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ABSTRACT

We investigate the nonlinear ac transport through a quan-
tum wire with an impurity in the presence of finite range
electron–electron interactions. We discuss the influence
of the spatial shape of the ac electric field onto transport
properties of the system and find that the scaling behavior
of the occupation probability of the sidebands depends on
the range of the voltage drop.

1. INTRODUCTION

Time dependent quantum transport has attracted a lot of
interest since the works of Tien and Gordon [1] and Tu-
cker [2]; more recently, theoretical findings [3, 4] and ex-
periments on quantum dots [5] and on superlattices [6]
renewed the interest in photon–assisted transport in semi-
conductor nanostructures. In particular, the possibilityto
investigate experimentally time–dependent transport th-
rough mesoscopic systems has opened the way to a deeper
understanding of new effects strongly relying on the spa-
tiotemporal coherence of electronic states. Moreover, in
most time–dependent experiments like electron pumps
[7, 8], photon–assisted–tunneling [5, 9, 10], and lasers
[11] require an analysis going beyond the linear response
theory in the external frequency. Thus, many efforts have
been devoted, in last years, to the theoretical investigation
of nonlinearities in semiconductor nanostructures [12, 13],
electronic correlations [14, 15], and screening of ac fields
[16, 17].
The Tien–Gordon formula, according to which the dc
component of the photo–induced current is given by a
superposition of static currentsI0 (the currents without
the ac field) weighted by integer order Bessel functions,
is represented by the following formula

Idc =
∞
∑

n=−∞

J2
n

(

eV1

h̄Ω

)

I0 (V0 + nh̄Ω/e) ; (1)

the argument of the Bessel functions is linearly depen-
dent on the ac voltage intensityV1 and on the inverse of
the driving frequency (or subharmonic)Ω. A selfconsis-
tent theory, based on the scattering matrix approach, has

shown that the side–band peaks depend on the screening
properties of the system [17]; moreover theoretical inves-
tigations for superlattice microstructures showed anΩ−2

dependence of the transmission probability spectrum of
the photonic sidebands (that is the argument of the Bessel
functions), when a nonlocalized (a finite range) ac driving
was taken into account [18, 19, 20].
In this paper, we investigate how 1d electron–electron in-
teraction, in the framework of the Luttinger model [21,
22, 23], nonlinearities, due to the presence of an impu-
rity, and a finite range ac electric field affect the photo–
induced current. We will show that the TG formula is
still valid, but the argument of the Bessel functions is not
anymore linearly dependent on1/Ω.
In the time dependent regime the nonlinearity of the sys-
tem gives rise to frequency mixing and harmonic gen-
eration. Earlier treatments of the ac transport consid-
ered voltages, dropping only at the position of the barrier
[24, 25], and zero range interactions between the elec-
trons. Here, both of these are generalized to the more
realistic situation of finite range of both, the electron–
electron interaction and the electric field. As a matter
of fact previous calculations [26] showed clearly that the
spatial shape of the electric field does influence ac trans-
port.

2. MODEL

The Hamiltonian for a Luttinger liquid of lengthL (→
∞) with an impurity and subject to a time–dependent
electric field isH = H0 +Himp +Hac, where

H0 =
∑

k 6=0

h̄ω(k) b†kbk. (2)

The dispersion relation of the collective excitations,

ωk = vF|k|
√

1 + V̂ee(k)/h̄πvF,

depends on the Fourier transform of the finite range inter-
action potential [16]. We assume a 3d screened Coulomb
potential of rangeα−1 projected onto a quantum wire of
diameterd ≈ α−1. The interaction decays exponentially
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and one getsVee(x) = (VLα/2)e
−α|x|, with interaction

strengthVL [27]. Forα → ∞, one obtains a zero–range
interaction.
The tunneling barrier of heightUimp is localized atx = 0
[28, 29],

Himp = Uimp cos
(

2
√
πϑ(x = 0)

)

, (3)

with the phase variable of the Luttinger model

ϑ(x) = i
∑

k 6=0

sgn(k)

√

vF
2Lω(k)

e−ikx
(

b†k + b−k

)

.

The coupling to the external driving voltage yields

Hac = e

∫ ∞

−∞

dx̺(x)V (x, t).

The electric field is related to the voltage drop by differ-
entiation,E(x, t) = −∂xV (x, t), and the charge density
is ̺(x) = kF/π + ∂xϑ(x)/

√
π. The space–time depen-

dent electric field,E(x, t) = Edc(x) + Ea(x) cos (Ωt),
such thatEa(x) = E1e

−|x|/a, gives a voltage dropV1 ≡
∫∞

−∞ dxEa(x) = 2E1a. The spatial dependence of the
dc part of the electric field does not need to be specified,
as only the overall voltage drop,V0 ≡

∫∞

−∞ dxEdc(x), is
of importance in dc transport [26].

3. METHODS AND RESULTS

The current at the barrier is given by the expectation value
I(x = 0, t) = 〈j(x = 0, t)〉, where the current opera-
tor is defined via the continuity equation,∂xj(x, t) =
−e∂tρ(x, t). For a high barrier, the tunneling contribu-
tion to the current can be expressed in terms of forward
and backward scattering rates which are proportional to
the tunneling probability∆2. The latter may be obtained
in terms of the barrier heightUt by using the instanton
approximation [30]. The result can be written in terms of
the one-electron propagatorS + iR [25],

I(x = 0, t) = e∆2

∫ ∞

0

dτ e−S(τ) sinR(τ)

× sin

[

e

h̄

∫ t

t−τ

dt′Veff(t
′)

]

, (4)

with

S(τ) + iR(τ) =
e2

πh̄

∫ ωmax

0

dω

ω
Re

{

σ−1(x = 0, ω)
}

×
[

(1− cosωτ ) coth
βω

2
+ i sinωτ

]

,

whereβ = 1/kBT , ωmax the usual frequency cutoff that
corresponds roughly to the Fermi energy [31], and the ac
conductivity of the system without impurity is [26]

σ(x, ω) =
−ivFe

2ω

h̄π2

∫ ∞

0

−dk
cos kx

ω2(k)− (ω + i0+)2
. (5)

Furthermore, the effective driving voltage is related to the
electric field by [26]

Veff(t) =

∫ ∞

−∞

dx

∫ t

−∞

dt′E(x, t′)r(x, t − t′)

= V0 +
h̄Ω

e
|z| cos (Ωt− ϕz) , (6)

wherer(x, ω) = σ(x, ω)/σ(x, ω), |z| andϕz are, respec-
tively, modulus and argument of

z =
e

h̄Ω

∫ ∞

−∞

dxEa(x)r(x,Ω). (7)

With the above assumptions about the shapes of the driv-
ing field and the interaction potential one obtains

|z| = eV1

h̄Ω

1
√

1 + a2k2(Ω)
A

(

Ω

vFα
,
k(Ω)

α
, αa

)

, (8)

wherek(Ω) is the inverse of the dispersion relation and

A2 (u, v, w) =
1

1 + u2

[

1 + v2
(u+ wv)2

(uw + v)2

]

. (9)

In the following, we concentrate on the results for the dc
component of the current which does not depend onx and
is directly given by the current at the barrier, for which we
only need to know only|z|,

Idc =

∞
∑

n=−∞

J2
n (|z|) I0

(

V0 + n
h̄Ω

e

)

. (10)

The important point here is that the driven dc current is
completely given in terms ofI0(V0), the nonlinear dc
current-voltage characteristic of the tunnel barrier,

I0 (V0) = e∆2

∫ ∞

0

dτe−S(τ) sinR(τ) sin

(

eV0τ

h̄

)

. (11)

Eqs. (10), (11) generalize results which have been ob-
tained earlier [1] butwithout interaction between the tun-
neling objects, and also for the Luttinger model with a
zero-range interaction, together with aδ-function like dri-
ving electric field [24].
For V0 much smaller than some cutoff-voltageVc whi-
ch is related to the inverse of the interaction range,I0 ∝
V

2/g−1
0 . This recovers the result obtained earlier forδ-

function interaction and zero-range bias electric field [28].
WhenV0 ≫ Vc, the current becomes linear [32]. For in-
termediate values ofV0, I0 exhibits a cross-over between
the asymptotic regimes with a point of inflection nearVc.
For zero-range interaction,I0 ∝ V

2/g−1
0 for anyV0.

Figure 1 shows the currentsI0, Idc and the differential
conductancedIdc/dV0 as functions ofeV0/h̄Ω for g =
0.9 and g = 0.5 for zero-range of the driving electric
field. For g = 0.9 one observes sharp minima in the
differential conductance at integer multiples of the driv-
ing frequency in certain regions of the driving voltageV1.
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Figure 1: CurrentsI0, Idc and differential conductance
dIdc/dV0 at zero temperature as a function of the ratio
eV0/h̄Ω for g = 0.9 (top), g = 0.5 (bottom) for values
Ω = vFα, a = 0, andeV1/h̄vFα = ℓ (ℓ = 5 dotted,
ℓ = 6 dashed,ℓ = 7 dash-dotted lines). Currents in units
of h̄vFα/eRt; differential conductance in units ofR−1

t ;
tunneling resistanceRt = 2h̄ω2

max/πe
2∆2.

These can be understood as follows. When the strength of
the interaction is not too large, the region wheredIdc/dV0

is much smaller than 1 is small compared withh̄Ω thus
for eV0 ≈ h̄Ω, dIdc/dV0 ∝ (2/g − 1) |eV0 − h̄Ω|2/g−2.
Then, Eq. (10) yields neareV0 = mh̄Ω

dIdc
dV

≈ 1− J2
m(|z|) + const · J2

m(|z|)

× |eV0 −mh̄Ω|2/g−2
. (12)

Forg > 2/3, this yields for integerm the cusp-like struc-
tures observed in Fig. 1. Forg < 2/3, no cusps oc-
cur anymore. In addition, the currentIdc is depleted so
strongly and over such a large region of the bias volt-
ages that the regime of almost vanishingdIdc/dV0 be-
comes larger than̄hΩ and in general no minima near in-
teger multiples of the frequency exist. As can be seen in

the figure, the depths of the cusps depend on the driving
voltageV1 (∝ |z|) which can also be understood from of
Eq. (12) which shows that the values of the differential
conductances at the voltageseV0 = mh̄Ω are approxi-
mately1− J2

m(|z|).
It is therefore instructive to look into the behavior of|z|
as a function of the frequency. Figure 2 shows the scaling
exponentν determined from

ν = −vFα
d log |z|
d logΩ

. (13)
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Figure 2: Scaling exponentν of the argument|z| of the
Bessel functions as a function ofΩ, for ranges of the driv-
ing field (curves from right to left)αa = 10−3, 10−2,
10−1, 1, 10, 102, 103, andg = 0.5.

We observe a non-universal cross-over between|z| ∝
Ω−1, the case discussed by Tien and Gordon [1] which
corresponds to a driving field of zero-range (a → 0),
and|z| ∝ Ω−2 which is obtained for a homogeneous ex-
ternal field (a → ∞) [18]. Although the behavior ofz
depends strongly on the parameters of the model in the
cross–over regime, this does not influence qualitatively
the occurrence of the cusps. Their existence depends cru-
cially on the finite range of the interaction, and the condi-
tion g > 2/3. However, by varying|z|, the depths of the
minima are changed due to the variation ofJ2

m(|z|).
Finally, we have demonstrated that the result which has
been obtained by Tien and Gordon for tunneling of non-
interacting quantum objects in 1D driven by a mono-chro-
matic field localized at the tunnel barrier remains valid
even in the presence of interactions of arbitrary range and
shape, and for an arbitrary shape of the mono-chromatic
driving field. The central point is that the frequency driven
current is completely given by a linear superposition of
the current-voltage characteristics at integer multiplesof
the driving frequency, weighted by Bessel functions.
The argument of the latter contains the amplitude of the
driving voltage only linearly but the dependence of the



argument on the frequency and the range of the driv-
ing field is determined by its spatial shape. However,
one can easily identify regions where the dependence on
the frequency becomes very simple. For a driving field
which is localized near the tunnel barrier, the integral in
Eq. (7) can be evaluated approximately by noting that
r(x,Ω) varies only slowly withx and can be taken out
of the integral. Then,|z| = eV1/h̄Ω which corresponds
to the result of Tien and Gordon [1]. In the other limit
of an almost homogeneous electric field,E1 = V1/a,
one needs to calculate the spatial average ofr(x,Ω) [26].
This givesσ(k = 0,Ω)/σ(x = 0,Ω) ≈ Ω−1, since
σ(x = 0,Ω) ≈ const. This implies|z| ∝ Ω−2. Such
a frequency dependence has been discussed earlier for
non-interacting particles [18]. Here, we see that it is
valid under quite general assumptions also for interact-
ing particles. A possible method to detect this behavior
experimentally is to investigate the real part of the first
harmonic of the current through the tunnel contact and to
determine thecurrent responsivity which is given by the
ratio of the expansions ofIdc and the first harmonic to
second and first order in|z|, respectively [2].
Given the above result for the driven dc-current, the gen-
eral behavior of the differential conductance as a function
of eV0/h̄Ω can be straightforwardly obtained. Of special
interest is the occurrence of cusps ateV0/h̄Ω = m (m in-
teger) which appear to be quite stable against changes in
the model parameters. A similar result has been discussed
earlier [33], but for a small potential barrier between frac-
tional quantum Hall edge states which implies zero-range
interaction. In the case discussed here, the finite range of
the interaction is crucial for obtaining the cusps, due to
the absence of a linear contribution towards the current
for small voltage which is characteristic of tunneling in
1D dominated by interaction. The cusps could be used to
frequency-lock the dc part of the driving voltage.
To summarize, we have shown how the electron correla-
tion and the spatial distribution of a driving field deter-
mine the anomalous scaling of the photo–induced current
and the mode locking patterned structure of the nonlinear
differential conductance.
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