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Abstract

Analytic results for the conductance of a molecular wire attached to meso-
scopic tubule leads are obtained. They permit to study linear transport in pres-
ence of low dimensional leads in the whole range of parameters. In particular
contact effects can be addressed in detail. By focusing on the specificity of the
lead–wire contact, we show that the geometry of this hybrid system supports a
mechanism of channel selection, which is a distinctive hallmark of the mesoscopic
nature of the electrodes.

The nanometer length domain, the fate of the transistor integration length, is un-
avoidably rising a new variety of phenomena concerning the rôle of quantum effects on
electronics at the molecular scale [1]. Although molecular materials for electronics are
already realized [2, 3, 4, 5], real molecular scale electronic devices [6, 7, 8] still have
to cope with challenges in utilization, synthesis, and assembly [9]. The idea of molec-
ular rectification proposed since 1974 [10] found experimental evidence only 20 years
later [11, 12]. Concerning theory, conventional methods employed for characterizing
transport properties in microelectronic devices, such as the Boltzmann equation [13],
can no longer be applied at the molecular scale. Here transport properties have to be
calculated by using full quantum mechanical approaches.
Electron transmission through molecular and supramolecular interfaces was already the
object of intensive theoretical investigation in the last decade due to the electron trans-
fer phenomena underlying the use of scanning tunneling microscopes. More recently,
studies of transmission properties of a molecular junction contacted to metallic leads
[14, 15] have intensified the interest in the basic mechanisms of conduction across molec-
ular bridges. In a parallel development the use of carbon nanotube (CNT) networks
has been the focus of intense experimental and theoretical activity as another promising
direction for building blocks of molecular circuits [16, 17]. Carbon nanotubes are known
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to exhibit a wealth of properties depending on their nano–scale diameter, orientation
of graphene roll up, and whether they consist of a single cylindrical surface (single–
wall) or many (multi–wall) [18, 19]. However if carbon nanotubes are attached to other
materials, the characterization of contacts [20, 21] becomes a fundamental issue with
respect to the employment of tubes as elements of molecular circuits. This could be the
case when a carbon nanotube is attached to a single molecule or a molecular cluster
with a privileged direction along the current flow, namely a molecular wire.
The archetype of a molecular device can be viewed as a donor and acceptor lead coupled
by a molecular wire bridge. In such systems the traditional picture of electron trans-
fer between donor and acceptor species is re–read in terms of a novel view in which a
molecule can bear an electric current [22]. In the usual treatment of transport through
molecular wires, the attached leads are represented by a continuum of free or quasi–free
states, mimicking the presence of large reservoirs provided by bulky electrodes. How-
ever such an assumption may become inadequate when considering leads with lateral
dimensions of the order of the bridged molecule, such as carbon nanotubes. The lat-
ter have been recently used for enhancing the resolution of scanning probe tips [23].
In a similar configuration the fine structure of a twinned DNA molecule has been ob-
served [24]. One can argue that the presence of such mesoscopic leads strongly influences
the conductance properties across the molecular bridge.
This paper addresses the influence of the molecular wire–electrode contact on the con-
ductance when the structure of electrodes plays an important rôle. In order to isolate
contact effects, we treat analytically a minimal model where the tubular leads are de-
scribed by a rolled square lattice and the molecule by a homogeneous linear chain. This
system supports distinct transport properties depending on the number and strength
of contacts between the molecular bridge and the interface as well as on the symme-
try of the channel wave function transverse to the transport direction. The validity
of these analytical findings are then tested for real tubular systems by treating CNT
leads (figure 1.) via a numerical recursive Green’s function approach. Such a study
delivers additional insight to recent numerical results on carbon nanotubes/molecular
wire hybrids [25]. In particular, we demonstrate that the configuration when only one
molecule–lead contact is activated gives rise to complex conductance spectra exhibiting
quantum features of both the molecule and the electrodes; on the other hand multiple
contacts provide a mechanism for transport channel selection leading to a scaling law
for the conductance and allowing for its control. Channel selection also highlights the
rôle of molecular resonant states by suppressing details assigned to the electrodes.
The hamiltonian of the full system H = Htubes +Hwire +Hcoupling reads

H =
∑

α=L,R,wire

∑

n
α
,n′

α

tαn
α
,n′

α

aα†n
α

aαn′

α

(1)

−
∑

mL≤Mc

ΓmL

(

aL†mL
awire
1 + h.c.

)

−
∑

mR≤Mc

ΓmR

(

aR†
mR

awire
N + h.c.

)

where the matrix element tαn
α
,n′

α

= εαnα

δn
α
,n′

α

−γα
〈n

α
,n′

α
〉 contains the on–site energy of each

of the nwire = 1, . . . , N chain–atoms, εwire, the orbital energy relative to that of the lead
atoms, εL,R, and γL,R, γwire, and Γ are nearest neighbour hopping terms between atoms
of the left or right leads, molecular bridge, and the bridge/lead interface, respectively.
Note that nL,R is a two–dimensional coordinate spanning the tube lattice. Summations

186



�εwire,γwire

εL,γL εR,γR

Mc atomic contacts

1, . . . N
︸ ︷︷ ︸

nanotube molecular nanotube
electrode wire electrode

Figure 1: Scheme of the molecular wire-carbon nanotube hybrid with single (bottom)
and multiple (top) contacts. In this paper, on-site energies ǫα=L,R,wire are fixed to zero.

over mL and mR run over interfacial end–atoms of the leads. In general, there are
M such atomic positions, defining the perimeter of the tube ends. the number of
hybridization contacts range between Mc = 1 (SC) and Mc = M (MC). The square
lattice tubes (SLT) are obtained by imposing periodic boundary conditions on the
longitudinal cuts parallel to the lattice bonds of length a. In the case of CNT, when
the graphene honeycomb lattice is rolled along the lattice bonds, armchair single wall
(ℓ, ℓ) nanotube are obtained. In this case M = 2ℓ.
In order to derive transport properties, we make use of the Landauer theory [26] which
relates the conductance of the system to an independent–electron scattering prob-
lem [27]. The electron wavefunction is assumed to extend coherently across the device
and the two–terminal, linear–response conductance at zero temperature, g, is simply
proportional to the total transmittance for injected electrons T (EF) at the Fermi energy
EF:

g =
2e2

h
T (EF). (2)

The factor two accounts for spin degeneracy. The transmission function can be calcu-
lated from the knowledge of the molecular energy levels, the nature and the geometry
of the contacts. It is given by

T (E) =
∑

jL,jR

|SjLjR|2 = Tr
{

SS†
}

, (3)
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where jL, jR are quantum numbers labeling open channels for transport which belong
to mutually exclusive leads, in our case the two semi–infinite perfect nanotubes. The
molecular system attached acts as a scatterer, and S is the corresponding quantum–
mechanical scattering matrix. The quantity |SjLjR|2 is the probability that a carrier
coming from, say, left of the scatterer in the transversal mode jL will be transmitted to
the right in the transversal mode jR. The sum in (3) is restricted to transversal modes
whose energy is smaller than EF.
In the linear regime one can write the zero–temperature transmission as

T (E) =
∑

iL,iR

|TiL,iR|2 δ (E −EiL) δ (E − EiR) , (4)

by considering the zeroth order states confined to the left and the right electrodes |iL〉
and |iR〉, respectively. T is the corresponding transition operator whose form depends
on the details of the confinement. Note that these confined states are not the scattering
states labelled by jL and jR in equation (3) which are the eigenstates of the exact
hamiltonian. Equation (4) is basically derived within a transfer hamiltonian treatment
à la Bardeen (weak coupling assumption) [28]. It has been initially developed by Caroli
et al. [29], and more recently applied to molecular wires by Mujica et al. [30, 31]. The
relationship between the scattering matrix and the transfer hamiltonian approaches
has been extensively worked out in molecular systems [22, 32] showing de facto their
equivalence. This fortunate fact let us to make use of the formal result of the Bardeen
treatment in the broader applicability context of the Landauer approach (which holds
also in the regime of perfect transmission). In fact the transmission function introduced
in equation (3) is exactly the same as used in equation (4). One can see this by writing

down the Green’s function matrix of the problem G−1 = Gwire−1
+ ΣL +ΣR written

in terms of the bare wire Green’s function and the self-energy correction due to the
presence of the leads. Making use of the Fisher–Lee relation [33] one can finally write

T = Tr
{

∆L(E)G(E)∆R(E)G†(E)
}

= 4∆L
11(E)∆R

NN (E) |G1N (E)|2 , (5)

where∆α(E) = i
(

Σα −Σα†
)

(E+i0+) contain only one non–zero element (∆L
11 and ∆R

NN

for the left and right lead, respectively), due to the geometry. The rhs of equation (5)
coincides with the formula provided within transfer hamiltonian schemes [30, 31]. The
matrix element ∆L(R) is the left (right) lead spectral density which is related to the
semi–infinite lead Green’s function matrix Glead. It is minus the imaginary part of the
lead self–energy (per spin)

Σα=L,R =
∑

mα,m′

α

Γm
α

Γ∗
m′

α

Glead (mα, m
′
α) . (6)

Finally one has to calculate from the Green’s function

(

Gwire−1
)

nn′

=
(

E + i0+ −Hwire

)

nn′
=

(

E + i0+ − εwire
n

)

δnn′ − γwire
〈n,n′〉, (7)

the Green’s function matrix element G1N in equation (5). It is given as a matrix
element referring to the two N–atom–molecule ends and is, computationally, an N ×N
matrix inversion. Since only the molecular–end on–site energies are perturbed by the

188



interaction with the leads via the self–energy Σα, some general conclusions can be drawn
without the need of an explicit computation of G1N .
The Green’s function G1N , in equation (5), reads

G1N =
Gwire

1N

(1− ΣL
11G

wire
11 ) (1− ΣR

NNG
wire
NN )− ΣL

11Σ
R
NN (Gwire

1N )
2 . (8)

The interaction with the leads dresses via the self–energy Σα the bare molecular wire
Green’s function element Gwire

1N . The latter can be calculated analytically in the case of
an homogeneous wire (εwire

n = εwire, γwire
〈n

α
,n′

α
〉 = γwire). In fact projecting on the N dimen-

sional molecular wire basis, the determinant of the bare molecular Green’s matrix (7)
factorizes a dimensionless function of only the number of chain atoms, and of the ratio
E = (E − εwire)/(2γwire). This leads to a closed form for the molecular contribution

in the conductance. Namely, one can easily check that Gwire
1N = γwireN−1

det
(

Gwire
)

=

γwire−1
ξ(0)/ξ(N), and Gwire

11 = Gwire
NN = γwire−1

ξ(N − 1)/ξ(N), where the exact form of
ξ reads:

ξ(N) =
(

E +
√
E2 − 1

)N+1

−
(

E −
√
E2 − 1

)N+1

.

After some algebra one finds that ξ possesses the following recursive property,

ξ(N) =
ξ2(N − 1)− ξ2(0)

ξ(N − 2)
(9)

which leads us to re–write equation (8) as

ξ(0)

γwireG1N
= ξ(N)−

(

ΣL
11

γwire
+

ΣR
NN

γwire

)

ξ(N − 1) +
ΣL

11Σ
R
N

γwire2
ξ(N − 2). (10)

This means that the inverse of the Green’s function matrix element connecting left and
right leads can be written as a sum of the terms, representing the inverse of the bare
Green’s function matrix elements for a wire of N , N − 1, and N − 2 atoms. In the
limit of weak contact coupling the behavior of the G1N element is dominated by ξ(N)
leading to N transmission resonances in the conductance of unit height. Nevertheless,
if the effective coupling between the molecule and the lead is much larger than γwire,
ξ(N − 2) will become the dominant term. As a consequence the conductance spectrum
is effectively that of an (N−2)–atomic wire [25]. The resonant behavior inside the wire
band (|E| ≤ 1), and its modification due to the lead coupling is easily understood by
writing the transmission in the following compact exact form valid for all N ≥ 1

T =
4δ2 sin2(ϑ)

(sin(N + 1)ϑ− (δ2 − λ2) sin(N − 1)ϑ− 2λ sinNϑ)2 + 4 (δ sinNϑ− λδ sin(N − 1)ϑ)2
,

where the σ = λ − iδ = Σ/γwire is the self energy of the leads (for simplicity assumed
equal) normalized by the wire hopping. The parameter ϑ, defined by

ϑ = cos−1 E =
i

2
ln

E −
√
E2 − 1

E +
√
E2 − 1

, (11)
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Figure 2: The normalized spectral density as a function of energy and active contacts
is plotted for M = 10 possible atomic contacts available; on–site energies and hopping
terms refer to α = L,R–leads.

is real in the wire band giving rise to resonances for injected electrons matching the
wire eigenenergies. Outside the wire band ϑ is pure imaginary (sin’s are effectively
sinh’s) and the transmission as a power law dependence from energy and an exponential
one from wire length, that is T ∼ |2E|−2N for |E| ≫ 1 in agreement with previous
results [34]. This analytic expression for the transmission provide the generalization of
existing ones [31, 32, 35, 36] to nonvanishing real part of the self energies. The density
of states N = −Im Tr {G} /π can also be written in a closed analytical form. One can
in fact take advantage of the fact that, due to the wire homogeneity, all the diagonal
elements but the first and the last coincide

Gkk

∣

∣

∣

∣

1<k<N

=
1

γwire

ξ(N − 1)− 2σξ(N − 2) + σ2ξ(N − 3)

ξ(N)− 2σξ(N − 1) + σ2ξ(N − 2)
.

By using the parametrization (11) one can easily recast the DOS in the following com-
pact form

N = − 1

πγwire
Im

N sinNϑ− 2(N − 1)σ sin(N − 1)ϑ+ (N − 2)σ2 sin(N − 2)ϑ

sin(N + 1)ϑ− 2σ sinNϑ+ σ2 sin(N − 1)ϑ
.

The calculation of the spectral function Σ, or equivalently of the “surface” unperturbed
lead Green’s function is finally needed in getting the conductance. Due to the form of
the interfacial coupling in our model the self–energy simplifies to

Σ =
Γ2
eff

Mc

∑

m,m′≤Mc

Glead (m,m′) ,

where only surface terms enter in the sum over the states in the leads, and the effective
coupling is defined as Γeff ≡ Γ

√
Mc.

190



In Fig. 2, the spectral function ∆ = −ImΣ is plotted in the whole range of possible
contacts between the SC and MC configuration. It is the result of the calculation of
the surface Green function obtained analytically for SLT [37, 38] and numerically for
CNT [25, 39] leads. As a function of the number of contacts Mc, the system interpolates
between two different scenarios. In the MC case, it is effectively the spectral density
of one–dimensional leads, obtained by Newns in his theory of chemisorption [40]. Only
the channel without modulation in the transverse profile of its wavefunction contributes
to transport [37, 38]. The two–dimensional character of the leads enters as an energy
shift of 2γL,R for SLT and of γL,R for CNT, yielding an asymmetric density profile with
respect to the atom on–site energy εL,R. In contrast, the SC spectrum is symmetric and
richer due to the contribution of all available channels. Additional features characterize
CNT leads [25, 39].
In conclusion, we have shown that nanotube / molecular wire / nanotube hybrid systems
exhibit novel features in the conductance. The conductance of a homogeneous molecular
wire possesses an analytical form in the full regime of the wire parameters and allows
for the insertions of a nonvanishing real self energy typical when considering nanotube
leads. By tailoring the geometry and dimensionality of the contacts, it is possible to
perform a channel selection. In the MC limit the conductance becomes independent of
the topology of the tubular electrodes and transport is effectively one–dimensional.
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