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Abstract—Machine leaning (ML) and artificial intelligence
(AI) enable new methods for localization and sensing in next-
generation networks to fulfill a wide range of use cases. These ap-
proaches rely on learning approaches that require large amounts
of training and validation data. This paper addresses the data
generation bottleneck to develop and validate such methods by
proposing an integrated toolchain based on deterministic channel
modeling and radio propagation simulation. The toolchain is
demonstrated exemplary for scenario classification to obtain
localization-related channel parameters within an aircraft cabin
environment.

Index Terms—Deterministic Radio Propagation Simulation,
Localization, Sensing, AI-Enabled, Scenario Classification.

I. INTRODUCTION

Location-based services (LBS) significantly increase the
potential and application scenarios of wireless systems by ex-
tracting geometric information from radio signals to determine
the location of a user or object. LBS are powered by global
navigation satellite systems (GNSS) or indoor positioning sys-
tems (IPS) [1], [2] to provide a solution for various tasks, such
as localization, tracking, counting of objects and people. In
addition to an device-based active localization, the integrated
use of wireless sensor networks (WSNs) also enables device-
free radio sensing functionalities for radar-like imaging and
object detection [3]. Concurrently, techniques for machine
learning (ML), as a branch of artificial intelligence (AI), have
become crucial in next-generation wireless communication
systems such as 6G [4]. ML techniques can improve con-
ventional methods relating to channel modeling [5], channel
measurements [4], antenna-channel optimization [6], wireless
networking [7] and fingerprinting [8]. But as stated in [6] one
key challenge remains: the generation of massive amount of
data for learning and training. This necessitates specific hard-
ware and expensive, time-consuming measurement campaigns.

This paper addresses the data generation bottleneck for AI-
enabled localization by proposing a toolchain based on deter-
ministic channel modeling and radio propagation simulation
to generate channel state information (CSI). This approach
is particularly useful for high-mobility scenarios and specific
environments, as it facilitates the development and initial
validation of AI-enabled localization and sensing methods.
These methods can be applied in various applications, such as
intelligent transportation system (ITS), logistics, localization,
object detection and counting. The overall structure of the
paper is depicted in fig. 1.
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Fig. 1. Structure of the paper to enable data generation by using deterministic
radio propagation simulation for AI-enabled localization and sensing.

II. PROBLEM OUTLINE

A. Data generation for AI-based localization

AI-based approaches for localization and sensing employ
machine-learning and artificial intelligence methods to im-
prove accuracy, efficiency and integrity in determining the
location of devices or sensing the environment. Localization
algorithms utilize various approaches that can operate on raw
channel state information data (e.g. channel impulse response
(CIR)), derived data (e.g. range) or during the sensor fusion
stage (e.g. integrating radio-based localization and inertial
navigation). AI-based channel models offer a key advantage
over conventional models by exhibiting high adaptability to
different environments, enhancing the overall robustness of the
localization process. However, in order to apply such models
within the radio localization domain, a learning procedure
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must be performed first. This generally involves the following
steps:

1) Data collection or generation
2) Data annotation
3) Training
4) Validation
5) Deployment
Within this sequence, data generation or collection plays

a critical role. Existing literature indicates that low-quality
training data limits the overall performance of the system
[6]. Multiple approaches can be employed for data collection
or generation. The most straightforward is to gather sensor
data within the designated deployment area. This method
captures the full complexity of physical effects within the
data. On the contrary, live measurement campaigns can be
time consuming and the data is scenario-specific and therefore
may not generalize well. Furthermore, calculating associated
ground truth values can be challenging, making it harder to
label the data correctly.

To address these challenges, simulation methods can be
utilized. Such methods provide synthetic data that closely
resemble real-world data while offering certain advantages.
The primary advantage lies in the ability to generate an
arbitrary number of data samples in a short time, making
this approach more efficient than measurement-based data
generation. Furthermore, data can be labeled and assigned
ground-truth values directly.

B. Sensor specifics for radio based localization

There is a variety of sensors, that are generally used for
localization and sensing. These include radio based systems,
optical camera systems, laser-based systems and inertial mea-
surement systems. When using one or multiple sensor systems
in a single-sensor or data-fusion localization system, it is
essential to generate matching training data to establish a
consistent AI-based localization system.

For optical systems, generative adversarial networks (GAN)
and data augmentation on existing data sets can be applied
to generate new training data [9]. Inertial measurements can
be generated by calculating motion forces along a predefined
trajectory and adding sensor noise according to a sensor spec-
ification [10]. Laser-based or quasi-optical radio localization,
which relies on distance or angle estimation, can be simulated
using simple ray-tracing approaches, where non line-of-sight
(NLOS) paths can be omitted due to shading.

In contrast, for radio-based localization, a variety of primary
measures based on CSI can be used. This include time of
flight (ToF), received signal strength indicator (RSSI), signal-
to-noise ratio (SNR) or angle of arrival (AoA) estimates.
Especially in high-dynamic scenarios, models need to be able
to generate spatially consistent signal parameters, since real
channel information exhibits sensitivity to spatial and tempo-
ral correlations [11]. As a result, solely applying stochastic
channel models may lead to unrealistic and overly simplistic
data, which in turn leads to mis-trained AI-based models.
The impact of spatial consistency is further discussed in

section III-B. Additionally, running real-world measurement
campaigns poses challenges as it requires the availability of
hardware samples. For newly specified radio technologies,
off-the-shelf options are often unavailable and need to be
specifically designed and manufactured.

Deterministic radio propagation simulation addresses these
challenges by providing the necessary channel and signal
parameters for a desired environment, radio properties and
antenna parameters.

III. FUNDAMENTALS AND MODELING

A. Signal Propagation

The radio channel consists of the transmitting antenna,
the propagation channel and the receiving antenna. While
propagation, the electromagnetic wave encounters different
objects in the environment causing the three basic propagation
phenomena: reflection, diffraction, and scattering. This leads to
various channel characteristics, which can be categorized into
large-scale and small-scale fading effects. Large-scale fading
is caused by the change in signal strength over distance due
to path loss and shadowing by obstacles. Small-scale fading,
on the other hand, is caused by multipath propagation and
constructive or destructive interaction and interference of the
electromagnetic wave during propagation.

In the case of multipath propagation, the signal reaches
the receiver via multiple paths. When the direct line-of-sight
(LOS) path between transmitter and receiver is obstructed,
non-line-of-sight (NLOS) propagation can occur. In this case,
the received signal is composited of different delayed, atten-
uated, and phase-shifted waves from various directions. This
results in various multipath components (MPCs) in the CIR.
This multipath fading and NLOS propagation have severe
effects on the localization performance, because the ToF and
range are determined incorrectly. To address this source of
error various ML algorithms for scenario classification of
LOS/NLOS is applied (cf. section V).

B. Spatial Consistency

Spatial consistency enables channel models to provide spa-
tially consistent and time-evolving CIRs for different sensor
locations and environments. Therefore, spatial consistency is
crucial for evaluation of localization and sensing in a specific
use cases. However, most current statistical channel models
are drop-based, which are only able to generate CIRs for a
particular user at a randomly chosen location and provide
no spatial correlation between consecutive simulation runs
[12]. This is a limitation for AI-based localization approaches,
which rely of full CSI in order to infer geometric relations of
the scenario. Therefore, the goal is to generate smoothly time-
evolving CIRs based on the user movement in high-mobility
scenarios, such as vehicle-to-everything (V2X) communica-
tions. This way, AI-enabled localization and sensing methods
can be trained and validated using the desired user motion
and environment. Additionally, in millimeter-wave (mmWave)
and terahertz (THz) band the narrow antenna beams results in
highly correlated channel characteristics [3].



C. Channel Models
In principle, three different types of channel models can

be distinguished: deterministic, stochastic, and hybrid models.
Table I compares these type of channel models in terms of
their properties, requirements, and available simulators.

TABLE I
COMPARISON OF TYPES OF CHANNEL MODELS.

Deterministic Stochastic Hybrid

Requirements
and Inputs

Geometry of the
environment,
electromagnetic
properties of the
materials and
spatial position
of the sensors

statistical
approximations
using random
distributions
of the channel
parameters

geometry of the
propagation en-
vironment and
random distri-
butions of the
channel param-
eters

Spatial
consistency

Yes No Yes, in some
cases

Complexity High Moderate Medium

Accuracy High Moderate High (static)

Available
Simulators

NYURay,
CloudRT, Altair
WinProp

NYUSIM QuaDRiGa

Deterministic channel models solve Maxwell’s equations
numerically in a given geometric environment. They describe
the channel and temporal variations due to the number, posi-
tion, and characteristics of reflectors in the environment. One
example of a deterministic algorithm is Ray Tracing (RT),
where the individual propagation paths or rays are calculated
individually based on the channel characteristics. [4], [13]

Stochastic channel models use statistical approximations,
employing random distributions to characterize the received
signal and channel parameters such as path loss, delay, number
of paths, and fading. These models are primarily based on
measurements and empirical observations in specific types
of environments (rural, urban, indoor, micro, macro, etc.),
rather than on the position of the sensors. Therefore, the
channel is described at a random location of the sensor in
a defined type of environment, leading to a lack of spatial
consistency between multiple simulation runs and different
sensor locations [4], [12], [13].

Hybrid channel models combine deterministic and
stochastic approaches and therefore offer a balance between
accuracy and complexity. Geometry-based stochastic model
(GBSM), such as the 3GPP TR 38.901 [14] model and the
WINNER II model [15], incorporate the geometry between
transmitter and receiver through the length and angle of the
LOS signal component. However, they still use stochastic
models and distributions to describe the various signal pa-
rameters. Quasi-deterministic channel models compute the
dominant propagation path with a highly simplified environ-
ment map and add clusters of stochastic modeled MPC to
the model. Such models are only partially spatial consistency
and therefore not suitable for the evaluation localization and
sensing functionalities in a specific environment and use case.
[13]

IV. TOOLCHAIN

The overall toolchain describes the process from scenario
definition and modeling, to running the radio propagation
simulation, extracting relevant parameters, generating signal
data and finally training and evaluating the AI model. A
schema of the toolchain is depicted in fig. 2.
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Fig. 2. Toolchain for data generation with deterministic radio propagation
simulation to support AI-enabled localization and sensing.

A. Scenario Modeling

In order to generate data for AI applications, it is necessary
to define the use case and scenario. To facilitate data gener-
ation using deterministic simulation, it is important to model
the properties of the radio channel and the environment in
as much detail as possible. This involves two main aspects:
Firstly, the geometry of the physical surroundings needs to
be accurately represented within the simulation framework,
for example in form of a 3D computer-aided design (CAD)
model. This entails, that electromagnetic material constants
(permittivity, permeability) for all elements are provided in
order to properly simulate all propagation effects. Secondly,
the radio channel and the simulated hardware need to be
parameterized. This includes the center frequency, transmit
power, antenna gain, 3D antenna pattern, and other simulation
parameters.

B. Deterministic Radio Propagation Simulation

The environmental model and radio channel model are
used for the 3D deterministic radio propagation simulation
to compute all propagation paths or rays of the radio wave,
between the transmitter and the desired receiver location. This



deterministic approach takes the effect of the environment on
the propagation into account accurately. In addition, multiple
parameters, such as path loss, RSSI CIR, AoA, and ToF could
be predicted with one simulation run.

The radio rays are computed considering refraction, re-
flection, diffraction or scattering either by ray tracing and
ray launching. Ray tracing determines the individual paths
backwards from receiver to the transmitter and ray launching
launches a number of rays from the transmitter and calculate
their paths from there. With a time-variant simulation it is
also possible to compute the signal propagation in a dynamic
scenario based on a trajectory.

Various simulators exist for 3D ray tracing and ray launch-
ing, such as NYURay for mmWave [12], CloudRT [16],
MaxRay [17]. In this case, the standard ray tracing model
of Altair WinProp 2022.2.2 is employed to simulate signal
propagation and generate corresponding signal parameters
[18].

C. Feature Extraction and Signal Parameter

A variety of signal parameters can be leveraged for local-
ization and sensing purposes, ranging from CSI to secondary
parameters. Channel estimation is the method used to obtain
the CSI from a wireless communication link. CSI represents
the properties and parameters of the channel, describing how
the signal propagates from the transmitter to the receiver. The
CIR can indicate the instantaneous channel conditions and
consists of Multipath Components (MPCs) resulting from the
set of all propagation paths.

Up until this point, all simulation steps are deterministic
and can directly be reconstructed. However, one simulation
step yields only one data sample, which does not address the
issue of a high number of samples needed for AI training.
Furthermore, some physical parameters are presented in an
idealized form. Therefore, it is necessary to reconstruct the
physical channel properties.

D. Data Generation and Augmentation

The CIR h(τ) is obtained from the ray tracing simulation
consisting of multiple Dirac pulses δ at a certain propagation
delay τi and amplitude ai of the i-th propagation path or
MPC computed from the length of the ray path and the
path loss. Mathematically, the CIR h(τ) of the time-invariant
propagation channel can be described as following:

h(τ) =

N∑
i=1

aiδ(τ − τi) (1)

The CIR obtained from the simulation assumes an unlimited
bandwidth. However, in real wireless systems, the channel is
band-limited by a bandwidth B. Therefore, the CIR needs
to be reconstructed with band-limited conditions by applying
the Whittaker–Shannon interpolation formula or sinc inter-
polation. This results in MPCs with a certain width and a
limited range resolution, which are important for localization
and sensing purposes [19]. An exemplary reconstruction of a
CIR obtained in NLOS conditions is shown fig. 3.

4. Public available and self-surveyed datasets
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Figure 4.4.: Bandlimited reconstruction of a signal
Using this framework, any signal can be reconstructed as long as the sampling theoremis followed. An exemplary reconstruction of a channel impulse response at 3500MHz isshown in Fig. 4.5 [Smi21a]. For the python implementation the implementation of thechair “information technology for traffic systems” is used. The models, the preprocessingprocedure and the generated datasets can be found in the digital appendix.
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4.4. Description and preparation of used datasets
A total of 3 datasets are available. One dataset based on UWB ranging measurements(Pozys UWB ranging dataset), one synthetic dataset based on a parking garage scenario

52

Fig. 3. Band-limited reconstructed CIR.

More signal parameters and features for ML methods can be
derived from the CIR and the deterministic simulation. These
features include RSSI, SNR, AoA, ToF, time difference of
arrival (TDoA), mean excess delay, root mean square (RMS)
delay spread, and kurtosis.

To generate multiple data samples from a single simulation
step, the interpolation filter properties, such as bandwidth,
can be varied. Furthermore, convolution with a skewed noise
function is possible to introduce additional variation. These
techniques help prevent overfitting to a specific scenario.

E. AI-Enabled Localization and Sensing

Data driven methods enable a variety of applications in
modern localization and sensing models. They can be applied
at different levels of signal properties and features. Table II
lists the several ML task and methods related to localization
and sensing.

TABLE II
OVERVIEW OF ML METHODS FOR LOCALIZATION AND SENSING.

ML Task and Method Features Reference

MPC Detection and Clus-
tering

CIR [4]

Fingerprinting RSSI, CIR [20] [21]

Scenario (LOS/NLOS)
Classification

CIR, RSSI, RMS delay
spread, kurtosis, mean
excess delay

[22] [5] [23]

Outlier Detection Range, AoA [24]

Occupancy Detection and
Object Classification

CIR, MPC [25]

For each ML task (classification, clustering, detection) there
are several algorithms available to solve the corresponding
problem. In general, this algorithms can be divided into
supervised, unsupervised and reinforcement learning methods.

V. EXAMPLE FOR SCENARIO (LOS/NLOS)
CLASSIFICATION

The toolchain described in section IV is exemplarily applied
to generate data for a scenario (LOS/NLOS) classification
using supervised learning. For the purpose of active local-
ization and evaluating scenario classification, a use case in
the area of Intelligent Transportation Systems (ITS) is chosen.
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Figure 2.3.: Exemplary presentation of a NLOS-CIR and main characteristics
Algorithm 1 LDE Calculation
Calculate the standard derivation σn of the noise recorded before the actual CIR startsCalculate the threshold t = 12 ∗ σnReturn the time index tLDE where the CIR exceeds the calculated threshold

trise = tpeak – tLDE (2.6)
Moments are used in statistics to describe distribution. Thus, properties of all distribu-tions can be quantified and compared in a reasonable form. The raw moment of the firstpower describes the expected value:

μ =
∫ +∞
–∞ t · h(t)dt (2.7)

Besides the calculation of the expected value, the calculation of central moments is alsopossible. They describe how a probability mass is distributed around the expected value.One of the most important measures of dispersion is the variance σ2. It describes theexpected squared deviation from a sample:
σ2 =

∫ +∞
–∞ (t – μ)2 · h(t)dt (2.8)

The squared deviation from the expected value is mostly not useful for a description ofphysical values, because the units of the scattering measure are squared together withthe values. The standard deviation σ has the same unit as the expected value:
σ = √σ2 (2.9)

Kurtosis is another moment used to characterize the channel impulse response. Itindicates how jagged a signal is. Unlike centralmoments, kurtosis is a normalizedmoment.So it depends on the distribution of the values and not on specific values. If the kurtosisis equal to 3, the values are normally distributed.
κ = E[(|h(t)| – μ)4]

σ4 (2.10)
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Fig. 5. Parameters obtained from a channel impulse response (CIR) sample.

Specifically, the toolchain is evaluated in the context of the
connected aircraft cabin, considering the significant potential
of LBS in this environment. Examples of potential appli-
cations include passenger boarding/deboarding, technology-
based social distancing methods (COVID-19) [26] and object
detection. Localization methods based on RSSI or ToF for
distance estimation are heavily influenced by the environment
due to the signal multipath reception in the aircraft cabin,
where scenario classification yields potential for improving
localization accuracy and robustness. Additionally, the limited
accessibility of aircraft cabins can hinder extensive real-world
measurement campaigns.

For scenario, a 3D CAD model of the Airbus A340 cabin
was utilized. The study is aimed at identifying areas with
LOS/NLOS coverage given a fixed anchor position. As radio
access technology, ultra-wideband (UWB) was chosen, with
a center frequency of (3500MHz) and maximum transmit
power of –16 dbm. UWB as radio technology for localization
and tracking is widely used and achieves a very high ranging
accuracy (10 cm) due to the high bandwidth (500MHz). This
real-time locating system (RTLS) is suitable for an aircraft
cabin use-case [27]. Both transmission and reception utilized
omnidirectional antennas in the simulation.

For the scenario classification, various features are extracted
from the reconstructed CIR. These features included RMS
delay spread, amplitude, kurtosis, total received energy, mean

excess delay, maximal amplitude, and RSSI (see fig. 5).
Recursive feature elimination was employed to select the most
relevant and suitable features in the training dataset.

Data in form of the CIR was generated for one transmit
antenna position in the middle of the aircraft and a grid
of possible receiver locations. The random forest classifier
was used as the machine learning algorithm for scenario
classification.

The results of the classification were presented and com-
pared to the ground truth obtained from the radio propagation
simulation with ray tracing (see fig. 4). The overall classifi-
cation accuracy achieved using the random forest model was
98.51%.

VI. CONCLUSION

The paper presents a developed toolchain for generating
data for AI-driven localization and sensing. Compared to
real-world data generation, the toolchain offers advantages in
terms of accessibility, reproducibility, and the availability of
ground truth for verification. The main advantage compared
to stochastic channel modelling lies in the preservation of
spatial consistency, which in turn leads to a more realistic and
accurate channel simulation and enables the utilization of the
full channel state information in localization and sensing algo-
rithms. The toolchain’s effectiveness is demonstrated through a
UWB LOS/NLOS classification study conducted in an aircraft
cabin. This approach can be extended and generalized to
other environments and radio access technologies. In order
to verify models, real-world tests can be conducted. This is
particularly important to identify any biases that may arise
during the simulation-based learning phase. Furthermore, a
correction framework can be developed to address such biases
or unknown effects observed during the real-world validation
process and feed back corrected parameters to the original
model.

There is potential for automating scenario design using ma-
chine learning techniques, although careful consideration must
be given to bias propagation within such a setup. Additionally,
the application layer of the toolchain can be expanded and
validated with other machine learning/AI methods, such as
deep learning methods.

Fig. 4. Scenario classification (LOS/NLOS) in the aircraft cabin. Ground truth obtained from the radio propagation simulation with ray tracing (top) and
estimate by the random forest classifier (bottom). Sender position is marked with a red dot.
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