields

Hyp.o () := R, 0(2) Ne™'Dr, 0(Q). In the case € = id we usually omit ¢ in our notations.
Again, we assume that also in (L3]) the best constant

. 2 2 1/2
1 _ i, (|d1V€E|L2(Q) + |rotE|L2(Q))
Cnlie  0£EERp (Q)Ne—1Dr, ()N Hpy o (Q)Le |Eli2()

is taken.

The crucial property for (L3) to hold is the Maxwell compactness property (L4,
which holds, e.g., if Q has a (strongly) Lipschitz continuous boundary I" with a (strongly)
Lipschitz continuous interface v := Ty NIy, see [§] for details. More precisely, the boundary
I and the interface « can be described locally as graphs of Lipschitz functions. From now
on we assume this properties of I' and Iy, I, as general assumption. Note that then
also (L.2) and (LI hold. Another successful approach proving the Maxwell compactness
property using a different technique from [21] has been shown in [9]. For the Maxwell
compactness property in the case of full boundary conditions we refer to [21] [13] [14] 5]
20, 10, 3| 16, 17, 18], 19, 22].

With the help of the L?(Q)-orthogonal Helmholtz decomposition

L2(Q) = VHL, () @: Hpy () @ ' 1ot Ry, (), (1.5)
where

Rr0(€2) = VHII‘t Q) ®. HDN,€<Q)7 571DFn,0(Q> =& ot R, (€2) @ HDN,€<Q)7
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see Appendix [A.2.2] for details, we can split the estimate (L3]) into two, namely

VE € gilDI‘n(Q> N VH%‘t (Q) |E|L§(Q) S Cm,Fn,div,E‘ le 8E|L2(Q)7 (16)
VE e RD; (Q) N 871 rot Rl‘n (Q) |E|L§(Q) S Cm,D;,rot,e,id‘ rot E|L2(Q)7 (17)

where we again assume to use the best constants

1 diveFE]| 2
_ inf [diveFlixg)
Cn, Ty, div,e O;AEEe—len(Q)mVH;t (Q) |E| L2(Q)
1 rot F|, 2
_ o [rot Eliz)
Cn, I rot,e,id 0#£E€Rr, (2)Ne~! rot Ry, () ‘E‘ L2(Q)

9

By the assumptions on ¢ there exist ¢, > 0 such that for all £ € L*(1)

1 _
§|E|L2(Q) < |El2) < E[E]2(q)

We note |E|2q) = |51/2E|L2(Q) and |51/2E|LE(Q) = |eE|\2(q). Thus, for all E' € L2(Q)
1 _
E|E|L§(Q) < [eEli2(q) < EIE]2(q)-
The inverse ¢! satisfies for all £ € L*(0)
1 1 B
%|E|L2(Q) < Bl o) < elEle@), §|E|L§71(Q) < e Bl < gl Bl (o)

which immediately follows by

< gle”?E2(q) = €| Ela

E _ 871/2E
| |L§_1(Q) | L2 >z Ve V2B 2y = EYElg

For later purposes let us also define ¢ := max{g, z}.
In this contribution we will study these different constants cyrc, Caner G divies
Cm Ty rot,eid and their relations to each other. It turns out that

Cp.It,e = Cn T div,es Cn,I% rot,e,id — Cm,Iy,rot,id,e> Cnlye — maX{Cp,Ft,€7 Cm,ﬂ,rot,s,id}

hold, see Lemmas 3l [0 and [0 The main result of this paper states that in the special case
of full boundary conditions, i.e., It =T or I, =I', and for bounded and conver domains
we have

C T . C N
p? < Care < Ecp, gp < Cnpe < €6

and especially for ¢ = id

max{cp 1, Carot} = Cul < Cap = Cp,
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see Theorem [[7l Here, we introduce for the special case € = id

Cp Iy = CpTy,idy  Cp = Cppy,  Caly = Culyid
and
Cn Ty rot -— CmIy,rot,id,id = Cm,Iy,rot,id,id = Cm,I},rot
as well as
Cn,rot += Cm,,rot,id,id = Cm,0,rot,id,id-

The crucial point in our analysis is that for convex domains

Cn,rot < Cps  CnmTrote,ids Cm,0,rot,e,id < gCp

hold, see Lemmal[l6l Some of these results have also been obtained recently in [I1] utilizing
different and more elementar methods. We note that in the convex case we can estimate
the Poincaré constant ¢, by the diameter of 2. More precisely, by the famous paper of
Payne and Weinberger m we have

diam(£2)

™

Cp

In [I2] also the optimality of this estimate has been shown. Furthermore, ¢, < ¢, is well
known even for non-convex domains, see e.g. [4] and the cited literature, yielding
1 _ 1 - diam(€) (18)
_— = ’I“ pu— -~ P .
VTN A
where A; resp. po is the first Dirichlet resp. second Neumann eigenvalue of the negative
Laplacian.
At least some of our results extend in a natural way to bounded domains Q C RY or
even to Riemannian manifolds with compact closure, see Remark Bl and Appendix [A ]
Our new estimates have important applications e.g. to numerical analysis, where es-
pecially an upper bound for the Maxwell constants is needed e.g. for preconditioning and
for functional a posteriori error estimates in the framework of Maxwell’s equations.

2 An Abstract Setting

Let X and Y be Hilbert spaces and
A:DA)CX—=Y, A":DA")CY =X

be a closed and densely defined linear operator and its adjoint. Here, D denotes the
domain of definition and we introduce the kernel N and the range R. Since A is closed we

iTn the sense that no tools from functional analysis were used.
WA little mistake or inconsistency in [I12] has been corrected later in [2].
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have (A*)* = A = A and sometimes (A, A*) is called a dual pair. The projection theorem
yields the orthogonal ‘Helmholtz” decompositions

X = N(A) & R(A%), Y =N(A")& R(A). (2.1)

Now, we collect some well known facts. For the convenience of the reader we give simple
proofs of those in the Appendix
A*A and AA* are non-negative and self-adjoint and their spectra coincide if we exclude

{0}, i.e.,
a(A"A)\ {0} = o(AAT)\ {0}, op(ATA)\ {0} = ap(AAT) \ {0} (2.2)

Let us assume that the embedding

D(A)N R(A*) — X (2.3)
is compact.

Lemma 1 There exist ca,ca- > 0, such that

Ve e D(A)N R(A™) |z|x < calAz|y,
Vy e D(A*) N R(A) lyly < cas|A%y|x.

Moreover, R(A) and R(A*) are closed and
X=N(A)® R(A"), Y=N(A")®R(A).
Furthermore, D(A*) N R(A) < Y is compact as well.

We note that the same lemma can be proved assuming the compactness of the em-
bedding of D(A*) N R(A) — Y instead of (23). By Lemma [ the restricted operator

A= Alpw : D(A) C R(A") = R(A), D(A) := D(A) N R(A”)

has a bounded inverse A~' : R(A) — D(A) with | A~ < (1+¢%)"?, which is compact as
an operator from R(A) to R(A*). Hence, A*A and AA* have pure point spectra which can
only accumulate at infinity and which coincide by (Z2]). Especially, the second eigenvalues
equal and therefore (see Corollary 32 for details) we conclude:

Theorem 2 For the best constants in Lemmaldl it holds cx = ca~, this is

[ : [Azly . [A"ylx _ 1
—_— = min = min - .
CcA  0#zeD(A)NR(A*) |T|x 0#£yeD(A*)NR(A)  |yly CA

Hence, c¢,® = ¢,2 is the first positive eigenvalue of A*A as well as of AA*.
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3 The Maxwell Estimates

We remind on €2 and its properties from the introduction.

3.1 General Lipschitz Domains

In this subsection we frequently use Lemma [Il and Theorem

3.1.1 Gradient and Divergence

Let us consider A as
V : HL(Q) C L*(©) — LZ(9).

Then A* equals
—dive : 7D () C L2(Q) — L*(Q).

More precisely, we have the following table:

A D(A) X Y N(A) R(A)
v | Hi@ [C@le@] {0} [ VHL(Q) = R o(Q) N Hu(Q)*
A* D(A%) Y X N(A¥) R(A¥)

—dive || e7'D () | L2(Q) | L*(Q) || e 'Dp0(Q) div Dr, ()

We note that div Dr, (Q) = L*(Q) if I, # I' and div Dp(Q) = L*(Q) NR*. Moreover, we
emphasize that indeed D(A*) = &~ 'Dr, () holds, see e.g. [8]. Note that for this one has
to show the approximation property

Dr,(Q) = {H € D(Q) : (div H,u) 20y = —(H, V)20V u € Hp, ()},

which is not trivial at all for mixed boundary conditions. Only in the special cases of full
boundary conditions this is clear. D(A*) = ¢7'D(Q) holds for I, = ' by definition. For
I, = 0 we see that the closed operator

B := —div:Dp(Q) C L*(Q) — L*(Q)

has the adjoint
B* =V :H(Q) C L*(Q) — L*(Q)

by definition. Since in this case A = B* we have D(A*) = D(B**) = D(B) = Dr(Q2). The
crucial compact embedding (Z3)) reads

HE, (€2) N div Dr, (Q2) < L*(9)
and is just Rellich’s selection theorem since

HE (Q) Ndiv Dy, () C HE () € HY(Q) — L*().
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Theorem [ yields
1 [Vl . | diveE] 2 1
0< = min ————-= min = )
Cplie O#ueHl (9) |U|L2(Q) 0#Ee€e~1Dr, (WNVHE, () \E\Lg(g) Cm, Ty div,e
We note that Ar,. == ¢, %me is the first positive Dirichlet-Neumann eigenvalue of the
weighted negative Laplacian —A, := —diveV. For ¢ = id and Iy, = " resp. I, = ()
we see that Arjq =: A resp. A\giqg =: po is the first Dirichlet resp. second Neumann
eigenvalue of the negative Laplacian. As Ap . = ¢, %n div.e Dolds too, A, . is also the

first positive Neumann-Dirichlet eigenvalue of the weighted negative reduced grad-div-
operator —V div €, which can also be interpreted as the weighted negative vector Laplacian
—A, := =V dive + rotrot on a subspace of irrotational vector fields.

Lemma 3 The Poincaré constant in Hf, (Q) and the Mazwell divergence constant in
e7'Dr, () N VHL (), i.e., the best constants in the inequalities

Vu € H, (9) [uli2) < el Vul 2o,
VE € ¢ 'Dp,(Q) N VHL () 1E]i20) < Cnhdive| diveE| 2,

coincide and correspond to the first positive Dirichlet-Neumann eigenvalue of the weighted
negative Laplacian —A., more precisely o1, c = Calydive = 1/7/ AL

Lemma 4 [t holds Eilcpvpt < pne <Gy as well as cor < cpry, and cpre < Cpry e
Proof For u € Hf, () we have

|U|L2(Q) < CP7Ft|Vu|L2(Q) < §CP7Ft|Vu|L§(Q)7

|u|L2(Q) < CP7Ft7€|VU“Lg(Q) < gCp,l‘t,f-:|vu‘L2(Q)a

which gives cp1, . < ecpry and ¢y < ECp e O

Remark 5 The results of this section extend to bounded domains Q@ C RN, N € N,
having the proper reqularity of the boundary.

3.1.2 Rotations

Now, let A be
ptrot s Ry (Q) € L2(Q) — Li(Q)

Then A* is
e ot : Rp, () C L2(Q) — L2(),

where p is another matrix field similar to e. More precisely:
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A D(A) | X Y N(A) R(A)
ptrot || R () | L2(Q) | LA(Q) || Rpo(Q) | ' rot Ry (Q)
A [ DAHT Y X N(A¥) R(A¥)
e'rot || R (Q) | L2(Q) | L2() || Ry0(Q) | e 'rot Ry, (Q)

We note
R(A) = 7 (Dro(Q) N Hp()F),  R(A*) =& 1 (Dry 0(Q) N Hpu()7)

and that indeed D(A*) = Ry, (Q2) holds, see again e.g. [§]. As before, for this one has to
show the approximation property

Rn () = {H € R(Q) : (rtot H, E)2q) = (H,10t E)2() V E € Rp, (Q) },

which is not trivial at all for mixed boundary conditions. Again, only in the special
cases of full boundary conditions this is clear. Since D(A*) = R(Q2) holds for Iy = I' by
definition we have also D(B*) = D(A™) = D(A) = Rp(Q?) for B = A*, which shows the
result for Ty = (). The crucial compact embedding (2.3]) reads

Rr (Q) Ne'rot Ry (Q) — L2(Q)
and is just the Maxwell compactness property (L4]) since
Rr, (2) N e 'rot R, (2) C Ry, (2) Ne™'Dro(2) € Ry, (2) Ne™'Dr, (92) < L*(2) C LZ().
By Theorem ] we have

—1
1 , [ ot Bl 2 q
0<——= min w2
Cn, Iy rot,e, 0#E€Rp, (2)Ne~1 rot Ry, (2) |E|Lg (Q)
. ‘8_1 I‘OtH‘Lz(Q) ]_
= min = = ,
0#HeRy, ()N~ rot Ry, () |H|Li(Q) Cm, Ty, rot, e

which serves also as definition for the constants cun, rote,n and Cnnrot,ue. Therefore,
—2 is the first positive Dirichlet-Neumann eigenvalue of the weighted

Khyen = Cm,Ft,rot,a,u
reduced double-rot-operator L. , :== e~ rot g~ ' rot, which can also be interpreted as the

weighted negative vector Laplacian _ﬁe,u = —Vdive + e 'rot p~trot on a subspace
of e-solenoidal vector fields. Since fr e, = ¢ %mmt,u,e holds as well, kr, o, is also the
first positive Neumann-Dirichlet eigenvalue of the weighted reduced double-rot-operator

O, = p'rot e rot, which can also be interpreted as the weighted negative vector Lapla-
cian on a subspace of p-solenoidal vector fields, i.e., —A, . = =V div g+ g~ 'rote ™! rot.

Lemma 6 The tangential-normal and normal-tangential Mazwell rotation constants,
i.€., the best constants in the inequalities

VE € Ry (Q)Netrot Ry (Q) \E\Lg(m < Ca Iy rot,e,u| TO E\Li_l(ﬂ),

VH € R, (Q) Nyt rot Ry, (Q) [Hli2(0) < nLyrotue| rO8 H|L§_1(Q)7
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coincide and correspond to the first positive Dirichlet-Neumann eigenvalue of the weighted
reduced double-rot-operator L. ,,, more precisely cur, rote.p = Cnlyrot,ue = 1/, /BT e-

Let us define for ¢ = p and for ¢ = = id
Cn. Ty rot,e -— CmIy,rot,e,e — Cm,Iy,rot,e,e
and note
Ca L rote = CaTurotes  Cmlyrot = Cm ot (3.1)
Corollary 7 For all E € (R, (Q) Ne 'rot R, (2)) U (Rp, () Ne~' rot Ry, ()
|E|Lg(g) < Cm,l—‘t,rot,e| rot E|L§71(Q) < §Cm,Ft,rot,6| rot E||_2(Q) (3-2)
holds with sharp constants. Moreover, the inequalities
VE €Rp(Q) Nerot Ry (Q) |El2(0) < alrot.eid] 10t B2 (o), (3.3)
VH € Ry () Ne'rot Ry () |H\L§(Q) < CuTyrot.cid| TOb H|L2(Q) (3.4)
hold, where these sharp constants do not need to coincide if € # id.
Lemma 8 [t holds

s —2 =2
(1) g Cm,Ft,rot S Cm,Ft,rot,a S € Cm,Ft,roty

S mln{écm,l‘t,rot,ea gCm,I’t,rot} S gCm,D;,rota

(li) Cn I}, rot,e,id> Cn IL,rot,e,id
sty s s4iny I ——1 —1 —1
Z max{g Cn,Ty,rot,e € Cm,D;,rot} Z € "“Cnlyrot-

Proof It is clear that car rote id; Cayrot,eid < ECnlrot,e holds. To prove the other esti-
mates, let £ € R, () Ne~!rot R, (). We decompose (see Appendix [A2.2])

FE = EO -+ Erot c RR,O(Q) @ rot RFD(Q)
Then E,o € R, (2) Nrot Ry, () and rot £ = rot E,o. Thus by orthogonality

|Elt2q) = (6B, Erot)i2(0) < Catirot [EE|12(q) |10t B2 (g
——

<elEli2(q)

and hence

|E

12(0) < ECn Ty wot| 1O B2y < B rot] TOU B ‘Li_l(ﬂ)-

This shows cn 1 roteid < ECnhirot aNd Comyrote < Ezcm,pt,rot. Interchanging Iy and I}
PrOVES Culy rotieid < ECnlhrot = EnTrot- BY £ ' [El2() < |El2(q) and [B2) resp. B.3)
resp. (B.4) we see canrot < £%Cnmirote T€SD. € CaTyrot < Cnliroteids Colroteid:  USING
| rot El2(q) < E|rot Bl (q) and B.3), B.A) we get E anrote < Culyrotye,ids Co Ty rote.ids
which completes the proof. O]
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3.1.3 The Full Maxwell Estimates
Theorem 9 For all E € R, (Q) Ne™'Dr, () the tangential-normal Mazwell estimate
£ — 7TDNEﬁg(Q) < C;2>,Ft ldiv 5E|i2(g) + Ci,n,rot,e,id| rot Eﬁ?(g)
holds with sharp constants. Moreover, cpr, - < £Cp1, aNA Cy Ly rot e id < ECm,Ty rot-
Proof By the Helmholtz decomposition (see Appendix [A.2.2]) we have
Rp () Ne 'Dr,(2) N ’HDNve(Q)lE > E—mwE = Ey + Eiot € VHL,(Q) @ ' rot Ry, (Q)
with
Eg € e 'Dp, () N VHL () = Ry, 0(2) Ne™ "D, () N Hpy ()7, diveEy = diveE,
Eror € R, () Ne " rot Ry, () = R, () Ne™ Dy, 0(Q) N Hpy ()7, 10t Byt = Tt E.
Thus, by Lemma [3] and Corollary [7] as well as orthogonality we obtain

2

|E — 7TDNE|3§(Q) = |EV|%§(Q) + |Erot|ig(g) S C 5| div €E|32(Q) + CI?I7Ft7I‘Ot7€7.1d| rot E|32(Q)

p7Ft7
Lemmas (] and 8 show the two estimates for the constants, completing the proof. O]

Lemma 10 [t holds

< max{ecpn,, Enn rot} < EMax{cyr, Culy rot}

Cm,D;,e = ma‘X{CP,Ft,€7 Cm,Ft,rot,e,id} —1 —1 P |
>max{€ 'on, € Canirot) > € Max{Cpr, Culrot}

and for e =id
Cm,Ft = maX{CP,Ft7 Cm,D;,rot}-

Proof We have ¢ur,. < max{cync, Canroteia}- Inserting £ € e 'Dp (Q) N VHE (Q)

resp. E € Rp(Q) Ne'rotRy () into the tangential-normal Maxwell estimate (L3)
shows cp e, Gy rot,eid < e and the first equation follows. The other estimates are
given by Lemmas [l and 8, completing the proof. O

By the latter theorem and lemma it remains to estimate only the two constants c,r,
and ¢y, rot for the various I%.

3.2 Full Boundary Conditions

We summarize our results for the two important extreme cases Iy = I' resp. I, = 0, i.e.,
the full tangential resp. the full normal case, and emphasize that in these two cases the
tangential and normal Maxwell rotation constants coincide by ([B) and hence beside the
Poincaré constants we just have to estimate one constant, namely

Cnrot,e +=— Cmrot,e — CmOrot,es  Cmrot = Cm,I,rot — Cm,0,rot- (35)

For the convenience of the reader let us recall our estimates from the latter sections
in these two extreme cases. Lemmas [l and [ read:
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Corollary 11 The Poincaré constant c,r . in Hi.(Q) resp. ¢p in Hy(Q) and the Mazwell
divergence constant cpg give in € *D(Q) N VHL(Q) resp. caraive in e 'Dr(Q) N VHY(Q)
equal, i.e., the inequalities

Vu € Hp(Q) [uliz(@) < GrelVuliz),

VE €< 'D(Q)N VHL(Q) |Eli2(0) < Gprel diveE] 2 g,
resp.

Vu e HY(Q)NR* [uli2) < el Vuliz (),

VE € e 'Dp(Q) N VHY(Q) |E|i20) < Cpel diveE| 2

hold with sharp constants. Moreover, E_lcpvp < pre < ecpr and E_lcp < Cpe < EGp.

Here, ¢, == cp .. Corollary [ and Lemma [§ read:

Corollary 12 The tangential Mazwell rotation constant cyrrote in Rp(S2) Ne !rot R(Q)
and the normal Mazwell rotation constant ¢uprore in R(Q) Ne trot Rpe(Q) equal, i.e., for
all E € (Rr(2) Ne ' rot R(2)) U (R(Q) Ne~'rot Rp(Q2))

|E|Lg(g) < Cm,rot,e‘ rot E|L§_1(Q) < §Cm,rot,e| rot E|L2(Q)
holds with sharp constants. Moreover, the inequalities

V E € RF(Q) ﬂ 871 I‘Ot R(Q) |E|L§(Q) S Cm,I‘,rot,e,id‘ I‘Ot E||_2(Q)7
VH € R(Q) ﬂ 571 I‘Ot RF(Q) ‘H|L§(Q) S Qn,@,rot,e,id| I‘Ot H|L2(Q)

hold, where these sharp constants do not need to coincide if € # id. Moreover, it holds
§72Cm,rot S Cm,rot,e S g2cm,rot cmd

-1 ——1 -1
€ Cmrot < max{e Cm,rot,er € Cm,rot} < Cm,I"rot,e,idy Cm,0,rot,e,id
S min{§cm,rot,6a gCm,rot} S gCm,rot-

Theorem [ and Lemma read:

Corollary 13 Forall E € Rp(Q)Ne 'D(Q) and all H € R(Q)Ne~'Dr(Q) the tangential
and normal Mazxwell estimates

|E - 7TDEﬁg(Q) < C}?),F,E‘ div 5E|i2(g) + Ci,r,rot,s,id| rot Eﬁ?(g)v

|H — 7TNH|f§(Q) < 0;2;,5| div 5H|32(Q) + ci7®7r0t767id| rot H|32(Q)



On the Maxwell Constants in 3D 13

hold with sharp constants. Furthermore, the estimates E_lcpvp < Cpriey Cpe < ECp and
§7lcm,rot < Cn, I rot,e,idy Cm,0,rot,e,id < gCm,rot as well as

< max{ecpr, Enrot } < EMmax{cpr, Curot

Cpr.e = Mmax{c Cn ; A
JTe { p.le» ,I‘,rot,z—:,ld} {Z maX{g_lcp,F,é_lcm,rot} Z 8_1 max{cpf, Cm,rot}a

< max{ecp, Ecnrot } < € max{cy, Curot |,

Cn0.e = Max{cCy ., Cn ; R
0, { P9 ,(i),rot,e,ld} {Z maX{g_lcp,é_lcm,rot} > 8_1 max{cp, Cm,rot}

hold. Therefore, in both cases

e max{cpr, Caror} < Max{Z 'epr, £ Carot} < Care, Cae
S max{§0p7 gCm,rot} S é max{cp, Cm,rot}-

For e =1id it holds

Cnl = max{cpr, Cm,rot}a Cn,p = max{cp, Cm,rot}-
As the two Poincaré constants c,r < ¢, are more or less well known, by the latter
corollaries it remains only to estimate the Maxwell constant cp ot
3.2.1 Convex Domains

Now, let QO C R? be a bounded and convex domain. Then ) is strongly Lipschitz, see
e.g. [0, Corollary 1.2.2.3]. Moreover, there are no Dirichlet or Neumann fields since € is
simply connected and has a connected boundary. As noted before in (L)), in the convex
case we can estimate the Poincaré constant ¢, by the diameter of €2, i.e.,

diam(€2)

Cr < ¢ <
P, P -

We show that we can also estimate the Maxwell constant ¢y, in the two extreme cases
I = T resp. It = 0 by ¢,. In [I Theorem 2.17] the following crucial lemma has been
proved, which is the key point in our investigations for convex domains.

Lemma 14 Let E belong to Rr(2) ND(Q) or R(Q) N Dr(Q). Then E € HY(Q) and
IVE[f2q) < |10t Bffaq) + | div Effz g (3.6)
We note that the latter lemma has already been proved in [19] in the case Rp(2)ND(£2).
Remark 15 For E € HL(Q) it is clear that for any domain Q C R3 (or even in RY)
[VE[E2q) = |10t Bffa ) + | div E[f2 g

holds since —A = rotrot =V div. In general, this formula is no longer valid if E has just
the tangential or normal boundary condition.
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With the help of Lemma [[4] we can now estimate ¢y yot.
Lemma 16 ¢y, < ¢p. More precisely, for all E in Rp(€2) Nrot R(Q2) or R(2) Nrot Rp(2)
|Eli2() < 6 1ot Eli2(g).
Furthermore, ¢up rot,e,ids Cndrot,eid < ECp-
Proof By (BX) the boundary condition does not matter. So, let
E € R(2) Nrot Rp(©2) = R(2) N Dro(2)
with £ = rot H for some H € Rp(f2). Then, for any constant vector a € R?
(E,a)2(q) = (rot H,a) 2q) =0 (3.7)
holds. Thus, by Poincaré’s estimate and Lemma [[4 we get F € H'(Q) N (R3)* and
|El20) < | VE] 2y < cp| 10t B2,
which shows cyrot = Cnprot < Cp- O

We can now formulate the main result for convex domains, which follows immediately
from Corollary I3l and Lemma [I6l

Theorem 17 For all E € Rp(Q)Ne™'D(Q) and all H € R(Q)Ne 'Dr(Q) the tangential
and normal Mazwell estimates

|H|fg(ﬂ) < §20§| div 5H|i2(ﬂ) + 222

P| I"Ot H|32(Q)

hold. Moreover,

< Cn,0e < écp

CP,F -
? < Core < ECp,

ol |$>

Especially, for e =id
max{cpr, Carot} = Car < o = Cp.

Theorem 18 For all E € (Rp(Q) Ne™'D(Q)) U (R(Q) Ne™'Dr(Q))

N . 1/2
‘E‘Lg(ﬂ) S ECP(‘ leEEﬁQ(Q) + |r0t E|32(Q)) .
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A Appendix

A.1 More General Operators

There are obvious generalizations to differential forms. Let {2 be a smooth Riemannian
manifold of dimension N > 2 with boundary I' and compact closure. We assume that the
boundary manifold I' is divided into two (N — 1)-dimensional Riemannian sub-manifolds
I, and T, with boundaries. Let us denote by L*9(€) the usual Lebesgue (Hilbert) space
of g-forms. For the exterior derivative and co-derivative we define the well known Sobolev
spaces

DY(Q) :={F € L*>(Q) : dE € L*"(Q)}, AYQ):={Eecl>(Q):§EcL>(Q)}.

As before, we introduce weak homogeneous boundary conditions by closures of respective
test forms, yielding the Sobolev spaces

D (), AL (©).
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Let A be
potd DL () C L29(Q) — L20(Q).
Then A* is
—e 10 ALTHQ) C L7TH(Q) — L2Y(Q),

where ¢ resp. p are bounded, symmetric, real and uniformly positive definite linear trans-
formations on ¢- resp. (¢ + 1)-forms. More precisely:

A D(A) X Y N(A) R(A)
ptd | DL(Q) | L2Q) [ L27N(Q) | DL ,(Q) | ptdDE(Q)

A* D(A") Y X N(AY) R(AY)
_ 15 A%:l(Q) Li’qul (Q) Lg’q(Q) A%Ié (Q) ) A%:rl (Q)

Here,
quﬂho(Q) ={F € D%t(Q) :dE =0}, A%D,O(Q) ={F € A%D(Q) 0 FE =0}
and we note
R(A) = ' (DES(Q) NHET()Y),  R(AT) = (AL o(Q) N HE ()Y,

where Hgy(Q2) := DY, ((Q2) N AL 4(€2). Indeed D(A*) = A%;Ll(Q) holds. We have the same
remarks as in Section Again, for this one has to show the approximation property

AHQ) = {H € A™H(Q) : (0 H, E) 200y = —(H,d E) 2001y V E € D}, ()},

which is not trivial at all for mixed boundary conditions. And again, only in the special
cases of full boundary conditions this is clear. Since D(A*) = AT (Q) holds for Ty, =T
by definition we have also D(B*) = D(A**) = D(A) = DL(2) for B = A*, which shows
the result for Ty, = (). The crucial compact embedding (Z3)) is

DL (Q) Ne '0 AL (Q) — L29(Q).
Both latter properties of €2, i.e., the approximation and the compactness property, hold,
e.g., if the boundary manifolds I, Ty, I, are Lipschitz and the boundary manifolds I%,

[, are separated by a (N — 2)-dimensional Riemannian and Lipschitz sub-manifold, the
interface y := Iy N I, see [0, [7] for details and proofs. We note that

D () Ne "0 AE(Q) € DL (Q) Nne AL 1(Q) € DL () ne AL (Q)
holds and that even the compact embedding of the latter space into L*9(Q), this is

DL (Q) Ne 'AL (Q) — L>(Q) C L29(1Q),
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has been shown in m By Theorem 2] we have

o in [~ d Bl za g B min |67 0 H| 20

0#£E€D}, (2)ne~! SAET Q) |E| L29(Q) 0£HEALT (Q)np—1d DY, () |H|Lfﬂ+1(n)

and x? is the first positive Dirichlet-Neumann eigenvalue of the weighted reduced J-d-
operator —e 1 u~td. Analogously x? is also the first positive Neumann-Dirichlet eigen-
value of the weighted reduced d-d-operator —pu~tde=14.

Lemma 19 The tangential-normal and normal-tangential generalized Mazxwell constants,
i.€., the best constants in the inequalities

VE € DL(Q)NedAL(Q) |El 20y < Cantidenl d Bl 2051 ),
1

VH e AL Q)N p ' dDE () |H |21 0y < Conlsue 5H|L:fl @

. . . o . 71
coincide and equal to 1/K, i.e., oy depy = Conlydpe = K -

Remark 20 [t is clear that more results of this contribution can be generalized to the
differential form setting.

A.2 Maxwell Tools

Let the general assumptions from the introduction be satisfied.

A.2.1 The Maxwell Estimates

By the Maxwell compactness property we get immediately the Maxwell estimate.

Lemma 21 There exists cur, - > 0, such that for all E in Ry, (Q)Ne™ Dy, () NHpy ()4

. 1
1Eli2() < cane TOtEﬁ?(Q) + |d1V5E|iQ(Q)) "

Proof If the estimate would not hold, there would exist a sequence of vector fields
(E,) C R (2)Ne Dn ()N ’HDN,s(Q)lE with |Ep[2(q) = 1 and

1
|1”0t En|L2(Q) + |diVEEn|L2(Q) < ﬁ

By the Maxwell compactness property we can assume w.l.o.g. that (E,) converges in
L2(Q) to some E € L%(Q). By testing, £ belongs to Ry(©2) Ne™'Do(Q) N Hpy () and
(E,) converges to F also in R(Q)Ne™'D(2). As Ry (92) resp. Dr, () is a closed subspace
of R(2) resp. D(2), E belongs even to Ry, o(Q2) Ne™'Dr, 0(Q) = Hpy (Q). Hence, E = 0,
which contradicts 1 = [E, | 2(q) — 0. O

“In [7] it is proved that DY, (€2) N Af (Q) even embeds continuously to H'/2:4(Q) and hence compactly
to LQ’q(Q). We note that the compactness property is independent of ¢, see e.g. [9].
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Corollary 22 For all E in Ry, () Ne 'Dr,(Q)
(1 — mon) Bl 2() < cae (| TOt E|i2(m + |div€E|i2(Q))1/2.

Proof As H := (1 —my)E € R (Q) Ne™'Dr, () NHpy (Q)* with diveH = diveE and
rot H = rot F/, Lemma 2] completes the proof. O

The same arguments show that the Maxwell estimate remains valid in any dimension

and even for compact Riemannian manifolds, as long as the crucial Maxwell compactness
property holds.

A.2.2 Helmholtz-Weyl Decompositions

By the projection theorem we have for the operator V
L2(Q) = VHL (Q) ®. £~ 'Dr, 0(),

where indeed (VHh(Q))l = Dp,0(€) holds by [8]. Note that VH}, () is already closed

by Rellich’s selection theorem. Analogously, we obtain for the operator rot
L2(Q) = Ry, 0(02) ®. e 'rot Ry, (), (A.1)
where again and indeed (rot RFH(Q))l = Rr, 0(€2) holds by [8]. For ¢ = id we get by (A1)

Rpt (Q) = RH,O(Q) P (Rpt (Q) N rot an (Q))

and therefore
rot Rp, (€2) = rot (Rp, () Nrot R, (2)).

As 10t R, () C Dp, 0(2) N Hpy(Q)*, the Maxwell estimate Lemma 2] implies that also
rot Rr, (2) is already closed. Moreover,

rot R, (Q) = rot R, (), Rr, () := R, (2) Nrot Ry, (2) = R, (2) Nrot Ry, (2).
Since VH, () C Ry, 0(22) and rot R, (€2) C Dr, o(2) we obtain

RH,O(Q) = VHE: (Q) D (B[‘t,o(Q) M gilDFn,()(QZ)’

E_lDFmo(Q) = 6_1 rot RF,.(Q) De (Rpt70(Q) N 6_1DF O(Q) )

n,

Finally, we have the well known Helmholtz decompositions:



20 Dirk Pauly

Lemma 23 It holds
L2(Q) = VHE, () @: ¢ 'Dr, 0(2) = R 0(2) @e £ 1ot R, ()
= VH(Q) ©. My () ©. = 0t Ry, (€)
as well as

VHll‘t Q) = RFhO(Q) N HDN,5<Q)J—57 e~ rot Rr,(Q) = 571DFn,0(Q> M HDN,€<Q)J—E

and RR (Q) - Rpt(Q) N DFH,O(Q) N HDN(Q)J'.

A.3 Functional Analytical Tools

Let us recall that for a self-adjoint operator T : D(T) € H — H, where H denotes
some Hilbert space,

C\RC p(T), o(T)=0,(T)Uco(T) CR, 0(T) =0

hold. Here, p(T), o(T), 0p(T), 0c(T), 0.(T) denote the resolvent set, the spectrum,
the point spectrum, the continuous spectrum and the residual spectrum, respectively.
Moreover, we have the ‘Helmholtz” decompositions

H=N(T -\ &R(T-\).
For X\ € p(T) the continuity of (T — \)™! is equivalent to
de>0 Vue D(T) |ulp < /(T = Nuln.

Hence, as T is closed, R(T — A) = H holds for A € p(T), see e.g. [23, VIIL.1, Theorem)].
Thus the resolvent set p(T), i.e., the set of all A\ € C with N(T—X) ={0}, R(T —\) =H
and (T — \)~': R(T — \) — D(T — \) bounded, is just given by

p(T)={AeC : (T—-X)""':H— D(T) bounded}.

We note that for all A € C the norms in D(T — ) and D(T) are equivalent.

We give simple proofs of the results of section 21 For this, we recall the Hilbert spaces
X and Y and the closed and densely defined linear operator A : D(A) C X — Y with
adjoint A* : D(A*) CY — X. A*A: D(A*A) C X+— X and AA* : D(AA*) CY — Y are

self-adjoint and non-negative. Furthermore, we introduce the Maxwell-type operator
M:DM)cCZ—Z, DM):=D(A)xD(A"), Z:=XxY

by M(z,y) = (A*y, Az) and note that

o A , [AA 0
M—[A o}’ M_[o AA*]
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are self-adjoint as well and M? is non-negative. Moreover, we introduce two projections
mx :Z— Xand my : Z — Y by mxz := x and myz := y for z = (z,y) and two embeddings
ix : X —Zand ty : Y = Z by ixx := (x,0) and tyy := (0,y).

First we show a stronger version of (2:2)).

Lemma 24 [t holds

(i) 0 € o(M) = 0 € o(A*A) Uo(AAY),

(17) 0 € ae(M) < 0 € oo (A*A) & 0 € o (AA¥),
(i”) 0 € op(M) < 0 € 0, (A*A) U 0 (AA¥)
and for A € R\ {0}

(ii) A € p(M) & N\ € p(A*A) & A\ € p(AAY),
(ii’) A e o(M) & N\? € o(A*A) & N\ € 0(AAY),
(i) A € 0o(M) & A2 € 0,(A*A) & \? € o (AAY),

(iv) A € 0,(M) & A? € 0,(A*A) & A2 € 0,(AA*). More precisely: If z == (z,y) is an
eigenvector to the eigenvalue X of M, then x is an eigenvector to the eigenvalue \* of
A*A andy is an eigenvector to the eigenvalue N2> of AA*. Ifx is an eigenvector to the
eigenvalue \* of A*A, then zy = (x,£X\"YAx) is an eigenvector to the eigenvalue
+\ of M, respectively. If y is an eigenvector to the eigenvalue \*> of AA*, then
2o = (EXTTA*y, y) is an eigenvector to the eigenvalue £\ of M, respectively.

Therefore,
(v) p(M) and o(M), 0.(M), 0,(M) are point symmetric to the origin.

Proof As (i")A(i”)=(i), (ii)=-(ii") and (ii’)A(iv)=>(iii), we only have to show (i), (i"),
(i) and (iv). Then (v) is clear.

(ii): We just show the assertions for A*A. The corresponding results for AA* can be
proven analogously.

=: Let A\ € p(M), i.e., N(M — \) = {0} and (M — \)~' : Z — D(M) is continuous.

e First we show N(A*A —\?) = {0}. Let x € N(A*A — \?). Then z := (z,y) € D(M)
with y := A"'Ax € D(A*) belongs to N(M—\) since (M—\)z = (A*y— Az, Az —\y) = 0.
Hence z = 0, especially x = 0.

o Let f € X. We want to solve (A*A — \?)z = f with # € D(A*A). Defining the ‘dual
variable’ y := A\"'Az € D(A*) and z := (z,y) € D(M), the mixed formulation of this
problem is

MAy—Xx)=f, Ar=Xy & (M-)Nz= (A% —x,Ar—\y) =\"'(f,0).

These heuristic considerations suggest to set = := mxz € D(A) and y := myz € D(A")
with 2z := A1(M — \) "l f € D(M). Then (A*y — Az, Az — \y) = (M — Xz = A7L(f,0),
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i.e., Az = \y € D(A*) and (A*A — \?)x = f. Moreover, x depends continuously on f

since
jzlx + |ATAzlx < c(l2lz +]1fIx) < elflx.
- ——
Slzlz - =[fIx+A%elx
Therefore, (A*A — X?)7!1 = Ao (M — A\)7lix : X — D(A*A) is continuous and thus
A2 € p(A*A).
<: Let A\* € p(A*A), ie,, N(A*A — \?) = {0} and (A*A — X?)7' : X — D(A*A) is
continuous.

e First we show N(M — \) = {0}. Let z = (z,y) € N(M — \). As

|Z|peaxay <

(A*y — Az, Az — Ay) = (M — \)z =0,

Ax = My € D(A*) with A*Az = AA*y = A\?z. Hence, z € N(A*A — \?) yields = 0 and
y=20,ie,z=0.

e Let h = (f,9) € Z. We want to solve (M — \)z = h with (z,y) = z € D(M).
As (A*y — Az, Az — \y) = (f,9), y € D(A¥) is already given by the second equation
Ay = Az — g, if x is known. Hence, rewriting everything in terms of z, this is

(f,g9) = ()\’IA*(A:U —g) — A\r, Az — (Ax — g)) = ()FlA*(Aa: —g) — )\x,g),

we see that we need to solve A*(Ax — g) — Mz = A\f. Since g does not belong to D(A*)
in general, we cannot apply (A*A — \?)~! directly. The ansatz r = & + & € D(A) with
€ D(A*A) leads to

A*(AZ —g) = VT + (A*A = N2 = )\ . (A.2)

By the Lax-Milgram lemma we can solve, e.g., A*(AZ — g) + Z = Af. More precisely,
there exists a unique € D(A) with

Vo e DA) (AT, Ap)y +(T,0)x = A(f, @)x + (9, Ap)v (A-3)

depending continuously on f and g and hence on h, i.e., |Z|p@a) < |A|[f|x + |g9ly < c|h|z.
Let us denote this bounded linear operator mapping h to Z by L : Z — D(A). Now, (A.2)
turns to
(A*A — N2z = (1 + M7
The latter heuristic computations suggest to define z := (x,y) by
vi=F+ 1+ A)(A*A - X)) '3 € D(A), y:=\Ar—g)

with  from (A3). & € D(A) is uniquely defined and depends continuously on h, i.e.,
1Z|pay < c|h|z. Moreover, Az — g € D(A*) and A*(AZ — g) = Af — 2 by (A3). As
r—7 € D(A*A), we get y = A (A(z — ) + AT — g) € D(A*). Thus, z belongs to D(M).
Since

My =AAlx—2)+A (AT —g) = 1+ D2+ N (2 —2)+ Af -2 =No+ \f
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we obtain

(M =Xz = (A" = Az, Ax — \y) = (f,9) = h.
Furthermore, 2 depends continuously on A, i.e., using
Vi€ DATA)  |Apy = (A"Ap, p)x < [A"Aplx|plx < [olx + [ATAglx
we have

12| by < 12 pay + Y| par) < C(|$|D(A) + 1 flx + |9|Y) < C(|$ — Z|peay + |Z|peay + |h|2)
< c(lz — Z|pasa) + 12 by + 1hlz) < e(|Z]pa) + hlz) < bz

Therefore, with y : D(A) — Z defined by x(x) := (z, \"'Az) we finally obtain that
M=XN)""=x(1+ 1+ (AA=N)" YL =Xy : Z = D(M)

is bounded and hence A € p(M).

(iv): =: Let A € 0,(M) and z := (x,y) be an eigenvector to A, i.e., 0 # 2z € N(M—\).
As 0= (M — Nz = (A*y — Az, Ax — \y), neither = nor y can be zero. Moreover, since
Mz =Xz € D(M), z € N((M+ X\)(M — X)) holds, this is

0= (M+A)(M=X)z=(M> =2z = ((A"A =A%)z, (AA* — \%)y).

Thus, 0 # x € N(A*A — X\?) and 0 # y € N(AA* — \?) yielding \? € o,(A*A) Ny (AA¥).
<: Let A? € 0,(A*A) and x be an eigenvector to A%, i.e., 0 # & € N(A*A —\?). Then
2y = (z,£A\"'Azx) € D(M) and

(M F Nzt = (EX A Az F Az, Ax — A TTA) = 20 H(A*Az — \%2,0) = 0.

Hence, 0 # 2z € N(M F \), ie., £X € 0,(M). Similar arguments apply to the case
M€ o, (AAY).
(i’): It holds with (ii’)

0 € oo (M) & 3 (\) Ca(M)\ {0} A — 0
& 3 (A2) c g(A*A)\ {0} A2 50
& 0 € oo (A*A)

and the same is valid for AA*.

(i7): If 0 € 05(M), then there exists 0 # z = (z,y) € N(M), i.e.,, 0 = Mz = (A*y, Az).
But then 0 # z € N(M?), i.e., 0 = M?z = (A*Ax, AA*y). Aseither x # 0 or y # 0, we get
0 € 0,(A*A) Uo,(AA*). Now, let e.g. 0 € 0,(A*A). Then, there exists 0 # x € N(A*A),
i.e., A*Ar = 0. This implies Az = 0 since

0= (A*Az,7)x = (Az, Az)y = |Az[2.

Thus 0 # z := (x,0) € N(M) because Mz = (A*0, Az) = 0. Therefore, 0 € o,(M). O
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We recall the ‘Helmholtz’ decompositions

X = N(A) @ R(A%), D(A)=N(A)e (D(A)NR(AY))

and define the restricted operator

A= Alpw : D(A) C R(A*) —» R(A), Az:=Az, =z € D(A):=D(A)NRA").

Let us compute the adjoint A* : D(A*) C R(A) — R(A*). For y € D(A*) we have for all
¢ € D(A)
(A, y)y = (¢, Ay)x-

Hence, for all 1) = 1o+ ¢ € D(A) = N(A) @ D(A) we get with Ap = Ap = Ay and by
A*y € R(A*)LN(A)

(A, y)y = (Ap,y)y = (o, Ay)x = (¥, A"y)x.

Thus, y € D(A*) and A*y = A*y. This shows D(A*) = D(A*)NR(A) and A* := A*|p(4-),
ie.,

A* = A*|pasy - D(A®) C R(A) = R(AY), A'y=Ay, ye D(A") = D(A")NR(A).

Moreover, we have (A*)* = A and the operators A*A : D(A*A) C R(A*) — R(A*)
and AA* : D(AA*) C R(A) — R(A) are self-adjoint and non-negative. Finally, also the
restriction

M :=M|pmy : DIM) C RM) = R(M), Mz:=Mz, ze DM):=DM)NRM)

is self-adjoint and we have

oA , [AA 0
M_[A 0}’ M—[o AA*]'

Remark 25 Let us emphasize once more the ‘Helmholtz” decompositions

X = N(A) ® R(A¥), D(A) = N(A) @ D(A),
Y = N(A") @ R(A D(A*) = N(A*) ® D(A"),
Z=NM)a R( ) D(M) = N(M) & D(M).

We introduce the orthogonal projectors

m:Z—>NM), 7:Z— RM)
and note 7| pany : D(M) — D(M).

Lemma 26 We have 0 & 0,(M) U 0p(A*A) U 0,(AA*). Moreover:
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(i) The inverse operators A=, (A*)~' and M™! exist.
(ii) R(A) = R(A), R(A") = R(A"), R(M)= R(M)

(iii) Lemma[Z]] holds for A, A* and M as well, which follows immediately by replacing
X by R(A*) and Y by R(A) as well as A by A and A* by A*.

Lemma 27 It holds

(i) o(M) \ {0} = a(M) \ {0}, more precisely even o.(M) \ {0} = o.(M) \ {0} and
op(M) \ {0} = (M) \ {0},

(ii) p(M)\ {0} = p(M)\ {0},

(i) op(M 1)\ {0} = —

V0 TRy " ey NOM = 3) = N4 for

Proof We start with proving (ii).

=: Let 0 # X € p(M). We note that R(M —\) = Z. For h € R(M) C Z we want solve
(M—=XN)z=h. z:=(M-X\)"th € D(M) with (M—\)z = h satisfies \z = Mz—h € R(M)
and thus z € D(M). As [z|pm) = [2[pon) < ¢lh|z = c|h|gmgy, # depends continuously on
h. Hence A € p(M).

<: Let 0 # X € p(M). We note that R(M — \) = R(M). For h € Z we want solve
(M — \)z = h. Decomposing

h=hy+heZ=NM)®RM), z=z+2¢cDM)=NM)a®DM)

shows with Mz € R(M)
A+ M—=NzZ=hg+h < —Xzxg=hyo A(M—=N\z=h.
This gives rise to define z € D(M) by
zi=204 %, Z:=(M=N"TheDM), z:=-\A"Thye NM).
Then (M — \)z = hg + h = h and z depends continuously on A, i.e.,
|zlpovy < |20y + 1Zlpony = [20lz + 12| pvy < C(‘h0|z + WZ) < c|h|z.
Therefore, A € p(M). We note that the inverse (M — \)~!: Z — D(M) is given by
(M — At — A7,

(1): Since (ii) implies (M) \ {0} = (M) \ {0} we just have to show the assertion for
the point spectrum.

=: Let 0 # X € 0,(M). For 0 # z € N(M — \) we have \z = Mz € R(M). Hence,
z € D(M) and thus z € N(M — \), i.e., A € g,(M).



26 Dirk Pauly

«: Of course N(M — X) C N(M — X). Thus, A € 0,(M) implies A € o,(M).
(iii): For A # 0 we have

A € 0p(M) & J0£ze NM =)
& J0#ze DM) Mz=XIze R(M)
& F0#zeRM) M lz=XA"MTMz=\"'z¢c DM)
& J0Fze NM -
& A he g (MT.
The proof is complete. O

The latter lemma holds true for A*A and AA* we well. More precisely:

Lemma 28 It holds

(i) o(A*A)\ {0} = o(A*A) \ {0}, more precisely even o.(A*A)\ {0} = 0.(A*A) \ {0}
and o (A°A) \ {0} = 0y (A°A) \ {0},

(ii) p(A"A)\ {0} = p(A"A) \ {0},

WARE = 1
(ifi) op((A"A))\ {0} = oo (A" A)\ {0}
A #0.

The corresponding assertions are valid for AA* and AA* as well.

and N(A*A — N\?) = N((A*A)' = A72) for

Proof With Lemma 24] (ii’), Lemma 27 (i) and Lemma 26 we have for A # 0
Meo(A*A) & AcoM) & NeoM) & NeoAA).

and the corresponding results hold for oy, 0. and p as well. This shows (i) and (ii). To
prove (iii) we can follow the proof of Lemma 27 (iii) and see for A # 0

A € oy (A*A) J0#x € NAA-N?)
30 # 2 € D(A*A) A*Ax = Nz € R(AY)
J0#x € D(A*A) Az = N*(A*) 'z € R(A)
J0#z € DA'A) ==X (A)YA) 'z € R(AY)
J0#£z € RA*) (AA) 'z =Xz € DA A)
F0#ze N((AA) -1

A2 e oy ((AA)Y),

which completes the proof. (]

te e
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A.3.1 Results for Compact Resolvents

From now on we assume generally that the embedding
D(A) — X (A.4)
is compact.

Lemma 29 The following assertions hold:
(i) dea >0 Vze D(A) |{L‘|X < CA|AI‘|Y
(1,) deax >0 Vy € D(A*) |y|y < cpx

A"ylx

(i”) e >0 Vze DM) |2z < eu[Mzlz

(ii) R(A), R(A*) and R(M) are closed.

(iii) X = N(A) @ R(A*), Y = N(A*) @ R(A) and Z= N(M) @ R(M).

(iv) A~': R(A) — D(A) is continuous and A~' : R(A) — R(A*) is compact.

(iv’) (A*)~': R(A*) = D(AY) is continuous and (A*)~' : R(A*) — R(A) is compact.
(iv?) M~1: R(M) — D(M) is continuous and M~' : R(M) — R(M) is compact.

(v) D(A*) <Y is compact.

(v’) D(M) < Z is compact.

Proof (i): Let us assume that the estimate is wrong. Then there exists a sequence
(x,) C D(A) with |z,|x = 1 and |Ax,|y — 0. As (z,,) is bounded in D(.A), by the general
assumption ([A4]) we can extract a subsequence, again denoted by (z,,), with z,, — x € X.
Since A and R(A*) are closed, we have x € N(A) N N(A)*t = {0}, in contradiction to
1= |l‘n|x — |l‘|x = 0.

(ii): For y € R(A) = R(A) there exists a sequence (z,) C D(A) with Az, — v.
By (i’) (z,) is a Cauchy sequence in X. Hence, (x,) converges to some x € X. Since
A is closed, we obtain x € D(A) and Az = y, showing that R(A) is closed. By the
closed range theorem, see e.g. [23, VII, 5, Theorem]|, R(A*) is closed as well. Hence, also
R(M) = R(A*) x R(A) is closed.

(iii) follows immediately by (ii).

(iv) follows directly by (i) and ([(A4). Indeed, (i) is equivalent to the continuity of A~

(v): Let (y,) be a bounded sequence in D(A*). By (ii), (y,) € R(A) = R(A) and
hence there exists a sequence (x,) C D(A) with Az,, = y,. By (i), (x,) is bounded in
D(A). By (A4l), we can extract a subsequence, again denoted by (z,), such that (x,)
converges in X. Then, for z,, , = ©,, — Ty, and Yy = Yn — Y We have

‘yn,m‘a - <A$n,m7 yn,m>Y == <xn,m7A*yn,m>X S C‘$n,m‘x-
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Thus, (y,) is a Cauchy sequence in Y.

Vﬁls clear by (IEI) and (v).

(i1 follows by (v) analogously to (i).
(i) follows by (i) and (i").

(1V’) follows by (i’) and (v).

(iv)

iv) and (iv’) imply (iv"). O

Let us recall some facts: By Lemma 29 (v’) for all A € C
DM -\ = Z (A.5)
is compact. For A € p(M) D C\ R we have
NM—-XN)={0}, RM-X)=2Z, NM-X\)={0}, RM-A)=RM)
and the boundedness of (M — \)~! : Z — D(M) is equivalent to
Jema >0 Vze DM) |zlz < ema|(M — N)z|z,
which holds for M as well. For 0 # A € o(M) C R we have
Z=NM-\@RM-)N), RM)=N(M —\) @ R(M —\).
Lemma 30 For A € R\ {0} the following assertions hold:
(i) NM —)X) € RM) and N(M — \) = N(M — \) has finite dimension.
(i) Jeya >0 Yze DIM)NNM =N |zlz < eyl (M = N)z|7
(iii) R(M — \) is closed.
(iii’) R(M — \) is closed.
(iii”) R(M —X) = RM —\) N R(M)
(iv) Z=NM =X @ RM — ) and RIM) = N(M — \) @ R(M — \).

(v) Let N(M — X\) = {0}. Then (M — X\)~' : R(M) — D(M) is continuous and
(M =Xt RIM) — R(M) is compact. Especially X € p(M).

(v’) Let NOM — \) = {0}. Then (M — \)~' : Z — D(M) is continuous. FEspecially
A€ p(M).

Corresponding results hold for A*A, AA* resp. A* A, AA* we well.

V(i) follows also by (iv’), since (i’) is equivalent to the continuity of (A*)~!

Vi Another proof of (iv’) is the following: As A~1: R(A) — R(A*) is compact by (iv), so is the adjoint
(A")~! : R(A*) — R(A) by Schauder’s theorem, see e.g. 23| X, 4, Theorem]. Especially (A*)~!
bounded and hence also (A*)~!: R(A*) — D(A*).



On the Maxwell Constants in 3D 29

Proof It is enough to consider 0 # A\ € (M) C R.

(i): Of course, N(M — \) C N(M — A). For z € N(M — \) we have Mz = Az. Thus
z € R(M), i.e., z € D(M). Hence z € N(M — \). By (A.5) the unit ball in N(M — \)
is compact, i.e., dim N(M — ) < oo.

(ii): If the estimate is wrong, then there exists a sequence (z,) C D(M)NN(M — )+
with |z,]z = 1 and |[(M — A)z,|z — 0. By (A.) we can extract a subsequence, again
denoted by (z,), with z, — z € Z. Moreover, Mz, = (M — \)z, + Az, — Az. As M and
N(M — \)* are closed, z belongs to N(M — X) N N(M — \)*+ = {0}, in contradiction to
1= |Zn|z — |Z‘z =0.

(iii): Let h € R(M — X). Then there exists a sequence (z,) C D(M) such that
(M — \)z, =t h, — h. Decomposing z, = 2,0+ 2, € N(M — \) & R(M — \) shows
(M = \)z, = h,, and z, € D(M)N N(M — \)*+. By (i) (z,) is a Cauchy sequence in Z
converging to some z € Z. Moreover, Mz, = (M — \)Z, + A\Z, — h+ Az. As M is closed,
we obtain z € D(M) and (M — \)z = h, i.e., h € R(M — \).

(iii"): Let h € R(M — A). By (i) we have R(M) = N(M — \) & (R(M) N R(M — \))
and hence it holds

ROM)NRM —\) = R(M — \) (A.6)

by (iii). Let us decompose h = hg+h € N(M)@R(M). As (M—\)ho = —Ahg € R(M—)\),
we get h € ROIM)NR(M — \). Hence h € R(IM —\) € R(M—\) and thus h € R(M —\).

(iii”) follows by (iii’) and (A.G).

(iv) follows by (iii) and (iii’).

(v): If N(M —A) = {0}, then R(M — \) = Z and R(M — \) = R(M). By (ii)
(M =X~ R(M) — D(M) is continuous, more precisely, for h € R(M) we have

z:= (M —=X)"th € D(M) and hence |z|z < ey a|h|z.
(v): By (i), (v) and Lemma 27 (ii) we get A € p(M) \ {0} = p(M) \ {0}. Hence,
(M —X\)"':Z — D(M) is continuous. O

Theorem 31 M has a pure point spectrum, which is contained in R\ {0} and point
symmetric to the origin. More precisely,

—0p(M) = 0p(M) = (M) = a(M) \ {0} = 0(M) \ {0}

and

a(M)? = 0y (A"A) = o(A*A) = 0(A"A) \ {0} = g, (A"A) \ {0}
= (AA") = o(AA") \ {0} = o (AAT) \ {0}

as well as

op(M) , if N(M) # {0},

p(M) , if N(M) = {0}
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hold. Moreover, there exist sequences of eigenvalues and eigenvectors

()\n>n€N - <07 OO), (erz:)nGN = ((l’n,y;t))neN - D(M>7
which might be finite or empty if (e.g.) A is bounded, such that the following holds:
(i) o(M)=(\,)U(=N\,) and c(M)? = o(A*A) = o (AA*) = (\2).

(ii) (A\n) is monotone increasing with A\, — oo, if (\,) is not finite.

(iii) (M F A\,)zE = 0 holds for all n, i.e., Az, = £\ y> and A*yE = +\,x, and thus
2E = (1, £ATAL,) = (EXN A S y).

n =

(iii’) (M? — A2)zE = 0 holds for all n, i.e., A*Ax, = N2z, and AA*yF = N2y,

n

(iv) (z,) is a complete orthonormal system in R(A*), i.e.,

Vo e R(AY) T = ifnxm
and furthermore -
Vi=xzg+x€X=N(A)D R(A") x:ifnxn,
n=1
Vi=u1x0+z € DA)=N(A)® D(A) Af = Az = iiAngnyg,
n=1
Vo e D(AA) A*Ax = f: N,
n=1

where &, = (x,1,)x = (T,x,)x. Moreover, |T|% = |zo|% + |z|% and
e} [e o] o0
B S E N o RO v e
n=1 n=1 n=1

(iv’) (yF) is a complete orthonormal system in R(A), i.e.,

o0

vy € R(A) y=>_ Cyr,
n=1
and furthermore
_ . « _ ot
Vi=yo+yeY=N(A")SRA) y=> Gy,
n=1
Vi=yo+y€DA)=NA)SDWA) AG=Ay=+> \(ra,
n=1

Vy € D(AAY) ANy = NGy,
n=1
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where G = (Y, yu )y = (§: Y )y Moreover, |55 = [yol§ + [y[5 and

Iy = (G ATk =D AACH)% IAATYR =) A6’
n=1 n=1

n=1

Proof By Lemmal29] (iv”) we have 0 € p(M). M = M holds if N(M) = {0}. By Lemma
0 (v) M has a pure point spectrum and by Lemma B0l (v’) o(M) \ {0} = o,(M) \ {0}.
By Lemma 20 (i) we have oy(M) = 0(M) \ {0} = o(M) \ {0}. By Lemma B (v) the
spectra are point symmetric to the origin. The other assertions about the spectra follow
immediately by Lemmas R4 7, P8 and Lemma

As A1 @ R(A) — R(A*) (A*) (A*) — R(A) are compact by Lemma
(iv) or (iv’), so is e.g. (A*A)~! : R(A*) — R(A*). Moreover, (A*A)~! is self-adjoint
and positive. Let us assume that A is unboundedi. By the spectral theorem for self-
adjoint, compact and non-negative operators there exists a monotone decreasing sequence
(A, Dnen C (0, 00) converging to zero and a sequence (an)neN C R(A*) such that \ 2 is

an eigenvalue to the eigenvector x,, of (A*A)~!, i.e., (A*A) 'z, = A\, ?x,. Moreover, (xn)
is a complete orthonormal system in R(A*), 1.e., for all z € R(A*) we have

1= G@)mn, &l@) = (z,2.)x.

(x,) € D(A*A) is also a complete orthonormal system of eigenvectors of A*A since
A*Az, = A\2z,. Defining

yr =4\, Az, € D(A")
we see A*yr = £\,x, € D(A). Hence, yf € D(AA*) with AA*yF = £\, Az, = \2yF,
i.e., yT is an eigenvector of AA* to the eigenvalue \2. For all y € R(A) with y = Ax for
some x € D(A) we have

Y,y )y = (2. A%yr)x = £ (@, 20)x (A7)
This shows two things. First, putting y := y£ = A(£\ 1z,,) we get

An
<y7j7:17 yrjz:>Y = )\_<xma xn>X7

m

which shows that (y;") and (y,,) are both orthonormal systems in R(A), and second, that
they are even complete in R(A). Thus, for all y € R(A) we obtain

y=> W, Gy = (.um)v-
n=1

ViiTf A is bounded, the sequences (\,) and (z) are finite.
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A little more careful inspection shows the following: Forally = Az € R(A) with z € D(A)
we have again with (A7)

y=> CGus iZAngn Zgn ) Az,
n=1

If even y = AA*y € R(AA*) with § € D(AA*) we see

y=> (i ZVCi ZC* )JAA* Y.,
n=1
G (y) = (5, AA Y )y = Ai(y,yn )y = Ai(f( )-
Analogously for some x = A*y € R(A*) with y € D(A*) it holds

T = an(x):cn =+ Z MGy (Y0 = Z G (W) A Y,
n=1 n=1 n=1

En(2) = (2, 20)x = (y, Azn)y = £X(y, 4 )y = XG0 (1),
If even x = A*AZ € R(A*A) with £ € D(A*A) we have

xzfjsn@: Zan Zgn JA*Az,,
n=1

1(0) = (0 A Aty = {5, rul = ().

For 2% := (z,,,yE) € D(M) we have
= (A*yT, Az,) = £ (20, yT) = N, 275.
Hence, 2 is an eigenvector to the eigenvalue £\, of M, i.e., 25 € N(MF )\,). Of course,

~F is also an eigenvector to the eigenvalue A2 of M? since

A*A — N2 0
0 AA* — )2
The assertions about the norms follow immediately by orthogonality and the continuity
of the norms, concluding the proof. O]

=M’ = A7 = (M=£X,)(MF A\).

Corollary 32 [t holds

) Ax . Ayl
N = |Az2 = min | |Y = min | 2|X = A"
0£zeD(A) |2 0£yeD(A)  |y3
zlx{z1,..xp_1} yly{y, ..., yei_l}
especiall
)\2 _ Y . ) X
1

min 3
0£zeD(A) |x|2 ozyeDan) |yl2
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Proof First, we emphasize that the dimensions of the eigenspaces N(A*A — A\2) and
N(AA* — \?) equal. Using the latter theorem we can represent x € D(A) and Az by

n=1 n=1
If additionally L x{z1,..., 2,1} wesee & =--- =&, = 0 and thus
el =D& Az =) NG =AD& = Nlelk
n=>~¢ n=/{ n=/{

|Ax[y

|2

Therefore, > A7 holds for all 0 # x € D(A) with L x{x1,...,7,_1}. On the other
X

hand |Az]2 = (@, A*Azy)x = A2|xy|% and 0 # x, € D(A) with zpLx{z1,..., 201}
Thus,
A 2
min | x\Y.
0£zeD(A) x|}
zlx{z1, ., xe_1

A = |Azf§ =

The other assertion about y and A*y follows analogously. U
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