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Abstract

The heart’s pumping action can be successfully performed by the well-coordinated rela-
tionship between Excitation Contraction Coupling (ECC) by which electrical activation of
cardiac cells triggers the mechanical contraction of heart and Mechano Electric Feedback
(MEF), a mechanical alteration influences cardiac electrical activity. While ECC is rather
well characterized, less is known about the cellular mechanisms of MEF. Nevertheless, the
significance of MEF can’t be disregarded. In the work, MEF is compuationally investi-
gated in cell and organ scales by using the modified Hill model describing the orthotropic
electro-visco-elastic respose of myocardium where the active (electrical) and mechanical
(viscous and elastic) deformations were decomposed in a multiplicative format [1, 2]. At
cell scale, it is reveald that MEF contributes to the synchronized contractions of the car-
diac tissue by decreasing the dispersion of repolarization. Furthermore, as a novel aspect,
the mathematical models of Stretch-Activated ion Channels (SACs) responsible for MEF
are reformulated in terms of the strain rate along f (λ̇f) and the stretch along s (λs). The
influence on the biventricular heart model is studied with electrocardiogram (ECG) and
volume-time curve (v-t curve) during normal cardiac cycles. It is observed that MEF is ac-
tivated in the different area of the biventricular heart. Afterwards, Ventricular fibrillation
(VF) due to “Commotio Cordis” and its termination by “Precordial Thump” are simulated.
Finally, Premature Ventricular Contractions (PVCs) is simulated with the hemodynam-
ical disturbance by using the left ventricular heart model. The adverse influence of the
PVCs on the cardiac performance is studied and Postextrasystolic Potentiation (PESP) is
detected during the PVCs.
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1 Introduction

The heart is the most important component of our cardiovascular system in human body
in terms of its anatomy and function. It consists of four different chambers responsible for
receiving and pumping blood. The chambers to which blood entering are called atria and
the other two chambers that pump blood around the body are called ventricles.

The pumping of the heart with the four chambers is the result of a synchronized con-
traction and relaxation of about 10 billion muscle cells called cardiomyocytes. They can
be divided into several different types depending on their function, which is closely re-
lated to their anatomy. Also, the cardiomycytes consist of the various celluar components
due to functional reasons. One of the significant components called intercalated discs has
the specialized contacts with its neiboring cardiomyocytes which enables mechanical and
electrical coupling by faciliating the cooperation between the cardiac cells. In order to
contract, electrical activation is mandatory. Normally, the pacemaker cells located at the
sinoatrial node (SA node) generate the electrical impulse travelling to His bundle through
the atrioventricular node (AV node). Then, the wave is divided and travels to the right
and left bundle branch connected to Purkinje fibers at which the velocity is four times
faster than normal cardiac muscle cell. The conduction system makes it possible for syn-
chronous and coordinated contractions. The heart is structurally and functionally a highly
non-homogeneous, yet its main functions to circulate blood and nourish every single cell
are achieved by relatively synchronous and coordinated contraction of the numerous ven-
tricular cells [3]. Dyssynchronous contraction compromise the coordination required to
eject blood efficiently, leading to reduced pump function and ultimately heart failure [4, 5,
6, 7].

In order to pump in the synchronized way, the proper relationship between cardiac elec-
trophysiology and the mechanics is required [8, 9]. In case that the reciprocal action is
hindered, cardiovascular diseases are caused such as arrhythmia, hypertrophy and acute
myocardial infarction. According to Benjamin et al, [10], cardiovascular disease is the lead-
ing global cause of death, accounting for more than 17.9 million deaths in 2015, a number
that is expected to grow to more than 23.6 million by 2030. Also, direct and indirect costs
of total cardiovascular diseases and stroke are estimated to total more than $329.7 billion
[10].

As mentioned, the pumping function of the heart arises as a result of the association be-
tween the electrical wave propagation and the mechanical deformation. These interactions
operate with two-way coupling: ECC and MEF (see Figure 1.1). The mechanical contrac-
tion is due to the electrical activation through an intracellular calcium-dependent process
in the sarcoplasmic reticulum, ECC [11, 12]. The reverse coupling between the cardiac me-
chanics and the electrophysiology is known as MEF that the electrophysiological changes
may result from the regional mechanical stretch or global hemodynamic overload [3, 7, 13,
14].

MEF may have an important role in a normal regulation of the heart and the coordination
of cardiomyocyte contraction. There are a few of ways to control the cardiac-electro-
mechanical activity such as autonomic and hormonal mechanism. However the regulatory
modulation that occurs within the heart itself are essential for a beat-by-beat adaptation
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Figure 1.1: Conversion of mechanical change into an electrical change is decribed as a feedback
return loop [9].

to changes in physiological demand, which can be attained by MEF [12, 15].

Apart from these positive findings, MEF and SACs also have the potential to disturb the
cardiac rhythm in pathophysiological conditions. MEF has been considered as an impor-
tant contributor to the increased risk of arrhythmia during the pathological conditions
including heart failure [7, 16, 17]. Abnormal deformation may induce ventricular prema-
ture beats and fibrillations in an ischemic heart [18]. Moreover, even in the healthy heart
a moderate precordial mechanical blow can cause sudden cardiac death in the absence of
morphological damage, “Commotio cordis” [19, 20].

Nevertheless, the role of MEF at a physiological level is quite not clear. Although a lot of
scientific work is devoted to understand the functioning mechanisms of MEF, they have
not been fully revealed due to the complexity as well as the difficulties accompanying in-
vivo experiment. The varying characteristics of the cardiac tissue within a mechanically
and electrically dynamic environment also contribute to the unclearness. In this context,
computational modelling of the cardiovascular system is particularly useful in quantifying
results that are difficult or impossible to measure in in-vivo experiments [21]. Actually,
computer simulations have gained increasing popularity and have the potential to visualise
regional cardiac electrophysiology.

In this work, MEF is computationally investigated at cell and organ scale. To do so,
the monodomain based finite element formulation for the coupled electromechanical heart
tissue is adopted, which incorporates the modified Hill model that describes the electro-
visco-elasticity of the myocardium at material level where the total deformation gradient is
decomposed into the active part (electrical) and the mechanical part (viscous and elastic)
[1, 2] for the rheology. In order to illustrate ventricular blood pressure, the surface element
formulation accounting for the blood pressure evolution is incorporated into the finite
element formulation. Afterwards, it is aimed at developing more realistic SACs models
in view of physical observations. SACs are computed originally in terms of stretch along
fiber direction (λf). Apart from the traditional SACs model, SACs models are newly
reformulated in consideration of strain rate along fiber direction (λ̇f) and stretch along cross
fiber direction (λs). Furthermore, the simulations that adopt MEF with these different
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SACs models are compared by using ECG and v-t curve. Since the SACs considering
λf is proposed in [22, 23], relatively recent studies report that the effect of MEF is also
dependent on the velocity at which stretch is applied. The biventricular heart model also
gives the validity to the MEF reformulations in which SACs consider λ̇f and λs because
the regions under tension are not consistent with the regions experiencing positive λ̇f as
well as the regions with compressive λs. The inconsistencies may cause the MEF effect
to be activated in the different region, which consequently alters the electrophysiology of
the heart model. Subsequently, a moderate mechanical loading on the biventricular heart
and a transiently increased hemodynamic loading in the left ventricular heart model are
simulated in order to see how the mechanical disturabances in the heart affect its electrical
domain. The former interrupts the cardiac electrophysiology, and consequently, results in
the arrhythmia and the ventricular fibrillation due to MEF effect. The latter also interrupts
the electrophysiology and causes the premature ventricular contraction (PVCs) with the
malfunctioned cardiac pumping.

The outline of the thesis is as follows. Chapter 2 presents the governing equations of the
electromechanics of the heart and the linearization of the governing equations with finite
element formulation of coupled problem that includes the deformation dependent traction
term. Chapter 3 explains the constitutive equations of the two field variables with its
sensitivities. Also, the reformulated SACs models are suggested. Chapter 4 introduces the
numerical examples to reveal MEF effect on the heart by using the adopted FEM model
and the constitutive equations. Firstly, it is investigated that how MEF affect the AP
in the small cardiac tissue bar with the assumption that MEF contributes to the cardiac
electrophysiology and plays a important role in the coordinated contraction of the tissue.
The simulations are carried out using different material properties (elastic and viscoelas-
tic) and the different level of discretization. Next, the regular normal cycles using the
biventricular heart model are simulated with the newly suggested SACs model and in or-
der to observe how the suggested SACs models influence differently on the biventricular
heart. Also, in order to investigate the role of MEF in the normal healthy heart under
pathological condition, the ventricular fibrillation is simulated by applying the morderate
mechanical impact on the heart “Commotio cordis”. The termination of fibrillation “Pre-
cordial thump” is subsequently simulated as well. In the example using left ventricular
heart model, the influence of hemodynamical disturbances on the cardiac performance is
investigated. ECGs and v-t curves are recored during all the simulations using the heart
model . PV curves are additionally recorded in the left ventricular heart simulation.
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2 The finite element approximation of
cardiac electromechanics

In this section, the fundamental equations of the coupled problem of cardiac electrome-
chanics are introduced. Subsequently, the weak integral forms of the non-linear governing
equations are constructed and linearized consistently by employing a conventional Galerkin
procedure. Each weak form is linearized along its own variable, the placement field ϕ(X, t)
and the transmembrane potential Φ(X, t) for the cardiac electrophysiology. Then, we make
use of isoparametric shape functions for the discretization of the two field variables, so that
the non-linear weighted residual equations in integral form are converted to a set of coupled
and discretized algebraic equations.

2.1 Fundamental equations

A equilibrium state of the continuum body can be expressed by the conservation of linear
momentum

J div
[
J−1τ̂

]
+ b = 0 in B (2.1)

in terms of the Kirchhoff stress tensor τ̂ and the volume-specific body forces b in the
reference configuration, respectively. Note that the balance of linear momentum depends
non-linearly on the primary field variables through the Kirchhoff stress tensor τ̂ . The
balance of linear momentum has the essential boundary condition

ϕ = ϕ̄ on Sϕ (2.2)

and the natural boundary conditions

t = t̄ on St and t = −p̂i(ϕ) on Sit (2.3)

where the surface stress traction vector t is expressed by using the Cauchy stress theo-
rem as t̄ := J−1τ̂ · n and the subscript i designates left ventricle (LV) or right ventricle
(RV), i = {lv, rv}. The former traction term is prescribed while the latter one depends
on the deformation field and describres the load on the endocardial surface Sen due to
the blood pressure in the ventricular cavities during the cardiac cycle. Furthermore, the
following relations are established: Sen ⊂ S and Sen = Slv ∪ Srv. Therein, Slv and Srv

mean the LV and RV endocardial surfaces, respectively. The expressions S = Sϕ ∪ St and
Sϕ ∩ St = ∅ required to be satisfied by the surface subdomains. Additionally, the phe-
nomenological excitation equation for the potential difference between intracelluar domain
and the extracelluar domain within a monodomain setting is introduced as

Φ̇ = J div
[
J−1q̂

]
+ F̂ φ in B (2.4)

where J div
[
J−1q̂

]
is diffusion term by means of the flux vector q̂ to describe the propa-

gating polarization waves and F̂ φ is the non-linear source term. Similar to the balance of
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linear momentum, the governing equation of the cardiac electrophysiology is subjected to
the essential and natural boundary conditions

Φ = Φ̄ on Sφ and q = q̄ on Sq (2.5)

with complementary characteristics S = Sφ ∪ Sq and disjoint characteristics Sφ ∩ Sq = ∅ of
the subdomains. The electrical surface flux term q and the spatial flux vector q̂ are linked
through tge Cauchy-type formular q̄ := J−1q̂ · n. Furthermore, the solution of the ordi-
nary differential equation represented in Equation (2.4) requires the initial transmembrane
potential value of material points at an initial state (t = t0)

Φ0 = Φ(X, t0) in B. (2.6)

2.2 The weak integral forms

To construct the weak forms of the strong forms in Equation (2.1) and in Equation (2.4), the
conventional Galerkin method is applied. The weighted residual equations are achieved by
multiplying the square integrable weight functions δϕ and δΦ. These two weight functions
vanish at the essential boundaries δϕ = 0 and δΦ = 0. Then, the weight residual equations
are integrated over the domain of interest and the integration by parts is executed to obtain
the following non-linear weighted residual expressions as

Gϕ(δϕ,ϕ, Φ) :=

∫
B
∇δϕ : τ̂ dV −

∫
B
δϕ · b dV −

∫
St
δϕ · t̄ da−

∑
i=lv,rv

∫
Sit
δϕ · −p̂i da = 0,

Gφ(δΦ,ϕ, Φ) :=

∫
B

(δΦ Φ̇+∇δ Φ · q̂)dV −
∫
B
δΦ F̂ φ dV −

∫
Sq
δΦ q̄ da = 0,

(2.7)
where p̂i designates the pressure applying on the endocardial surface walls. The terms
responsible for internal response of body have positive sign, whereas the terms for external
effects are indicated with negative sign. All the external source terms, such as the body
force b, the traction t̄, and surface flux terms q̄ are prescribed, except the electrical source
term F̂ φ which is dependent on the field variables. Additionally, a non-conservative pres-
sure load p̂i(ϕ) = p̂in acting on the endocardial surfaces, where both components p̂i and
n are determined rigorously by the deformation state of the ventricles. Now, the aim is
to modify the non-linear residual equation represented in Equation (2.7) to equations con-
sisting of linear terms with increments of the field variables ∆ϕ and ∆Φ at an equilibrium
state ϕ = ϕ̃ and Φ = Φ̃. For this purpose, by taking advantage of the directional derivative
of Equation (2.7)1 along the increment ∆ϕ and Equation (2.7)2 along the increment ∆Φ,
the linearized forms are obtained as

L[Gϕ](δϕ, ϕ̃, ϕ̃,∆ϕ) := Gϕ(δϕ, ϕ̃, Φ̃) + ∆Gϕ(δϕ, ϕ̃, Φ̃,∆ϕ) = 0,

L[Gφ](δΦ, ϕ̃, Φ̃,∆Φ) := Gφ(δΦ, ϕ̃, Φ̃) + ∆Gφ(δΦ, ϕ̃, Φ̃,∆Φ) = 0,
(2.8)

where
∆Gϕ(δϕ, ϕ̃, Φ̃,∆ϕ) = D[Gϕ](δϕ, ϕ̃, Φ̃) ·∆ϕ,
∆Gφ(δΦ, ϕ̃, Φ̃,∆Φ) = D[Gφ](δΦ, ϕ̃, Φ̃) ·∆Φ. (2.9)

L and D allocate the linearization and directional derivative of the residual quantities,
respectively.
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2.3 Linearization in the solid domain

Firstly, the incremental form of the non-linear gradient term in Equation (2.7)1 is derived
as

∆∇δϕ = −∇δϕ∇∆ϕ (2.10)

where the two following correlations are exploited

∇δϕ = ∇XδϕF
−1 and ∆F−1 = −F−1∇∆ϕ. (2.11)

Furthermore, the objective Lie derivative of the Kirchhoff stresses L∆ϕτ̂ and the current
metric L∆ϕĝ along the increment ∆ϕ are considered as

L∆ϕτ̂ = 2∂gτ̂ :
1

2
L∆ϕg and L∆ϕg = g∇∆ϕ+ (∇∆ϕ)>g . (2.12)

Then, linearization of the Kirchhoff stresses can be obtained as follows

∆τ̂ = Cϕϕ : g∇∆ϕ+∇∆ϕ τ̂ + τ̂ (∇∆ϕ)> (2.13)

where the tangent moduli Cϕϕ is defined as

Cϕϕ := 2∂gτ̂ . (2.14)

Now, the second residual expression Equation (2.7)2 is linearizd by deriving the incremental
form of the non-linear gradient term in similar way to Equation (2.10)

∆∇δΦ = −∇δΦ∇∆ϕ. (2.15)

In similar manner, the Lie derivative of the electrical flux vector q̂ in the contravariant
space is derived

L∆ϕq̂ = 2
∂q̂

∂g
:

1

2
L∆ϕg . (2.16)

Then, the increment of the electrical flux term can be obtained as

∆q̂ = D · ∇∆Φ, (2.17)

where the conduction tensor is defined asD := ∂ ∇Φ q̂. In order to achieve Equation (2.9)2,
the electrical source term F̂ φ is linearized. Straightforwardly, the incremental form of F̂ φ

and the sensitivity with respect to the electrical field are calculated as

∆F̂ φ = H∆Φ with H = ∂ΦF̂
φ. (2.18)

2.4 Linearization in the surface domain

Furthermore, the deformation dependent traction term in Equation (2.7)1 is linearized. In
order to clarify the derivations, the term is written in different way as∫

Sit
δϕ · p̂in da =

∫
S̄it
δϕ · p̂in

∗dA with n∗ := n
da

dA
= JF−>N , (2.19)

for i = lv,rv. The subscript t is dropped for a simplified notation. It is assumed that the
pressure load p̂i is dependent on the cavity volume of the ventricles Vi,

pi = p̂i(V) with Vi :=
1

3

∫
S̄i
ϕ · n∗dA. (2.20)
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The incremental form of Equation (2.20) is achieved as

∆p̂i =
p̂
′
i

3

∫
S̄i

(n∗ ·∆ϕ+ϕ ·∆n∗) dA with p̂
′
i =

∂p̂i

∂Vi
. (2.21)

Linearization of the covariant vector n∗ is obtained by the objective Lie derivative L∆ϕn
∗

along the increment ∆ϕ,

L∆ϕn
∗ = 2

∂n∗

∂g
:

1

2
L∆ϕg = ∆n∗ + (∇∆ϕ)>n∗. (2.22)

By using the relation 2∂gJ = Jg−1, one can derive

∆n∗ = n∗ ⊗ g−1 : g∇∆ϕ− (∇∆ϕ)>n∗. (2.23)

Consequently, all the non-linear terms in Equation (2.7)1 and Equation (2.7)2 are lin-
earized, so that incremental forms in Equation (2.9)1 and Equation (2.9)2 can be respec-
tively written as

∆Gϕ =

∫
B
∇δϕ : ∇∆ϕ τ̂ dV +

∫
B
∇δϕ : Cϕϕ : g∇∆ϕ dV

+
∑

i=lv,rv

∫
Si
δϕ · n da p̂

′
i

3

∫
Si

[
n ·∆ϕ+ (ϕ · n) g−1 : g∇∆ϕ− n⊗ϕ : ∇∆ϕ

]
da

+
∑

i=lv,rv

∫
Si
δϕ · p̂i(n⊗ g−1 : g∇∆ϕ− n∇∆ϕ) da

(2.24)
and

∆Gφ =

∫
B
δΦ Φ̇ dV +

∫
B
∇δΦ ·D · ∇∆ΦdV −

∫
B
δΦH ∆ΦdV . (2.25)

2.5 Time and space discretization

The discretizations of the residual terms in time and space are operated in the frame-
work of the finite difference and finite element method by using the incremental forms in
Equation (2.24) and Equation (2.25). Firstly, we consider the incremental time domain
[t, tn+1], which is interpreted as the difference between the current and previous solution
time ∆t := tn+1 − tn. The subscript n + 1 is cleared away for compactness so that the
transmembrane potential terms in time tn+1 and in time tn are written as

Φ = Φ(X, tn+1) and Φn = Φ(X, tn) . (2.26)

Through the implicit Euler scheme, the approximation of the time derivative of the elec-
trical field is written as

Φ̇ ≈ Φ− Φn
∆t

(2.27)

where all of the values at tn are known and the rate of the transmembrane potential is
constant during ∆t. Next, when it comes to the space discretization, the solid domain of
interest B is divided into subdomains, so that B ≈ ∪nk=1Bk holds. Furthermore, regarding
inner surface boundaries, i.e. the endocardium placed in LV and RV, Slv ≈ ∪nlv

k=1S
k
lv and

Srv ≈ ∪nrv
k=1S

k
rv are established, where nlv and nrv are the number of the surface element
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on LV and RV endocardium, respectively. Subsequently, the unknown fields are inter-
polated, i.e. the placement ϕk and the transmemebrane potential field Φk, as well as the
corresponding weight functions over each element domain by introducing the isoparametric
concept on element level in terms of generalized nodal placement ϕi and transmembrane
potential Φi. That is,

ϕk =

nen∑
i=1

N iϕi, δϕk =

nen∑
i=1

N iδϕi,

Φk =

nen∑
i=1

N iΦi, δΦk =

nen∑
i=1

N iδΦi,

(2.28)

where nen stands for the number of element nodes. Furthermore, the spatial gradient of
the corresponding weight functions and increments of the field variables are discretized as

∇δϕk =

nen∑
i=1

δϕi ⊗∇N i, ∇∆ϕk =

nen∑
i=1

∆ϕi ⊗∇N i,

∇δΦk =

nen∑
i=1

δΦi ⊗∇N i, ∇∆Φk =

nen∑
i=1

∆Φi ⊗∇N i .

(2.29)

Similarly, ventricular cavity volumes are interpolated as

Vi :=
1

3
Ani
k=1

∫
Ski
N iϕi · n da, (2.30)

which is conceptualized as the integration of all trigonal pyramid volumes created by linking
the edges of discrete surface elements with a vertex located at the basal surface.
Finally, the global residual vector R can be represented in terms of the interpolated field
variables,

R = An
k=1Rel + Ani

k=1Rel = 0 where Rel :=

{
Rϕ

Rφ

}
; Rel :=

{
Rϕ

i
0

}
, (2.31)

where

Rϕ :=

∫
Bk
∇N i · τ̂ dV −

∫
Bk
N i b dV −

∫
Skt
N i t̄ da,

Rφ :=

∫
Bk

(
N i Φ− Φn

∆t
+∇N i · q̂

)
dV −

∫
Bk
N iF̂ φdV −

∫
Skq
N i q̄ da,

Rϕ
i :=

∫
Ski
N i p̂in da,

(2.32)

for i = {lv, rv}. Furthermore, each component of the global residual vector is assembled by
using A, which are calculated at the local element node level. Equivalently, the discretized
representation of the global tangent matrix K can be constructed from Equation (2.9)

K = An
k=1Kel + Ani

k=1Kel + Ani
k=1K̃el. (2.33)

The global tangent matrices are composed by

Kel :=

[
Kϕϕ 0

0 Kφφ

]
, Kel :=

[
Kϕϕ

i 0
0 0

]
, K̃el :=

[
K̃ϕϕ

i 0
0 0

]
(2.34)
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with

Kϕϕ :=

∫
Bk

(∇N i · Cϕϕ · ∇N j +∇N i · τ̂ · ∇N j)dV,

Kφφ :=

∫
Bk

[
N i

(
1

∆t
−H

)
N j +∇N i ·D · ∇N j

]
dV,

Kϕϕ
i :=

∫
Ski
N ip̂i(n⊗ g−1 · ∇N j − n∇N j)da,

K̃ϕϕ
i :=

∫
Ski
N inda⊗Ani

k=1

p̂
′
i

3

∫
Ski

[
Nj + (ϕ · n)g−1 · ∇N j − n⊗ϕ · ∇N j

]
da .

(2.35)

Remark. A non-local effect is caused because the pressure load is dependent on the
ventricular cavitiy volume during the cardiac cycles. The non-local effect emerges from the
corresponding surface elements, which is induced by all element on that surface. Therefore,
the dyadic product of n of the discrete element and globally assembled sensitivities of
p̂i with respect to the deformation field is required on the associated surface domain,
which is included in K̃ϕϕ

i as represented in Equation (2.35)4 and contributes the non-local
effect. In order to reduce the compatational workload, only non-zero tangent terms are
stored in general finite element analysis programs [24]. However, in contrast with other
contributions in Equation (2.33), the mechanical part of Ani

k=1K̃el, is entirely occupied due
to the interaction between the non-adjacent surface elements. Hence the computational
effort is inevitably increased due to the escalation of the number of the non-zero terms in
global tangent matrix.
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3 Constitutive equations

Due to the characteristics of cardiac tissue, orthotropic hyperelastic model is employed
to establish the constitutive relations denoting the electro-visco-elastic behaviour of the
myocardium. The constitutive equations are incorporated into the coupled finite element
formulation represented in Chapter 2 in order to complete the framework which is utilized
to implement numerical examples in Chapter 4. To do this, it is necessary to clearly define
the specific forms of the constitutive equations associated with the Kirchhoff stress tensor
τ̂ , the ventricular pressure p̂i, the current source F̂ φ and the transmembrane potential
flux q̂. The constitutive equations, except the equation for p̂i, include supplementary
terms which are responsible for the reciprocal influence between the two primary fields,
the deformation field and electric field. For the equations including ordinary differential
equations, it is required to establish algorithmic procedures at gauss quadrature point level
to update the temporal variation of the internal variables. An implicit Euler backward
integration method is exploited to solve the temporal evolution equations. Furthermore,
the Eulerian fourth order tangent moduli for each part, the passive and the visco-active
part, are derived.

3.1 Kinematics and rheology

In the section, the rheology for the coupled electro-visco-elastic response of the myocardium
is presented. The total deformation gradient F is decomposed into purely elastic, viscous
and active parts in multiplicative way. By prescribing the viscous and active deformation
gradients along fiber, sheet and normal direction, one dimensional evolution equations in
each orthognal orientations are adopted and updated easily in a time-discrete setting. The
isotropic response of hyperelastic material is described by the three invariants,

I1 := trC, I2 :=
1

2

[
I2

1 − tr(C)2
]
, and I3 := detC . (3.1)

Furthermore, in order to represent the deformation state of the orthotropic microstructure
of the myocardium, the additional invariants are required as

I4f = f0 ·Cf0, I4s = s0 ·Cs0, I4n = n0 ·Cn0 and I8fs = f0 ·Cs0 (3.2)

in terms of three reference unit vectors f0, s0 and n0. The non-equilibrium responses of
the material along the fiber, sheet and normal direction respectively are described by the
three logarithmic strains

εf :=
1

2
ln(I4f), εs :=

1

2
ln(I4s), εn :=

1

2
ln(I4n) . (3.3)

The deformation of myocardium is acquired by assuming the fictitious configuration be-
tween the reference and current configuration [25]. Consequently, the total deformation
gradient is multiplicatively decomposed as

F = Fm F a and Fm = F e F v (3.4)
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where Fm, F a, F e and F v are the mechanical, active, elastic and viscoealstic part of
deformation gradient, respectively. F a is formulated in terms of the prescribed deformation
arising due to the myocardial contraction that is solely govenrned by the transmembrane
potential Φ. The mechanical deformation Fm is further decomposed into elastic part
F e and viscous part F v. Based on the microstructure of the myocardium, the following
mechanical deformation gradient and right Cauchy-Green tensor are defined as

Fm := FF a−1
and Cm := FmT

gFm . (3.5)

The active part of the deformation gradient F a is concerned with the fiber direction and
defined as

F a := 1 + (λaf − 1)f0 ⊗ f0 (3.6)

where λaf is the stretch generated along the fiber direction responsible for the contraction.
By use of Equation (3.5)1, the mechanical part of the deformation gradient is achieved as

Fm = F +

(
1

λaf
− 1

)
Ff0 ⊗ f0 . (3.7)

Additionally, the viscous part of deformation gradient F v is defined as

F v := 1 + (λvf − 1)f0 ⊗ f0 + (λvs − 1)s0 ⊗ s0 + (λvn − 1)n0 ⊗ n0 . (3.8)

in terms of viscous stretchs λvf , λ
v
s and λvn, respectively. Consequently, using Equation (3.8),

the elastic part of the deformation gradient is obtained as

F e = Fm +

(
1

λvf
− 1

)
Fmf0⊗f0 +

(
1

λvs
− 1

)
Fms0⊗ s0 +

(
1

λvn
− 1

)
Fmn0⊗n0 . (3.9)

Note that the orthogonality of Equation (3.6) and Equation (3.8) makes F e insensitive
to the order of F v and F a in Equation (3.4) which are rotation free tensors. By the
push-forward of the mutually orthogonal Lagrangian orientation vectors f0, s0 and n0,
the corresponding Eulerian vectors and corresponding stretches are achieved as follows

f = Ff0 → λf := |f | =
√
f · f =

√
I4f ,

s = Fs0 → λs := |s| =
√
s · s =

√
I4s ,

n = Fn0 → λn := |n| =
√
n · n =

√
I4n .

(3.10)

Due to the feature of the diagonalized tensors F a and F v, it is allowed to multiplicatively
decompose the stretches along the mutually orthogonal directions as follows

λf = λefλ
v
f λ

a
f , λs = λesλ

v
s and λn = λenλ

v
n . (3.11)

Note that the stretch along the fiber direction (λf) is decomposed into active, viscous and
elastic part while the stretches along the cross fiber (λs) and normal direction (λn) are de-
composed into the viscous and the elastic part. The multiplicative decomposition and the
rheology representing the electro-visco-elastic behaviour of myocardium are shown in Fig-
ure 3.1. Alternatively, the multiplicative decomposition of strethces along the orthogonal
directions can be rewritten in additive format using logarithmic strain in Equation (3.3)
as follows

εf = εef + εvf + εaf , εs = εes + εvs and εn = εen + εvn (3.12)

with
εf = lnλf , εs = lnλs and εn = lnλn . (3.13)
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Figure 3.1: Rheology for electro-visco-elastic response for the fiber direction (A) and for the
sheet and normal directions (B).

3.2 Stress responses

The modified Hill model [1] describes the distinctive orthotropic stress responses of cardiac
cells where the myocardium responses distinctly along three mutually orthogonal direction,
fiber f0, sheet s0 and normal n0 as depicted in Figure 3.1. By adopting the rheology from
the Hill model, the total deformation gradient is multiplicatively decomposed into elastic,
viscous and active parts. Additionally, the free energy function is decomposed into passive
and visco-active contributions

ψ(g, s;F ,F e) = ψ̂p(g, s;F ) + ψ̂va(g, s;F e). (3.14)

Due to the fact that the formulation is performed in the Eulerian setting, the covariant
Eulerian metric g is unequivocally included as one of the arguments of the constitutive
functions. The passive part ψ̂p is a function of the total deformation gradient F and the
visco-active part ψ̂p is a function of the elastic part of the deformation gradient F e =
F (F vF a)−1. Furthermore, the set of structural tensors s, which are responsible for the
description of orthotropic micro-structure of the myocardium, is

s = {f0 ⊗ f0, s0 ⊗ s0,n0 ⊗ n0,f0 ⊗ s0}. (3.15)

By utilizing the method of Coleman and Noll and exploiting the Doyle-Ericksen formula
[26], the Kirchhoff stresses are derived from Equation (3.14) as follows

τ̂ = τ̂ p + τ̂ va → τ̂ p := 2∂gψ̂
p(g, s;F ) and τ̂ := 2∂gψ̂

va(g, s;F ,F e) (3.16)

with the passive stress τ̂ p and visco-active stress τ̂ va. Similarly, the fourth order spatial
moduli can be derived as follows

Cϕϕ = Cp + Cvaalgo → Cp := 2∂gτ̂
p(g, s;F ) and Cvaalgo := 2∂gτ̂

va(g, s;F ,F e)
(3.17)

where Cp and Cvaalgo are the passive part and the visco-active part, respectively.
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3.2.1 Passive stress

The passive response is decomposed into a pure volumetric part which acts as a penalty
term and orthotropic hyperelastic part

ψ̂p(g, s;F ) = U(J) + ψ̄p(I1, I4f , I4s, I8fs). (3.18)

Therein, U(J), depending explicitly on the volume map J := det(F ), is the volumetric
part used to represent quasi-incompressibile behavior as follow

U(J) =
κ

2

(
J2 − 1

2
− lnJ

)
− a ln J. (3.19)

To model the orthotropic hyperelastic part of the passive response of the myocardium
ψ̄p(I1, I4f , I4s, I8fs), Fung-type free energy functions of Holzapfel and Ogden [27] is adopted
as

ψ̄p(I1, I4f , I4s, I8fs) =
a

2b
[exp[b(I1 − 3)]− 1] +

∑
i=f,s

ai

2bi

[
exp

(
bi 〈I4i − 1〉2

)
− 1
]

+
afs

2bfs

[
exp

(
bfsI

2
8fs

)
− 1
] (3.20)

where a, b, af , bf , as, bs, an, bn, afs and bfs are the non-negative material parameters respon-
sible for describing the deformation state of the isotropic and orthotropic microstructure
of the myocardium. Also, Macaulay brackets 〈x〉 = (x+ |x|)/2 which exclude the negative
values of I4i − 1 are adopted. Beacuse the collagen fibers in the cardiac muscle cells are
buckled, they do not support any compressive load [27]. In similar manner with Equa-
tion (3.18) The passive Kirchhoff tensor in Equation (3.16) is additively decomposed into
its volumetric part and the orthotropic part as

τ̂ p = τ vol + τ̄ p (3.21)

where

τ vol := 2∂gU(J) = p̂ g−1 and
τ̄ p := 2∂gψ̄

p = Ψ1b+ Ψ4ff ⊗ f + Ψ4ss⊗ s+ Ψ8fssym(f ⊗ s) (3.22)

by means of the deformation dependent scalar coefficients

Ψ1 := 2∂I1ψ̄
p = a exp[b(I1 − 3)],

Ψ4f := 2∂I4f ψ̄
p = af 〈I4f − 1〉 exp[bf 〈I4f − 1〉2],

Ψ4s := 2∂I4sψ̄
p = as 〈I4s − 1〉 exp[bs 〈I4s − 1〉2],

Ψ8fs := 2∂I8fsψ̄
p = 2afsI8fs exp[bfsI

2
8fs],

p̂ := J∂JU =
κ

2
(J2 − 1)− a.

(3.23)

As stated in Equation (3.17), the passive part of tangent moduli are calculated as

Cp = Cvol + C̄p (3.24)

where Cvol = (p̂+ κ̂)g−1 ⊗ g−1 − 2p̂Ig−1 is attained by taking derivative of the volumetric
part of the passive stress. Therein, κ̂ := J2∂2

JJU(J) is volumetric modulus and the fourth-
order symmetric identity tensor is

Ig−1 := −∂gg−1 with Iabcdg−1 =
1

2

[
δacδbd + δadδbc

]
. (3.25)
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The tangent term for the passive myocardium behaviour is defined as

C̄p = Ψ′1b⊗ b+ Ψ′4fF + Ψ4sS + Ψ′8fssym(f ⊗ s)⊗ sym(s⊗ f) (3.26)

in terms of the second derivative of the free energy with respect to the invariants

Ψ′1 := 4∂I1ψ̄
p = 2ab exp[b(I1 − 3)],

Ψ′4f := 4∂I4f ψ̄
p = 4af exp[bf 〈I4f − 1〉2](2bf 〈I4f − 1〉2 + 1),

Ψ′4s := 4∂I4sψ̄
p = 4as exp[bs 〈I4s − 1〉2](2bs 〈I4s − 1〉2 + 1),

Ψ′8fs := 4∂I8fsψ̄
p = 4afs exp[bfsI

2
8fs](2bfsI

2
8fs + 1)

(3.27)

and the fourth order structural tensors

F := f ⊗ f ⊗ f ⊗ f and S := s⊗ s⊗ s⊗ s. (3.28)

3.2.2 Visco-active stress

In the subsection, for the visco-active stress response being found to be present in the
myocardium due to electrical excitation, a simple quadratic equation is adopted [28]

ψ̂va(g, s;F e) =
∑

i=f,s,n

ψ̄vai (εei ) =
1

2

∑
i=f,s,n

µiε
e
i ε
e
i (3.29)

in terms of the shear moduli µi and the lastic logarithmic strains in the mutually orthogonal
direction of myocardium

εef = εf − εvf − εaf ,
εes = εs − εvs ,
εen = εn − εvn .

(3.30)

As mentioned in, Equation (3.16), the visco-active part of the Kirchhoff stress tensor is
described as

τ va = τff ⊗ f + τss⊗ s+ τnn⊗ n (3.31)

and the coefficients are defined as

τi := 2∂I4iψ̄i
va

=
σi

I4i
with σi = µiε

e
i . (3.32)

3.2.3 Evolution equation for viscous dashpot

The dissipation potential D which satisfies the Biot equation [29] is used to calculate the
non-equilibrium response of the material as follows

∂εvf ψ̄f
va

(εf , ε
v
f , ε

a
f ) + ∂ε̇vf D(ε̇vf ) = 0 with εvf (0) = εv0

f ,

∂εvi ψ̄
va
i (εi, ε

v
i ) + ∂ε̇vi

D(ε̇vi ) = 0 with εvi (0) = εv0
i , for i := {s,n}.

(3.33)

Herein, εvi with i = {f, s, n} are the strain-like internal variables. The logarithmic stresses
σi and the thermodynamical force βi conjugates to the internal variable are related to the
free energy function as

σi := ∂εiψ
va
i (εei ) and βi := −∂vεiψ

va
i (εei ) . (3.34)
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Therein, the particular form of dissipation potential D for the standard dissipative solids,
proposed in [28], is expressed in terms of mi, ηi and β̂ as follows

D(ε̇vi ) :=
∑

i=f,s,n

β̂2
i

ηi

1 +mi

2 +mi

(
ηi

β̂i

|ε̇vi |
) 2+mi

1+mi

(3.35)

Therein, mi is parameter for transition from purely linear viscoelastic flow to nonlinear vis-
coplastic flow. ηi is the viscosity parameter. β̂ is the activation stress and will be taken as
unity for ensuring the consistent units. By exploiting Equation (3.29) and Equation (3.35)
with some manipulations in Biot-equation, following temporal evolution equation for in-
ternal variables are derived as

ε̇vi =
1

ηi

∣∣∣∣βi

β̂i

∣∣∣∣mi

βi (3.36)

in the fiber, sheet and normal directions. For mi > 0, the evolution equation in terms of
βi remains nonlinear. Therefore, the update iteration is operated at gauss point level to
obtain the internal strain-like variable εvi by using a Newton-Raphson method.

3.2.4 Evolution equation for active stretch

The characteristics of the [Ca2+] and myocardial contraction are nonuniform over the ven-
tricles. The cardiomyocyte located on various location over the heart respectively have
different the electrical and mechanical activation, duration and the magnitude of the con-
traction [30, 31]. These non-homegenity are likely to occur in order to circulate blood
throughout the body efficiently and to reduce the possibility of malfunction of the ven-
tricles. In this context, the developed evolution equations in [1] are applied. The active
stretch is modelled by the following exponential type evolution equation

λ̇af = f(c̄)− (λaf − 1)k2, with f(c̄) = ξ[exp(−qc̄)− 1]. (3.37)

Therein, k2, ξ and q are material parameters. c̄, the calcium concentration, is formulated
by the following evolution equation

˙̄c = g(φ)− c̄k1 with g(φ) = −ζ[ln(1− φ)]p (3.38)

with the material parameters k1, ζ and p.

3.3 Visco-active stresses update algorithm

In the section, ∆t = tn+1 − tn is used as the discrete time increment, where tn+1 and tn
symbolize for the current and previous time steps, respectively. Also, all variable without
subscript n are considered as values calculated at time t. The update of the evolution equa-
tions for the viscous dashpot in Equation (3.36) and the active stretch in Equation (3.37)
is required for the components of the visco-active Kirchhoff stress tensor Equation (3.31) in
the fibre direction within a time-discrete setting. The component of the visco-active Kirch-
hoff stress tensor in sheet and normal directions requires only the update of the evolution
equations for viscous stretches in Equation (3.36) in a time-discrete setting.
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3.3.1 Update of active-stretch in the fibre direction by splitting-algorithm
operator

The visco-active stresses in Equation (3.31) is obtained by employing a one-pass operator
split algorithm as

ALGOVA = ALGOV ◦ALGOA . (3.39)

where the mechanical stretches are computed as λmf = λefλ
v
f for frozen viscous deformation

λ̇f = 0 from the evolution equation of active stretch Equation (3.43)

λf = λmf λ
a
f → λmf = λfλ

a
f
−1 (3.40)

and the current elastic stretches are computed through the evolution for viscous stretches
Equation (3.36) for a frozen active stretch λ̇af = 0

λmf = λefλ
v
f → λef = λmf λ

v−1
f (3.41)

The summary for the update algorithms for the one-pass operator splitting algorithm is

(V ) :


λ̇vf =

1

ηf

∣∣∣∣βf

β̂f

∣∣∣∣mf

βf

λ̇af = 0

˙̄c = 0

and (A) :


λ̇vf = 0

λ̇af = ξ[exp(−qc̄)− 1]− (λaf − 1)k2

˙̄c = −ζ[ln(1− φ)]p − c̄k1.

(3.42)

ALGO (A): Through the implicit Euler scheme in an incremental interval λaf value at
current timestep is computed as

λ̇af ≈
λaf − λaf |tn

∆t
= f(c̄)− (λaf − 1)k2 → λaf (c̄) =

f∆t+ k2∆t+ λaf |tn
1 + k2∆t

. (3.43)

where c̄ is the current value of the intra-cellular calcium concentration. c̄ is updated by
using the implicit Euler scheme to Equation (3.38)

˙̄c ≈ c̄− c̄n
∆t

= g − c̄ k1 → c̄(φ) =
g∆t+ c̄n
1 + k1∆t

. (3.44)

With the updated value of λaf , one can compute the active part of the deformation gradient
F a.

ALGO (V): In the following, a Newton-Raphson algorithm is utilized for the update of the
viscous stretch

ε̇vf ≈
εvf − εvf |tn

∆t
=

1

ηf

∣∣∣∣βf

β̂f

∣∣∣∣mf

βf with βf := −∂εvf Ψ̄va = µf(εf − εvf − εaf ). (3.45)

The evolution equation with mf > 0, is nonlinear function of εvf with no closed form
solution. Thus, in order to calculate εvf , it is required to use a Newton-Raphson iteration
method. To this end, a residual expression Rf is defined in terms of the internal variable
εvf

R(εvf ) := εvf − εvf |tn −∆t
1

ηf

∣∣∣βf

β̂f

∣∣∣βf (3.46)

for its iterative solution the linearization is required as

L[Rf ] = Rf +K∆εvf with Kf :=
∂Rf

∂εvf
. (3.47)
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1. Set initial values Internal variable: εvf (0) = εvf |tn , counter i = 1

Do

2. Compute residual Rf(i) := εvf (i)− εvf |tn −∆t
1

ηf

∣∣∣∣βfβ̂f
∣∣∣∣mf

βf

3. Linearize L[Rf(i)] = Rf(i) +
∂Rf(i)

∂εvf
∆εvf (i+ 1)

4. Compute tangent Kf(i) =
∂Rf(i)

∂εvf
= 1 + ∆t

µf(mf + 1)

ηf

∣∣∣∣βfβ̂f
∣∣∣∣mf

5. Compute increment ∆εvf (i+ 1) = −K−1f (i)Rf(i)

6. Update εvf (i+ 1)← εvf (i) + ∆εvf (i+ 1) & i← i+ 1

While |Rf(i)| ≥ Tolerance

Table 3.1: Local Newton-Raphson iteration for the internal variable εvf (for i=f, s, n)

The whole Newton iteration step is described in Table 3.1. Note that in case mf = 0, the
mentioned iteration is not required, instead, by making use of Equation (3.46), one obtains
a closed-form expression for the viscous internal variable

εvf =

εvf |tn +
∆t

ηf
µf(εf − εaf )

1 +
∆t

ηf
µf

. (3.48)

3.3.2 Update algorithm for viscous-stretch in sheet and normal direction

The aforementioned recipe outlined from Equation (3.45) to Equation (3.48) with Table 3.1
is utilized for the update of the elastic stretches λei = exp(εei ). Therein, the values for
viscous-stretch in sheet and normal direction are updated as

λai = 1 leading to λmi = λei λ
v
i for i = {s, n} . (3.49)

3.4 Algorithmic tangent moduli

Consequently, the visco-active part of the tangent moduli is achieved as

Cvaalgo := Ψva
4f

′
F + Ψva

4s

′
S + Ψva

4n

′
N with N := n⊗ n⊗ n⊗ n. (3.50)

Therein, the deformation-dependent scalar visco-active moduli coefficients are defined as

Ψva
4i

′
:=

µ̂i − 2σi

I2
4i

with µ̂i = µi/Ki, for i = {f, s,n}. (3.51)

3.5 Blood pressure in both ventricles

The heart is the most important muscular organ in the cardiovascular system and that
pumps blood from the low-pressure venous side to the high-pressure atrial part in order
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Figure 3.2: Pressure-Volume (PV) curve diagram of the ventricle during a normal cardiac cycle.
Pressure-volume loop divided into 4 phases; isovolumetric contraction (systole), ejection (systole), iso-
volumetric relaxation (diastole), ventricular filling (diastole). The important clinical indices such as stroke
volume (SV), end-diastolic volume (EDV), end-systolic volume (ESV), end-diastolic pressure (EDP), end-
systolic pressure (ESP), end-diastolic pressure–volume relation (EDPVR) and end-systolic pressure–volume
relation (ESPVR) are shown in the graph. Ejection fraction (EF) can be obtained as proportion of SV to
EDV, i.e. SV/EDV. Switch conditions are shown as well. The phase shift from filling to isovolumetric con-
traction occurs if q > 0, from isovolumetric contraction to ejection if p > p2, from ejection to isovolumetric
relaxation if q < 0 and from isovolumetric relaxation to filling if p < p1.

to circulate blood through the body so that all cells are provided with newly oxygenated
blood and supplied by the proper nutrition in order to maintain the metabolism. To
understand how cardiac function is achieved, one must comprehend the sequence of the
mechanical events related to the pressure variation and the opening and closing valve. In
the section, the contraction-relaxation characteristics of both ventricles roughly illustrated
as well as the constitutive equations for computing ventricular blood pressure evolution
are described.

3.5.1 Pressure-volume curve

For a healthy heart, the ventricle contracts and relaxes concurrently, and go through four
different phases: isovolumetric contraction, ejection, isovolumetric relaxation, filling. The
first two phases are classified as systole (contraction), the last two are labeled as diastole
(relaxation), which are illustrated in Figure 3.2. It is assumed that the cardiac cycle
starts from isovolumetric contraction as soon as the resting cardiomyocytes are provoked
electrically. As the ventricles are depolarized the ventricular pressures rise rapidly without
the ejection of blood into the aorta or pulmonary artery, which keep the volume of the
ventricles constant. Thus, ventricular contraction in this phase is called “isovolumic” or
“isovolumetric”. During this phase, some individual fibers shorten when they contract,
whereas others generate force without shortening or can be mechanically stretched by the
contracting cell around. This non-uniform contraction cause the geometry of ventricles
changes significantly as the heart becomes more spheroid in shape. In this phase, the rate
of pressure becomes maximal.

As the pressure in the ventricles rises, the semilunar valves are opened when the pressure
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in the aorta and pulmonary artery is exceeded. Then, the semilunar valves open and the
blood is ejected out of the ventricles. The ejection occurs as the total energy of the blood
within the ventricles exceeds total energy of the blood in aorta. At the end of the phase,
the ventricles has their own minimum volumes (ESV). The volume ejected in the phase is
SV.

As the intraventricular pressures fall, the semilunar valves close. Since the total energy of
blood within the ventricles is less than the energy of blood in the outflow tracts at this
a point, systole ends and diastole begins. This phase is called isovolumetric relaxation.
As the name suggests, the ventricular volumes remain constant (isovolumetric) during this
phase and the ventricular pressure decreases because semilunar and AV valves are closed.
The residual volume of blood that remains in a ventricle after ejection phase is ESV. The
difference between the EDV and the ESV represents the SV of the ventricle. In a normal
ventricle, about 50% or more of the EDV is ejected. The EF is obtained the SV divided
by the EDV. When the ventricular pressure is lower than the atrial pressure, isovolumetric
relaxation phase ends.

Then the AV valves open and ventricular filling begins. In this phase, the semilunar valves
keep closed. Through the opened valves, the passive and rapid filling of the ventricles
begins, which is accelerated by the high atrial pressures with decreased ventricular pres-
sures. Once the ventricles are fully relaxed, their pressure begins to rise as they fill. The
pressure at the end of the filling is EDP and the ventricles are filled to their EDV. The left
ventricular EDV is associated with EDP.

3.5.2 Ventricular blood pressure evolution

In the following equations, ’lv’ and ’rv’ are replaced with ’v’. Also, the equations are
applicable for both ventricles. Since the ventricular pressure is quasi-linearly dependent
on the volume in isovolumetric phases and filling, the linear evolution law is given as

˙̂pv = κ̄(θ̃ − θ) with θ̃ :=
Ṽ
V0

and θ :=
V
V0
. (3.52)

Therein, κ̄ is the material parameter having different values for each phase in order to
enable the condition V̇ ≈ 0 during isovolumetric phases and ˙̂pv ≈ 0 during filling. Also,
θ̃, θ, Ṽ and V0 represent the dilatation at the end of the preceding phase, the current
dilatation, the volume at the end of the previous phase and the volume of the ventricle
cavity at the beginning of the cycle, respectively. By applying the implicit Euler method,
the evolution equation for pressure is integrated as follows

˙̂p ≈ p̂v − pv|tn
∆t

= κ̄(θ̃ − θ) → p̂v(V) = κ̄(θ̃ − θ)∆t+ pv|tn . (3.53)

For the pressure evolution in the ejection phase, the three-element Windkessel model is
applied

˙̂pv =
1

Cap

(
1 +

Rc
Rp

)
q +Rc q̇ −

p̂v

CapRp
with q := −V̇, V̇ ≈ V − Vn

∆t
and q̇ =

q − qn

∆t
,

(3.54)
where the material parameters Cap, Rc and Rp control the resistance and compliance prop-
erties of the blood flow and q depicts the outward blood volume rate from the ventricles.
Similarly, the ventricular pressure is updated via the Euler integration method

˙̂pv ≈
p̂v − pv|tn

∆t
→ p̂v(V) =

(1 +Rc/Rp)q + Cap(Rc q̇ + pv|tn/∆t)
Cap/∆t+ 1/Rp

(3.55)
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Moreover, the equations for the sensitivity of p̂ with respect to V for the ejection phase
and the rest of the phases are

p̂′v = −1 +Rc(1/Rp + Cap/∆t)

Cap + ∆t/Rp
and p̂′v = −κ̄∆t

V0
. (3.56)

Note that the negative sign in p̂′v equation occurs since the ventricular pressure is inversely
proportional to the ventricular volume.

3.6 Current source

In this section, the electrical source term F̂ φ is specified. For the phenomenological electro-
physiology, it is helpful to set the model equations and parameters in the non-dimensional
space. It is first devised the dimensionless transmembrane potential φ and dimensionless
time τ through the following conversion formulation

φ =
Φ+ δφ
βφ

and τ =
t

βt
. (3.57)

The physical potential Φ is converted into dimensionless potential φ by using the constant
βφ and the potential difference δφ, which are measured in milivolt (mV). The unitless time
τ is similarly related to the physical time t with the help of the scaling factor βt measured
in millisecond (ms). With the relation in Equation (3.57), the conversion equations are
obtained as

F̂ φ =
βφ
βt
f̂φ and H =

1

βt
h, (3.58)

where f̂φ is the normalized source term described by a Fitzhugh-Nagumo type excitation
equation, and the unitless counterparts h = ∂φf̂

φ of the physical tangent terms H in
Equation (2.18). The normalized current source f̂φ is decomposed into two contributions,
purely electrical part f̂φe (φ, r) due to flow of ions across the membrane and mechano-electric
feedback part f̂φm(g;F , φ) due to stretch-activated-channels,

fφ = f̂φe (φ, r) + f̂φm(g;F , φ) (3.59)

Analogously, the sensitivity of the normalized source term h = ∂φf̂
φ is also decomposed

into two contributions as h = ∂φf̂
φ
e + ∂φf̂

φ
m.

3.6.1 Aliev-Panfilov model

For the computation of purely electrical part f̂φe , Aliev-Panfilov model [32], which considers
non-pacemaker cells by using two variables, is adopted. Also, the model favorably expresses
the characteristic shape of the action potential in cardiomyocyte. Following two equations
are used to calculate the transmembrane potential φ and the slow recovery variable r

f̂φe =∂τφ = c φ(φ− α)(1− φ)− rφ+ I,

f̂ r =∂τr =
[
γ +

µ1r

µ2 + φ

]
[−r − c φ(φ− b− 1)].

(3.60)

where c, α are material parameters. In Equation (3.60)2, the coefficient term [γ+µ1r/µ2 +
φ] is to control the restitution characteristics of the model through µ1, µ2 and γ. Therein,
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Φ, Φn and rn are given

1. Calculate the dimensionless φ = (Φ+ δφ)/βφ in Eq.(3.57)1

2. Set r ← rn

3. Calculate Rr and ∂rRr in Eq.(3.62)

4. Update recovery variable r ← r − [∂rR
r]−1Rr

5. Check if |Rr| < TOL, if not, goto 3, continue otherwise

6. Update history for rn

7. Compute ∂φRr and dφr in Eq.(3.63)

8. Obtain fφe in Eq.(3.60)1 and ∂φf
φ
e in Eq.(3.64)

Table 3.2: Local Newton raphson iteration for the internal variable r and determination of the
corresponding source term fφe and its linearization ∂φfφe .

r is considered as an internal variable at gauss point level. Due to the non-linearity of the
variable, a backward Euler integration is carried out to compute the current value of r at
local material level. To perform this, following residual expression is required:

Rr = r − rn −∆τ
[[
γ +

µ1r

µ2 + φ

]
[−r − c φ[φ− b− 1]]

]
=̇0 (3.61)

Subsequently, to achieve the tangent term, it is required to find the derivative Rr in
Equation (3.61) with respect to r,

∂rR
r = 1 + ∆τ

[
γ +

µ1

µ2 + φ
[2r + c φ+ c φ[φ− b− 1]]

]
. (3.62)

The local update of the recovery variable r is done as r ← r − [∂rR
r]−1Rr. Then dφr is

calculated using the condition dφRr = ∂φR
r + ∂rR

rdφr =̇ 0, where the partial derivative
of Rr with respect to φ is

∂φR
r = ∆τ

[[
γ +

µ1r

µ2 + φ

]
c [ 2φ− b− 1]− µ1r

[µ2 + φ ]2
[ r + c φ[φ− b− 1]]

]
=̇ 0. (3.63)

The tangent modulus regarding purely electrical part is then calculated as

∂φf̂
φ
e = c

[
− 3φ2 + 2[1 + α]φ+ α

]
− r − φ dφr. (3.64)

Table 3.2 summarizes the local Newton iteration to update the internal variable r and
determines the corresponding source term fφe and its linearization dφf

φ
e .

3.6.2 Mechano electric feedback

As described in Chapter 1, the electrical excitation trigger the contraction of the car-
diomyocyte through the ECC. Furthermore, cardiac electrophysiological changes can also
be triggered from a mechanical disturbance via MEF. Likely mediators of mechanoelectric
feedback are stretch-activated ion channels (SACs) [33], which are opened in response to
stretch in myocardium. The underlying mechanisms leading to SACs induced by stretch-
ing are not yet completely understood. Nevertheless, the pathophysiological role of cardiac
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SACs is huge and, consequently, there are many clinical observations related to the car-
diac MEF [7, 15, 17], such as stretch-induced ectopic excitation to mechanical induction
of tachycardia and fibrillation. Besides, MEF is considered as a constituent part of the
intrinsic electromechanical regulatory loop of the healthy heart [15, 34, 35]. Different math-
matical models for SACs are reported [36] for the several types of SACs such as cation
permeable SACs [37] and potassium-selective one [38]. In the thesis, for the mechano elec-
tric feedback source term, the following mathematical model proposed in [22, 23, 39] is
considered

f̂φλf = Gs 〈λf − 1〉 (φs − φ) (3.65)

where Gs is the maximum conductance and λf is the length of fiber at current time. 1
represent the length of fiber in undeformed setting. Since it is assumed that SACs is opened
only under tension, Macaulay brackets are applied to enforce that the MEF is activated if
λf > 1. φs is the resting potential of the SACs. Under the tension, if the φ at the time of
stimulation is below φs, SACs let the ion flux inward and results in depolarization. Despite
the positive strain occur in the collagen of the myocardium, if the φ is above the resting
potential, an outward (repolarizing) current ensues. This feature implies that the timing
of stretch is important to create the premature depolarization in the myocardium.

In the formulation of MEF in Equation (3.65), SACs is simply related to the amount of
stretch. In the thesis, reformulation of MEF is suggested based on physical observations
as a novel aspect. Many studies indicates that SACs are dependent not only on the
amount of stretch but also on the speed at which the stretch is applied [39, 40, 41, 42,
43]. Furthermore, it is hypothesized that the region with positive λf does not necessarily
correspond to the region with positive λ̇f , especially in case of viscoelastic simulation.
Also, it is reported that stretch along cross fiber direction λs affects the cardiac behaviour,
especially in infarcted heart [44].

Therefore, apart from Equation (3.65), the mathematical models for SACs in terms of λ̇f

and λs are suggested for the MEF source term f̂φm,

f̂φ
λ̇f

= Gs

〈
λ̇f

〉
(φs − φ) and

f̂φλs = Gs 〈λs − 1〉 (φs − φ),
(3.66)

where λ̇f is the strain rate calculated as (λf − λf |n)/∆t and λs is the stretch in cross fiber
direction. Finally, the three different mathematical SACs models are used for the MEF
source term f̂φm in the thesis. While the traditional SACs formulation in Equation (3.65) is
taken into accounted only when the cardiomyocyte is in tension, MEF associated λ̇f Equa-
tion (3.66) turns on when current length of fiber is longer than the length in the previous
step whether it is in tension or in compression. Moreover, due to the orthotropic charac-
teristics of cardiomyocyte, it behaves distinctively in the cross fiber direction. Therefore,
it is expected that both MEF reformulation bring the dissimilar electrophysiological effect
throughout the heart. Next, the tangent terms of Equation (3.65) and Equation (3.66) are
derived as

∂φf̂
φ
λf

= −Gs 〈λf − 1〉 ,

∂φf̂
φ

λ̇f
= −Gs

〈
λ̇f

〉
and

∂φf̂
φ
λs

= −Gs 〈λs − 1〉 .

(3.67)

With Equation (3.64) and Equation (3.67) in hand, the three different sensitivities of
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Equation (3.59) are achieved as

h := ∂φf̂
φ =


∂φf̂

φ
e + ∂φf̂

φ
λf

= c
[
− 3φ2 + 2[1 + α]φ+ α

]
− r − φ dφr −Gs 〈λf − 1〉

∂φf̂
φ
e + ∂φf̂

φ

λ̇f
= c

[
− 3φ2 + 2[1 + α]φ+ α

]
− r − φ dφr −Gs

〈
λ̇f

〉
∂φf̂

φ
e + ∂φf̂

φ
λs

= c
[
− 3φ2 + 2[1 + α]φ+ α

]
− r − φ dφr −Gs 〈λs − 1〉 .

(3.68)
Finally, the physical counterpart of Equation (3.59) and Equation (3.68) can be obtained
by the conversion equations in Equation (3.58).

3.7 Electric flux

The electric potential flux q̂ represents the ion flow in a conductive medium that is induced
by the potential difference between two points, describing the magnitude and direction of
electrical charge. q̂ is assumed to linearly depend on the spatial potential gradient ∇Φ.
Therefore q̂ is defined as

q̂ = D · ∇Φ, (3.69)

where D is the deformation-dependent spatial conduction tensor determining the conduc-
tion speed of the non-planar depolarization front in three-dimensional orthotropic cardiac
tissue. Therefore, D is defined as

D := disog
−1 + danif ⊗ f . (3.70)

Therein, isotropic diso and anisotropic dani are conductivity speed.
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4 Numerical examples

This chapter is devoted to demonstrate the effect of MEF by use of representative examples
with the coupled electromechanical analysis established in the Chapter 2 and Chapter 3
that formulates the main physiological features of the overall response of the heart as well
as the two way coupling; ECC and MEF. Firstly, the influence of MEF on cardiac action
potential (AP) and dispersion of repolarization (DR) are examined at cell scale with the
analysis of the rectangular bar of heart tissue. Secondly, normal cardiac cycles under MEF
are simulated with the intact biventricular heart model. Furthermore, the MEF is formu-
lated not only in terms of λf but also is reformulated in consideration of the strain rate
along fiber direction (λ̇f) and the cross fiber stretch in sheet fiber direction λs, as a novel
aspect. As previously mentioned, the velocity at which stretch is applied has influence on
MEF. It is also reported that the variation of cross fiber stretch in cardiac muscle cell has
an impact on MEF. The variations of the cardiac electrophysiology and the cardiac perfor-
mance are probed by AP, ECG and v-t curve which are recorded during the normal cardiac
cycles. Moreover, VF(ventricular fibrillation) by application of moderate mechanical im-
pact (Commotio cordis) and the termination of the VF by a mechanical impact (precordial
thump) [a]re simulated with the biventricular heart model. Lastly, it is exemplified how
the sudden increase of preload in the left ventricle affects the cardiac output and elec-
trophysiology. The pressure, volume and the electrical flux are simultaneously recorded
during cardiac cycles. Unless stated otherwise, the values of the Table 4.1 are used for the
electromechanical analysis in the next sections. Particularly, in the heart simulations, the
parameters for the electrophysiology are chosen to result in depolarization and repolariza-
tion phases fit well in following cardiac cycles each taking 800 ms. The elastic cases are
formulated by assigning ηf →∞ kPa s, µs = 0 kPa s and µn = 0 kPa s.

4.1 MEF at cell-scale

This section investigates the influence of MEF in Equation (3.65) on the cardiac rect-
angular segment (5 mm × 5 mm × 20 mm) of the heart tissue by using the coupled finite
element analysis using time steps of ∆t = 1 ms. To perform this, 4 sets of simulations
are consdiered: the elastic formulation without MEF application (EX), the viscoelastic
formulation without MEF application (VX), the elastic formulation with MEF application
(EM) and the viscoelastic formulation with MEF application (VM). For each of these sets,
three different discretizations with element number 5, 10 and 20 are considered. So, in
total 12 simulations are performed to assess the MEF effect. An example of geometry, the
cardiac tissue segment consisting of 10 elements are shown in Figure 4.1A. As mechanical
boundary conditions, the nodes on the plane x = 0mm in all direction are fixed and all the
remaining nodes are constrained with directional linear springs having stiffness values as
kx = ky = kz = 8 · 10−4 N/mm. The required parameters are taken from Table 4.1, except
for γ = 0.0002. The transmural variation of the fiber directions is not considered as all the
fibers in each element are aligned along x-direction. The depolarization planar wave fronts
are commenced on the left edge (x = 0 mm) where the initial transmembrane potential
value was assigned as Φ = −40 mV at t = 0 ms. Except these nodes, the remaining nodes
are electrically in a resting state Φ = −80 mV. As the nodes assigned as Φ = −40 mV at
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Passive stress κ = 50 kPa, a = 0.309 kPa, b = 9.194 [−]

af = 12.093 kPa, as = 1.383 kPa, afs = 0.272 kPa

bf = 20.407 [−], bs = 19.476 [−], bfs = 12.266 [−]

Visco-active stress µf = 75.382 kPa, µs = 18.874 kPa, µn = 9.37 kPa

ηf = 98.157 kPa s, ηs = 59.157 kPa s, ηn = 29.793 kPa s

mf = 0 [−], ms = 0 [−], mn = 0 [−]

Calcium concentration k1 = 0.008 [−], ζ = 0.01 [−], p = 3 [−]

Myocardial contraction k2 = 0.025 [−], ξ = 0.030 [−], q = 0.001 [−]

Excitation
Aliev-Panfilov model α = 0.01 [−], b = 0.1 [−], c = 8 [−], γ = 0.0005 [−]

µ1 = 0.15 [−], µ2 = 0.3 [−]

Mechano electric feedback Gs = 80 [−], φs = 0.5 [−]

Conversion βφ = 100 mV, δφ = 80 mV,βt = 12.9 ms

Conduction diso = 0.5 mm2/ms, dani = 5.0 mm2/ms

Ventricular pressure
Isovolumetric contraction κ̄ = 500 mmHg/ms

Ejection Rp = 1 mmHg ms/mm3, Rc = 10−3 mmHg ms/mm3

Cap = 800 mm3/mmHg

Isovolumetric relaxation κ̄ = 2000 mmHg/ms

Filling κ̄ = −0.05 mmHg/ms

Switch pressures p1 = 10 mmHg, p2 = 70 mmHg.

Table 4.1: Parameters used in the simulations

t = 0 ms are depolarized, the potential difference between the transmembrane potential at
the depolarized nodes and −80 mV at the remaining nodes causes the planar depolarization
wave front. The results of 12 simulations are shown in Figure 4.1B.

4.1.1 Dispersion of repolarization

Dispersion of repolarization (DR) has been defined as the difference between longest and
shortest repolarization time in one area or segment and another [9, 45]. In intact heart,
proper ejection of blood is achieved by relatively synchronous contraction of the cardiac
cells [7]. Also, the DR in intact heart is small, but normally big enough to give the vectors
for the T wave of the ECG [46], which is the most vulnerable area to the electrical and
mechanical perturbation [19, 20]. Reentry is the most likely mechanism of arrhythmias
facilitated by DR [47, 48]. In the subsection, the effect of MEF on the DR is investigated.

Set Elastic Elastic+MEF Viscoelastic Viscoelastic+MEF

Elements APD80 DR APD80 DR APD80 DR APD80 DR

5 629.1 86.8 601.5 59.2 629.2 86.9 618.2 75.9

10 704.0 161.7 611.6 69.3 704.1 161.8 635.5 93.2

20 784.8 242.5 617.0 74.7 784.9 242.6 637.9 95.6

Table 4.2: The APD80 and the dispersion of repolarization in [ms]. DR is calculated by sub-
tracting the time at which APD80 occurs in the first node from the time at which APD80 occurs
in last node. The time of APD80 of the first node obatined in each simulation was not displayed
in the table due to the negligible differences between them (542.3 ms is used as the representative
value). Linear interpolation enables the value to have one decimal place.
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Figure 4.1: A : Polarization of the viscoelastic 10 element bar tissue without MEF effect (top
panel) and with MEF effect (bottom panel). B : Cardiac APs. A family of curves describing
cardiac AP are plotted in each graph. The AP drawn with black-dashed line represents 3 AP
curves occuring at the first node of 3 different geometries. Solid-colored lines represent the AP
occuring at the nodes placed at the end of the segment. The gap between colored-solid lines and
the black-dashed line means the DR. When MEF adopted, due to the reduction of the dispersion,
the cells are contrating in more coordinated and synchronized way.
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Figure 4.2: Result of the DR study. Regardless of the material property, finer mesh has more
significant increase in the DR. However, when MEF is considered, the decline of the DR is observed.
The values are displayed in Table 4.2.

To do so, two APs are considered: First one occurring at the first node located at the left
edge (x = 0 mm), and an AP occuring at the last node located at the right edge (x =
20 mm). The implementation of the AP of the first node gives the shortest repolarization
time and the other AP provides the latest repolarization time, which enables to monitor
that how long it takes to activate the entire bar and the DR. As mentioned in section 4.1,
the excitation of the bar is commenced at the first node so the last node located farthest will
be the last one to be activated. Note that one of the critical features of the myocardium
that the cell depolarized earlier will be repolarized later [49] is not implemented. The
implemented APs of the four different sets are shown in Figure 4.1B in which the colored-
solid lines represent the AP with different refinement level occuring in the last element
and the black-dashed line depicts the AP in first element. The APs recorded in the first
node are the same regardless of the discretization level. So, in each figure, only one AP
was drawn for the first nodes on behalf of the three discretization level’s APs. First, in
the both “Elastic” and “Viscoelastic” cases in which MEF was not engaged in Figure 4.1B,
the DR is increased as the geometry becomes finer despite the same length of the bar.
The snapshots of the transmemembrane potential by the simulations of VX10 (top) and
VM10 (bottom) are depicted in Figure 4.1A and each corresponding AP is depicted in
the top-right and bottom-right panel with blue-solid color in Figure 4.1B, respectively. In
the simulations of VX10, the first node is depolarized at time t = 1 ms and then starts to
activate the adjacent nodes. The last element starts to depolarize 174 ms later than the
first node. At t = 542.3 ms, the transmembrane potential of the first node decreases to
80% of its peak value and the APD80 of the last node occurs at t = 704.5 ms therefore
the DR is 162.2 ms (704.5 − 542.3) in the bar tissue (VX10). However, if MEF operates,
the electrophysiology of the bar changes. As the first element begins to contract at time
t = 1 ms, the contraction causes stretch all elements over the bar tissue and then the
adjacent elements also causes stretch all elements. This mechanism sequentially takes
place on every element. Consequently, the resultant stretch developed in the last element
drives the voltage-charged ion flux into myocyte through SACs, which does not develop
in the absence of MEF effect. In the VM10 bar, APD80 of the first node occurs at
t = 542.3 ms and the APD80 of the last node occurs at 635.5 ms therefore the DR is
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Figure 4.3: A : AP simulations with 10 elements bar tissue. Solid lines represent the MEF applied
simulations. APs with dashed lines are from simulation without MEF. Excluding MEF effect, APs are
nearly the same regardless of material properties. However, when MEF operates, the small discrepancy
occurs due to the delayed response of viscoelastic cardiomycytes. Since the elastic myocardium immediately
responses to the stretch, the depolarization by SACs occurs slightly earlier than the dipolarization of
the viscoelastic one. B : In order to compare the morphology and the AP duration, the APs were
superimposed. The two APs with MEF effect have the shorter APD than the other two cases without
MEF. Also, the steeper repolarization gradients are observed. Between the APs with MEF, the APD of
viscoelastic formulation is longer than that of the elastic one. The changes affect the ECG.

93.2 ms (635.5 − 542.3). Hence, the time to activate the entire bar is decreased and the
reduced DR is obtained when considering MEF. The DR can be observed in the other sets
of simulations as well, which are summarized in Table 4.2 and in the Figure 4.2. In the
simulations without MEF, only cell-to-cell conduction is responsible for the activation of
the bar. Therefore, the DR increases as the mesh is refined. Under MEF effect, the bar is
activated not only by the cell-to-cell conduction but also by SACs due to the mechanical
deformation, which leads to reduction of the time to activate whole bar, the decline in
the DR, and consequently the more coordinated contraction. SACs due to MEF in the
myocardium depolarize the near elements while the triggered stretch does not affect the
excitation of the elements in the absence of MEF. The stretches affect the electrical activity
in all elements over the bar almost simultaneously. Therefore, all elements undergo the
contraction and the relaxation in more synchronized and coordinated way regardless of
the segment’s level of discretization. The harmonized contraction of the heart is one of
the important factor to circulate blood through whole body, and MEF contributes to the
coordination by decreasing the DR.

4.1.2 Impact of material property

In the previous subsection, it is explained how MEF influences on the AP and DR. In this
subsection, the impact of material properties on the electrophysiological events of the bar
tissue is evaluated according to existence of MEF. The results are plotted in Figure 4.3 in
which solid-blue and solid-black represent viscoelastic formulation with MEF and elastic
one with MEF, respectively. Dashed-blue and dashed-black represent viscoelastic formu-
lation without MEF and elastic one without MEF, respectively. If MEF is not operated,
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Figure 4.4: The virtual biventricular model of a healthy person, discretized by 25366 tetrahedral
elements over 6270 nodes with 1758 triangular surface elements on the endocardial inner surface. A
38 years old healthy volunteer’s (male) biventricles are virtualized. All lengths are in millimetres.
Fiber angle at epicardial surface is set to −70◦. Endocardial surface’s fiber angle is 70◦. The fiber
angle values between epicardium and endocardium are interpolated by Equation (4.1).

there is hardly any differences found between the elastic formulation and viscoelastic one as
it can be seen that the two APs with dashed-lines are the same. In contrast, when compar-
ing the simulations under MEF effect, the small difference is observed between viscoelastic
and elastic formulations. It can be noticed that the electrophysiological events of elastic
material occurs earlier than viscoelastic one. The depolarization of the last node is devel-
oped by SACs. In elastic formulation, the tension is developed as soon as the contraction
occur. In viscoelastic formulation, the opening of SACs is delayed due to the delayed re-
sponse to the tension, thereby the depolarization and repolarization are started later than
elastic formulation. Furthermore, the graphs are superimposed in Figure 4.3B in order to
investigate the AP morphology and the APD. The two solid lines, where MEF is consid-
ered, have the shorter APD with the steeper gradient in the repolarization phase than the
APD observed in the two dashed lines. Under MEF, the material property also alters the
AP morphology. In the elastic case (EM10), it is possible to observe the more shortened
duration of plateau and the slightly ealier start of repolarization with the steeper gradient.
Although they are not remarkable in a single cardiac cell level, the features could affect the
electrophysiological behaviour of heart consisting of numerous cardiac cells. For example,
the steeper gradient of repolarization and the shortend plateau in AP could shorten the
QT interval in ECG.

4.2 MEF with biventricular heart model

MEF, the process by which mechanical forces on the myocardium can alter its electrical
properties, is known to underlie many cardiac arrhythmia associated with pathological
conditions [8, 9]. In this section, the simulations using the finite element framework of
a biventricular heart model of a healthy person are presented. The biventricular heart
geometry virtualized through cardiac magnetic resonance imaging (cMRI) is adopted to
the analysis in the section. The geometry in Figure 4.4 is discretized by 25366 tetrahedral
elements over 6270 nodes. Also, the model includes 1758 triangular surface elements on
the endocardial surface of its left ventricle for measuring the volume cavity. The fiber
orientation angle (θ) at material level devised by linear interpolation, thereby the myofiber
alignment is varied from 70◦ in the endocardium, the inner wall −70◦ in the epicardium,
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Figure 4.5: A : A single cell simulation located at the epicardial surface of LV for the exemplifi-
caion of how λf , λ̇f and λs stabilize over the normal cardiac cycles. The excitation is initiated with
an external stimulus I = 5 [-] every 800ms. The variation of stretch is repeated as cycles proceed in
elastic formulation. In viscoelastic formulation, the degree of stretch varied as cycles proceed due
to the residual stretched brought by viscous effect. The stretch is saturated after enough cycles.
B : The regions that contribute to MEF in which the contour shows λf , λ̇f and λs at certain time
during diastole (top) and systole (bottom). In diastolic state the regions undergo the tension in
fiber direction (λf > 1) are coincides with the regions that experience the positive strain rate in
fiber direction (λ̇f < 0) and the compression in the cross fiber direction (λs < 1). The opposite
occurs in the systole state.
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Figure 4.6: Snapshots of the contour at different time during the normal cardiac cycle are
generated based on the three MEF cases: f̂φλf

(first row), f̂φ
λ̇f

(second row) and f̂φλs
(third row).

They are activated in the varied regions at the same time, which consequnetly affects the cardiac
electrophysiology.

the outer wall. The angle is calculated by using the following formulation

θ = θen + (θep − θen)
den

den + dep
, (4.1)

where θen and θep are the fiber angle prescribed on the endocardium and epicardium
surface, while den and dep represent the distance to the endocardium and epicardium,
correspondingly. Initially all the myocardial tissue is electrically in the resting state Φ0 =
−80 mV. Occurence of electrical stimulus (I = 5) triggering heart contraction is set every
800 ms for 10 ms on the nodes placed upper part of the septum corresponding AV node. A
constant time-step is set as ∆t = 2 ms in all simulations. Linear springs are attached to
the nodes at basal and epicardial surface, having stiffness values, respectively, kx = ky =
kz = 10−3 N/mm at the nodes basal surface z = 0, and kx = ky = kz = 10−4 N/mm2 at
the nodes corresponding to the epicardium. The normal cardiac cycles are simulated with
the biventricular model in order to investigate the influence of MEF on the intact heart
in Section 4.2.1. In Section 4.2.2, ventricular fibrillation (VF) by “Commotio cordis” is
simulated on the biventricular heart and the termiation of VF is simulated afterwards by
precordial mechanical impact as well.

4.2.1 Influence of MEF on normal cardiac cycles

In this section, MEF effect on a intact biventricular heart is evaluated during normal
cardiac cycles with the elastic and the viscoelastic material properties. During each sim-
ulation the corresponding ECGs and v-t curves are recorded with the different Gs values.
Therefore, it can be scrutinized that the clinical contribution of MEF on normal cycles
of intact heart. Before appliying MEF effect on the heart, it is required to saturate the
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primary field variables on the material points to a closely constant value. This process
is conducted first in the transmembrane potential field. To perform this, 6 cycles were
performed with all nodes mechanically constrained. After the cycles, the electrical field is
stabilized and the field variable becomes nearly the same with the previous cycle. Also,
a regular ECG is observed. Then, the mechanical deformation field is saturated without
the constraints until the electromechanical state of the material points is almost the same
with the previous cycle. The variations of λf , λ̇f and λs at the single cell located in the
epicardial surface of LV are obtained and illustrated in Figure 4.5A. While the same values
are repeated every cycle in all elastic formulation, viscoelasticity of the myocardium causes
the residual stretches that induce the gradual increase in λf and the gradual decrease in
λs approaching asymptotic values. Moreover, it is observed that the range of λ̇f becomes
wider. Also, the horizontal symmetry is observed between λf and λs because the decreases
in the fiber spacing occur as the fibers lengthen.

It is worth to reformulate MEF in terms of λ̇f and λs and to compare the results with the
MEF formulated in terms of λf adopted in most studies. The virtualized biventricular heart
model exhibits that most of its regions with λf in tension are not always consistent with
the regions with positive λ̇f . The areas under compression undergo a positive λ̇f while the
regions under tension experience negative λ̇f . These inconsistency is more clearly visible
especially under viscoelastic formulations due to its time-dependent response. Also, the
mathematical model for SACs is reformulated by considering λs based on the studies that
reveal λs might also contribute to MEF, especially in the presence of the infarcted regions
[44]. The contour plots of λf , λ̇f and λs are shown in Figure 4.5B in which the top panel
shows the contour of λf , λ̇f and λs in diastolic state. The left shows the contour plot of λf

where most cells undergo tension along f (λf > 1). However, the elements have negative
λ̇f value (middle) and are under compression in the direction of s (λs < 1) at the same
time. The bottom panel shows the heart model experiencing the systole. Similarly, the
elements are in compression along f (left), have positive strain rate along f (middle) and
in tension along s (right). Therefore, the introduction of λ̇f and λs into MEF may manifest
different characteristics than MEF in terms of λf , with which finally the heart will behave
electrophysiologically in different way.

With the electromechanically saturated heart after sufficient cycles, the Equation (3.65)
and Equation (3.66)2 are modified. Finally, for viscoelastic simulation, the f̂φm in terms of
λf , λ̇f and λs are respectively,

f̂φλf = Gs
〈
λf − λ′f

〉
(φs − φ),

f̂φ
λ̇f

= Gs

〈
λ̇f

〉
(φs − φ) and

f̂φλs = Gs
〈
λs − λ′s

〉
(φs − φ).

(4.2)

Therein, λ′f and λ′s are the saturated stretch values achieved at the beginning of a certain
cycle having different value in every element. The 1 representing the initial fiber length
in the Equation (3.65) and Equation (3.66)2 are replaced by the saturated stretch because
each fiber does not return to the initial state due to the residual stretch and does not have
the same values in each element. With Equation (4.2) at hand, the three cases of MEF are
applied on the biventricular heart during normal cycles. The cycles with MEF application
are also simulated until the electromechanical values are stabilized. As expected, the three
MEF based on λf , λ̇f and λs affects locally the different regions of the heart model during
the cycle. MEF formulated by λf mostly affect the right ventricle during diastole and the
base to which the stiffer spring attached during systole. MEF in terms of λ̇f and λs also
have impacts on heart differently as shown in Figure 4.6.
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Figure 4.7: Schematic representation of ECG. The first deflection (P wave) is associated with
right and left atrial depolarization. In the thesis, the heart models without atria does not show
P wave The QRS complex representing ventricular depolarization. ST segment is the reflection of
the current flow associated with phase 2 of ventricular repolarization. Since there is no current
flow during this plateau phase of repolarization, the ST segment is normally isoelectric with the
baseline (Φ = 0 mV). The T wave means the current of rapid phase 3 ventricular repolarization.

Simulation of ECG

The electrical activity of heart can be visualized by the non-invasive technique, Electrocar-
diogram (ECG). The analysis of ECG is widely used for the diagnostic of cardiac diseases
[50]. The sooner is the detection of arrhythmias, the greater is the chance of recovery
because life-threatening arrhythmias were usually preceded by less-severe premonitory ar-
rhythmias [51, 52]. A typical ECG is shown in Figure 4.7. It is known that the changes in
duration of the QT interval are related to certain pathologies. The duration of QRS com-
plex is concerned with the status of the myocardial conduction system. The measurements
on the ECG are mostly defined by the characteristic extrema, amplitudes, wave morpholo-
gies and intervals of time between extrema points [50]. The ECG curves are generated
by the integration of the electric flux q at all over the domain in actual configuration, i.e∫
Bt qdv. The projection of the heart vector changing over time onto different directions
produces the differnt shape of ECGs. In the thesis, all the ECGs are recorded along lead
II vector from the base of the septum to the apex. In the real heart, the APD of cardiac
muscle cells in the endocardium is almost twice as large as the APD of epicardial cells [49].
Therefore, the cells nearby AV node will be the last cells repolarize and the outer lying
cells have shorter APD. In order to establish this crucial feature of the AP of cardiac cells,
the scaling factor βt is formulated as

βt = 12.9

[
1− tact 0.6

100

]
. (4.3)

Therein, tact is the elapsed time the transmembrane potential reaches -50 mV after the
excitation at AV node. The cell to which the wave front reaches sooner has the smaller tact

and the bigger βt, which allows the APD of the cell to be longer. As shown in Figure 4.8A,
the cells at the varied area of the heart are depolarized at different time as the front wave
begins to travel at the AV node. The cell located nearby AV node starts to depolarize
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Figure 4.8: A: The cross section of the biventricular heart model depicting the transmembrane
potential Φ at various time.One of the cells to which the wave front reach at each time is marked.
At the marked cells, APs are implemented to compare. B: The corresponding APs are obtained
from each node marked in A, which shows that the cell depolarized later has the longer APD.

relatively earlier than other cells. Each AP obtained at the cells marked with white dot
in Figure 4.8A is plotted in Figure 4.8B, which shows that the earlier the cell depolarize,
the longer APD the cell has. For example, the wave front reaches to the the cell located
nearby the AV node at time t = 34 ms, where the APD70 is 362.3 ms. The cell to which
the wave front reaches at t = 102 ms has the shorter APD70 (239.2 ms).

With this feature, the regular cardiac cycles with MEF effect in terms of λf , λ̇f and λs are
simulated and the corresponding ECGs are recorded as shown in Figure 4.10. The different
Gs were applied to the viscoelastic simulations and the elastic simulations, respectively.
Note that the plotted ECGs are obtained after several cycles, so the electromechanical
state of the material points is almost same with the previous cycle. The difference in
QRS complexes are imperceptible in all 3 MEF cases, while ST segment differs in each
ECG. ST segment in ECG corresponds to the plateau phase of AP in which no current
flow through transmembrane. Therefore, ST segment is isoelectric (Φ = 0 mV) in normal
healthy heart beat. The ECGs regarding f̂φλf and f̂

φ
λs

show non-isoelectric ST segment while
f̂φ
λ̇f

shows relatively isoelectric ST segment. The ECG recorded by the elastic formulation
has bigger amount of deviation of the ST segment than the ECG by viscoelastic formulation
despite the equivalent amount of Gs. For example, the speedier repolarization is observed,
which decreases the risk of an irregular heartbeat such as long QT-syndrome [53]. The
relatively shortend AP plateau and the steeper gradient of repolarization in AP causes
this phenomenon (See Figure 4.3). This influence of MEF is consistent with the results
of studies that include [8, 43, 54]. Figure 4.10B shows how the MEF in terms of λ̇f is
influencial on the ECG of the heart during normal cardiac cycle. As Gs increases, the T
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Figure 4.9: Illustration of the transmembrane potential distribution under MEF considering f̂φλf

(first row), f̂φ
λ̇f

(second row) and f̂φλs
(third row) with viscoelastic formulation. 3 MEF cases affect

the cardiac electrophysiology.

wave develops earlier, which is more clearly visible in case of elastic formulations. Also, it
is discovered the ST segment is in isoelectric state. The set of ECGs in Figure 4.10C, in
which MEF was reformulated in terms of λs, is sensitive to a small increase of Gs. These
reformulations of MEF alter the tramsmembrane potential of the heart. Figure 4.9 shows
the snapshots of the transmembrane potential contour obtained by applying MEF in terms
of λf , λ̇f and λs. The difference is more clearly visible in the diastole.

Simulation of volume-time curve

The v-t curve exhibits the volume change of the left ventricle as a function of time during
a single cardiac cycle. Although ECG is useful tools being capable of providing non-
invasively continuous measurement of the electric activity of the heart, it is not capable
of recording information about the actual blood volume passing through the heart. Elec-
trophysiological data from ECG need to be combined with hemodynamic data for a more
comprehensive evaluation of the cardiac function. Therefore, in this respect, deviations
in the v-t curves may be useful in the screening and monitoring of patients with a car-
diac disease [55]. Indeed, early detection and regular monitoring using the v-t curve, may
prevent progression of disease [56, 57]. In this part, the regular cardiac cycles for elastic
and viscoelastic cases are simulated with the varied Gs and each corresponding LV v-t
curve is recorded as represented in Figure 4.10. The LV volume information was recorded
simulataneously with the aforementioned simulations of the ECGs . Each surface element
located in the endocardium of the LV forms triangular pyramid of which the height is
the distance to a particular node to the basal surface. The volume integration of all the
deformed triangular pyramid is recorded as the LV volume at each time. Initial LV volume
is 109.54 ml. In the analyses ventricular pressure evolution is not taken into account. The
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Figure 4.10: The ECGs and v-t curves recorded during normal cardiac cycle using the biventric-
ular heart model where MEF applied with considering λf , λ̇f and λs. Top : A and A′ are shown
as results of MEF by λf (Gs : 0, 40, 50, 60). Middle : B and B′ are shown as results of MEF by λ̇f
(Gs : 0, 10, 15, 20). Bottom : C and C′ are shown as results of MEF by λf (Gs : 0, 0.06, 0.08, 0.10).
The dotted-black lines and the solid-black lines are recorded from the elastic and viscoelastic for-
mulation with MEF, respectively. The ECGs obtained by the elastic and viscoealstic simulation
where MEF is not considered are displayed with the dotted-blue lines and the solid-blue lines,
respectively.
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Cardiac A′ (fφλf
) B′ (fφ

λ̇f
) C′ (fφλs

)

output Gs SV [ml] EF [%] Gs SV [ml] EF [%] Gs SV [ml] EF [%]
E0 - 67.32 62.44 - 67.30 62.43 - 67.30 62.43
E1 40 64.55 59.80 10 55.83 51.49 0.08 58.21 53.71
E2 50 63.64 58.93 15 53.12 48.93 0.10 56.94 52.51
E3 60 62.87 58.19 20 51.43 47.34 0.12 55.94 51.55
VE0 - 73.37 57.32 - 73.45 57.36 - 73.09 57.20
VE1 40 73.29 57.35 10 61.76 49.43 0.08 68.55 54.20
VE2 50 73.28 57.35 15 59.50 47.80 0.10 67.50 53.48
VE3 60 73.28 57.34 20 57.47 46.37 0.12 66.37 52.71

Table 4.3: Gs, SV and EF values of the v-t curves in Figure 4.10 (A′,B′ and C′) are shown
for elastic (E) and viscoelastic (VE) cases. The subscripts 0 indicate the blue curves (Gs = 0).
The subscripts 1, 2 and 3 indicate black curves obtained with MEF application, which have the
different Gs values from smallest to largest. The cardiac outputs are obtained during the normal
cycles with the different MEF formulation in terms of fφλf

, fφ
λ̇f

and fφλs
.

simulation results reveal conspicuous distinctions between the elastic and viscoelastic for-
mulations with different Gs. After the subsequent cycles the initial LV volumes saturated
to different values for elastic and viscoelastic cases. Residual stretches induce bigger EDV
in viscoelastic cases due to viscous effects. Ascending limb of the curves in elastic case is
flatter which might cause abnormal filling characteristics [58]. The higher Gs causes less
EDV which sequentially causes less SV values. Also, the higher Gs induces less contraction
so that higher ESV occurs which causes less SV leading to less EF. However, the elastic
curve is more like shifted upwards with a slight increase in EDV and a big increase in ESV.
The biggest deviation in ESV is observed in B′ where f̂φ

λ̇f
. In all types of MEF simulation,

the amount of blood pumped by LV (SV) is reduced.

4.2.2 Commotio cordis

Arrhythmias such as the tachycardia and fibrillation tend to be generated in the heart
that suffers an acute myocardial infarction or ischaemia [59], but the VF is one of the
most critical arrhythmias which causes the uncoordinated heart beats and this rhythm is
reponsible for the sudden cardiac death (SCD).

Secondly, it is investigated how MEF plays a role in intact heart under pathological dis-
turbance, Commotio cordis (Latin: ’disturbance of heart’). Commotio cordis is an un-
common but fatal mechano-electric syndrom, being increasingly reported world wide as
a well documented cause of death, most commonly in young males who are involved in
sporting activities [16]. The phenomenon is defined as mechanical stimulation of the heart
by non-penetrating, impulse-like impact to the precordium that, through intrinsic cardiac
mechanisms, gives rise to disturbances of cardiac rhythm of varying type, duration, and
severity, including sudden cardiac death, in the absence of structural damage [17]. The
MEF is thought to be responsible for Commotio cordis, a condition in which the precordial
impact of an object may trigger ventricular fibrillation (VF) [7, 35, 19, 16, 60, 61, 62, 63].
In the section, VF is simulated by moderate impact on the intact heart. Afterward, it
is also simulated that the obtained VF is reverted by a chest thump. To do so, we first
simulate two regular heart beats. Then, during the vulnerable phase of cardiac repolar-
ization in 3rd cycle, the impact is applied on the LV region to trigger ectopic excitation
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Figure 4.11: Simulation of VF by commotio cordis and its termination by precordial thump.
After normal thw cycles, a mechanical impact is externally applied on the precordial region at
t = 2110ms which cause re-entrant wave on the heart for subsequent 4 cycles. Simulataneously,
ECG and v-t curve are recorded. During fibrillation, the heart does not function properly as it
is fluttering. ECG is fluctuating abnormally and EF value dips as low as almost zero. Precordial
thump applied to terminate the arrhythmia at t = 5910ms. The heart returns to the resting state
and starts normal sinus beat again.
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that may lead to VF. For the spring stiffness for the constrained state of the ventricle,
respectively, kx = ky = kz = 2 · 10−3 N/mm2 at the nodes basal surface z = 0, and
kx = ky = kz = 2 · 10−4 N/mm2 at the epicardium are used. Pressure evolution is not
considered. For the SACs, (fφλf ) in Equation (3.65) is considered.

The snapshots of the numerical analysis are represented in Figure 4.11 along with the
corresponding ECG and v-t curve. In the 3rd cycle, the impact on the LV is applied
at time 2110 ms around ventricular repolarization for 70 ms. As the region at which the
impact applied deforms, the cardiac cells start to be excited through the electrical source
term Equation (3.65). The excitation leads to depolarization of the heart from the basal
surface where stiffer springs are attached. Consequently re-entrant waves and arrhythmia
are generated. Hence, the oscillation pattern of ECG from this time on becomes highly
fluctuating and unpredictable. Also it is found that the EF value drops to zero as the heart
starts to flutter instead of contracting, therefore the heart becomes incapable of pumping
proper stroke volume. Afterwards, the termination of ventricular fibrillation “Precordial
thump” [64] is simulated by applying a mechanical force. The effectiveness of termination
of arrhythmia varies, depending on the character of arrhythmia [15]. In comparison to
the effective treatment of ventricular arrhythmias by controlled mechanical stimulation,
the reports on successful reversal of ventricular fibrillation by chest thump are relatively
rare. Still, mechanical stimulation of precordial regions of the chest has the potential to
reinstate normal heart beat. Precordial thump is a simple and readily available means
for the termination of arrhythmia [15, 64]. The mechanical stimulation is applied at time
t = 5910 ms for 80 ms and interrupts the re-entry, by which the arrhythmia is terminated
and the heart moves on to the resting state. Later, the function of heart is fully reverted
by the depolarization of ventricle. ECGs and v-t curves show the normal behavior of the
heart.

4.3 MEF with LV heart model

4.3.1 Hemodynamically-induced disturbance of heart rhythm

In the previous section, the intact heart was disturbed by the mechanical loading. In this
section, it is illustrated how the heart behaves when the acutely altered hemodynamic
loading applied. To do so, two simulations are performed and compared: one in which
the sudden increase of preload takes place and the other without preload variation. Here,
the blood pressure evolution is incorporated to the finite element formulation developed
in Chapter 3 using the surface elements responsible for imitating the existence of blood
as pressure load applying the inner ventricular boundaries, which enables to achieve infor-
mation of the intraventricular pressure. The used geometry for the simulation is shown in
Figure 4.12, which is discretized by 11737 tetrahedral elements over 2632 nodes as well as
894 triangular surface elements. Fiber angle is calculated by the linear interpolation as ex-
plained in Equation (4.1). Myocardiac tissue is electrically in a resting state Φ0 = -80 mV
at time t = 0 ms. The parameters are taken from Table 4.1 except for ξ = 0.103 [−],
b = 0.15 [−], µ1 = 0.12 [−], Gs = 5.0 [−], diso = 0.15 mm2/ms and dani = 15.0 mm2/ms.
Before applying a transient hemodynamic disturbance, it is required to obtain the heart
where the electromechanical state of the material points is almost the same with the previ-
ous cycle. To do this, the values in transmembrane potential field first are saturated with all
nodes constrained where the pressure evolution is not implemented. Then, the deformation
field is saturated until λ′f in Equation (4.2) is obtained with the pressure loading. After-
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Figure 4.12: The virtual left ventricular model of a healthy person. A 38 years old healthy
volunteer’s (male) left ventricle was virtualized. Fiber angle at epicardial surface is set to −70◦.
Endocardial surface’s fiber angle is 70◦. The fiber angle values between epicardium and endo-
cardium are interpolated by Equation (4.1). All lengths are in millimetres.

wards, the normal cardiac cycles are additionally simulated with Gs to stabilize the heart
with MEF effect. Excitations (I = 10 [−]) at AV node are generated every 800 ms. The
constrained state of the LV is imitated by the attached springs at the nodes at basal and
epicardial surface having stiffness values, respectively kx = ky = kz = 3 · 10−3N/mm2

at the nodes basal surface z = 0 mm and kx = ky = kz = 10−4N/mm2. A constant
time step ∆t = 2 ms is used during the simulation. The scaling factor βt is calculated as
Equation (4.3). This stabilized LV with p1 = 10 mmHg is hemodynamically disturbed by
applying p1 = 15 mmHg for 5 cycles. The cardiac outputs obatined during the cardiac
cycles are displayed in Table 4.4 and Figure 4.13. In Figure 4.14, the PV loops recorded
during both the cardiac cycle with and without the preload disturbance are shown. Fig-
ure 4.15A shows the pressure-time curve, v-t curve and ECG which are obtained during
the simulation. In each graph, the solid lines are for the LV simulation with acute distur-
bance of preload and the dashed-lines represent the simulation without any disturbance.
Until the first cycle, preload 10 mmHg is maintained thereby the PV loops are the same in
Figure 4.14. From the 2nd cycle the preload 10 mmHg is suddenly increased to 15 mmHg.
The change of preload starts to take effect when the cardiac phase is moving on to the 4th

phase (filling) from 3rd phase (isovolumetric relaxation) because of the varied switch value

Cardiac outputs 1st cycle 2nd cycle 3rd cycle 4th cycle 5th cycle 6th cycle
SV [ml] 140.596 143.398 61.413 163.577 3.167 170.228

EF [%] 55.194 55.275 24.811 62.285 1.334 65.207

EDV [ml] 254.732 259.425 247.527 262.625 237.469 261.057

ESV [ml] 114.136 116.027 186.114 99.049 234.301 90.829

EDP [mmHg] 31.637 37.004 23.976 41.315 15.368 39.533

ESP [mmHg] 123.137 124.126 97.376 127.535 79.801 125.575

Phases of cardiac cycle [ms]

Iso.Contraction 124 68 72 76 78 118

Ejection 92 92 88 90 78 88

Iso.Relaxation 118 114 136 106 264 102

Filling 522 524 500 530 338 482

Table 4.4: Cardiac indices from the LV simulation
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Figure 4.13: Left: Volume-related cardiac outputs (EDV, ESV, SV and EF) obtained in each
cycle. The blue-solid and blue-dashed lines represent EDV and ESV, respectively. SV is depicted
by the black-solid line. In the 3rd and 5th cycles, the decreased EFs are observed due to the
hemodynamical disturbance. These reduction of EFs are mainly due to the less contraction and
the increased ESV because there was no large EDV change. In the 4th and 6th cycles, the increased
EF values are observed. Right: Pressure-related cardiac outputs (ESP and EDP). The black-solid
and black-dashed lines represent EDP and ESP, respectively. It is shown that these two graphs
are in inverse proportion to ESV.

in Figure 3.2 which imitates the increased atrial pressure. Also, the varied switch value
lets the heart move on the filling phase earlier with the reduced isovolumetric relaxation
duration as well as the higher EDV. It is observed that the LV is filled with the blood
under high pressure (see the filling phase in 2nd cycle of Figure 4.14). As a result, the
LV undergoes significantly increased diastolic stretch during filling in its 2nd cycle, which
simultaneously causes MEF effect. The additionally caused current due to MEF interrupts
the depolarization wave of the subsequent cycle. The MEF due to diastolic stretch has
greater effect in 2nd, 4th and 6th, which influences the next cycles (3rd and 5th) as shown
in Figure 4.15B. As a result it is observed the less EF and the inverted T wave. In 3rd

cycle, it is found that the steeper gradient of ascending limb of QRS curve, the inverted T
wave, less ESP, less EF (28.25%) as well as the smaller area within PV loops in Figure 4.14
which means the less ventricular stroke work. The reduced EF is mainly attributed to the
increased ESV. In light of the fact that healthy human being’s EF is normally more than
50%, the heart is not pumping properly. Also the reduced EDV is obtained, which causes
less MEF effect on the LV. The less MEF due to less EDV cause the graphs of cardiac
function in the 4th to return to the normal. Also, EF recovers the normal range as well
by contracting more (EF=59.98%). As the volume of LV increases in the end of the fill-
ing phase, which produces increased stretch, MEF effect increases enough to disturb the
subsequent cycle again. Hence, this normal pumping alternates with improper pumping,
which is similar to Bigeminy. Bigeminy is a heart rhythm problem which has a continuous
alternation of normal and ectopic heart beats [65]. Ectopic beat is a disturbance of the
cardiac rhythm frequently related to the electrical conduction. An ectopic beat can be
further classified as either a premature ventricular contraction, or a premature atrial con-
traction. Postextrasystolic potentiation (PESP), the increase in contractility that follows
an ectopic beat is also observed. Each ectopic beat has less EF which is compensated in
the subsequent beat where EF is higher as shown in Table 4.4.
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Figure 4.14: PV loops obtained in each cycle. The red curve represents the simulation with the
acute preload increase. The black curves are obtained by the simulation without the variation of
preload. In the 2nd, 4thand 6th cycle, the increased SV and EDV are observed. In the 3rd and 5th

cycle, it is shown that decreased SV and the smaller area within PV loops which means the less
ventricular stroke work.
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Figure 4.15: A: Pressure-time curve, v-t curve and ECG recorded during the cardiac cycles.
The solid lines represent the simulation of LV with the sudden increase of preload (10 mmHg →
15 mmHg). The dashed lines represent the normal sinus beat without the variation of preload. In
the 3rd and 5th cycles, the inverted T-wave, the reduced ESP and the reduced ESV are clearly
observed. In 4th and 6th cycles, the LV contract more strongly than the contraction in normal
situation, which imitates PESP. B: the contour of MEF (f̂φλf

) at a certain time during diastole
phase in each cycle. Top row represents the contours obtained from the simulation where the
sudden increase of preload applied. The MEF contour snapshots in the bottom row are obtained
without the application of the acute preload variation. Higher EDV in 2nd, 4th and 6th cycle due
to the higher preload lengthen the stretch in the myocardium, which creates the additional current
through MEF (f̂φλf

), see the contour at time 1576 ms, 3176 ms and 4776 ms. These effects cause the
less contraction and the less relaxation at each subsequent cycle. The less relaxation does not turn
MEF on strongly, which recover the pumping of the heart in 3rd and 5th cycles with the increased
EF. This phenomenon mimics PESP.
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5 Conclusion

The thesis investigated MEF using the numerical tools for electromechanical coupling in
the myocardial tissue in monodomain setting. On material level a modified Hill model was
adopted to take the orthotropic electro-visco-elastic response of the cardiomyocytes, where
the rheology is decomposed into both electrical deformation and visco-elastic deformation
in a multiplicative way. The incorporation of stretch-induced currents (SACs) enables the
FEM model to have a two way coupling; excitation-induced contraction and deformation-
induced generation of excitation. Several numerical experiments were performed via above-
mentioned numerical tools.

In the numerical experiments with the cardiac tissue bar, it was found that MEF quite
can reduce the time to activate whole tissue. As soon as the regional stretch by the
depolarization was developed, the cells placed in remote region were brought under tension.
If MEF is considered, the magnitude of the current due to SACs was enough to depolarize
the remote cell so that the dispersion of electrical activity in the tissue bar decreases. Also
the influence of MEF varied depending on the material types with which the experiments
were performed. While the tissue bar with the elastic material immediately responds to
mechanical contraction, the bar with the viscoelastic material has certain time gap between
the contraction and active force, which varied the electrophysiology of cardiac cells in the
simulation. Furthermore, the reason of the different electrophysiology might be due to the
fact that λf in fφm was altered when the viscoelastic formulation is considered. Also, the
viscoelasticity affected the conductivity tensor D through the term f ⊗ f . In turn, D
subsequentially altered the deformation domain in comparison with the elastic cases. It
seems that viscoelasticity altered the two way coupling reciprocally.

With the biventricular model, two different mathematical models for SACs were suggested
and compared with the original SACs model. While the original is computed in terms of
the λf , the suggested models consider λ̇f and λs instead of the λf . They were suggested
based on the fact that the region in which λf was positive and the areas where λ̇f and λs

had positive value were not identical in the biventricular heart model. Moreover, there
are a lot of studies showing that MEF affected not only by the stretch itself but also the
velocity at which the stretch is applied. The suggested SACs model indicated that the
electrophysiological behavior of the heart was also different than that of the original. The
SACs model regarding λf mostly turned on at diastole especially in the right ventricle. In
contrast, SACs in terms of λ̇f affected mostly the basal surface region. Immediately after
the initiation of excitation, λ̇f at the basal region started to generate MEF, which does not
occur in the case of λf . Also, the MEF regarding λs has shown that the MEF affects the
different of region. Only normal healthy heart model was used to carry out the simulations,
but if some regions of the heart are not healthy, such as a regional myocardial infarction,
MEF may affect critically the cardiac electophysiology in heart. Probably it is worth to
suggest a new SACs model where λf , λ̇f and λs are considered together. Furthermore,
in the thesis, in order to make it easier to explore the MEF effect, the values for Gs
which determines the magnitude of MEF were set differently and arbitrarily so these Gs
could be too much greater than the realistic value. As the value increases, the T wave
representing the ventricular repolarization became more inverted shape. So in order to use
MEF clinically Gs must be decided in advance.
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VF due to a moderate impact on the normal healthy heart also simulated with the biven-
tricular heart model. To create self-sustained scroll wave a mechanical impact was applied
on the left ventricular region. One of the important factor for the re-entry wave is the
timing of force generating the stretch. If the stretch is applied when the myocardium is
in depolarized state, it is not possible to create re-entry. In the simulations, the area at
which the force was applied was too wide and the magnitude of force were unnecessarily
too big. It could have been possible to achieve VF with the smaller force with narrower
area.

The pressure-volume relationship is explored with LV model. In the simulations, the surface
element formulation to imitate the blood pressure evolution was incorporated during the
normal cardiac cycles. By increasing suddenly the preload it was possible to achieve the
result similar to the premature ventricular contraction. The ectopic beat and the normal
sinus beat are repeated every two cycle. Postextrasystolic potentiation (PESP) is also
observed in the result, that is, the reduced SV in the ectopic beats is compensated by the
increased SV in the subsequent the normal beats.

5.1 Limitations and outlook

• MEF mainly induces the speedier time of repolarization which will increase the heart
beat rate. Also, some studies [15, 66, 67, 68] report MEF is capable of regulating the
heart beat rate. However, in this work, the rate is constant because the excitation
at AV node is set to generate every 800 ms.
• In Section 4.3.1, MEF generates additional currents out of the AV node. If the

Purkinje fiber was considered, the current generated by MEF could pass through the
fiber, so it might have been possible to obtain more realistic results.
• In Section 4.3.1, the LV is filled with the higher blood pressure, which causes not only

the greater fiber lengthening but also the rapider lengthening. The consideration of
MEF in terms of λ̇f could affect the cardiac electrophysiology.
• Stretching of cardiac cells or tissues implies an increase in the diastolic free Ca2+

concentration [69], which increases the contractility of the heart. In section 4.1, the
peak value of calcium concentration was lower in the simulation with MEF. Also
Section 4.2.1 shows that as Gs increases, ESV is increased.
• The suggested reformulations of SACs in section 3.6 consider λ̇f and λs individually.

The SACs may includes λf , λ̇f and λs in order to experss more realistic MEF effect
on normal heart with the help of further experiments.
• Springs attached to LV epicardium should have different stiffness due to the different

surroundings.
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