Maxwell meets Korn: A New Coercive Inequality for Tensor Fields in $\mathbb{R}^{N \times N}$ with Square-Integrable Exterior Derivative

Patrizio Neff, Dirk Pauly, Karl-Josef Witsch

September 3, 2018

Abstract

For a bounded domain $\Omega \subset \mathbb{R}^{N}$ with connected Lipschitz boundary we prove the existence of some $c>0$, such that $$
c\|P\|_{\mathrm{L}^{2}\left(\Omega, \mathbb{R}^{N \times N}\right)} \leq\|\operatorname{sym} P\|_{\mathrm{L}^{2}\left(\Omega, \mathbb{R}^{N \times N}\right)}+\|\operatorname{Curl} P\|_{\mathrm{L}^{2}\left(\Omega, \mathbb{R}^{N \times(N-1) N / 2}\right)}
$$ holds for all square-integrable tensor fields $P: \Omega \rightarrow \mathbb{R}^{N \times N}$, having square-integrable generalized 'rotation' Curl $P: \Omega \rightarrow \mathbb{R}^{N \times(N-1) N / 2}$ and vanishing tangential trace on $\partial \Omega$, where both operations are to be understood row-wise. Here, in each row the operator curl is the vector analytical reincarnation of the exterior derivative d in \mathbb{R}^{N}. For compatible tensor fields P, i.e., $P=\nabla v$, the latter estimate reduces to a non-standard variant of Korn's first inequality in \mathbb{R}^{N}, namely $$
c\|\nabla v\|_{\mathrm{L}^{2}\left(\Omega, \mathbb{R}^{N \times N}\right)} \leq\|\operatorname{sym} \nabla v\|_{\mathrm{L}^{2}\left(\Omega, \mathbb{R}^{N \times N}\right)}
$$ for all vector fields $v \in \mathrm{H}^{1}\left(\Omega, \mathbb{R}^{N}\right)$, for which $\nabla v_{n}, n=1, \ldots, N$, are normal at $\partial \Omega$. Key Words Korn's inequality, theory of Maxwell equations in \mathbb{R}^{N}, Helmholtz decomposition, Poincaré/Friedrichs type estimates

1 Introduction and Preliminaries

We extend the results from [12], which have been announced in [13], to the N-dimensional case following in close lines the arguments presented there. Let $N \in \mathbb{N}$ and Ω be a bounded domain in \mathbb{R}^{N} with connected Lipschitz boundary $\Gamma:=\partial \Omega$. We prove a Korntype inequality in $\mathrm{H}(\operatorname{Curl} ; \Omega)$ for eventually non-symmetric tensor fields P mapping Ω to $\mathbb{R}^{N \times N}$. More precisely, there exists a positive constant c, such that

$$
c\|P\|_{\mathrm{L}^{2}(\Omega)} \leq\|\operatorname{sym} P\|_{\mathrm{L}^{2}(\Omega)}+\|\operatorname{Curl} P\|_{\mathrm{L}^{2}(\Omega)}
$$

holds for all tensor fields $P \in \stackrel{\circ}{\mathrm{H}}(\operatorname{Curl} ; \Omega)$, where P belongs to $\stackrel{\circ}{\mathrm{H}}(\mathrm{Curl} ; \Omega)$, if $P \in \mathrm{H}(\operatorname{Curl} ; \Omega)$ has vanishing tangential trace on Γ. Thereby, the generalized Curl and tangential trace are defined as row-wise operations. For compatible tensor fields $P=\nabla v$ with vector fields $v \in \mathrm{H}^{1}(\Omega)$, for which $\nabla v_{n}, n=1, \ldots, N$, are normal at $\partial \Omega$, the latter estimate reduces to a non-standard variant of the well known Korn's first inequality in \mathbb{R}^{N}

$$
c\|\nabla v\|_{L^{2}(\Omega)} \leq\|\operatorname{sym} \nabla v\|_{L^{2}(\Omega)} .
$$

Our proof relies on three essential tools, namely

1. Maxwell estimate (Poincaré-type estimate),
2. Helmholtz' decomposition,
3. Korn's first inequality.

In [12] we already pointed out the importance of the Maxwell estimate and the related question of the Maxwell compactness property*. Here, we mention the papers [2, 6, 15, 16, 17, 18, 20. Results for the Helmholtz decomposition can be found in [3, 14, 15, 17, [20, 19, 7, 8, 9]. Nowadays, differential forms find prominent applications in numerical methods like Finite Element Exterior Calculus [1, 4] or Discrete Exterior Calculus [5].

1.1 Differential Forms

We may look at Ω as a smooth Riemannian manifold of dimension N with compact closure and connected Lipschitz continuous boundary Γ. The alternating differential forms of rank $q \in\{0, \ldots, N\}$ on Ω, briefly q-forms, with square-integrable coefficients will be denoted by $\mathrm{L}^{2, q}(\Omega)$. The exterior derivative d and the co-derivative $\delta= \pm * \mathrm{~d} *$ ($*$: Hodge's star operator) are formally skew-adjoint to each other, i.e.,

$$
\forall E \in \stackrel{\circ}{C}^{\infty, q}(\Omega) \quad H \in \stackrel{\circ}{C}^{\infty, q+1}(\Omega) \quad\langle\mathrm{d} E, H\rangle_{\mathrm{L}^{2, q+1}(\Omega)}=-\langle E, \delta H\rangle_{\mathrm{L}^{2, q}(\Omega)},
$$

where the $\mathrm{L}^{2, q}(\Omega)$-scalar product is given by

$$
\forall E, H \in \mathrm{~L}^{2, q}(\Omega) \quad\langle E, H\rangle_{\mathrm{L}^{2, q}(\Omega)}:=\int_{\Omega} E \wedge * H .
$$

Here ${ }^{\circ}{ }^{\infty}, q(\Omega)$ denotes the space of compactly supported and smooth q-forms on Ω. Using this duality, we can define weak versions of d and δ. The corresponding standard Sobolev spaces are denoted by

$$
\begin{aligned}
\mathrm{D}^{q}(\Omega) & :=\left\{E \in \mathrm{~L}^{2, q}(\Omega): \mathrm{d} E \in \mathrm{~L}^{2, q+1}(\Omega)\right\}, \\
\Delta^{q}(\Omega) & :=\left\{H \in \mathrm{~L}^{2, q}(\Omega): \delta H \in \mathrm{~L}^{2, q-1}(\Omega)\right\} .
\end{aligned}
$$

[^0]The homogeneous tangential boundary condition $\tau_{\Gamma} E=0$, where τ_{Γ} denotes the tangential trace, is generalized in the space

$$
\stackrel{\circ}{\mathrm{D}}^{q}(\Omega):=\bar{\circ}{ }^{\circ} \infty, q(\Omega),
$$

where the closure is taken in $\mathrm{D}^{q}(\Omega)$. In classical terms, we have for smooth q-forms $\tau_{\Gamma}=\iota^{*}$ with the canonical embedding $\iota: \Gamma \hookrightarrow \bar{\Omega}$. An index 0 at the lower right position indicates vanishing derivatives, i.e.,

$$
\stackrel{\circ}{\mathrm{D}}_{0}^{q}(\Omega)=\left\{E \in \stackrel{\circ}{\mathrm{D}}^{q}(\Omega): \mathrm{d} E=0\right\}, \quad \Delta_{0}^{q}(\Omega)=\left\{H \in \Delta^{q}(\Omega): \delta H=0\right\} .
$$

By definition and density, we have

$$
\Delta_{0}^{q}(\Omega):=\left(\mathrm{d}^{\circ}{ }^{q-1}(\Omega)\right)^{\perp}, \quad \Delta_{0}^{q}(\Omega)^{\perp}:=\overline{\mathrm{dD}^{\circ-1}(\Omega)},
$$

where \perp denotes the orthogonal complement with respect to the $\mathrm{L}^{2, q}(\Omega)$-scalar product and the closure is taken in $\mathrm{L}^{2, q}(\Omega)$. Hence, we obtain the $\mathrm{L}^{2, q}(\Omega)$-orthogonal decomposition, usually called Hodge-Helmholtz decomposition,

$$
\begin{equation*}
\mathrm{L}^{2, q}(\Omega)=\overline{\mathrm{d}^{\circ}{ }^{q-1}(\Omega)} \oplus \Delta_{0}^{q}(\Omega) \tag{1.1}
\end{equation*}
$$

where \oplus denotes the orthogonal sum with respect to the $\mathrm{L}^{2, q}(\Omega)$-scalar product. In [20, 16] the following crucial tool has been proved:

Lemma 1 (Maxwell Compactness Property) For all q the embeddings

$$
\stackrel{\circ}{\mathrm{D}}^{q}(\Omega) \cap \Delta^{q}(\Omega) \hookrightarrow \mathrm{L}^{2, q}(\Omega)
$$

are compact.
As a first immediate consequence, the spaces of so called 'harmonic Dirichlet forms'

$$
\mathcal{H}^{q}(\Omega):=\stackrel{\circ}{\mathrm{D}}_{0}^{q}(\Omega) \cap \Delta_{0}^{q}(\Omega)
$$

are finite dimensional. In classical terms, a q-form E belongs to $\mathcal{H}^{q}(\Omega)$, if

$$
\mathrm{d} E=0, \quad \delta E=0, \quad \iota^{*} E=0
$$

The dimension of $\mathcal{H}^{q}(\Omega)$ equals the $(N-q)$ th Betti number of Ω. Since we assume the boundary Γ to be connected, the $(N-1)$ th Betti number of Ω vanishes and therefore there are no Dirichlet forms of rank 1 besides zero, i.e.,

$$
\begin{equation*}
\mathcal{H}^{1}(\Omega)=\{0\} . \tag{1.2}
\end{equation*}
$$

This condition on the domain Ω resp. its boundary Γ is satisfied e.g. for a ball or a torus.
By a usual indirect argument, we achieve another immediate consequence:

Lemma 2 (Poincaré Estimate for Differential Forms) For all q there exist positive constants $c_{p, q}$, such that for all $E \in \stackrel{\circ}{D}^{q}(\Omega) \cap \Delta^{q}(\Omega) \cap \mathcal{H}^{q}(\Omega)^{\perp}$

$$
\|E\|_{\mathrm{L}^{2}, q(\Omega)} \leq c_{p, q}\left(\|\mathrm{~d} E\|_{\mathrm{L}^{2}, q+1}^{2}(\Omega),\|\delta E\|_{\mathrm{L}^{2}, q-1}^{2}(\Omega)\right)^{1 / 2}
$$

Since

$$
\mathrm{d}^{\circ}{ }^{q-1}(\Omega) \subset \stackrel{\circ}{\mathrm{D}}_{0}^{q}(\Omega)
$$

(note that $\mathrm{dd}=0$ and $\delta \delta=0$ hold even in the weak sense) we get by (1.1)

$$
\mathrm{d} \stackrel{\circ}{\mathrm{D}}^{q-1}(\Omega)=\mathrm{d}\left(\stackrel{\circ}{\mathrm{D}}^{q-1}(\Omega) \cap \Delta_{0}^{q-1}(\Omega)\right)=\mathrm{d}\left(\stackrel{\circ}{\mathrm{D}}^{q-1}(\Omega) \cap \Delta_{0}^{q-1}(\Omega) \cap \mathcal{H}^{q-1}(\Omega)^{\perp}\right)
$$

Now, Lemma 2 shows that $\mathrm{d} \mathrm{D}^{q-1}(\Omega)$ is already closed. Hence, we obtain a refinement of (1.1)

Lemma 3 (Hodge-Helmholtz Decomposition for Differential Forms) The decomposition

$$
\mathrm{L}^{2, q}(\Omega)=\mathrm{d} \stackrel{\circ}{\mathrm{D}}^{q-1}(\Omega) \oplus \Delta_{0}^{q}(\Omega)
$$

holds.

1.2 Functions and Vector Fields

Let us turn to the special case $q=1$. In this case, we choose (e.g.) the identity as single global chart for Ω and use the canonical identification isomorphism for 1-forms (i.e., Riesz' representation theorem) with vector fields $\mathrm{d} x_{n} \cong e^{n}$, namely

$$
\sum_{n=1}^{N} v_{n}(x) \mathrm{d} x_{n} \cong v(x)=\left[\begin{array}{c}
v_{1}(x) \\
\vdots \\
v_{N}(x)
\end{array}\right], \quad x \in \Omega .
$$

0 -forms will be isomorphically identified with functions on Ω. Then, $\mathrm{d} \cong \operatorname{grad}=\nabla$ for 0 -forms (functions) and $\delta \cong \operatorname{div}=\nabla$. for 1 -forms (vector fields). Hence, the well known first order differential operators from vector analysis occur. Moreover, on 1-forms we define a new operator curl $: \cong \mathrm{d}$, which turns into the usual curl if $N=3$ or $N=2$. $\mathrm{L}^{2, q}(\Omega)$ equals the usual Lebesgue spaces of square integrable functions or vector fields on Ω with values in $\mathbb{R}^{n}, n:=n_{N, q}:=\binom{N}{q}$, which will be denoted by $\mathrm{L}^{2}(\Omega):=\mathrm{L}^{2}\left(\Omega, \mathbb{R}^{n}\right)$. $\mathrm{D}^{0}(\Omega)$ and $\Delta^{1}(\Omega)$ are identified with the standard Sobolev spaces

$$
\begin{aligned}
\mathrm{H}(\operatorname{grad} ; \Omega) & :=\left\{u \in \mathrm{~L}^{2}(\Omega, \mathbb{R}): \operatorname{grad} u \in \mathrm{~L}^{2}\left(\Omega, \mathbb{R}^{N}\right)\right\}=\mathrm{H}^{1}(\Omega), \\
\mathrm{H}(\operatorname{div} ; \Omega) & :=\left\{v \in \mathrm{~L}^{2}\left(\Omega, \mathbb{R}^{N}\right): \operatorname{div} v \in \mathrm{~L}^{2}(\Omega, \mathbb{R})\right\},
\end{aligned}
$$

respectively. Moreover, we may now identify $\mathrm{D}^{1}(\Omega)$ with

$$
\mathrm{H}(\operatorname{curl} ; \Omega):=\left\{v \in \mathrm{~L}^{2}\left(\Omega, \mathbb{R}^{N}\right): \operatorname{curl} v \in \mathrm{~L}^{2}\left(\Omega, \mathbb{R}^{(N-1) N / 2}\right)\right\}
$$

which is the well known $\mathrm{H}(\operatorname{curl} ; \Omega)$ for $N=2,3$. E.g., for $N=4$ we have

$$
\operatorname{curl} v=\left[\begin{array}{l}
\partial_{1} v_{2}-\partial_{2} v_{1} \\
\partial_{1} v_{3}-\partial_{3} v_{1} \\
\partial_{1} v_{4}-\partial_{4} v_{1} \\
\partial_{2} v_{3}-\partial_{3} v_{2} \\
\partial_{2} v_{4}-\partial_{4} v_{2} \\
\partial_{3} v_{4}-\partial_{4} v_{3}
\end{array}\right] \in \mathbb{R}^{6}
$$

and for $N=5$ we get curl $v \in \mathbb{R}^{10}$. In general, the entries of the $(N-1) N / 2$-vector curl v consist of all possible combinations of

$$
\partial_{n} v_{m}-\partial_{m} v_{n}, \quad 1 \leq n<m \leq N .
$$

Similarly, we obtain the closed subspaces

$$
\stackrel{\circ}{\mathrm{H}}(\operatorname{grad} ; \Omega)=\stackrel{\circ}{\mathrm{H}^{1}}(\Omega), \quad \stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega)
$$

as reincarnations of $\stackrel{\circ}{D}^{0}(\Omega)$ and $\stackrel{\circ}{D}^{1}(\Omega)$, respectively. We note

$$
\stackrel{\circ}{\mathrm{H}}(\operatorname{grad} ; \Omega)=\bar{\circ}{ }^{\circ} \infty(\Omega), \quad \stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega)=\bar{\circ}{ }^{\circ} \infty(\Omega),
$$

where the closures are taken in the respective graph norms, and that in these Sobolev spaces the classical homogeneous scalar and tangential (compare to $N=3$) boundary conditions

$$
\left.u\right|_{\Gamma}=0, \quad \nu \times\left. v\right|_{\Gamma}=0
$$

are generalized. Here, ν denotes the outward unit normal for Γ. Furthermore, we have the spaces of irrotational or solenoidal vector fields

$$
\begin{aligned}
\mathrm{H}\left(\operatorname{curl}_{0} ; \Omega\right) & =\{v \in \mathrm{H}(\operatorname{curl} ; \Omega): \operatorname{curl} v=0\}, \\
\stackrel{\circ}{\mathrm{H}}\left(\operatorname{curl}_{0} ; \Omega\right) & =\{v \in \stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega): \operatorname{curl} v=0\}, \\
\mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right) & =\{v \in \mathrm{H}(\operatorname{div} ; \Omega): \operatorname{div} v=0\} .
\end{aligned}
$$

Again, all these spaces are Hilbert spaces. Now, we have two compact embeddings

$$
\stackrel{\circ}{\mathrm{H}}(\operatorname{grad} ; \Omega) \hookrightarrow \mathrm{L}^{2}(\Omega), \quad \stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega) \cap \mathrm{H}(\operatorname{div} ; \Omega) \hookrightarrow \mathrm{L}^{2}(\Omega),
$$

i.e., Rellich's selection theorem and the Maxwell compactness property. Moreover, the following Poincaré and Maxwell estimates hold:

Corollary 4 (Poincaré Estimate for Functions) Let $c_{p}:=c_{p, 0}$. Then, for all functions $u \in \stackrel{\circ}{\mathrm{H}}(\mathrm{grad} ; \Omega)$

$$
\|u\|_{L^{2}(\Omega)} \leq c_{p}\|\operatorname{grad} u\|_{L^{2}(\Omega)} .
$$

Corollary 5 (Maxwell Estimate for Vector Fields) Let $c_{m}:=c_{p, 1}$. Then, for all vector fields $v \in \stackrel{\circ}{\mathrm{H}}(\operatorname{curl} ; \Omega) \cap \mathrm{H}(\operatorname{div} ; \Omega)$

$$
\|v\|_{\mathrm{L}^{2}(\Omega)} \leq c_{m}\left(\|\operatorname{curl} v\|_{\mathrm{L}^{2}(\Omega)}^{2}+\|\operatorname{div} v\|_{\mathrm{L}^{2}(\Omega)}^{2}\right)^{1 / 2} .
$$

We note that generally $\mathcal{H}^{0}(\Omega)=\{0\}$ and by (1.2) also $\mathcal{H}^{1}(\Omega)=\{0\}$. The appropriate Helmholtz decomposition for our needs is

Corollary 6 (Helmholtz Decomposition for Vector Fiels)

$$
\mathrm{L}^{2}(\Omega)=\operatorname{grad} \stackrel{\circ}{\mathrm{H}}(\operatorname{grad} ; \Omega) \oplus \mathrm{H}\left(\operatorname{div}_{0} ; \Omega\right)
$$

1.3 Tensor Fields

We extend our calculus to $(N \times N)$-tensor (matrix) fields. For vector fields v with components in $\mathrm{H}(\operatorname{grad} ; \Omega)$ and tensor fields P with rows in $\mathrm{H}(\operatorname{curl} ; \Omega)$ resp. $\mathrm{H}(\operatorname{div} ; \Omega)$, i.e.,

$$
v=\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{N}
\end{array}\right], \quad v_{n} \in \mathrm{H}(\operatorname{grad} ; \Omega), \quad P=\left[\begin{array}{c}
P_{1}{ }^{T} \\
\vdots \\
P_{N}{ }^{T}
\end{array}\right], \quad P_{n} \in \mathrm{H}(\operatorname{curl} ; \Omega) \text { resp. } \mathrm{H}(\operatorname{div} ; \Omega)
$$

for $n=1, \ldots, N$, we define

$$
\operatorname{Grad} v:=\left[\begin{array}{c}
\operatorname{grad}^{T} v_{1} \\
\vdots \\
\operatorname{grad}^{T} v_{N}
\end{array}\right]=J_{v}=\nabla v, \quad \operatorname{Curl} P:=\left[\begin{array}{c}
\operatorname{curl}^{T} P_{1} \\
\vdots \\
\operatorname{curl}^{T} P_{N}
\end{array}\right], \quad \operatorname{Div} P:=\left[\begin{array}{c}
\operatorname{div} P_{1} \\
\vdots \\
\operatorname{div} P_{N}
\end{array}\right],
$$

where J_{v} denotes the Jacobian of v and ${ }^{T}$ the transpose. We note that v and Div P are N vector fields, P and Grad v are $(N \times N)$-tensor fields, whereas Curl P is a $(N \times(N-1) N / 2)$ tensor field which may also be viewed as a totally anti-symmetric third order tensor field with entries

$$
(\operatorname{Curl} P)_{i j k}=\partial_{j} P_{i k}-\partial_{k} P_{i j} .
$$

The corresponding Sobolev spaces will be denoted by

$\mathrm{H}(\operatorname{Grad} ; \Omega)$,	$\stackrel{\circ}{\mathrm{H}}(\operatorname{Grad} ; \Omega)$,	$\mathrm{H}(\operatorname{Div} ; \Omega)$,	$\mathrm{H}\left(\operatorname{Div}_{0} ; \Omega\right)$,
$\mathrm{H}(\operatorname{Curl} ; \Omega)$,	$\stackrel{\circ}{\mathrm{H}}(\operatorname{Curl} ; \Omega)$,	$\mathrm{H}\left(\operatorname{Curl}_{0} ; \Omega\right)$,	$\stackrel{\circ}{\mathrm{H}}\left(\operatorname{Curl}_{0} ; \Omega\right)$.

There are three crucial tools to prove our estimate. First, we have obvious consequences from Corollaries (4) 5and 6.

Corollary 7 (Poincaré Estimate for Vector Fields) For all $v \in \stackrel{\circ}{\mathrm{H}}(\mathrm{Grad} ; \Omega)$

$$
\|v\|_{\mathrm{L}^{2}(\Omega)} \leq c_{p}\|\operatorname{Grad} v\|_{\mathrm{L}^{2}(\Omega)} .
$$

Corollary 8 (Maxwell Estimate for Tensor Fields) The estimate

$$
\|P\|_{\mathrm{L}^{2}(\Omega)} \leq c_{m}\left(\|\operatorname{Curl} P\|_{\mathrm{L}^{2}(\Omega)}^{2}+\|\operatorname{Div} P\|_{\mathrm{L}^{2}(\Omega)}^{2}\right)^{1 / 2}
$$

holds for all tensor fields $P \in \stackrel{\circ}{\mathrm{H}}(\operatorname{Curl} ; \Omega) \cap \mathrm{H}(\operatorname{Div} ; \Omega)$.

Corollary 9 (Helmholtz Decomposition for Tensor Fields)

$$
\mathrm{L}^{2}(\Omega)=\operatorname{Grad} \stackrel{\circ}{\mathrm{H}}(\operatorname{Grad} ; \Omega) \oplus \mathrm{H}\left(\operatorname{Div}_{0} ; \Omega\right)
$$

The last important tool is Korn's first inequality.
Lemma 10 (Korn's First Inequality) For all vector fields $v \in \stackrel{\circ}{\mathrm{H}}(\operatorname{Grad} ; \Omega)$

$$
\|\operatorname{Grad} v\|_{L^{2}(\Omega)} \leq \sqrt{2}\|\operatorname{sym} \operatorname{Grad} v\|_{\mathrm{L}^{2}(\Omega)}
$$

Here, we introduce the symmetric and skew-symmetric parts

$$
\operatorname{sym} P:=\frac{1}{2}\left(P+P^{T}\right), \quad \text { skew } P:=\frac{1}{2}\left(P-P^{T}\right)
$$

of a $(N \times N)$-tensor $P=\operatorname{sym} P+$ skew P.
Remark 11 We note that the proof including the value of the constant is simple. By density we may assume $v \in \overleftarrow{C}^{\infty}(\Omega)$. Twofold partial integration yields

$$
\left\langle\partial_{n} v_{m}, \partial_{m} v_{n}\right\rangle_{\mathrm{L}^{2}(\Omega)}=\left\langle\partial_{m} v_{m}, \partial_{n} v_{n}\right\rangle_{\mathrm{L}^{2}(\Omega)}
$$

and hence

$$
\begin{aligned}
2\|\operatorname{sym} \operatorname{Grad} v\|_{\mathrm{L}^{2}(\Omega)}^{2} & =\frac{1}{2} \sum_{n, m=1}^{N}\left\|\partial_{n} v_{m}+\partial_{m} v_{n}\right\|_{\mathrm{L}^{2}(\Omega)}^{2} \\
& =\sum_{n, m=1}^{N}\left(\left\|\partial_{n} v_{m}\right\|_{\mathrm{L}^{2}(\Omega)}^{2}+\left\langle\partial_{n} v_{m}, \partial_{m} v_{n}\right\rangle_{\mathrm{L}^{2}(\Omega)}\right) \\
& =\|\operatorname{Grad} v\|_{\mathrm{L}^{2}(\Omega)}^{2}+\|\operatorname{div} v\|_{\mathrm{L}^{2}(\Omega)}^{2} \geq\|\operatorname{Grad} v\|_{\mathrm{L}^{2}(\Omega)}^{2} .
\end{aligned}
$$

More on Korn's first inequality can be found, e.g., in [10].

2 Results

For tensor fields $P \in \mathrm{H}(\operatorname{Curl} ; \Omega)$ we define the semi-norm

$$
\|P\|:=\left(\|\operatorname{sym} P\|_{\mathrm{L}^{2}(\Omega)}^{2}+\|\operatorname{Curl} P\|_{\mathrm{L}^{2}(\Omega)}^{2}\right)^{1 / 2} .
$$

The main step is to prove the following
Lemma 12 Let $\hat{c}:=\max \left\{2, \sqrt{5} c_{m}\right\}$. Then, for all $P \in \stackrel{\circ}{\mathrm{H}}(\operatorname{Curl} ; \Omega)$

$$
\|P\|_{\mathrm{L}^{2}(\Omega)} \leq \hat{c}\|P\| .
$$

Proof Let $P \in \dot{\mathrm{H}}(\operatorname{Curl} ; \Omega)$. According to Corollary 9 we orthogonally decompose

$$
P=\operatorname{Grad} v+S \in \operatorname{Grad} \stackrel{\circ}{\mathrm{H}}(\operatorname{Grad} ; \Omega) \oplus \mathrm{H}\left(\operatorname{Div}_{0} ; \Omega\right)
$$

Then, $\operatorname{Curl} P=\operatorname{Curl} S$ and we observe $S \in \stackrel{\circ}{\mathrm{H}}(\operatorname{Curl} ; \Omega) \cap \mathrm{H}\left(\operatorname{Div}_{0} ; \Omega\right)$ since

$$
\begin{equation*}
\operatorname{Grad} \stackrel{\circ}{\mathrm{H}}(\operatorname{Grad} ; \Omega) \subset \stackrel{\circ}{\mathrm{H}}\left(\operatorname{Curl}_{0} ; \Omega\right) \tag{2.1}
\end{equation*}
$$

By Corollary 团, we have

$$
\begin{equation*}
\|S\|_{L^{2}(\Omega)} \leq c_{m}\|\operatorname{Curl} P\|_{\mathrm{L}^{2}(\Omega)} \tag{2.2}
\end{equation*}
$$

Then, by Lemma 10 and (2.2) we obtain

$$
\begin{aligned}
\|P\|_{\mathrm{L}^{2}(\Omega)}^{2} & =\|\operatorname{Grad} v\|_{\mathrm{L}^{2}(\Omega)}^{2}+\|S\|_{\mathrm{L}^{2}(\Omega)}^{2} \\
& \leq 2\|\operatorname{sym} \operatorname{Grad} v\|_{\mathrm{L}^{2}(\Omega)}^{2}+\|S\|_{\mathrm{L}^{2}(\Omega)}^{2} \leq 4\|\operatorname{sym} P\|_{\mathrm{L}^{2}(\Omega)}^{2}+5\|S\|_{\mathrm{L}^{2}(\Omega)}^{2},
\end{aligned}
$$

which completes the proof.
The immediate consequence is our main result
Theorem 13 On $\stackrel{\circ}{\mathrm{H}}(\operatorname{Curl} ; \Omega)$ the norms $\|\cdot\|_{\mathrm{H}(\operatorname{Curl} ; \Omega)}$ and $\|\cdot\|$ are equivalent. In particular,
$\|\cdot\|$ is a norm on $\stackrel{\circ}{\mathrm{H}}(\operatorname{Curl} ; \Omega)$ and there exists a positive constant c, such that

$$
c\|P\|_{\mathrm{H}(\mathrm{Cur} ; \Omega)}^{2} \leq\|P\|^{2}=\|\operatorname{sym} P\|_{\mathrm{L}^{2}(\Omega)}^{2}+\|\operatorname{Curl} P\|_{\mathrm{L}^{2}(\Omega)}^{2}
$$

holds for all $P \in \stackrel{\circ}{\mathrm{H}}(\operatorname{Curl} ; \Omega)$.
Remark 14 For a skew-symmetric tensor field $P: \Omega \rightarrow \mathfrak{s o}(N)$ our estimate reduces to a Poincaré inequality in disguise, since Curl P controls all partial derivatives of P (compare to [11]) and the homogeneous tangential boundary condition for P is implied by $\left.P\right|_{\Gamma}=0$.

Setting $P:=\operatorname{Grad} v$ we obtain
Remark 15 (Korn's First Inequality: Tangential-Variant) For all $v \in \stackrel{\circ}{\mathrm{H}}(\operatorname{Grad} ; \Omega)$

$$
\begin{equation*}
\|\operatorname{Grad} v\|_{L^{2}(\Omega)} \leq \hat{c}\|\operatorname{sym} \operatorname{Grad} v\|_{\mathrm{L}^{2}(\Omega)} \tag{2.3}
\end{equation*}
$$

holds by Lemma 12 and (2.1). This is just Korn's first inequality from Lemma 10 with a larger constant \hat{c}. Since Γ is connected, i.e., $\mathcal{H}^{1}(\Omega)=\{0\}$, we even have

$$
\operatorname{Grad} \stackrel{\circ}{\mathrm{H}}(\operatorname{Grad} ; \Omega)=\stackrel{\circ}{\mathrm{H}}\left(\operatorname{Curl}_{0} ; \Omega\right)
$$

Thus, (2.3) holds for all $v \in \mathrm{H}(\operatorname{Grad} ; \Omega)$ with $\operatorname{Grad} v \in \stackrel{\circ}{\mathrm{H}}\left(\operatorname{Curl}_{0} ; \Omega\right)$, i.e., with $\operatorname{Grad} v_{n}$, $n=1, \ldots, N$, normal at Γ, which then extends Lemma 10 through the (apparently) weaker boundary condition.

The elementary arguments above apply certainly to much more general situations, e.g., to not necessarily connected boundaries Γ and to tangential boundary conditions which are imposed only on parts of Γ. These discussions are left to forthcoming papers.

Acknowledgements We thank the referee for pointing out a missing assumption in a preliminary version of the paper.

References

[1] D.N. Arnold, R.S. Falk, and R. Winther. Finite element exterior calculus, homological techniques, and applications. Acta Numer., 15:1-155, 2006.
[2] M. Costabel. A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains. Math. Methods Appl. Sci., 12(4):365-368, 1990.
[3] K.O. Friedrichs. Differential forms on Riemannian manifolds. Comm. Pure Appl. Math., 8:551-590, 1955.
[4] R. Hiptmair. Finite elements in computational electromagnetism. Acta Numer., 11:237-339, 2002.
[5] A.N. Hirani. Discrete Exterior Calculus. Dissertation, California Institute of Technology, http://thesis.library.caltech.edu/1885, 2003.
[6] P. Kuhn. Die Maxwellgleichung mit wechselnden Randbedingungen. Dissertation, Universität Essen, Fachbereich Mathematik, Shaker, 1999.
[7] D. Mitrea and M. Mitrea. Finite energy solutions of Maxwell's equations and constructive Hodge decompositions on nonsmooth Riemannian manifolds. Indiana Univ. Math. J., 57(5):2061-2095, 2008.
[8] D. Mitrea, M. Mitrea, and Shaw Mei-Chi. Traces of differential forms on Lipschitz domains, the boundary de Rham complex, and Hodge decompositions. J. Funct. Anal., 190(2):339417, 2002.
[9] M. Mitrea. Sharp Hodge decompositions, Maxwell's equations and vector Poisson problems on nonsmooth, three-dimensional Riemannian manifolds. Duke Math. J., 125(3):467-547, 2004.
[10] P. Neff. On Korn's first inequality with nonconstant coefficients. Proc. Roy. Soc. Edinb. A, 132:221-243, 2002.
[11] P. Neff and I. Münch. Curl bounds Grad on SO(3). Preprint 2455, http://www3.mathematik.tu-darmstadt.de/fb/mathe/bibliothek/preprints.html, ESAIM: Control, Optimisation and Calculus of Variations, DOI 10.1051/cocv:2007050, 14(1):148-159, 2008.
[12] P. Neff, D. Pauly, and K.-J. Witsch. A canonical extension of Korn's first inequality to H (Curl) motivated by gradient plasticity with plastic spin. submitted; http://arxiv.org/abs/1106.4731; Preprint SM-E-736, Universität Duisburg-Essen, Schriftenreihe der Fakultät für Mathematik, http://www.unidue.de/mathematik/preprints.shtml, 2011.
[13] P. Neff, D. Pauly, and K.-J. Witsch. A Korn's inequality for incompatible tensor fields. Proceedings in Applied Mathematics and Mechanics (PAMM), 2011.
[14] D. Pauly. Hodge-Helmholtz decompositions of weighted Sobolev spaces in irregular exterior domains with inhomogeneous and anisotropic media. Math. Methods Appl. Sci., 31:1509-1543, 2008.
[15] R. Picard. Randwertaufgaben der verallgemeinerten Potentialtheorie. Math. Methods Appl. Sci., 3:218-228, 1981.
[16] R. Picard. An elementary proof for a compact imbedding result in generalized electromagnetic theory. Math. Z., 187:151-164, 1984.
[17] R. Picard. Some decomposition theorems and their applications to non-linear potential theory and Hodge theory. Math. Methods Appl. Sci., 12:35-53, 1990.
[18] R. Picard, N. Weck, and K.-J. Witsch. Time-harmonic Maxwell equations in the exterior of perfectly conducting, irregular obstacles. Analysis (Munich), 21:231-263, 2001.
[19] W. Sprößig. On Helmholtz decompositions and their generalizations - An overview. Math. Methods Appl. Sci., 33:374-383, 2010.
[20] N. Weck. Maxwell's boundary value problems on Riemannian manifolds with nonsmooth boundaries. J. Math. Anal. Appl., 46:410-437, 1974.

Patrizio Neff, Dirk Pauly, Karl-Josef Witsch
Universität Duisburg-Essen
Fakultät für Mathematik
Campus Essen
Universitätsstr. 2
45117 Essen
Germany
patrizio.neff@uni-due.de
dirk.pauly@uni-due.de
kj.witsch@uni-due.de

[^0]: *By 'Maxwell estimate' and 'Maxwell compactness property' we mean the estimates and compact embedding results used in the theory of Maxwell's equations.

