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Abstract

For a bounded domain Ω ⊂ R
N with connected Lipschitz boundary we prove the

existence of some c > 0, such that

c ||P ||
L
2(Ω,RN×N ) ≤ ||symP ||

L
2(Ω,RN×N ) + ||CurlP ||

L
2(Ω,RN×(N−1)N/2)

holds for all square-integrable tensor fields P : Ω → R
N×N , having square-integrable

generalized ‘rotation’ CurlP : Ω → R
N×(N−1)N/2 and vanishing tangential trace on

∂Ω, where both operations are to be understood row-wise. Here, in each row the
operator curl is the vector analytical reincarnation of the exterior derivative d in
R
N . For compatible tensor fields P , i.e., P = ∇v, the latter estimate reduces to a

non-standard variant of Korn’s first inequality in R
N , namely

c ||∇v||
L
2(Ω,RN×N ) ≤ ||sym∇v||

L
2(Ω,RN×N )

for all vector fields v ∈ H
1(Ω,RN ), for which ∇vn, n = 1, . . . , N , are normal at ∂Ω.

Key Words Korn’s inequality, theory of Maxwell equations in R
N , Helmholtz

decomposition, Poincaré/Friedrichs type estimates

1 Introduction and Preliminaries

We extend the results from [12], which have been announced in [13], to the N -dimensional
case following in close lines the arguments presented there. Let N ∈ N and Ω be a
bounded domain in R

N with connected Lipschitz boundary Γ := ∂Ω. We prove a Korn-

type inequality in
◦

H(Curl; Ω) for eventually non-symmetric tensor fields P mapping Ω to
R

N×N . More precisely, there exists a positive constant c, such that

c ||P ||
L
2(Ω) ≤ ||symP ||

L
2(Ω) + ||CurlP ||

L
2(Ω)
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holds for all tensor fields P ∈
◦

H(Curl; Ω), where P belongs to
◦

H(Curl; Ω), if P ∈ H(Curl; Ω)
has vanishing tangential trace on Γ. Thereby, the generalized Curl and tangential trace
are defined as row-wise operations. For compatible tensor fields P = ∇v with vector fields
v ∈ H1(Ω), for which ∇vn, n = 1, . . . , N , are normal at ∂Ω, the latter estimate reduces to
a non-standard variant of the well known Korn’s first inequality in R

N

c ||∇v||
L
2(Ω) ≤ ||sym∇v||

L
2(Ω) .

Our proof relies on three essential tools, namely

1. Maxwell estimate (Poincaré-type estimate),

2. Helmholtz’ decomposition,

3. Korn’s first inequality.

In [12] we already pointed out the importance of the Maxwell estimate and the related
question of the Maxwell compactness property∗. Here, we mention the papers [2, 6, 15,
16, 17, 18, 20]. Results for the Helmholtz decomposition can be found in [3, 14, 15, 17,
20, 19, 7, 8, 9]. Nowadays, differential forms find prominent applications in numerical
methods like Finite Element Exterior Calculus [1, 4] or Discrete Exterior Calculus [5].

1.1 Differential Forms

We may look at Ω as a smooth Riemannian manifold of dimension N with compact closure
and connected Lipschitz continuous boundary Γ. The alternating differential forms of rank
q ∈ {0, . . . , N} on Ω, briefly q-forms, with square-integrable coefficients will be denoted
by L2,q(Ω). The exterior derivative d and the co-derivative δ = ± ∗ d∗ (∗: Hodge’s star
operator) are formally skew-adjoint to each other, i.e.,

∀E ∈
◦

C∞,q(Ω) H ∈
◦

C∞,q+1(Ω) 〈dE,H〉
L
2,q+1(Ω) = −〈E, δH〉

L
2,q(Ω) ,

where the L2,q(Ω)-scalar product is given by

∀E,H ∈ L2,q(Ω) 〈E,H〉
L
2,q(Ω) :=

∫

Ω

E ∧ ∗H.

Here
◦

C∞,q(Ω) denotes the space of compactly supported and smooth q-forms on Ω. Using
this duality, we can define weak versions of d and δ. The corresponding standard Sobolev
spaces are denoted by

Dq(Ω) := {E ∈ L2,q(Ω) : dE ∈ L2,q+1(Ω)},
∆q(Ω) := {H ∈ L2,q(Ω) : δH ∈ L2,q−1(Ω)}.

∗By ‘Maxwell estimate’ and ‘Maxwell compactness property’ we mean the estimates and compact
embedding results used in the theory of Maxwell’s equations.
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The homogeneous tangential boundary condition τΓE = 0, where τΓ denotes the tangential
trace, is generalized in the space

◦

Dq(Ω) :=
◦

C∞,q(Ω),

where the closure is taken in Dq(Ω). In classical terms, we have for smooth q-forms τΓ = ι∗

with the canonical embedding ι : Γ →֒ Ω. An index 0 at the lower right position indicates
vanishing derivatives, i.e.,

◦

Dq
0(Ω) = {E ∈

◦

Dq(Ω) : dE = 0}, ∆q
0(Ω) = {H ∈ ∆q(Ω) : δH = 0}.

By definition and density, we have

∆q
0(Ω) := (d

◦

Dq−1(Ω))⊥, ∆q
0(Ω)

⊥ := d
◦

Dq−1(Ω),

where ⊥ denotes the orthogonal complement with respect to the L2,q(Ω)-scalar product
and the closure is taken in L2,q(Ω). Hence, we obtain the L2,q(Ω)-orthogonal decomposi-
tion, usually called Hodge-Helmholtz decomposition,

L2,q(Ω) = d
◦

Dq−1(Ω)⊕∆q
0(Ω), (1.1)

where ⊕ denotes the orthogonal sum with respect to the L2,q(Ω)-scalar product. In [20, 16]
the following crucial tool has been proved:

Lemma 1 (Maxwell Compactness Property) For all q the embeddings

◦

Dq(Ω) ∩∆q(Ω) →֒ L2,q(Ω)

are compact.

As a first immediate consequence, the spaces of so called ‘harmonic Dirichlet forms’

Hq(Ω) :=
◦

Dq
0(Ω) ∩∆q

0(Ω)

are finite dimensional. In classical terms, a q-form E belongs to Hq(Ω), if

dE = 0, δE = 0, ι∗E = 0.

The dimension of Hq(Ω) equals the (N − q)th Betti number of Ω. Since we assume the
boundary Γ to be connected, the (N − 1)th Betti number of Ω vanishes and therefore
there are no Dirichlet forms of rank 1 besides zero, i.e.,

H1(Ω) = {0}. (1.2)

This condition on the domain Ω resp. its boundary Γ is satisfied e.g. for a ball or a torus.
By a usual indirect argument, we achieve another immediate consequence:
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Lemma 2 (Poincaré Estimate for Differential Forms) For all q there exist positive constants

cp,q, such that for all E ∈
◦

Dq(Ω) ∩∆q(Ω) ∩ Hq(Ω)⊥

||E||
L
2,q(Ω) ≤ cp,q

(

||dE||2
L
2,q+1(Ω) + ||δE||2

L
2,q−1(Ω)

)1/2
.

Since

d
◦

Dq−1(Ω) ⊂
◦

Dq
0(Ω)

(note that dd= 0 and δδ= 0 hold even in the weak sense) we get by (1.1)

d
◦

Dq−1(Ω) = d
(
◦

Dq−1(Ω) ∩∆q−1
0 (Ω)

)

= d
(
◦

Dq−1(Ω) ∩∆q−1
0 (Ω) ∩Hq−1(Ω)⊥

)

.

Now, Lemma 2 shows that d
◦

Dq−1(Ω) is already closed. Hence, we obtain a refinement of
(1.1)

Lemma 3 (Hodge-Helmholtz Decomposition for Differential Forms) The decomposition

L2,q(Ω) = d
◦

Dq−1(Ω)⊕∆q
0(Ω)

holds.

1.2 Functions and Vector Fields

Let us turn to the special case q = 1. In this case, we choose (e.g.) the identity as single
global chart for Ω and use the canonical identification isomorphism for 1-forms (i.e., Riesz’
representation theorem) with vector fields dxn

∼= en, namely

N
∑

n=1

vn(x) dxn
∼= v(x) =







v1(x)
...

vN(x)






, x ∈ Ω.

0-forms will be isomorphically identified with functions on Ω. Then, d∼= grad = ∇ for
0-forms (functions) and δ∼= div = ∇ · for 1-forms (vector fields). Hence, the well known
first order differential operators from vector analysis occur. Moreover, on 1-forms we
define a new operator curl :∼= d, which turns into the usual curl if N = 3 or N = 2.
L2,q(Ω) equals the usual Lebesgue spaces of square integrable functions or vector fields
on Ω with values in R

n, n := nN,q :=
(

N
q

)

, which will be denoted by L2(Ω) := L2(Ω,Rn).

D0(Ω) and ∆1(Ω) are identified with the standard Sobolev spaces

H(grad; Ω) := {u ∈ L2(Ω,R) : gradu ∈ L2(Ω,RN)} = H1(Ω),

H(div; Ω) := {v ∈ L2(Ω,RN) : div v ∈ L2(Ω,R)},
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respectively. Moreover, we may now identify D1(Ω) with

H(curl; Ω) := {v ∈ L2(Ω,RN ) : curl v ∈ L2(Ω,R(N−1)N/2)},

which is the well known H(curl; Ω) for N = 2, 3. E.g., for N = 4 we have

curl v =

















∂1v2 − ∂2v1
∂1v3 − ∂3v1
∂1v4 − ∂4v1
∂2v3 − ∂3v2
∂2v4 − ∂4v2
∂3v4 − ∂4v3

















∈ R
6

and for N = 5 we get curl v ∈ R
10. In general, the entries of the (N − 1)N/2-vector curl v

consist of all possible combinations of

∂nvm − ∂mvn, 1 ≤ n < m ≤ N.

Similarly, we obtain the closed subspaces

◦

H(grad; Ω) =
◦

H1(Ω),
◦

H(curl; Ω)

as reincarnations of
◦

D0(Ω) and
◦

D1(Ω), respectively. We note

◦

H(grad; Ω) =
◦

C∞(Ω),
◦

H(curl; Ω) =
◦

C∞(Ω),

where the closures are taken in the respective graph norms, and that in these Sobolev
spaces the classical homogeneous scalar and tangential (compare to N = 3) boundary
conditions

u|Γ = 0, ν × v|Γ = 0

are generalized. Here, ν denotes the outward unit normal for Γ. Furthermore, we have
the spaces of irrotational or solenoidal vector fields

H(curl0; Ω) = {v ∈ H(curl; Ω) : curl v = 0},
◦

H(curl0; Ω) = {v ∈
◦

H(curl; Ω) : curl v = 0},
H(div0; Ω) = {v ∈ H(div; Ω) : div v = 0}.

Again, all these spaces are Hilbert spaces. Now, we have two compact embeddings

◦

H(grad; Ω) →֒ L2(Ω),
◦

H(curl; Ω) ∩ H(div; Ω) →֒ L2(Ω),

i.e., Rellich’s selection theorem and the Maxwell compactness property. Moreover, the
following Poincaré and Maxwell estimates hold:
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Corollary 4 (Poincaré Estimate for Functions) Let cp := cp,0. Then, for all functions

u ∈
◦

H(grad; Ω)
||u||

L
2(Ω) ≤ cp ||gradu||L2(Ω) .

Corollary 5 (Maxwell Estimate for Vector Fields) Let cm := cp,1. Then, for all vector

fields v ∈
◦

H(curl; Ω) ∩ H(div; Ω)

||v||
L
2(Ω) ≤ cm

(

||curl v||2
L
2(Ω) + ||div v||2

L
2(Ω)

)1/2
.

We note that generally H0(Ω) = {0} and by (1.2) also H1(Ω) = {0}. The appropriate
Helmholtz decomposition for our needs is

Corollary 6 (Helmholtz Decomposition for Vector Fiels)

L2(Ω) = grad
◦

H(grad; Ω)⊕ H(div0; Ω)

1.3 Tensor Fields

We extend our calculus to (N ×N)-tensor (matrix) fields. For vector fields v with com-

ponents in H(grad; Ω) and tensor fields P with rows in H(curl; Ω) resp. H(div; Ω), i.e.,

v =







v1
...
vN






, vn ∈ H(grad; Ω), P =







P1
T

...
PN

T






, Pn ∈ H(curl; Ω) resp. H(div; Ω)

for n = 1, . . . , N , we define

Grad v :=







gradTv1
...

gradTvN






= Jv = ∇v, CurlP :=







curlTP1
...

curlTPN






, DivP :=







divP1
...

divPN






,

where Jv denotes the Jacobian of v and T the transpose. We note that v and DivP are N -
vector fields, P and Grad v are (N×N)-tensor fields, whereas CurlP is a (N×(N−1)N/2)-
tensor field which may also be viewed as a totally anti-symmetric third order tensor field
with entries

(CurlP )ijk = ∂jPik − ∂kPij .

The corresponding Sobolev spaces will be denoted by

H(Grad; Ω),
◦

H(Grad; Ω), H(Div; Ω), H(Div0; Ω),

H(Curl; Ω),
◦

H(Curl; Ω), H(Curl0; Ω),
◦

H(Curl0; Ω).

There are three crucial tools to prove our estimate. First, we have obvious conse-
quences from Corollaries 4, 5 and 6:
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Corollary 7 (Poincaré Estimate for Vector Fields) For all v ∈
◦

H(Grad; Ω)

||v||
L
2(Ω) ≤ cp ||Grad v||

L
2(Ω) .

Corollary 8 (Maxwell Estimate for Tensor Fields) The estimate

||P ||
L
2(Ω) ≤ cm

(

||CurlP ||2
L
2(Ω) + ||DivP ||2

L
2(Ω)

)1/2

holds for all tensor fields P ∈
◦

H(Curl; Ω) ∩ H(Div; Ω).

Corollary 9 (Helmholtz Decomposition for Tensor Fields)

L2(Ω) = Grad
◦

H(Grad; Ω)⊕ H(Div0; Ω)

The last important tool is Korn’s first inequality.

Lemma 10 (Korn’s First Inequality) For all vector fields v ∈
◦

H(Grad; Ω)

||Grad v||
L
2(Ω) ≤

√
2 ||symGrad v||

L
2(Ω) .

Here, we introduce the symmetric and skew-symmetric parts

symP :=
1

2
(P + P T ), skew P :=

1

2
(P − P T )

of a (N ×N)-tensor P = symP + skew P .

Remark 11 We note that the proof including the value of the constant is simple. By

density we may assume v ∈
◦

C∞(Ω). Twofold partial integration yields

〈∂nvm, ∂mvn〉L2(Ω) = 〈∂mvm, ∂nvn〉L2(Ω)

and hence

2 ||symGrad v||2
L
2(Ω) =

1

2

N
∑

n,m=1

||∂nvm + ∂mvn||2L2(Ω)

=
N
∑

n,m=1

(

||∂nvm||2L2(Ω) + 〈∂nvm, ∂mvn〉L2(Ω)

)

= ||Grad v||2
L
2(Ω) + ||div v||2

L
2(Ω) ≥ ||Grad v||2

L
2(Ω) .

More on Korn’s first inequality can be found, e.g., in [10].
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2 Results

For tensor fields P ∈ H(Curl; Ω) we define the semi-norm

|||P ||| :=
(

||symP ||2
L
2(Ω) + ||CurlP ||2

L
2(Ω)

)1/2
.

The main step is to prove the following

Lemma 12 Let ĉ := max{2,
√
5cm}. Then, for all P ∈

◦

H(Curl; Ω)

||P ||
L
2(Ω) ≤ ĉ |||P ||| .

Proof Let P ∈
◦

H(Curl; Ω). According to Corollary 9 we orthogonally decompose

P = Grad v + S ∈ Grad
◦

H(Grad; Ω)⊕ H(Div0; Ω).

Then, CurlP = CurlS and we observe S ∈
◦

H(Curl; Ω) ∩ H(Div0; Ω) since

Grad
◦

H(Grad; Ω) ⊂
◦

H(Curl0; Ω). (2.1)

By Corollary 8, we have

||S||
L
2(Ω) ≤ cm ||CurlP ||

L
2(Ω) . (2.2)

Then, by Lemma 10 and (2.2) we obtain

||P ||2
L
2(Ω) = ||Grad v||2

L
2(Ω) + ||S||2

L
2(Ω)

≤ 2 ||symGrad v||2
L
2(Ω) + ||S||2

L
2(Ω) ≤ 4 ||symP ||2

L
2(Ω) + 5 ||S||2

L
2(Ω) ,

which completes the proof. �

The immediate consequence is our main result

Theorem 13 On
◦

H(Curl; Ω) the norms || · ||
H(Curl;Ω) and ||| · ||| are equivalent. In particular,

||| · ||| is a norm on
◦

H(Curl; Ω) and there exists a positive constant c, such that

c ||P ||2
H(Curl;Ω)

≤ |||P |||2 = ||symP ||2
L
2(Ω) + ||CurlP ||2

L
2(Ω)

holds for all P ∈
◦

H(Curl; Ω).

Remark 14 For a skew-symmetric tensor field P : Ω → so(N) our estimate reduces to a
Poincaré inequality in disguise, since CurlP controls all partial derivatives of P (compare
to [11]) and the homogeneous tangential boundary condition for P is implied by P |Γ = 0.
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Setting P := Grad v we obtain

Remark 15 (Korn’s First Inequality: Tangential-Variant) For all v ∈
◦

H(Grad; Ω)

||Grad v||
L
2(Ω) ≤ ĉ ||symGrad v||

L
2(Ω) (2.3)

holds by Lemma 12 and (2.1). This is just Korn’s first inequality from Lemma 10 with a
larger constant ĉ. Since Γ is connected, i.e., H1(Ω) = {0}, we even have

Grad
◦

H(Grad; Ω) =
◦

H(Curl0; Ω).

Thus, (2.3) holds for all v ∈ H(Grad; Ω) with Grad v ∈
◦

H(Curl0; Ω), i.e., with Grad vn,
n = 1, . . . , N , normal at Γ, which then extends Lemma 10 through the (apparently) weaker
boundary condition.

The elementary arguments above apply certainly to much more general situations,
e.g., to not necessarily connected boundaries Γ and to tangential boundary conditions
which are imposed only on parts of Γ. These discussions are left to forthcoming papers.

Acknowledgements We thank the referee for pointing out a missing assumption in a
preliminary version of the paper.
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