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1 Introduction 

Interlocking faces a major restructuring. Existing heterogenic systems require massive maintenance structures 

able to support four different generations of interlocking (mechanical, electromechanical, relay and electronic 

interlocking) but also various types from various manufacturers for each generation. These types rarely share 

replacement parts and are usually incompatible with each other. Connections between neighboring 

interlockings require proprietary adapters. Furthermore, once interlocking for a station is commissioned, 

replacement parts and modifications can only be acquired from the original supplier creating an undesired 

supply monopoly. 

Germany’s incumbent infrastructure manager Deutsche Bahn, therefore, decided to switch to a new type of 

interlocking, termed digital interlocking. While one might call the decision process in electronic interlocking – 

and generally all states in interlocking systems – digital, the differences to “classical” electronic interlocking is 

that field elements are connected to the control unit using standardized data busses, protocols and interfaces. 

Through this standardization, infrastructure managers can exchange field elements (e.g., light signals, switches, 

axle-counters) from one manufacturer with elements from a competitor, eliminating dependencies. 

Furthermore, systems can easily be upgraded or exchanged without replacing the remaining systems – today, 

when replacing an electronic interlocking it is often necessary to also replace all field elements.  

Germany intends to digitize its state-owned infrastructure’s interlocking systems by 2040. The German railway 

industry lobbies for an even more ambitious timeline of 2035. Over a hundred thousand field elements require 

a migration from classical interlocking to digital interlocking. This goal is ambitious not only when it comes to 

planning processes but also, when it comes to testing and authorization for the used software. 

Current approaches to integration testing do not support the planned implementation speed. Deutsche Bahn 

creates expensive and complicated test environments for digital interlocking projects like the line section 

between Mertingen and Meitingen. These environments comprise an exact clone of the interlocking except for 

the physical field elements. Neither is continuing this approach for a large-scale rollout economically feasible, 
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nor does the necessary amount of personnel exist to attain the desired speed. With our contribution in this 

paper, we want to support the transition from real-world environments to their virtualized equivalents. 

Additionally, to the requirement for faster testing, the need for faster interlocking arises. Studies found that the 

interlocking operation speed has a significant impact on the capacity of stations and routes [1]. Therefore, it is 

necessary to identify potentials to further shorten round setting times.  

In this work, we propose and describe a design for a fully virtualized evaluation environment that reduces 

complexity while keeping close to reality. To our knowledge, similar research with a focus on digital interlocking 

systems has not been published with the exception of [8], which examines interlocking interfaces qualitatively 

but provides no basis for quantitative evaluation of performance. Our environment allows to perform feature 

and performance testing for all steps before the integration with the physical field elements. Furthermore, the 

system is designed to incorporate hardware-in-the-loop testing, allowing to add real-life field elements or 

interlocking into the environment while keeping the remaining environment virtualized. 

Our environment uses virtualized machines to create an exact replica of the rail IP System (bbIP) specified by 

Deutsche Bahn. Field elements and interlocking communicate using the Rail Safe Transport Application (RaSTA) 

protocol [9]. As application layer protocol, we use the EULYNX specification that builds upon RaSTA [15]. 

EULYNX is a European initiative by 14 infrastructure managers to standardize interfaces and elements of the 

signaling systems. 

The proposed implementation reaches prototype level and comprises a simplified interlocking, the network 

between interlocking and field elements (including a redundant connection as specified for RaSTA), sample field 

elements (switches and light signals) and monitoring functionality. This functionality allows to monitor and 

benchmark the entire process of the route setting time at every step to identify which parts of the system take 

up what amount of time.  

We evaluate our system regarding the ability to test and verify the functionality of software components and 

to measure the performance and the theoretically possible route setting times. For the first goal, we found 

multiple issues in an existing open source RaSTA implementation and validated the correction inside our 

environment. For the route setting time, we found, that the protocol aspect is nearly negligible and, in theory, 

significantly shorter route resolution time and route setting times than required by Deutsche Bahn are possible. 

This result suggests a requirements reevaluation for further projects. 

The remainder of this paper is structured as follows: After this introduction, in Section 2, we introduce technical 

background on bbIP and modular testing. Section 3 shows our approach to system design and implementation. 

Afterwards, we evaluate our approach in Section 4 and discuss the results in Section 5. Lastly, Section 6 provides 

a short summary and an outlook on future work.  



 

 

2 Background 

EULYNX is poised to be the rail industries USB standard with respect to field elements and has been adopted by 

Deutsche Bahn infrastructure company DB Netz AG as successor to NeuPro – Deutsche Bahn’s original 

standardization proposal [10]. Standardization enables a plethora of benefits, the most pronounced of which 

are opportunities for small and medium sized companies to enter the market, which makes for cheaper 

acquisition and maintenance of infrastructure, as well as easier replacement of old parts with the components 

of a different supplier [6]. EULYNX interfaces are specified in semi-publicly available documents, which 

determine, next to other things, the contents of the exchanged messages and how and when each component 

should send which kind of message [15]. It also specifies a safe communication network, which for the DB-

operated area, will be the bbIP. Quality-of-Service requirements for the network’s latency posed by the EULYNX 

specification are 50 ms for the Standard Wired Profile. 

The bbIP network is made up of three layers, each for a different area of operation. They consist of completely 

redundant blue and grey network planes. The lowermost layer (access layer) connects the site of operation 

(TSO), which includes interlocking and Maintenance & Data Management (MDM), to the field element access 

point, which in turn connects to the field elements’ Object Controllers (OC). The OC themselves come with the 

actual application module and two security components, a crypto-box and a VPN [3]. 

As mentioned in the opening, the usage of standardized interfaces and commercial-of-the-shelf (COTS) 

components for command-and-control poses new challenges and opportunities for the process of testing and 

authorization. Caspar et al. in [5] previously concluded that the interlockings composition of a multitude of 

modules which originate from different sources would necessarily lead to a change in validation practices, as 

the conventionally intended test of the system could only be conducted after it had been built in the field. At 

this time, the validation effort would lead to pronounced losses in time and money, as well as needless delays 

in project completion. They propose a multi-phased test procedure, called “modular, hierarchical testing”, 

which schedules integration tests of the test unit with an increasing number of interfacing systems and in 

increasingly realistic environments. An Evaluation environment like ours represents the tool, which is needed 

to conduct the tests of the intermediate phases in an approach like the one by Caspar et al. 

3 Methods 

Structurally, a digital interlocking is an arrangement of computers which feature-specific hard- and software, 

interconnected by the bbIP network which bases on standard IPv4. The behavior of a digital interlocking can be 

emulated by realizing a representation of such computers in correspondence to the architecture of the target 

network. By configuring the environment with the respective hardware capabilities and network Quality of 

Service (QoS) parameters (e. g. maximum throughput, latency, or transmission failure rate), results of 

experiments in the emulated scenario can approach real world application accuracy. To authentically model the 
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bbIP environment, we requested and received latency measurement data for the newly built TSO Mertingen–

Meitingen from DB Netz AG [4]. Even for higher amounts of bytes per packet (1024 bytes) than usually reached 

by cryptographically secured and RaSTA-headed EULYNX Protocol Data Interface (PDI) messages, the latency 

didn’t surpass 1 ms. We used the respectively measured latency of 0.562 ms for usual packet sizes of 512 bytes 

in the simulation. 

To support a wide range of different use cases, the proposed evaluation environment is based on modern 

virtualization techniques. Thus, instead of using real hardware for each single machine, we create virtual 

machines for every component. Virtual machine hypervisors create a hardware-agnostic environment of virtual 

processors, memory and drives, on which they allow to run entire operating systems without them realizing 

they do not run on actual hardware. Inside fully virtualized machines, container virtualization allows to run 

multiple processes on the same machine without them having knowledge of each other or being able to 

Figure 1: Evaluation environment structure comprising existing (open source) components and specific components for 

the desired applications.The environment comprises several virtual machines (VMs) to represent the interlocking and the 

Obect Controllers (OC). OC and interlocking each comprise two containers. One container handles the networking using 

the RaSTA protocol while the other container is responsible for the functional aspects. OC use the varius standard 

communciation interfaces (SCI) specified by Eulynx. Black arrows represent the experiment control communication while 

orange arrows represent interlocking communication. Grey arrows hint at possible extensions to other components like 

control stations or radio block centers. 



 

 

interfere. While the separation is less than for full virtualization the omission of having multiple instances of the 

operating system saves a significant amount of resources. 

Figure 1 shows the architecture for our environment called DSTW-Sim. Besides fixed virtual machines for the 

interlocking and an experiment controller, virtualization enables the deployment of an arbitrary number of field 

elements. Furthermore, the incorporation of physical elements is possible, but not mandatory, allowing for so 

called hardware-in-the-loop testing where physical objects are validated and evaluated using simulated or 

virtualized environments.  

The architecture of the bbIP infrastructure is reproduced accurately in DSTW-Sim, meaning every object 

controller, the interlocking, as well as all switches of the redundant network planes are represented by their 

own virtual machine (VM). To keep the behavior of the test environment as close as possible to the real system, 

we use hypervisor-based virtualization provided by VirtualBox v6.1.38 [16] for each individual VM. Where 

applicable, container-based virtualization provided by Docker v20.10.12 [17] is used inside the VM to attain a 

modular design and make for an easy replacement of subcomponents [2]. 

For provisioning, we use the open source tool Vagrant v2.3.4[14] which is configured automatically according 

to the user-defined setup of the experiment. Vagrant is a tool for building complete environments using 

virtualized machines. Once configured, the entire evaluation environment can be easily provisioned or 

destroyed without manual intervention. 

A newly designed configuration language based on Yet Another Markup Language (YAML) [13] provides a way 

for the user to specify the setup of any combination of field elements. The elements are given by category and 

name. We use a script written in Python [18] to translate the experiment configuration to a Vagrant 

configuration, create all experiment specific files, control the experiment and analyze the results. 

The OC in DSTW-Sim consists of two modules: The application module is implemented in the memory-safe 

language Rust [19] and processes PDI messages according to the EULYNX interface specification, while the 

RaSTA module handles the network communication as intended by EULYNX. The two modules communicate 

locally via User Datagram Protocol (UDP). 

The time and content of all messages to be sent and received by the application layer in the process of route 

setting is implemented to the exact EULYNX requirements specification to set the conditions for realistic 

measurement results. Specifically, the message processing features of the Standard Communication Interface 

for Point (SCI-P), Light Signal (SCI-LS) and electronic interlocking were realized. Simplifications in this initial 

implementation include omitting the cryptographic components of the OC otherwise used in the bbIP 

architecture and assuming the PDI connection between interlocking and OC to be already established. 

Additionally, the simulation of the interlocking supports only the setting of one route at a time. 

Crucially, the evaluation environment is executable on every computer that runs a standard operating system 

(Windows, Linux, MacOS) after installing the open source utilities Vagrant, VirtualBox and Docker. This property 
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yields excellent reproducibility of experiments. We realized all implementations solely by using open source 

components. 

Our environment allows us to instrument various experiments, collect logging information and experiment 

results and analyze these results. As a method of validating our system, we designed test cases for the network 

protocol RaSTA or, more specifically, it’s open source implementation by Railway-CCS [7]. RaSTA features 

mechanics to detect the untimely delivery of a message, as well as detection and correction of packet loss. To 

test these features, we use failure injection by the network emulation software netem [11] to simulate 

degraded QoS connectivity profiles. 

While not required for the functionality of the system, we implement internal clock synchronization for all 

participating computers using the Linux kernel-integrated tool linuxPTP [12] for the purpose of comparing 

logged timestamps across the systems in the environment. 

4 Results 

We evaluated our environment’s functionality by setting up a sample railway station with two light signals and 

two switches (see Figure 2). We measured the performance of the modelled systems and the RaSTA 

implementation by repeatedly setting the specified routes in the interlocking simulation and logging the 

exchange of all relevant messages. The necessary steps for route setting according to the EULYNX specification 

are pictured in Figure 3. These include all steps of the interlocking domain before a movement authority would 

be passed to the radio block center (RBC). The steps represented by white boxes are not included in the 

calculation for the route setting time. 

 

Figure 2: Sample railway station used for this paper comprising six light signals and two points. 

EULYNX interaction between all components performed flawlessly. However, we found several issues within the 

used open source RaSTA implementation. For example, our environment showed implementation errors in 

RaSTA’s check for untimely delivery with respect to the clock independency mechanism that led to 

unintentionally terminated connections (see Figure 4). Specifically, the system clocks don’t have to be 

synchronized between RaSTA communication partners, because they are never compared with each other. At 

the time of initialization, the local clocks’ time is used as a placeholder value. Erroneously, this initialization 

happened for every received heartbeat message (HB), making the system race its own clock. The result of this 



 

 

were messages, that appeared to have been sent even before the previous message which had already 

confirmed the current timestamp (CTS). Please refer to [9] for details on the untimely delivery of messages in 

RaSTA. 

Furthermore, the interlocking’s RaSTA module was initially unable to connect to more than one field element 

at the time, because the implementation relied on the field elements establishing connections, while EULYNX 

specification assigns the connection startup to the interlocking. We fixed both issued and submitted our patch 

to the original authors. The corresponding pull request [20] was accepted and is now part of the public  

repository and available to further researchers. These results show that our environment allows us to validate 

the functionality of protocol implementations in realistic scenarios.  

Figure 3: Phases of the route setting process with respect to exchanged EULYNX messages. 
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Additionally, we instrumented our environment to measure the time spent in different communication steps, 

e.g., when moving a point machine to a new end position under different network conditions (see Figure 6). We 

confirm that the impact of increasing network latency is linear as expected, validating our environment’s ability 

to perform quantitative assessments. Due to more apparent limitations with the used RaSTA implementation, 

we couldn’t test the RaSTA protocols’ behavior in networks under influence of packet loss since the loss of 

packets and subsequent arrival of unexpected packet sequence numbers lead to crashes of the RaSTA module. 

Addressing these was out of the scope of this paper. 

The route setting time was averaged over 100 repetitions with a network parametrized to the measurements 

of the DB Netz AG and resulted in 26 ms. In our scenario, the point machine move duration is disregarded, 

meaning the point machine is assumed to instantly arrive at the new end position. Table 1 displays the mean 

and the standard error of the mean of each steps’ duration. The distribution of durations of specifically network-

dependent steps is shown in Figure 5. 

Figure 4: Observed behavior during debugging and the associated messages’ relevant data fields. Heartbeat 

messages (HB) are exchanged, which include a timestamp (TS) and a confirmed timestamp (CTS). The last 

relevant CTS is stored in CTSR, to be compared with newly arrived CTS in CTSPDU. 



 

 

 

Step Mean [ms] SEM [ms] Actor Process Message 

0 - - Interlocking System Move Point 
1 0.637 0.021 RaSTA sends  System Move Point 
2 4.403 0.358 RaSTA receives  Network Move Point 

3 0.040 0.001 SCI-P receives  System Move Point 
3.1 0.555 0.011 SCI-P sends  System Point Position 
3.2 0.948 0.020 RaSTA sends  System Point Position 
3.3 5.445 0.288 RaSTA receives  Network Point Position 
3.4 0.101 0.004 Interlocking receives  System Point Position 

4 - - 
Point Machine moves/  
SCI-P sends  

System Point Position 

5 1.216 0.286 RaSTA sends  System Point Position 
6 5.669 0.325 RaSTA receives  Network Point Position 
7 0.117 0.002 Interlocking receives  System Point Position 
8 1.108 0.015 Interlocking sends  System Indicate Signal Aspect 
9 0.629 0.008 RaSTA sends  System Indicate Signal Aspect 

10 4.284 0.299 RaSTA receives  Network Indicate Signal Aspect 
11 0.048 0.001 SCI-LS receives  System Indicate Signal Aspect 
12 0.662 0.014 SCI-LS sends  System Indicated Signal Aspect 
13 0.931 0.012 RaSTA sends  System Indicated Signal Aspect 
14 6.155 0.298 RaSTA receives  Network Indicated Signal Aspect 
15 0.101 0.009 Interlocking receives  System Indicated Signal Aspect 

Table 1: Mean and standard error of the mean for individual durations of route setting steps 

Figure 5: Distribution of durations of network-dependent steps during route setting 
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We also measured the bandwidth load on our environment’s internal network using a tool provided by 

VirtualBox. The experiment entails the continuous exchange of messages for the sequential setting of two   

alternating routes and thus represents a worst-case scenario load-wise. During the procedure, we measured 

the bit rate going through both the blue and the grey switch of the interlocking to be 9.6 kbit/s for the SCI-P 

connection and the 7.47 kbit/s SCI-LS connection respectively. The difference is due to one additional message 

during route setting for SCI-P.  

Although hardware-in-the-loop functionality is missing from the prototype, the resource monitor of VirtualBox 

allows for an evaluation of the required hardware capabilities to run the VM with respect to the host system. 

By extrapolation based on CPU benchmarks we estimate the OC module to comfortably run on a low powered 

single-board computer like the Raspberry Pi Zero 2 W. 

5 Discussion 

The test subject for the validation of our evaluation environment, the open source RaSTA implementation [7] 

in the version published 18th of July 2022 included some breaking bugs. After our changes described above, it 

managed to perform according to expectations in the limits set for the network latency by EULYNX of 50 ms. A 

possible explanation for the discovered errors in the used RaSTA implementation is that the authors only used 

Figure 6: Aggregated route setting duration for all steps 



 

 

environments based on local, container-based virtualization for their integration tests. Environments like the 

one proposed by us achieve a higher degree of realism and can help to reveal further flaws in IP based command 

and control systems. 

The measured route setting time of 26 ms is multiple magnitudes lower than other figures found in literature 

for DSTW route setting times. Within the scope of the research conducted for implementation of ETCS for the 

new suburban railway network in and around Stuttgart, suppliers estimated route setting times of 7 to 9 s, 

disregarding point machine movement durations. This striking difference can only partially be explained by the 

simplifications made for our prototype. Properties of safe systems, whose omission might lead to a lower 

measurement of latency, include slower clocks in processors for safety-critical applications and the overhead 

required for M out of N voting algorithms. Still, the latencies provided by the suppliers at the time most likely 

relate to guarantees which they are ready to make and do not push the technologies limits. It is up to the 

infrastructure managers to request and reward the exploitation of the remaining optimization potential. 

The experiment setup also allows for an estimation of the maximum amount of field elements connectable to 

a TSO at a time via one access network in terms of bandwidth. According to the information provided by DB 

Netz, the bbIP network will be capable of full-duplex, gigabit speed [4]. In the worst-case scenario of 

continuously setting new routes, one TSO could serve upwards of 104,000 field elements, excluding 

cryptographic overhead. Considering the planned outfit of OC with both crypto-box and VPN components, we 

estimate the traffic to increase by 596% in the worst-case scenario, resulting in 17,477 served field elements. 

However, we regard the usage of both crypt-box and VPN to be a questionable decision, since RaSTA based on 

TLS over TCP is already seen as sufficiently secure by the EULYNX specification. In terms of the number of 

required TSO, we estimate that the approximately 250,000 installed field devices in Germany could be served 

from between 3 and 15 TSO locations, depending on the scenario. However, additional redundancy might be 

desirable. 

6 Conclusion and Future Work 

This work presents a first step towards a fully virtualized evaluation of components and protocols for digital 

interlocking. Instead of creating a physical replica of the entire network, we create a virtualized replica that 

allows for simple reconfiguration. We showed that our environment could validate basic OC functionality and 

perform quantitative assessments.   

However, further steps are necessary to perform unit and integration testing inside such an environment. For 

example, currently, we can only evaluate virtualizable components. Thus, the evaluation of, e.g., object 

controllers in combination with the controlled field elements is necessary for integration testing. Therefore, we 

plan to implement the hardware-in-a-loop capability that was accounted for in the infrastructure design to 

integrate real hardware inside our virtualized system. Furthermore, for now, the interlocking configuration is 
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done manually. We intend to automatically generate the entire digital interlocking configuration files based on 

EULYNX or PlanPro configuration files. 

For now, we use Vagrant on a single machine to provision our environment. Thus, this single machine limits the 

scale of our environment (for now, the environment is mainly limited by memory capacity). We plan to migrate 

our environment to a private cloud environment and add functionality to run in public clouds provided by, e.g. 

Amazon, Google or Microsoft to further simplify development. 

The application and impact of the route setting times measured within the scope of our prototypal 

implementation is limited due to its simplifications, most importantly the missing safety features. An evaluation 

environment with fewer or no simplifications with respect to the actual interlocking, running on SIL4-certifiable 

hardware, can demonstrate the practical limits of processing speed for safe rail operation. Which we estimate 

will not deviate meaningfully from the results achieved in this paper. 
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