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Abstract

We show that the problem of deciding for a given finite relation algebra A whether
the network satisfaction problem for A can be solved by the k-consistency procedure,
for some k ∈ N, is undecidable. For the important class of finite relation algebras
A with a normal representation, however, the decidability of this problem remains
open. We show that if A is symmetric and has a flexible atom, then the question
whether NSP(A) can be solved by k-consistency, for some k ∈ N, is decidable (even
in polynomial time in the number of atoms of A). This result follows from a more
general sufficient condition for the correctness of the k-consistency procedure for finite
symmetric relation algebras. In our proof we make use of a result of Alexandr Kazda
about finite binary conservative structures.

1 Introduction

Many computational problems in qualitative temporal and spatial reasoning can be phrased
as network satisfaction problems (NSPs) for finite relation algebras. Such a network con-
sists of a finite set of nodes, and a labelling of pairs of nodes by elements of the relation
algebra. In applications, such a network models some partial (and potentially inconsistent)
knowledge that we have about some temporal or spatial configuration. The computational
task is to replace the labels by atoms of the relation algebra such that the resulting net-
work has an embedding into a representation of the relation algebra. In applications, this
embedding provides a witness that the input configuration is consistent (a formal definition
of relation algebras, representations, and the network satisfaction problem can be found in
Section 2.1). The computational complexity of the network satisfaction problem depends
on the fixed finite relation algebra, and is of central interest in the mentioned applica-
tion areas. Relation algebras have been studied since the 40’s with famous contributions

1

http://arxiv.org/abs/2304.12871v1


of Tarski [Tar48], Lyndon [Lyn50], McKenzie [McK66, McK70], and many others, with
renewed interest since the 90s [HH01a,HH01b,Hir96,HH02,Dün05,Bod18,BK21].

One of the most prominent algorithms for solving NSPs in polynomial time is the
so-called path consistency procedure. The path consistency procedure has a natural gener-
alisation to the k-consistency procedure, for some fixed k ≥ 3. Such consistency algorithms
have a number of advantages: e.g., they run in polynomial time, and they are one-sided
correct, i.e., if they reject an instance, then we can be sure that the instance is unsatisfiable.
Because of these properties, consistency algorithms can be used to prune the search space
in exhaustive approaches that are used if the network consistency problem is NP-complete.
The question for what temporal and spatial reasoning problems the k-consistency procedure
provides a necessary and sufficient condition for satisfiability is among the most important
research problems in the area [RN07,BJ17]. The analogous problem for so-called constraint
satisfaction problems (CSPs) was posed by Feder and Vardi [FV99] and has been solved for
finite-domain CSPs by Barto and Kozik [BK14]. Their result also shows that for a given
finite-domain template, the question whether the corresponding CSP can be solved by the
k-consistency procedure can be decided in polynomial time.

In contrast, we show that there is no algorithm that decides for a given finite relation
algebra A whether NSP(A) can be solved by the k-consistency procedure, for some k ∈ N.
The question is also undecidable for every fixed k ≥ 3; in particular, there is no algorithm
that decides whether NSP(A) can be solved by the path consistency procedure. Our proof
relies on results of Hirsch [Hir99] and Hirsch and Hodkinson [HH01a]. The proof also
shows that Hirsch’s Really Big Complexity Problem (RBCP; [Hir96]) is undecidable. The
RBCP asks for a description of those finite relation algebras A whose NSP can be solved
in polynomial time.

Many of the classic examples of relation algebras that are used in temporal and spatial
reasoning, such as the point algebra, Allen’s Interval Algebra, RCC5, RCC8, have so-called
normal representations, which are representations that are particularly well-behaved from
a model theory perspective [Hir96, BJ17, Bod18]. The importance of normal representa-
tions combined with our negative results for general finite relation algebras prompts the
question whether solvability of the NSP by the k-consistency procedure can at least be
characterised for relation algebras A with a normal representation. Our main result is a
sufficient condition that implies that NSP(A) can be solved by the k-consistency procedure
(Theorem 4.4). The condition can be checked algorithmically for a given A. Moreover, for
symmetric relation algebras with a flexible atom, which form a large subclass of the class
of relation algebras with a normal representation, our condition provides a necessary and
sufficient criterion for solvability by k-consistency (Theorem 5.2). We prove that the NSP
for every symmetric relation algebra with a flexible atom that cannot be solved by the
k-consistency procedure is already NP-complete. Finally, for symmetric relation algebras
with a flexible atom our tractability condition can even be checked in polynomial time for
a given relation algebra A (Theorem 6.2).

In our proof, we exploit a connection between the NSP for relation algebras A with a
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normal representation and finite-domain constraint satisfaction problems. In a next step,
this allows us to use strong results for CSPs over finite domains. There are similarities
between the fact that the set of relations of a representation of A is closed under taking
unions on the one hand, and so-called conservative finite-domain CSPs [Bul03, Bar11,
Bul11, Bul16] on the other hand; in a conservative CSP the set of allowed constraints in
instances of the CSP contains all unary relations. The complexity of conservative CSPs has
been classified long before the solution of the Feder-Vardi Dichotomy Conjecture [FV99,
Bul17, Zhu17, Zhu20]. Moreover, there are particularly elegant descriptions of when a
finite-domain conservative CSP can be solved by the k-consistency procedure for some
k ∈ N (see, e.g., Theorem 2.17 in [Bul11]). Our approach is to turn the similarities into
a formal correspondence so that we can use these results for finite-domain conservative
CSPs to prove that k-consistency solves NSP(A). A key ingredient here is a contribution
of Kazda [Kaz15] about conservative binary CSPs.

2 Preliminaries

A signature τ is a set of function or relation symbols each of which has an associated finite
arity k ∈ N. A τ -structure A consists of a set A together with a function fA : Ak → A for
every function symbol f ∈ τ of arity k and a relation RA ⊆ Ak for every relation symbol
R ∈ τ of arity k. The set A is called the domain of A. Let A and B be τ -structures. The
(direct) product C = A×B is the τ -structure where

• A×B is the domain of C;

• for every relation symbol Q of arity n ∈ N and every tuple ((a1, b1), . . . , (an, bn)) ∈
(A × B)n, we have that ((a1, b1), . . . , (an, bn)) ∈ QC if and only if (a1, . . . , an) ∈ QA

and (b1, . . . , bn) ∈ QB;

• for every function symbol Q of arity n ∈ N and every tuple
((a1, b1), . . . , (an, bn)) ∈ (A×B)n, we have that

QC((a1, b1), . . . , (an, bn)) := (QA(a1, . . . , an), Q
B(b1, . . . , bn)).

We denote the (direct) product A×A by A2. The k-fold product A× · · · × A is defined
analogously and denoted by Ak. Structures with a signature that only contains function
symbols are called algebras and structures with purely relational signature are called re-
lational structures. Since we do not deal with signatures of mixed type in this article, we
will use the term structure for relational structures only.

2.1 Relation Algebras

Relation algebras are particular algebras; in this section we recall their definition and state
some of their basic properties. We introduce proper relation algebras, move on to abstract
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relation algebras, and finally define representations of relation algebras. For an introduction
to relation algebras we recommend the textbook by Maddux [Mad06].

Proper relation algebras are algebras whose domain is a set of binary relations over a
common domain, and which are equipped with certain operations on binary relations.

Definition 2.1. Let D be a set and R a set of binary relations over D such that
(R;∪, ¯, 0, 1, Id, ˘, ◦) is an algebra with operations defined as follows:

1. 0 := ∅,

2. 1 :=
⋃

R,

3. Id := {(x, x) | x ∈ D},

4. a ∪ b := {(x, y) | (x, y) ∈ a ∨ (x, y) ∈ b},

5. ā := 1 \ a,

6. ă := {(x, y) | (y, x) ∈ a},

7. a ◦ b := {(x, z) | ∃y ∈ D : (x, y) ∈ a and (y, z) ∈ b},

for a, b ∈ R. Then (R;∪, ¯, 0, 1, Id, ˘, ◦) is called a proper relation algebra.

The class of all proper relation algebras is denoted by PA. Abstract relation algebras
are a generalisation of proper relation algebras where the domain does not need to be a set
of binary relations.

Definition 2.2. An (abstract) relation algebra A is an algebra with domain A and sig-
nature {∪, ¯, 0, 1, Id, ˘, ◦} such that

1. the structure (A;∪,∩, ¯, 0, 1), with ∩ defined by x∩y := (x̄ ∪ ȳ), is a Boolean algebra,

2. ◦ is an associative binary operation on A, called composition,

3. for all a, b, c,∈ A: (a ∪ b) ◦ c = (a ◦ c) ∪ (b ◦ c),

4. for all a ∈ A: a ◦ Id = a,

5. for all a ∈ A: ˘̆a = a,

6. for all a, b ∈ A: x̆ = ă ∪ b̆ where x := a ∪ b,

7. for all a, b ∈ A: x̆ = b̆ ◦ ă where x := a ◦ b,

8. for all a, b, c ∈ A: b̄ ∪ (ă ◦ ((a ◦ b)) = b̄.
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We denote the class of all relation algebras by RA. Let A = (A;∪, ¯, 0, 1, Id, ˘, ◦) be a
relation algebra. By definition, (A;∪,∩, ¯, 0, 1) is a Boolean algebra and therefore induces a
partial order ≤ on A, which is defined by x ≤ y :⇔ x∪y = y. Note that for proper relation
algebras this ordering coincides with the set-inclusion order. The minimal elements of this
order in A \ {0} are called atoms. The set of atoms of A is denoted by A0. Note that for
the finite Boolean algebra (A;∪,∩, ¯, 0, 1) each element a ∈ A can be uniquely represented
as the union ∪ (or “join”) of elements from a subset of A0. We will often use this fact and
directly denote elements of the relation algebra A by subsets of A0.

By item 3. in Definition 2.2 the values of the composition operation ◦ in A are com-
pletely determined by the values of ◦ on A0. This means that for a finite relation algebra
the operation ◦ can be represented by a multiplication table for the atoms A0.

An algebra with signature τ = {∪, ¯, 0, 1, Id, ˘, ◦} with corresponding arities 2, 1, 0,
0, 0, 1, and 2 that is isomorphic to some proper relation algebra is called representable.
The class of representable relation algebras is denoted by RRA. Since every proper relation
algebra and therefore also every representable relation algebra satisfies the axioms from
the previous definition we have PA ⊆ RRA ⊆ RA. A classical result of Lyndon [Lyn50]
states that there exist finite relation algebras A ∈ RA that are not representable; so the
inclusions above are proper. If a relation algebra A is representable then the isomorphism
to a proper relation algebra is usually called the representation of A.

We will be interested in the model-theoretic behavior of sets of relations which form
the domain of a proper relation algebra, and therefore consider relational structures whose
relations are precisely the relations of a proper relation algebra. If the set of relations of
a relational structure B forms a proper relation algebra which is a representation of some
abstract relation algebra A, then it will be convenient to also call B a representation of A.

Definition 2.3. Let A ∈ RA. A representation of A is a relational structure B such that

• B is an A-structure, i.e., the elements of A are binary relation symbols of B;

• The map a 7→ aB is an isomorphism between the abstract relation algebra A and the
proper relation algebra (R;∪, ¯, 0, 1, Id, ˘, ◦) with domain R := {aB | a ∈ A}.

Recall that the set of atoms of a relation algebra A = (A;∪, ¯, 0, 1, Id, ˘, ◦) is denoted
by A0. The following definitions are crucial for this article.

Definition 2.4. A tuple (x, y, z) ∈ (A0)
3 is called an allowed triple (of A) if z ≤ x ◦ y.

Otherwise, (x, y, z) is called a forbidden triple (ofA); in this case z∪x ◦ y = 1. We say that
a relational A-structure B induces a forbidden triple (from A) if there exist b1, b2, b3 ∈ B
and (x, y, z) ∈ (A0)

3 such that x(b1, b2), y(b2, b3) and z(b1, b3) hold in B and (x, y, z) is a
forbidden triple of A.

Note that a representation of A by definition does not induce a forbidden triple. A
relation R ⊆ A3 is called totally symmetric if for every bijection π : {1, 2, 3} → {1, 2, 3} we
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have
(a1, a2, a3) ∈ R ⇒ (aπ(1), aπ(2), aπ(3)) ∈ R.

The following is an immediate consequence of the definition of allowed triples.

Remark 2.5. The set of allowed triples of a symmetric relation algebra A is totally sym-
metric.

2.2 The Network Satisfaction Problem

In this section we present computational decision problems associated with relation alge-
bras. We first introduce the inputs to these decision problems, so-called A-networks.

Definition 2.6. Let A be a relation algebra. An A-network (V ; f) is a finite set V together
with a partial function f : E ⊆ V 2 → A, where E is the domain of f . An A-network (V ; f)
is satisfiable in a representation B of A if there exists an assignment s : V → B such that
for all (x, y) ∈ E the following holds:

(s(x), s(y)) ∈ f(x, y)B.

An A-network (V ; f) is satisfiable if there exists a representation B of A such that (V ; f)
is satisfiable in B.

With these notions we can define the network satisfaction problem.

Definition 2.7. The (general) network satisfaction problem for a finite relation algebra
A, denoted by NSP(A), is the problem of deciding whether a given A-network is satisfiable.

In the following we assume that for an A-network (V ; f) it holds that f(V 2) ⊆ A\{0}.
Otherwise, (V ; f) is not satisfiable. Note that every A-network (V ; f) can be viewed as an
A-structure C on the domain V : for all x, y ∈ V in the domain of f and a ∈ A the relation
aC(x, y) holds if and only if f(x, y) = a.

It is well-known that for relation algebras A1 and A2 the direct product A1×A2 is
also a relation algebra (see, e.g., [HH02]). We will see in Lemma 2.9 that the direct product
of representable relation algebras is also a representable relation algebra.

Definition 2.8. Let A1 and A2 be representable relation algebras. Let B1 and B2 be
representations of A1 and A2 with disjoint domains. Then the union representation of the
direct product A1×A2 is the (A1×A2)-structure B1 ⊎B2 on the domain B1⊎B2 with the
following definition for all (a1, a2) ∈ A1 ×A2:

(a1, a2)
B1 ⊎B2 := aB1

1 ∪ aB2

2 .
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The following well-known lemma establishes a connection between products of relation
algebras and union representations (see, e.g., Lemma 7 in [CH04] or Lemma 3.7 in [HH02]);
it states that union representations are indeed representations. We present the proof in
Appendix A.1 to give the reader a sense of the definition of union representations. Union
representations will be the key object in our undecidability proof for Hirsch’s Really Big
Complexity Problem.

Lemma 2.9. Let A1 and A2 be relation algebras. Then the following holds:

1. If B1 and B2 are representations of A1 and A2 with disjoint domains, then B1 ⊎B2

is a representation of A1 ×A2.

2. If B is a representation of A1 ×A2, then there exist representations B1 and B2 of
A1 and A2 such that B is isomorphic to B1 ⊎B2.

The following result uses Lemma 2.9 to obtain reductions between different network
satisfaction problems. A similar statement can be found in Lemma 7 from [CH04], however
there the assumption on representability of the relation algebras A and B is missing. Note
that without this assumption the statement is not longer true. Consider relation algebras
A and B such that NSP(A) is undecidable and B does not have a representation. Then
A × B does also not have a representation (see Lemma 2.9) and hence NSP(A × B) is
trivial. We observe that the undecidable problem NSP(A) cannot have a polynomial-time
reduction to the trivial problem NSP(A×B).

Lemma 2.10. Let A,B ∈ RRA be finite. Then there exists a polynomial-time reduction
from NSP(A) to NSP(A×B).

Proof. Consider the following polynomial-time reduction from NSP(A) to NSP(A × B).
We map a given A-network (V ; f) to the (A ×B)-network (V ; f ′) where f ′ is defined by
f ′(x, y) := (f(x, y), 0). This reduction can be computed in polynomial time.

Claim 1. If (V ; f) is satisfiable then (V ; f ′) is also satisfiable. Let A be a representation
of A in which (V ; f) is satisfiable and let B be an arbitrary representation of B. By
Lemma 2.9, the structure A⊎B is a representation of A×B. Moreover, the definition of
union representations (Definition 2.8) yields that the (A×B)-network (V ; f ′) is satisfiable
in A⊎B.

Claim 2. If (V ; f ′) is satisfiable then (V ; f) is satisfiable. Assume that (V ; f ′) is
satisfiable in some representation C of A × B. By item 2 in Lemma 2.9 we get that C is
isomorphic to A⊎B, where A and B are representations of A and B. It again follows from
the definition of union representations that (V ; f) is satisfiable in the representation A of
A.

This shows the correctness of the polynomial-time reduction from NSP(A) to NSP(A×
B) and finishes the proof.
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2.3 Normal Representations and Constraint Satisfaction Problems

We consider a subclass of RRA introduced by Hirsch in 1996. For relation algebras A

from this class, NSP(A) corresponds naturally to a constraint satisfaction problem. In the
following let A be in RRA. We call an A-network (V ; f) closed (transitively closed in the
work by Hirsch [Hir97]) if f is total and for all x, y, z ∈ V it holds that

• f(x, x) ≤ Id,

• f(x, y) = ă for a = f(y, x),

• f(x, z) ≤ f(x, y) ◦ f(y, z).

It is called atomic if the range of f only contains atoms from A.

Definition 2.11 (from [Hir96]). Let B be a representation of A. Then B is called

• fully universal, if every atomic closed A-network is satisfiable in B;

• square, if 1B = B2;

• homogeneous, if for every isomorphism between finite substructures of B there exists
an automorphism of B that extends this isomorphism;

• normal, if it is fully universal, square and homogeneous.

We now investigate the connection between NSP(A) for a finite relation algebra with a
normal representation B and constraint satisfaction problems. Let τ be a finite relational
signature and let B be a (finite or infinite) τ -structure. Then the constraint satisfaction
problem for B, denoted by CSP(B), is the computational problem of deciding whether a
finite input structure A has a homomorphism to B. The structure B is called the template
of CSP(B).

Consider the following translation which associates to each A-network (V ; f) an A-
structure C as follows: the set V is the domain of C and (x, y) ∈ C2 is in a relation aC if
and only if (x, y) is in the domain of f and f(x, y) = a holds. For the other direction let
C be an A-structure with domain C and consider the A-network (C; f) with the following
definition: for every x, y ∈ C, if (x, y) does not appear in any relation of C we leave f(x, y)
undefined, otherwise let a1(x, y), . . . , an(x, y) be all atomic formulas that hold in C. We
compute in A the element a := a1 ∩ · · · ∩ an and define f(x, y) := a.

The following theorem is based on the natural 1-to-1 correspondence between A-
networks and A-structures; it subsumes the connection between network satisfaction prob-
lems and constraint satisfaction problems.

Proposition 2.12 (Proposition 1.3.16 in [Bod12], see also [BJ17,Bod18]). Let A ∈ RRA
be finite. Then the following holds:
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◦ Id < >

Id Id < >

< < < 1

> > 1 >

Figure 1: Multiplication table of the point algebra P.

1. A has a representation B such that NSP(A) and CSP(B) are the same problem up
to the translation between A-networks and A-structures.

2. If A has a normal representation B the problems NSP(A) and CSP(B) are the same
up to the translation between A-networks and A-structures.

Usually, normal representations of relation algebras are infinite relational structures.
This means that the transfer from NSPs to CSPs from Proposition 2.12 results in CSPs
over infinite templates, as in the following example.

Example 2.13. Consider the point algebra P. The set of atoms of P is P0 = {Id, <,>}.
The composition operation ◦ on the atoms is given by the multiplication table in Figure 1.
The table completely determines the composition operation ◦ on all elements of P. Note
that the structure P := (Q; ∅, <,>,=,≤,≥, 6=,Q2) is the normal representation of P

and therefore NSP(P) and CSP(P) are the same problems up to the translation between
networks and structures.

2.4 The Universal-Algebraic Approach

We introduce in this section the study of CSPs via the universal-algebraic approach.

2.4.1 Polymorphisms

Let τ be a finite relational signature. A polymorphism of a τ -structure B is a homomor-
phism f from Bk to B, for some k ∈ N called the arity of f . We write Pol(B) for the set
of all polymorphisms of B. The set of polymorphisms is closed under composition, i.e., for
all n-ary f ∈ Pol(B) and s-ary g1, . . . , gn ∈ Pol(B) it holds that f(g1, . . . , gn) ∈ Pol(B),
where f(g1, . . . , gn) is a homomorphism from Bs to B defined as follows

f(g1, . . . , gn)(x1, . . . , xs) := f(g1(x1, . . . , xs), . . . , gn(x1, . . . , xs)).

If r1, . . . , rn ∈ Bk and f : Bn → B an n-ary operation, then we write f(r1, . . . , rn)
for the k-tuple obtained by applying f component-wise to the tuples r1, . . . , rn. We say
that f : Bn → B preserves a k-ary relation R ⊆ Bk if for all r1, . . . , rn ∈ R it holds that

9



f(r1, . . . , rn) ∈ R. We want to remark that the polymorphisms of B are precisely those
operations that preserve all relations from B.

A first-order τ -formula ϕ(x1, . . . , xn) is called primitive positive (pp) if it has the form

∃xn+1, . . . , xm(ϕ1 ∧ · · · ∧ ϕs)

where ϕ1, . . . , ϕs are atomic τ -formulas, i.e., formulas of the form R(y1, . . . , yl) for R ∈ τ
and yi ∈ {x1, . . . , xm}, of the form y = y′ for y, y′ ∈ {x1, . . . , xm}, or of the form ⊥. We
say that a relation R is primitively positively definable over A if there exists a primitive
positive τ -formula ϕ(x1, . . . , xn) such that R is definable over A by ϕ(x1, . . . , xn). The
following result puts together polymorphisms and primitive positive logic.

Proposition 2.14 ([Gei68], [BKKR69]). Let B be a τ -structure with a finite domain.
Then the set of primitive positive definable relations in B is exactly the set of relations
preserved by Pol(B).

2.4.2 Atom Structures

In this section we introduce for every finite A ∈ RA an associated finite structure, called
the atom structure of A. If A has a fully universal representation, then there exists a
polynomial-time reduction from NSP(A) to the finite-domain constraint satisfaction prob-
lem CSP(A0) (Proposition 2.16). Hence, this reduction provides polynomial-time algo-
rithms to solve NSPs, whenever the CSP of the associated atom structure can be solved in
polynomial-time. For a discussion of the atom structure and related objects we recommend
Section 4 in [BK22].

Definition 2.15. The atom structure of A ∈ RA is the finite relational structure A0 with
domain A0 and the following relations:

• for every x ∈ A the unary relation xA0 := {a ∈ A0 | a ≤ x},

• the binary relation EA0 := {(a1, a2) ∈ A2
0 | ă1 = a2},

• the ternary relation RA0 := {(a1, a2, a3) ∈ A3
0 | a3 ≤ a1 ◦ a2}.

Note that A0 has all subsets of A0 as unary relations and that the relation RA0 consists
of the allowed triples of A ∈ RRA. We say that an operation preserves the allowed triples
if it preserves the relation RA0 .

Proposition 2.16 ([BK21, BK22]). Let B be a fully universal representation of a finite
A ∈ RRA. Then there is a polynomial-time reduction from CSP(B) to CSP(A0).
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2.4.3 Conservative Clones

Let B be a finite τ -structure. An operation f : Bn → B is called conservative if for all
x1, . . . , xn ∈ B it holds that f(x1, . . . , xn) ∈ {x1, . . . , xn}. The operation clone Pol(B)
is conservative if every f ∈ Pol(B) is conservative. We call a relational structure B

conservative if Pol(B) is conservative.

Remark 2.17. Let A0 be the atom structure of a finite relation algebra A. Every f ∈
Pol(A0) preserves all subsets of A0, and is therefore conservative. Hence, Pol(A0) is con-
servative.

This remark justifies our interest in the computational complexity of certain CSPs
where the template has conservative polymorphisms. Their complexity can be studied via
universal algebraic methods as we will see in the following. We start with some definitions.
An operation f : B3 → B is called

• a majority operation if ∀x, y ∈ B.f(x, x, y) = f(x, y, x) = f(y, x, x) = x;

• a minority operation if ∀x, y ∈ B.f(x, x, y) = f(x, y, x) = f(y, x, x) = y.

An operation f : Bn → B, for n ≥ 2, is called

• a cyclic operation if ∀x1, . . . , xn ∈ B.f(x1, . . . , xn) = f(xn, x1, . . . , xn−1);

• a weak near-unanimity operation if

∀x, y ∈ B.f(x, . . . , x, y) = f(x, . . . , x, y, x) = . . . = f(y, x, . . . , x);

• a Siggers operation if n = 6 and ∀x, y ∈ B.f(x, x, y, y, z, z) = f(y, z, x, z, x, y).

The following terminology was introduced by Bulatov and has proven to be extremely
powerful, especially in the context of conservative clones.

Definition 2.18 ([Bul03,Bul11]). A pair (a, b) ∈ B2 is called a semilattice edge if there
exists f ∈ Pol(B) of arity two such that f(a, b) = b = f(b, a) = f(b, b) and f(a, a) = a.
We say that a two-element set {a, b} ⊆ B has a semilattice edge if (a, b) or (b, a) is a
semilattice edge.

A two-element subset {a, b} of B is called a majority edge if neither (a, b) nor (b, a) is
a semilattice edge and there exists an f ∈ Pol(B) of arity three whose restriction to {a, b}
is a majority operation.

A two-element subset {a, b} of B is called an affine edge if it is not a majority edge, if
neither (a, b) nor (b, a) is a semilattice edge, and there exists an f ∈ Pol(B) of arity three
whose restriction to {a, b} is a minority operation.
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If S ⊆ B and (a, b) ∈ S2 is a semilattice edge then we say that (a, b) is a semilattice
edge on S. Similarly, if {a, b} ⊆ S is a majority edge (affine edge) then we say that {a, b}
is a majority edge on S (affine edge on S).

The main result about conservative finite structures and their CSPs is the following
dichotomy, first proved by Bulatov, 14 years before the proof of the Feder-Vardi conjecture.

Theorem 2.19 ([Bul03]; see also [Bar11,Bul11,Bul16]). Let B be a finite structure with
a finite relational signature such that Pol(B) is conservative. Then precisely one of the
following holds:

1. Pol(B) contains a Siggers operation; in this case, CSP(B) is in P.

2. There exist distinct a, b ∈ B such that for every f ∈ Pol(B)(n) the restriction of f to
{a, b}n is a projection. In this case, CSP(B) is NP-complete.

Note that this means that Pol(B) contains a Siggers operation if and only if for all two
elements a, b ∈ B the set {a, b} is a majority edge, an affine edge, or there is a semilattice
edge on {a, b}.

2.5 The k-Consistency Procedure

We present in the following the k-consistency procedure. It was introduced in [ABD07] for
finite structures and extended to infinite structures in several equivalent ways, for example
in terms of Datalog programs, existential pebble games, and finite variable logics [BD13].
Also see [MNPW21] for recent results about the power of k-consistency for infinite-domain
CSPs.

Let τ be a finite relational signature and let k, l ∈ N with k < l and let B be a fixed
τ -structures with finitely many orbits of l-tuples. We define B′ to be the expansion of B
by all orbits of n-tuples for every n ≤ l. We denote the extended signature of B′ by τ ′.
Let A be an arbitrary finite τ -structure. A partial l-decoration of A is a set g of atomic
τ ′-formulas such that

1. the variables of the formulas from g are a subset of A and denoted by Var(g),

2. |Var(g)| ≤ l,

3. the τ -formulas in g hold in A, where variables are interpreted as domain elements of
A,

4. the conjunction over all formulas in g is satisfiable in B′.

A partial l-decoration g of A is called maximal if there exists no partial l-decoration
h of A with Var(g) = Var(h) such that g ( h. We denote the set of maximal partial
l-decorations of A by Rl

A. Note that a fixed finite set of at most l variables, there are only
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finitely many partial l-decorations of A, because B has by assumption finitely many orbits
of l-tuples. Since this set is constant and can be precomputed, the set Rl

A can be computed
efficiently. Then the (k, l)-consistency procedure for B is the following algorithm.

Algorithm 1: (k, l)-consistency procedure for B

Input: A finite τ -structure A.
1 compute H := Rl

A.
2 repeat

3 For every f ∈ H with Var(f) ≤ k and every U ⊆ A with |U | ≤ l − k, if there
does not exist g ∈ H with f ⊆ g and U ⊆ Dom(g), then remove f from H.

4 until H does not change
5 if H is empty then

6 return Reject.
7 else

8 return Accept.

Since Rl
A is of polynomial size (in the size of A) and the (k, l)-consistency procedure

removes in step 3. at least one element from Rl
A the algorithm has a polynomial run

time. The (k, k + 1)-consistency procedure is also called k-consistency procedure. The
(2, 3)-consistency procedure is called path consistency procedure.1

Definition 2.20. Let B be a relation τ -structure as defined before. Then the (k, l)-
consistency procedure for B solves CSP(B) if the satisfiable instances of CSP(B) are
precisely the accepted instances of the (k, l)-consistency procedure.

Remark 2.21. Let A be a relation algebra with a normal representation B. We will in
the following say that the k-consistency procedure solves NSP(A) if it solves CSP(B). This
definition is justified by the correspondence of NSPs and CSPs from Theorem 2.12.

Theorem 2.22 ([KKVW15]). Let B be a finite τ -structure. Then the following statements
are equivalent:

1. There exist k ∈ N such that the k-consistency procedure solves CSP(B).

2. B has a 3-ary weak near-unanimity polymorphism f and a 4-ary weak near-unanimity
polymorphism g such that: ∀x, y, z ∈ B. f(y, x, x) = g(y, x, x, x).

Let A0 be the atom structure of a relation algebra A with a normal representation
B. We finish this section by connecting the solvability of CSP(A0) by k-consistency (or

1Some authors also call it the strong path consistency algorithm, because some forms of the definition of

the path consistency procedure are only equivalent to our definition of the path consistency procedure if B

has a transitive automorphism group.
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its characterization in terms of polymorphims from the previous proposition) with the
solvability of CSP(B) by k-consistency. By Remark 2.21 this gives a criterion for the
solvability of NSP(A) by the k-consistency procedure.

The following theorem is from [MNPW21] building on ideas from [BM18]. We present it
here in a specific formulation that already incorporates a correspondence between polymor-
phisms of the atom structure and canonical operations. For more details see [BK21,BK22].

Theorem 2.23 ([MNPW21]). Let B be a normal representation of a finite relation al-
gebra A and A0 the atom structure A. If Pol(A0) contains a 3-ary weak near-unanimity
polymorphism f and a 4-ary weak near-unanimity polymorphism g such that

∀x, y, z ∈ B. f(y, x, x) = g(y, x, x, x),

then NSP(A) is solved by the (4, 6)-consistency algorithm.

3 The Undecidability of RBCP, CON, and PC

In order to view RBCP as a decision problem, we need the following definitions. Let FRA
be the set of all relation algebras A with domain P({1, . . . , n}).

Definition 3.1 (RBCP). We define the following subsets of FRA:

• RBCP denotes the set such that NSP(A) is in P.

• RBCPc denotes FRA \RBCP.

• CON denotes the set such that NSP(A) is solved by k-consistency for some k ∈ N.

• PC denotes the set such that NSP(A) is solved by path consistency.

The following theorem is our first result. Note that this can be seen as a negative
answer to Hirsch’s Really Big Complexity Problem [Hir96].

Theorem 3.2. RBCP is undecidable, CON is undecidable, and PC is undecidable.

In our undecidability proofs we reduce from the following well-known undecidable prob-
lem for relation algebras [HH01a].

Definition 3.3 (Rep). Let Rep be the computational problem of deciding for a given A ∈
FRA whether A has a representation.

In our proof we also use the fact that there exists U ∈ FRA such that NSP(U) is
undecidable [Hir99]. Note that U ∈ Rep since the network satisfaction problem for non-
representable relation algebras is trivial and therefore decidable.
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Proof of Theorem 3.2. We reduce the problem Rep to RBCPc. Consider the following
reduction f : FRA → FRA. For a given A ∈ FRA, we define f(A) := A×U.

Claim 1. If A ∈ Rep then f(A) ∈ RBCPc. If A is representable, then A × U is
representable by the first part of Lemma 2.9. Then there is a polynomial-time reduction
from NSP(U) to NSP(A×U) by Lemma 2.10. This shows that NSP(A×U) is undecidable,
and hence f(A) is in RBCPc.

Claim 2. If A ∈ FRA \Rep then f(A) ∈ RBCP. If A is not representable, then
A ×U is not representable by the second part of Lemma 2.9, and hence NSP(A ×U) is
trivial and in P, and therefore in RBCP.

Clearly, f is computable (even in polynomial time). Since Rep is undecidable [HH01a],
this shows that RBCPc, and hence RBCP, is undecidable as well. The proof for CON and
PC is analogous; all we need is the fact that NSP(U) /∈ CON and NSP(U) /∈ PC.

4 Tractability via k-Consistency

We provide in this section a criterion that ensures solvability of NSPs by the k-consistency
procedure (Theorem 4.4). A relation algebra A is called symmetric if all its elements are
symmetric, i.e., ă = a for every a ∈ A. We will see in the following that the assumption on
A to be symmetric will simplify the atom structure A0 of A, which has some advantages
in the upcoming arguments.

Definition 4.1. Let A be a finite symmetric relation algebra with set of atoms A0. We
say that A admits a Siggers behavior if there exists an operation s : A6

0 → A0 such that

1. s preserves the allowed triples of A,

2. ∀x1, . . . , x6 ∈ A0. s(x1, . . . , x6) ∈ {x1, . . . , x6},

3. s satisfies the Siggers identity: ∀x, y, z ∈ A0. s(x, x, y, y, z, z) = s(y, z, x, z, x, y).

Remark 4.2. We mention that if A has a normal representation B, then A admits a
Siggers behavior if and only if B has a pseudo-Siggers polymorphism which is canonical
with respect to Aut(B); see [BM18].

We say that a finite symmetric relation algebra A has all 1-cycles if for every a ∈ A0

the triple (a, a, a) is allowed. Details on the notion of cycles from the relation algebra per-
spective can be found in [Mad06]. The relevance of the existence of 1-cycles for constraint
satisfaction comes from the following observation.

Lemma 4.3. Let A be a finite symmetric relation algebra with a normal representation B

that has a binary injective polymorphism. Then A has all 1-cycles.
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Proof. Let i be a binary injective polymorphism of B and let a ∈ A0 be arbitrary. Consider
x1, x2, y1, y2 ∈ B such that aB(x1, x2) and aB(y1, y2). The application of i on the tuples
(x1, x1, x2) and (y1, y2, y2) results in a substructure of B that witnesses that (a, a, a) is an
allowed triple.

Theorem 4.4. Let A be a finite symmetric relation algebra with a normal representation
B. Suppose that the following holds:

1. A has all 1-cycles.

2. A admits a Siggers behavior.

Then the NSP(A) can be solved by the (4, 6)-consistency procedure.

We will outline the proof of Theorem 4.4 and cite some results from the literature
that we will use. Assume that A is a finite symmetric relation algebra that satisfies the
assumptions of Theorem 4.4. Since A admits a Siggers behavior there exists an operation
s : A6

0 → A0 that is by 1. and 2. in Definition 4.1 a polymorphism of the atom structure
A0 (see Paragraph 2.4.2). By Remark 2.17, Pol(A0) is a conservative operation clone.
Recall the notion of semilattice, majority, and affine edges for conservative clones (cf. Def-
inition 2.18). Since s is by 3. in Definition 4.1 a Siggers operation, Theorem 2.19 implies
that every edge in A0 is semilattice, majority, or affine.

Our goal is to show that there are no affine edges in A0, since this implies that there
exists k ∈ N such that CSP(A0) can be solved by k-consistency [Bul11]. We present this
fact here via the characterization of (k, l)-consistency in terms of weak near-unanimity
polymorphisms from Theorem 2.22.

Proposition 4.5 (cf. Corollary 3.2 in [Kaz15]). Let A0 be a finite conservative relational
structure with a Siggers polymorphism and no affine edge. Then A0 has a 3-ary weak
near-unanimity polymorphism f and a 4-ary weak near-unanimity polymorphism g such
that

∀x, y, z ∈ B. f(y, x, x) = g(y, x, x, x).

Note that the existence of the weak near-unanimity polymorphisms from Proposition 4.5
would finish the proof of Theorem 4.4, because Theorem 2.23 implies that in this case
NSP(A) can be solved by the (4, 6)-consistency procedure. We therefore want to prove
that there are no affine edges in A0. We start in Section B.1 by analyzing the different
types of edges in the atom structure A0 and obtain results about their appearance.

Fortunately, there is the following result by Alexandr Kazda about binary structures
with a conservative polymophism clone. A binary structure is a structure where all relations
have arity at most two.

Theorem 4.6 (Theorem 4.5 in [Kaz15]). If A is a finite binary conservative relational
structure with a Siggers polymorphism, then A has no affine edges.
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Notice that we cannot simply apply this theorem to the atom structure A0, since the
maximal arity of its relations is three. We circumvent this obstacle by defining for A0 a
closely related binary structure Ab

0 , which we call the “binarisation of A0”. In Section B.2
we give the formal definition of Ab

0 and investigate how Pol(A0) and Pol(Ab
0) relate to

each other. It follows from these observations that Ab
0 does not have an affine edge. In

other words, it only has semilattice and majority edges. The crucial step in our proof is to
transfer a witness of this fact to A0 and conclude that also A0 has no affine edge. This is
done in Section B.3.

5 k-Consistency and Symmetric Flexible-Atom Algebras

We apply our result from Section 4 to the class of finite symmetric relation algebras with
a flexible atom and obtain a k-consistency versus NP-complete complexity dichotomy.

A finite relation algebra A is called integral if the element Id is an atom of A, i.e.,
Id ∈ A0. We define flexible atoms for integral relation algebras only. For a discussion
about integrality and flexible atoms consider Section 3 in [BK22].

Definition 5.1. Let A ∈ RA be finite and integral. An atom s ∈ A0 is called flexible if
for all a, b ∈ A \ {Id} it holds that s ≤ a ◦ b.

Relation algebras with a flexible atom have been studied intensively in the context of
the flexible atoms conjecture [Mad94,AMM08]. It can be shown easily that finite relation
algebras with a flexible atom have a normal representation [BK21,BK22]. In [BK22] the au-
thors obtained a P versus NP-complete complexity dichotomy for NSPs of finite symmetric
relation algebras with a flexible atom (assuming P 6= NP). In the following we strengthen
this result and prove that every problem in this class can be solved by k-consistency for
some k ∈ N or is NP-complete (without any complexity-theoretic assumptions).

We combine Theorem 4.4 with the main result of [BK22] to obtain the following char-
acterization for NSPs of finite symmetric relation algebras with a flexible atom that are
solved by the (4, 6)-consistency procedure. Note that the difference of Theorem 5.2 and
the related result in [BK22] is the algorithm that solves the problems in P.

Theorem 5.2. Let A be a finite symmetric integral relation algebra with a flexible atom.
Then the following are equivalent:

• A admits a Siggers behavior.

• NSP(A) can be solved by the (4, 6)-consistency procedure.

Proof. Every finite symmetric relation algebra A with a flexible atom has a normal repre-
sentation B by Proposition 3.5 in [BK22].

If the first item holds it follows from Proposition 6.1. in [BK22] that B has a binary
injective polymorphism. By Lemma 4.3 the relation algebra A has all 1-cycles. We apply
Theorem 4.4 and get that the second item in Theorem 5.2 holds.
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We prove the converse implication by showing the contraposition. Assume that the first
item is not satisfied. Then Theorem 9.1 in [BK22] implies that there exists a polynomial-
time reduction from CSP(K3) to NSP(A) which preserves solvability by the (k, l)-consistency
procedure. The problem CSP(K3) is the 3-colorability problem which is known (e.g.,
by [BK09]) to be not solvable by the (k, l)-consistency procedure for every k, l ∈ N. Hence
NSP(A) cannot be solved by the (4, 6)-consistency procedure.

As a consequence of Theorem 5.2 we obtain the following strengthening of the complex-
ity dichotomy NSPs of finite symmetric integral relation algebra with a flexible atom [BK22].

Corollary 5.3 (Complexity Dichotomy). Let A be a finite symmetric integral relation
algebra with a flexible atom. Then NSP(A) can be solved by the (4, 6)-consistency procedure,
or it is NP-complete.

Proof. Suppose that the first condition in Theorem 5.2 holds. Then Theorem 5.2 implies
that NSP(A) can be solved by the (4, 6)-consistency procedure. If the first condition in
Theorem 5.2 is not satisfied it follows from Theorem 9.1. in [BK22] that NSP(A) is NP-
complete.

6 The Complexity of the Meta Problem

In this section we study the computational complexity of deciding for a given finite sym-
metric relation algebra A with a flexible atom whether the k-consistency algorithm solves
NSP(A). We show that this problem is decidable in polynomial time even if A is given
by the restriction of its composition table to the atoms of A: note that this determines
a symmetric relation algebra uniquely, and that this is an (exponentially) more succinct
representation of A compared to explicitly storing the full composition table.

Definition 6.1 (Meta Problem). We define Meta as the following computational problem.
Input: the composition table of a finite symmetric relation algebra A restricted to A0.
Question: is there a k ∈ N such that k-consistency solves NSP(A)?

Our proof of Theorem 3.2 shows that Meta is undecidable as well. The proof of the
following theorem can be found in Appendix C.

Theorem 6.2. Meta can be decided in polynomial time if the input is restricted to finite
symmetric integral relation algebras A with a flexible atom.

7 Conclusion and Open Questions

The question whether the network satisfaction problem for a given finite relation algebra
can be solved by the famous k-consistency procedure is undecidable. Our proof of this fact
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◦ Id E N

Id Id E N

E E Id N

N N N 1

Figure 2: Multiplication table of the relation algebra C.

heavily relies on prior work of Hirsch [Hir99] and of Hirsch and Hodkinson [HH01a] and
shows that almost any question about the network satisfaction problem for finite relation
algebras is undecidable.

However, if we further restrict the class of finite relation algebras, one may obtain strong
classification results. We have demonstrated this for the class of finite symmetric integral
relation algebras with a flexible atom (Theorem 5.3); the complexity of deciding whether
the conditions in our classification result hold drops from undecidable to P (Theorem 6.2).
One of the remaining open problems is a characterisation of the power of k-consistency for
the larger class of all finite relation algebras with a normal representation.

Our main result (Theorem 4.4) is a sufficient condition for the applicability of the k-
consistency procedure; the condition does not require the existence of a flexible atom but
applies more generally to finite symmetric relation algebrasA with a normal representation.
Our condition consists of two parts: the first is the existence of all 1-cycles in A, the second
is that A admits a Siggers behavior. We conjecture that dropping the first part of the
condition leads to a necessary and sufficient condition for solvability by the k-consistency
procedure.

Conjecture 7.1. A finite symmetric relation algebra A with a normal representation
admits a Siggers behavior if and only if NSP(A) can be solved by the k-consistency procedure
for some k ∈ N.

Note that this conjecture generalises Theorem 5.2. Both directions of the conjecture
are open. However, the forward direction of the conjecture is true if A has a normal
representation with a primitive automorphism group: in this case, it is known that a Siggers
behavior implies the existence of all 1-cycles [BK20], and hence the claim follows from
our main result (Theorem 5.2). The following example shows a finite symmetric relation
algebra A which does not have all 1-cycles and an imprimitive normal representation, but
still NSP(A) can be solved by the k-consistency procedure for some k ∈ N.

Example 7.2. Theorem 4.4 is a sufficient condition for the NSP of a relation algebra A

to be solved by the k-consistency procedure for some k ∈ N. However, there exists a finite
symmetric relation algebra C such that NSP(C) is solved by the 2-consistency procedure,
but we cannot prove this by the methods used to obtain Theorem 4.4. Consider the relation
algebra C with atoms {Id, E,N} and the multiplication table in Figure 2. This relation

19



algebra has a normal representation, namely the expansion of the infinite disjoint union
of the clique K2 by all first-order definable binary relations. We denote this structure by
ωK2. One can observe that CSP(ωK2) and therefore also the NSP of the relation algebra
can be solved by the (2, 3)-consistency algorithm (for details see [Knä23]).

The relation algebra C does not have all 1-cycles and therefore does not fall into the
scope of Theorem 4.4. In fact, our proof of Theorem does not work for C, because the CSP
of the atom structure C0 of C cannot be solved by the k-consistency procedure for some
k ∈ N. Hence, the reduction of NSP(C) to CSP(C0) (incorporated in Theorem 2.23) does
not imply that NSP(C) can be solved by k-consistency procedure for some k ∈ N.

The following problems are still open and are relevant for resolving Conjecture 7.1.

• Show Conjecture 7.1 if the normal representation of A has a primitive automorphism
group.

• Characterise the power of the k-consistency procedure for the NSP of finite relation
algebras with a normal representation whose automorphism group is imprimitive. In
this case, there is a non-trivial definable equivalence relation. It is already known that
if this equivalence relation has finitely many classes, then the NSP is NP-complete
and the k-consistency procedure does not solve the NSP [BK20]. Similarly, the NSP
is NP-complete if there are equivalence classes of finite size larger than two. It
therefore remains to study the case of infinitely many two-element classes, and with
infinitely many infinite classes. In both cases we wish to reduce the classification to
the situation with a primitive automorphism group.

Finally, we ask whether it is true that if A is a finite symmetric relation algebra with a
flexible atom and NSP(A) can be solved by the k-consistency procedure for some k, then
it can also be solved by the (2, 3)-consistency procedure? In other words, improve (4, 6) in
Corollary 5.3 to (2, 3).
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A Preliminaries

A.1 The Network Satisfaction Problem

Lemma 2.9. Let A1 and A2 be relation algebras. Then the following holds:

1. If B1 and B2 are representations of A1 and A2 with disjoint domains, then B1 ⊎B2

is a representation of A1 ×A2.

2. If B is a representation of A1 ×A2, then there exist representations B1 and B2 of
A1 and A2 such that B is isomorphic to B1 ⊎B2.

Proof. The first item can be checked by a straightforward calculation. For the second item
note that elements of A1×A2 are pairs (a1, a2) ∈ A1 ×A2. Since B is a representation of
A1 ×A2, there exists for every (a1, a2) ∈ A1 × A2 a binary relation (a1, a2)

B. For better
readability, we denote constants of relation algebras by the signature elements {0, 1, Id}
(without the superscipt). It will always be clear from the context which algebra is meant.
For example, (0, 1) ∈ A1×A2 is meant to be the element (0A1 , 1A2) of the algebraA1 ×A2.

Consider the sets

B1 := {x ∈ B | (x, x) ∈ (1, 0)B}

and B2 := {x ∈ B | (x, x) ∈ (0, 1)B}.

We claim that {B1, B2} forms a partition of B. Clearly, B1 ∪B2 = B, because

{(x, x) | x ∈ B} = (Id, Id)B ⊆ ((1, 0)B ∪ (0, 1)B).

By the definition of the relation algebra A1 ×A2 it holds that (0, 0) = (1, 0)∩A1 ×A2 (0, 1).
Since B is a representation of A1 ×A2 we have ∅ = (0, 0)B = (1, 0)B ∩ (0, 1)B and B =
(1, 1)B = (1, 0)B ∪ (0, 1)B and it follows that ∅ = B1 ∩ B2 and B = B1 ∪ B2. Hence,
{B1, B2} is a partition of B.

Furthermore, we claim that there is no pair (x, y) ∈ B1×B2 in any relation (a1, a2)
B ⊆

(1, 1)B of B. So see this, note that for a tuple (x, y) ∈ B1 × B2 with (x, y) ∈ (1, 1)B it
follows from the definition of the relational product ◦ that {(x, y)} = ({(x, x)} ◦ {(x, y)}) ◦
{(y, y)} and therefore (x, y) ∈ ((1, 0)B ◦ (1, 1)B) ◦ (0, 1)B holds. Since this contradicts
∅ = (0, 0)B = ((1, 0)B ◦ (1, 1)B) ◦ (0, 1)B, there is no pair (x, y) ∈ B1 × B2 in any relation
(a1, a2)

B ⊆ (1, 1)B.
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Altogether we observe that B1 is the domain of an (A1 × {0})-structure B1 with
(a, 0)B1 := (a, 0)B for every a ∈ A1. Analogously, the ({0} × A2)-structure B2 is defined
by (0, a)B2 := (0, a)B for every a ∈ A2. One can check that the mapping a 7→ (a, 0)B1 is
indeed an isomorphism that witnesses that A1 has the representation B1. Analogously, we
get that a 7→ (0, a)B witnesses that A2 has the representation B2.

A.2 The Universal-Algebraic Approach

A.2.1 Conservative Clones

According to Definition 2.18, an “edge type” of a concrete set {a, b} ⊆ B is witnessed by
a certain operation. For another set {c, d} ⊆ B this could a priori be a different operation
(even if the two sets have the same edge type). However, Bulatov obtained “uniform
witness operations” by the following proposition.

Proposition A.1 (Proposition 3.1.in [Bul11]). Let B be a finite structure. Then there are
a binary operation v ∈ Pol(B) and ternary operations g, h ∈ Pol(B) such that for every
two-element subset C of B we have that

• v|C is a semilattice operation whenever C has a semilattice edge, and v|C(x, y) = x
otherwise;

• g|C is a majority operation if C is a majority edge, g|C(x, y, z) = x if C is affine and
g|C(x, y, z) = v|C(v|C(x, y), z) if C has a semilattice edge;

• h|C is a minority operation if C is an affine edge, h|C(x, y, z) = x if C is majority
and h|C(x, y, z) = v|C(v|C(x, y), z) if C has a semilattice edge.

B Tractability via k-Consistency

B.1 The Atom Structure

For the sake of notation, we make some global assumptions for Sections B.1-B.3. Let A

be a finite relation algebra that satisfies the assumptions from Theorem 4.4. We denote by
A0 the atom structure of A (Definition 2.15). Since A is a symmetric relation algebra, the
relation RA0 is totally symmetric. Furthermore, we can drop the binary relation EA0 , since
it consists only of loops and does not change the set of polymorphisms. Let s ∈ Pol(A0)
be the Siggers operation that exists by the assumptions in Theorem 4.4. This implies by
Theorem 2.19 for every a, b ∈ A0 that the set {a, b} is a majority edge or an affine edge,
or that there is a semilattice edge on {a, b}. The different types of edges are witnessed
by certain operations that we get from Proposition A.1: there exist a binary operation
f ∈ Pol(A0) and ternary operations g, h ∈ Pol(A0) such that for every two element subset
C of A0,
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• f |C is a semilattice operation whenever C has a semilattice edge, and f |C(x, y) = x
otherwise;

• g|C is a majority operation if C is a majority edge, g|C(x, y, z) = x if C is affine and
g|C(x, y, z) = f |C(f |C(x, y), z) if C has a semilattice edge;

• h|C is a minority operation if C is an affine edge, h|C(x, y, z) = x if C is majority
and h|B(x, y, z) = f |C(f |C(x, y), z) if C has a semilattice edge.

We will fix these operations and introduce the following terminology. A tuple (a, b) ∈ A0

is called f -sl if f(a, b) = b = f(b, a) holds. Next, we prove several important properties of
the relation R: that it must contain certain triples (Lemma B.1), that it must not contain
certain other triples (Lemma B.2), and that it is affected by the presence of semilattice
edges in A0 (Lemma B.3 and Lemma B.4).

Lemma B.1. The relation R of the atom structure A0 has the following properties:

• for all a ∈ A0 we have (a, a, a) ∈ R.

• for all a, b ∈ A0 we have (a, a, b) ∈ R or (a, b, b) ∈ R;

Proof. The first item follows from the assumption that A has all 1-cycles.
For the second item observe that {a, Id} cannot be a majority edge. Otherwise,

g((a, a, Id), (Id, a, a), (Id, Id, Id)) = (Id, a, Id) ∈ R

is a contradiction to the properties of Id. Furthermore, (a, Id) cannot be f -sl, since

f((a, a, Id), (Id, a, a)) = (Id, a, Id) ∈ R.

This is again a contradiction. Since these observations also hold for b instead of a we have
the following case distinction.

1. (Id, a) is f -sl and (Id, b) is f -sl. It follows that f((a, a, Id), (Id, b, b)) ∈ {(a, a, b), (a, b, b)}.
Since f preservesR, (a, a, Id) ∈ R, and (Id, b, b) ∈ R we get that f((a, a, Id), (Id, b, b)) ∈
R. This implies that (a, a, b) ∈ R or (a, b, b) ∈ R.

2. (Id, a) is f -sl and {b, Id} is affine. By the definition of f we get f((b, b, Id), (Id, a, a)) ∈
{(b, a, a), (b, b, a)}. By the same argument as in Case 1 we get that (a, a, b) ∈ R or
(a, b, b) ∈ R.

3. (Id, b) is f -sl and {a, Id} is affine. This case is analogous to Case 2.

4. {a, Id} is affine and {b, Id} is affine. Observe that

g((a, Id, a), (Id, b, b), (Id, Id, Id)) ∈ {(a, b, a), (a, b, b)},

since g(a, b, Id) ∈ {a, b, Id} and the triple (a, b, Id) is forbidden. As in the cases before
it follows that (a, a, b) ∈ R or (a, b, b) ∈ R.
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a

b

c

⇒

a

b

c

Figure 3: The statement of Lemma B.2. The red shape means (a, b, c) /∈ R, the black arrow
means (a, a, b) /∈ R.

This concludes the proof of the second item.

Lemma B.2. Let a, b, c ∈ A0 be such that (a, b, c) /∈ R and |{a, b, c}| = 3. Then there are
x, y ∈ {a, b, c} such that (x, x, y) /∈ R.

Proof. We first suppose that there is a semilattice edge on {a, b, c}. Without loss of gener-
ality we assume that (a, b) is f -sl. If f(c, a) = c then (a, a, c) /∈ R or (b, a, a) /∈ R because
otherwise

f((a, a, c), (b, a, a)) = (b, a, c) ∈ R

contradicting our assumption. If f(c, a) = a then (b, c, c) /∈ R or (a, a, c) /∈ R because
otherwise

f((b, c, c), (a, a, c)) = (b, a, c) ∈ R

which is again a contradiction. Hence, in all the cases we found x, y ∈ {a, b, c} such that
(x, x, y) /∈ R and are done. In the following we therefore assume that there is no semilattice
edge on {a, b, c}.

Next we suppose that there is an affine edge on {a, b, c}. Without loss of generality we
assume that {a, b} is an affine edge. Since there are no semilattice edges on {a, b, c} we
distinguish the following two cases:

1. {a, c} is an affine edge. In this case (c, a, a) /∈ R or (a, b, a) /∈ R because otherwise

h((c, a, a), (a, a, a), (a, b, a)) = (c, b, a) ∈ R.

2. {a, c} is a majority edge. In this case (a, a, c) /∈ R or (a, b, a) /∈ R or (b, b, c) /∈ R,
because otherwise

h((a, a, c), (a, b, a), (b, b, c)) = (b, a, c) ∈ R.

In both cases we again found x, y ∈ {a, b, c} such that (x, x, y) /∈ R and are done. We
therefore suppose in the following that there are no affine edges on {a, b, c}. Hence, all
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×

Figure 4: The statement of Lemma B.4. The blue shape means (a′, b, c) ∈ R, the crossed-
out red arrow means (a′, a) is not a semilattice edge.

edges on {a, b, c} are majority edges. Then (a, a, c) /∈ R or (a, b, a) /∈ R or (b, b, c) /∈ R
because otherwise

g((a, a, c), (a, b, a), (b, b, c)) = (a, b, c) ∈ R.

Thus, also in this case we found x, y ∈ {a, b, c} such that (x, x, y) /∈ R.

The next lemma states that the edge type on {a, b} is predetermined whenever a triple
(a, a, b) is not in R.

Lemma B.3. Let a, b ∈ A0 be such that (a, a, b) /∈ R. Then (a, b) is a semilattice edge in
A0 but (b, a) is not.

Proof. By Lemma B.1 we know that (a, b, b) ∈ R, (a, a, a) ∈ R, and (b, b, b) ∈ R. Assume
for contradiction that {a, b} is a majority edge. Then

g((a, a, a), (a, b, b), (b, b, a)) = (a, b, a)

which contradicts the fact that g preserves R. Assume next that {a, b} is an affine edge.
Then

h((a, b, b), (b, a, b), (b, b, b)) = (a, a, b)

which again contradicts the fact that h preserves R. Finally, if (b, a) is a semilattice edge
then

f((a, b, b), (b, a, b)) = (a, a, b)

which contradicts the assumption that f preserves R. If follows that (a, b) is the only
semilattice edge on {a, b} and therefore f(a, b) = b = f(b, a) holds.

Lemma B.4. Let a, a′, b, c ∈ A0 be such that (a, b, c) /∈ R, (a, a, b) /∈ R, and (a′, b, c) ∈ R.
Then (a′, a) is not a semilattice edge.

Proof. Assume for contradiction (a′, a) is a semilattice edge, i.e., there exists p ∈ Pol(A0)
with p(a, a′) = a = p(a′, a). Note that by Lemma B.1 it follows that (a, a, a) ∈ R and
(a, b, b) ∈ R.
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Claim 1: p(b, a) = a implies p(a, b) = b. This follows immediately, since otherwise
p((a, b, b), (b, a, b)) = (a, a, b) ∈ R is a contradiction.

Claim 2: (a, a, c) 6∈ R. We assume the opposite and consider the only two possible cases
for p(b, a).

1. p(b, a) = b: We get a contradiction by p((a′, b, c), (a, a, c)) = (a, b, c) ∈ R.

2. p(b, a) = a: By Claim 1 we know that p(a, b) = b follows. Then p((a, a, c), (a′, b, c)) =
(a, b, c) ∈ R contrary to our assumptions.

This proves Claim 2.

Claim 3: p(c, a) = a implies p(a, c) = c. Lemma B.1 together with Claim 2 implies that
(a, c, c) ∈ R. Now Claim 3 follows immediately, since otherwise p((a, c, c), (c, a, c)) =
(a, a, c) ∈ R, which contradicts Claim 2.

We finally make a case distinction for all possible values of p on (b, a) and (c, a).

1. p(b, a) = b and p(c, a) = c: We get a contradiction by p((a′, b, c), (a, a, a)) = (a, b, c) ∈
R.

2. p(b, a) = b and p(c, a) = a: We get a contradiction by p((a′, b, c), (a, a, a)) = (a, b, a) ∈
R.

3. p(b, a) = a and p(c, a) = c: p((a′, b, c), (a, a, a)) = (a, a, c) ∈ R contradicts Claim 2.

4. p(b, a) = a and p(c, a) = a: By Claim 1 we get p(a, b) = b and by Claim 3 we get
p(a, c) = c. This yields a contradiction by p((a, a, a), (a′, b, c)) = (a, b, c) ∈ R.

This proves the lemma.

B.2 The Binarisation

We have announced in the introduction that we want to apply Kazda’s theorem (Theo-
rem 4.6) for binary conservative structures, but the atom structure A0 from Section B.1
has a ternary relation. We therefore associate a certain binary structure Ab

0 to A0 which
shares many properties with A0.

Definition B.5. We denote by Ab
0 the structure with domain A0 and the following rela-

tions:

• a unary relation US for each subset S of A0;

• for every a ∈ A0 the binary relation Ra := {(x, y) ∈ A2
0 | (a, x, y) ∈ R};

• a relation for every union of relations of the form Ra.
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◦ Id E

Id Id E

E E 1

Figure 5: Multiplication table of the relation algebra K.

The binarisation of A0 according to Definition B.5 will be denoted by Ab
0 . We obtain

the following results about the relationship of Pol(A0) and Pol(Ab
0).

Lemma B.6. Pol(A0) ⊆ Pol(Ab
0).

Proof. Clearly, every relation Ra has the primitive positive definition ∃z(U{a}(z)∧R(z, x, y))
in A0. A primitive positive definition of ∪a∈SRa is ∃z(US(z) ∧R(z, x, y)) in A0. Then the
statement of the lemma follows by Theorem 2.14.

Lemma B.7. Pol(2)(Ab
0) ⊆ Pol(2)(A0).

Proof. Let f ∈ Pol(2)(Ab
0). It suffices to prove that f preserves the relation RA0 . Arbitrarily

choose (a1, b1, c1), (a2, b2, c2) ∈ R. We want to show that t := (f(a1, a2), f(b1, b2), f(c1, c2))
is in R as well. If t ∈ {(a1, b1, c1), (a2, b2, c2)} then there is nothing to be shown. Otherwise,
since f must preserve {a1, a2}, {b1, b2}, and {c1, c2}, by the symmetry of R and possibly
flipping the arguments of f we may assume without loss of generality that f(a1, a2) = a1,
f(b1, b2) = b1, and f(c1, c2) = c2. So we have to show that t = (a1, b1, c2) ∈ R. Note
that (b1, c1) ∈ Ra1 and (b2, c2) ∈ Ra2 , and therefore (f(b1, b2), f(c1, c2)) ∈ Ra1 ∪ Ra2 .
In the first case, we obtain that (b1, c2) ∈ Ra1 , and hence (a1, b1, c2) ∈ R and we are
done. In the second case, we obtain that (b1, c2) ∈ Ra2 , and hence (a2, b1, c2) ∈ R. In
partciular, (a2, c2) ∈ Rb1 . Since (a1, c1) ∈ Rb1 and since f preserves Rb1 we have that
(f(a1, a2), f(c1, c2)) = (a1, c2) ∈ Rb1 , and hence (a1, b1, c2) ∈ R, which concludes the
proof.

Observe that this implies that Ab
0 and A have exactly the same semilatice edges. The

following example shows that in general it does not hold that Pol(Ab
0) ⊆ Pol(A0).

Example B.8. Let K be the relation algebra with two atoms {Id, E} and the multiplication
table given in Figure 5. It is easy to see that the expansion of the infinite clique Kω by all
first-order definable binary relations is a normal representation of K. Then K0 does not
have a majority polymorphism, but Kb

0 does since every binary relation on a two-element
set is preserved by the (unique) majority operation on a two-element set.
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B.3 No Affine Edges in the Atom Structure

We show in this section that under the assumption that Ab
0 has a Siggers polymorphism

and has no affine edge, A0 also has no affine edge. So let us assume for the whole section
that Pol(Ab

0) contains a Siggers operation and that Ab
0 has no affine edge.

Since Ab
0 is conservative and has no affine edge, there exists according to Proposition A.1

a binary operation v ∈ Pol(A0) and a ternary operation w ∈ Pol(A0) such that for every
two element subset C of A0,

• v|C is a semilattice operation whenever C has a semilattice edge, and v|C(x, y) = x
otherwise;

• w|C is a majority operation if C is a majority edge and w|C(x, y, z) = v|C(v|C(x, y), z)
if C has a semilattice edge.

We define
u(x, y, z) := w(v(v(x, y), z), v(v(y, z), x), v(v(z, x), y)).

Lemma B.9. The structures A0 and Ab
0 have exactly the same semilattice edges. Let

a, b ∈ A0 be such that {a, b} has no semilattice edge in the two structures. Then the
restriction of u to {a, b} is a majority operation.

Proof. By Lemma B.6 and Lemma B.7, the structures A0 and Ab
0 have exactly the same

semilattice edges, since they have the same binary polymorphisms. The second statement
follows from the definition of u by means of w and v.

Definition B.10. Let f be a binary operation on A0. Then we say that {a, b, c} ⊆ A0 has
the f -cycle (x, y, z) if {x, y, z} = {a, b, c} and (x, y), (y, z), and (z, x) are f -sl.

Lemma B.11. Let a, b, c ∈ A0 be such that (a, b) is v-sl but (a, b, c) is not a v-cycle. Then
u(r, s, t) 6= a for any choice of r, s, t ∈ A0 such that {r, s, t} = {a, b, c}.

Proof. We prove a series of intermediate claims.

Claim 1: If {x, y, z} = {a, b, c} and v(v(x, y), z) = a, then z = a. We assume for contradic-
tion that z 6= a and distinguish the following cases.

1. x = a, y = b, z = c: Then v(v(x, y), z) = v(b, c) ∈ {b, c}.

2. x = a, y = c, z = b: Then v(v(x, y), z) ∈ {v(a, b), v(c, b)} ⊆ {b, c}.

3. x = b, y = a, z = c: Then v(v(x, y), z) = v(b, c) ∈ {b, c}.

4. x = c, y = a, z = b: Then v(v(x, y), z) ∈ {v(c, b), v(a, b)} ⊆ {b, c}.
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In all four cases we have v(v(x, y), z) 6= a, which contradicts our assumption and proves
the claim.

Claim 2: If {x, y, z} = {a, b, c} and v(v(x, y), z) = a, then (c, a) is v-sl.
By Claim 1 we get that z = a and furthermore we have v(x, y) = v(b, c) = c since

otherwise v(x, y) = v(b, c) = b and v(v(x, y), z) = v(b, a) = b, which contradicts our
assumption. Assume for contradiction that (c, a) is not v-sl and therefore one of the
following holds:

1. (a, c) is v-sl. It follows that v(v(x, y), z) = v(c, a) = c which contradicts our assump-
tion.

2. {a, c} is a majority edge of Ab
0 . It follows again that v(v(x, y), z) = v(c, a) = c,

since v behaves like the projection on the first coordinate on majority edges. This
contradicts our assumption.

Claim 3: If {x, y, z} = {a, b, c} and v(v(x, y), z) = a, then {b, c} is a majority edge of Ab
0 .

Assume for contradiction that there is a semilattice edge on {b, c} = {x, y}. By Claim
2 and our assumption that (a, b, c) is not a v-cycle, the edge (b, c) is not v-sl and therefore
(c, b) is v-sl. Therefore, we get v(v(x, y), z) = v(b, a) = b which contradicts our assumption.

Claim 4: If {x, y, z} = {a, b, c} and v(v(x, y), z) = a, then v(v(z, x), y) = b = v(v(y, z), x)
follows. By Claim 3, {b, c} is a majority edge of Ab

0 and it follows that b = y and c = x
since otherwise v(v(x, y), z) = v(b, a) = b. Now we calculate

v(v(z, x), y)) = v(v(a, c), b)) = v(a, b) = b = v(b, c) = v(v(b, a), c) = v(v(y, z), x)

which proves the claim.

Now we are able to prove the statement of the lemma. Assume for contradiction that
u(r, s, t) = a. Since w preserves UA\{a} this is only possible if at least one of the terms
v(v(r, s), t), v(v(s, t), r), or v(v(t, r), s)) evaluates to a. By Claim 4 we get that the two
other terms evaluate to b. Since (a, b) is v-sl we get that w(a, b, b) = w(b, a, b) = w(b, b, a) =
b which contradicts our assumption u(r, s, t) = a.

Theorem B.12. If u ∈ Pol(Ab
0), then u ∈ Pol(A0).

Proof. We have to prove that u preserves R. Let (a1, b1, c1), (a2, b2, c2), (a3, b3, c3) ∈ R and
let

(a, b, c) := (u(a1, a2, a3), u(b1, b2, b3), u(c1, c2, c3)).

Assume for contradiction that (a, b, c) 6∈ R. By Lemma B.2, we may assume without loss
of generality that (a, a, b) 6∈ R and hence by Lemma B.3 (a, b) is a semilattice edge in
A0 and (b, a) is not. By Lemma B.9 the structures A0 and Ab

0 have exactly the same
semilattice edges. This implies that {a, b} has a semilattice edge; this semilattice edge can
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only be (a, b) and therefore (a, b) is v-sl. Since u preserves Ra1 ∪ Ra2 ∪ Ra3 there exists
r ∈ {a1, a2, a3} such that (r, b, c) ∈ R. By Lemma B.4 we get that (r, a) is not a semilattice
edge in A0 and therefore Lemma B.7 implies that (r, a) is not a semilattice edge in Ab

0 and
we get that (r, a) is not v-sl. Let s ∈ {a1, a2, a3} \ {a, r}.

Claim 1: {a, r, s} does not have a v-cycle. Assume for contradiction that {a, r, s} has a
v-cycle. Since (r, a) is not v-sl it follows that (a, r) is v-sl and therefore (s, a) is v-sl. We
consider the following two cases:

1. (s, b, c) ∈ R. Then Lemma B.4 applied to a, s, b, c implies that (s, a) is not a semilat-
tice edge and therefore by Lemma B.7 (s, a) is not v-sl, which is a contradiction.

2. (s, b, c) 6∈ R. Note that (s, s, b) 6∈ R holds, since (s, a) is v-sl and v((s, s, b), (a, a, a)) =
(a, a, b) ∈ R yields a contradiction to (a, a, b) 6∈ R. Hence, Lemma B.4 applied to
s, r, b, c implies that (r, s) is not a semilattice edge and therefore by Lemma B.7 (r, s)
is not v-sl, which is again a contradiction.

This proves that {a, r, s} cannot have a v-cycle.

Claim 2: u(a, a, r) = a. Assume for contradiction that u(a, a, r) = r. Then {a, r} is
clearly not a majority edge of Ab

0 , and since Ab
0 does not have affine edges it follows that

(a, r) is v-sl. Furthermore, (a, r, s) is not a v-cycle and therefore Lemma B.11 implies that
u(a1, a2, a3) 6= a which contradicts the definition of a.

Finally, consider the following application of the polymorphism u:

u
(

(a, a), (a, a), (r, b)
)

= (a, b).

Since (a, a) ∈ Ra and (r, b) ∈ Rc and since u is in Pol(Ab
0) we get that (a, b) ∈ Ra ∪ Rc.

Hence, (a, a, b) ∈ R or (c, a, b) ∈ R, which contradicts our assumptions.

B.4 Proof of the Main Theorem

We can now prove the main result of this section.

Proof of Theorem 4.4. Let A be a finite relation algebra that satisfies the assumptions of
Theorem 4.4 and let A0 be the atom structure of A (Definition 2.15). We denote by Ab

0

the binarisation of A0 according to Definition B.5. It follows from the assumptions on A

that Pol(A0) contains a Siggers operation. By Lemma B.6 we get that Pol(Ab
0) contains

a Siggers operation as well. Note that Ab
0 is a finite binary conservative structure and

therefore Theorem 4.6 implies that Ab
0 has no affine edges. Therefore, Ab

0 satisfies the
general assumption from Section B.3 and we can define the operation u as it is done in
the beginning of this section. Note that u witnesses by Lemma B.9 that Ab

0 does not have
an affine edge. We can now apply Theorem B.12 and get that u is also a polymorphism
of A0. Recall that A0 and Ab

0 have by Lemma B.7 exactly the same semilattice edges and
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therefore Lemma B.9 and the fact that u is a polymorphism of A0 imply that A0 does
not have an affine edge. By Proposition 4.5 we get that there exists a 3-ary weak near
unanimity polymorphism f ∈ Pol(A0) and a 4-ary weak near unanimity polymorphism
g ∈ Pol(A0) such that

∀x, y, z ∈ B. f(y, x, x) = g(y, x, x, x)

holds. Theorem 2.23 implies that CSP(B) and thus also NSP(A) can be solved by (4, 6)-
consistency algorithm.

C The Complexity of the Meta Problem

Theorem 6.2. Meta can be decided in polynomial time if the input is restricted to finite
symmetric integral relation algebras A with a flexible atom.

Proof. By Theorem 5.2 it suffices to test the existence of an operation f : A6
0 → A0 which

satisfies conditions 1.-3. in this theorem. The three conditions can clearly be checked in
polynomial time, so we already know that Meta is in NP.

Note that the search for f may be phrased as an instance of CSP(A0) with |A|6 variables.
Using the fact that the k-consistency procedure is one-sided correct even in the case that
CSP(A0) is NP-hard (i.e., if the procedure rejects a given instance of CSP(A0), then the
instance is always unsatisfiable), we may use a standard self-reducibility argument (see,
e.g., [CL17]) to obtain a polynomial-time algorithm for finding f .
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