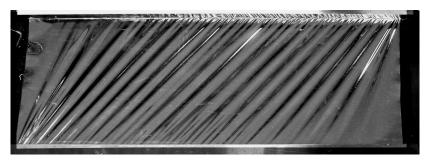
On Wrinkles

FU Berlin, 28.4.2015

Wrinkling of Plastic Sheets

Wong, Pellegrino 2006:



- ► Shearing of a rectangular plastic sheet
- ightharpoonup 380mm x 128 mm x 25 μ m
- $\blacktriangleright~E=71240\,\mathrm{N/mm^2}$, $\nu=0.31$
- ▶ Prescribed displacement at horizontal edges
- ▶ 3 mm shear

Models of wrinkling

Tension field theory

- Scalar "wrinkling density field"
- ▶ Partial differential equation / relaxed energies
- ▶ No details, but averaged effect of the wrinkles on stress distribution

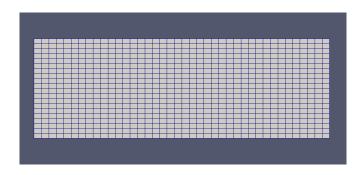
Semi-analytical models

- Semianalytical solutions of plate/shell equations
- ▶ Power laws for wrinkle amplitude/wavelength
- ► Only in specific situations

Full continuum mechanics

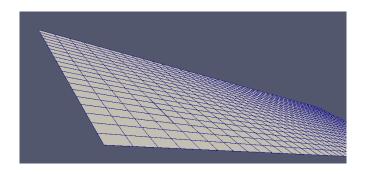
- ► Detailed local wrinkling behavior
- Very expensive
- ▶ Let's see...

Linear elasticity



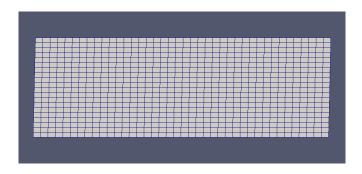
- ► Geometrically linear
- ► St. Venant-Kirchhoff material
- $\blacktriangleright~E=71240\,\mathrm{N/mm^2},~\nu=0.31$

Linear elasticity



- ► Geometrically linear
- ► St. Venant-Kirchhoff material
- $E = 71240 \, \mathrm{N/mm^2}, \, \nu = 0.31$

Linear elasticity



- ► Geometrically linear
- ► St. Venant-Kirchhoff material
- $\blacktriangleright~E=71240\,\mathrm{N/mm^2},~\nu=0.31$

Kinematics

- ▶ Deformation $\varphi: \Omega \to \mathbb{R}^3$
- ▶ Deformation gradient $F = \nabla \varphi$
- ▶ Strain $C = F^T F$

Mooney-Rivlin material (for example)

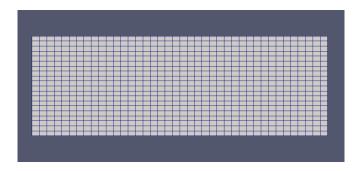
► Energy density

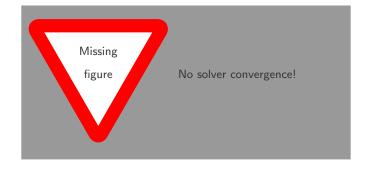
$$W(F) = a||F||^2 + b||\operatorname{Cof} F||^2 + \Gamma(\det F), \quad a, b > 0$$

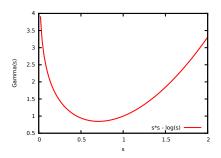
▶ Volumetric term

$$\Gamma(s) := s^2 - \log s$$

is ${\cal C}^2$ and convex







Why doesn't the solver converge?

► Energy volumetric term

$$W(F) = \cdots + \Gamma(\det F)$$
 with $\Gamma(s) := s^2 - \log s$

prevents local inversion / flipping of elements

- ► Object/elements very thin
- Very difficult to find admissible correction steps

Shell models

Dimensional reduction

▶ Object is virtually 2-dimensional ⇒ model it by 2d equation

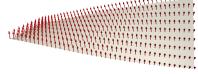
Zoo of models

- ► Shells vs. plates vs. membranes
- Kirchhoff type (schubstarr) vs. director theories
- ▶ 4th order vs. 2nd order
- ▶ 1 director vs. 3 directors

Shell models

Dimensional reduction

▶ Object is virtually 2-dimensional ⇒ model it by 2d equation



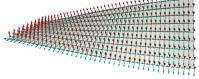
Zoo of models

- ► Shells vs. plates vs. membranes
- Kirchhoff type (schubstarr) vs. director theories
- ▶ 4th order vs. 2nd order
- ▶ 1 director vs. 3 directors

Shell models

Dimensional reduction

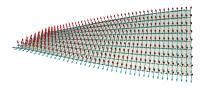
▶ Object is virtually 2-dimensional ⇒ model it by 2d equation



Zoo of models

- ► Shells vs. plates vs. membranes
- Kirchhoff type (schubstarr) vs. director theories
- ▶ 4th order vs. 2nd order
- ▶ 1 director vs. 3 directors

Geometrically Nonlinear Cosserat Shells



Kinematics:

- $ightharpoonup \Omega \subset \mathbb{R}^2$
- ▶ Midsurface deformation: $m: \Omega \to \mathbb{R}^3$
- ▶ Microrotation field: $R: \Omega \to SO(3)$

Strain measures:

- ▶ Deformation gradient: $F := (\nabla m | R_3) \in \mathbb{M}^{3 \times 3}$
- lacktriangle Translational strain: $U := R^T F$
- ▶ Rotational strain: $\mathfrak{K} := R^T \nabla R$

Geometrically Nonlinear Cosserat Shells

Hyperelastic material law: (h = shell thickness)

$$J(m,R) = \int_{\Omega} \left[hW_{\text{memb}}(U) + \frac{h^3}{12} W_{\text{bend}}(\mathfrak{K}) + hW_{\text{curv}}(\mathfrak{K}) \right] dx$$

Membrane energy:

$$W_{\text{memb}}(U) = \mu \|\text{sym}(U-I)\|^2 + \mu_c \|\text{skew}(U-I)\|^2 + \frac{\mu\lambda}{2\mu + \lambda} \frac{1}{2} \Big((\det U - 1)^2 + (\frac{1}{\det U} - 1)^2 + (\frac{1}{\det U} - 1)^2 \Big) \Big) + \frac{\mu\lambda}{2\mu + \lambda} \frac{1}{2\mu + \lambda}$$

Bending energy:

$$W_{\mathsf{bend}}(\mathfrak{K}_b) = \mu \|\mathrm{sym}(\mathfrak{K}_b)\|^2 + \mu_c \|\mathrm{skew}(\mathfrak{K}_b)\|^2 + \frac{\mu\lambda}{2\mu + \lambda} \operatorname{tr}[\mathrm{sym}(\mathfrak{K}_b)]^2$$

Curvature energy:

$$W_{\operatorname{curv}}(\mathfrak{K}) = \mu L_c^{1+p} \|\mathfrak{K}\|^{1+p}$$

Theorem ([Neff])

Under suitable conditions, the functional J has minimizers in $H^1(\Omega, \mathbb{R}^3) \times W^{1,1+p}(\Omega, SO(3))$.

Manifold-Valued Boundary Value Problems

Partial differential equations for functions

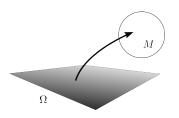
$$\phi: \Omega \to M, \qquad \Omega \subset \mathbb{R}^d, \ d \ge 1,$$

M a Riemannian manifold.

Applications:

- ▶ Liquid crystals: S^2 , \mathbb{PR}^2 , SO(3)
- ▶ Cosserat shells and continua: S^2 , SO(3)
- $ightharpoonup \sigma$ -models: SU(2), SO(3)
- ▶ Image processing: S^2 , Sym⁺(3)
- ▶ Positivity-preserving systems: \mathbb{R}^+ , Sym⁺(3)
- **▶** [...]

The challenge: Nonlinear function spaces



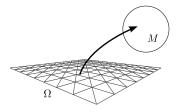
Finite Elements for Manifold-Valued Problems

Partial differential equations for functions

$$\phi: \Omega \to M, \qquad \Omega \subset \mathbb{R}$$

$$\Omega \subset \mathbb{R}^d, \ d \ge 1,$$

 $\phi: \Omega \to M$, $\Omega \subset \mathbb{R}^d$, $d \ge 1$, M a Riemannian manifold.



Problem: Discretization

- ▶ Finite elements presuppose vector space structure
- \blacktriangleright But codomain M is nonlinear

Find a discretization that:

- works for any Riemannian manifold M
- ▶ is conforming
- \blacktriangleright is frame-invariant (i.e., equivariant under isometries of M)

The Pragmatic Approach

Theorem ([Nash])

For each manifold M there exists a smooth, isometric embedding into a Euclidean space \mathbb{R}^N .

Algorithm

- ▶ Interpolate in \mathbb{R}^N
- ightharpoonup Project back onto M

Theorem ([Grohs, Sprecher, S, in prep.])

Optimal discretization error bounds.

Properties

► Simple and fast, if an "easy" embedding/projection is given

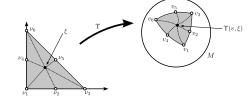
But

- ▶ What if such an embedding is not available?
- ▶ Not elegant, because relies on embedding.

Generalizing Lagrangian Interpolation

Reference element T_{ref} :

- ► Arbitrary type
- ightharpoonup Coordinates ξ
- ▶ Lagrange nodes ν_i , i = 1, ..., m
- lacktriangle Shape functions $\{\varphi_i\}$ of p-th order



Lagrange interpolation:

Assume values $v_1, \ldots, v_m \in M$ given at the Lagrange nodes. If M is a vector space, interpolation between the v_i can be written as

$$\sum_{i=1}^{m} v_{i} \varphi_{i}(\xi) = \arg \min_{q \in M} \sum_{i=1}^{m} \varphi_{i}(\xi) \|v_{i} - q\|^{2}.$$

Indeed, if $M = \mathbb{R}$: gradient is $2 \sum_{i=1}^{m} \varphi_i(\xi)(v_i - q)$

Geodesic Interpolation

Idea: Generalize

$$\underset{q \in M}{\operatorname{arg\,min}} \sum_{i=1}^{m} \varphi_i(\xi) \|v_i - q\|^2.$$

to

$$\underset{q \in M}{\operatorname{arg\,min}} \sum_{i=1}^{m} \varphi_i(\xi) \operatorname{dist}(v_i, q)^2$$

 $(dist(\cdot, \cdot))$ being the Riemannian distance on M

Definition (Geodesic interpolation [S '11, S '13, Grohs '12])

Let $v_i \in M$, i = 1, ..., m be coefficients and ξ coordinates on T_{ref} . Then

$$\Upsilon^{p}(v,\xi) = \underset{q \in M}{\operatorname{arg\,min}} \sum_{i=1}^{m} \varphi_{i}(\xi) \operatorname{dist}(v_{i},q)^{2}$$

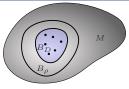
is the p-th order geodesic interpolation between the v_i .

Properties:

- ▶ Reduces to standard Lagrange interpolation if $M = \mathbb{R}^m$
- ▶ Reduces to geodesics if d = 1, p = 1 (hence the name)

Existence of minimizers of:

$$\underset{q \in M}{\operatorname{arg\,min}} \sum_{i=1}^{m} \varphi_i(\xi) \operatorname{dist}(v_i, q)^2$$



- ▶ p = 1: all weights $\varphi_i(\xi)$ are nonnegative \longrightarrow [Karcher(1977)]
- p > 1: weights may become negative.

Idea:

There is a minimizer if the v_i are "close enough" to each other on M.

Theorem ([S '12, Hardering '15])

Denote by $B_r(p_0)$ the geodesic ball of radius r around $p_0 \in M$. There are constants D, ρ with $0 < D < \rho$, depending on the curvature of M and the total variation of the weights φ_i , such that if the values v_1, \ldots, v_m are contained in $B_D(p_0)$ for some $p_0 \in M$, then the minimization problem has a unique local minimizer in $B_\rho(p_0)$.

Differentiability and Symmetry

Differentiability:

Lemma ([S '11])

Under the assumptions of the previous theorem, the function $\Upsilon^p(v;\xi)$ is infinitely differentiable with respect to ξ and the v_i .

Objectivity: Equivariance under an isometric group action

Lemma (Objectivity, [S '10, S '13])

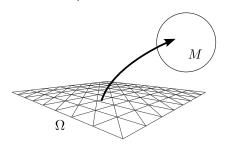
For any isometry Q acting on M and any $\xi \in T_{\mathsf{ref}}$ we have

$$Q\Upsilon(v;\xi) = \Upsilon(Qv;\xi).$$

Consequence: Discretizations of frame-invariant models are frame-invariant.

Geodesic Finite Elements

Construct global finite element spaces:



Definition (Geodesic finite elements)

Let M be a Riemannian manifold and G a grid for a d-dimensional domain, $d \geq 1$. A geodesic finite element function is a continuous function $v_h: G \to M$ such that for each element T of G, $v_h|_T$ is given by geodesic interpolation on T.

Denote by V_h^M the space of all such functions.

Conformity

Nonlinear Sobolev space:

Let M be smoothly embedded into \mathbb{R}^m . Define

$$H^1(\Omega, M) := \{ v \in H^1(\Omega, \mathbb{R}^m) \mid v(s) \in M \text{ a.e.} \}$$

Conforming discretization:

Lemma ([S '11])

Geodesic finite elements are conforming, i.e.,

$$V_h^M \subset H^1(\Omega, M).$$

Evaluation of Geodesic Finite Elements

Definition:

$$\Upsilon(v;\xi) = \underset{q \in M}{\operatorname{arg \, min}} \sum_{i=1}^{m} \varphi_i(\xi) \operatorname{dist}(v_i,q)^2$$

Values:

Minimize

$$f_{\xi}(q) := \sum_{i=1}^{m} \varphi_i(\xi) \operatorname{dist}(v_i, q)^2$$

by a Newton-type method in $\dim M$ variables. [Absil et al.]

Gradients: i.e., $\partial \Upsilon / \partial \xi$

Total derivative of $F(\xi,q):=\frac{\partial f_{\xi}}{\partial q}=0$ yields

$$\frac{\partial F(\xi,q)}{\partial q} \cdot \frac{\partial \Upsilon}{\partial \xi} = -\frac{\partial F(\xi,q)}{\partial \xi}$$

- ightharpoonup Evaluate $q:=\Upsilon(v;\xi)$
- ► Solve a small linear system

Gradient and Hessian of an Energy Functional

Assume PDE has minimization formulation for functional

$$J(v) := \int_{\Omega} W(\nabla v(x), v(x), x) dx \quad \text{on } H^{1}(\Omega_{1}).$$

Conformity: functional is well-defined on geodesic FE space

Gradient of J:

- ▶ Derivatives of geodesic FE function values wrt. to coefficients
- ▶ Derivatives of geodesic FE gradients wrt. to coefficients

Total derivative again:

$$\frac{\partial F}{\partial q} \cdot \frac{\partial^2 \Upsilon}{\partial v_i \, \partial \xi} = -\frac{\partial^2 F}{\partial v \, \partial q} \cdot \frac{\partial q}{\partial \xi} - \frac{\partial^2 F}{\partial q^2} \cdot \frac{\partial q}{\partial v} \cdot \frac{\partial q}{\partial \xi} - \frac{\partial^2 F}{\partial v_i \, \partial \xi} - \frac{\partial^2 F}{\partial q \, \partial \xi} \cdot \frac{\partial q}{\partial v_i}.$$

Hessian of the energy functional J: Even worse...

Gradient and Hessian of an Energy Functional

Assume PDE has minimization formulation for functional

has minimization formulation for functional
$$J(v):=\int_{\Omega}W(\nabla v(x),v(x),x)\,dx\qquad\text{on }H^1(\Omega_1)$$
 functional is well-defined on geodesic FE space.

Conformity: functional is well-defined on geodesic FE specific

Gradient of J:

- ▶ Derivatives of geodesic FE function value wrt. to coefficients
- ► Derivatives of geodesic FE gradien Wrt. to coefficients

Total derivative again:

all derivative again:
$$\frac{\partial F}{\partial q} \cdot \frac{\partial^2 \Upsilon}{\partial v_i \, \partial \xi} \equiv \frac{\partial^4 \Upsilon}{\partial v_i \, \partial q} \cdot \frac{\partial q}{\partial \xi} - \frac{\partial^2 F}{\partial q^2} \cdot \frac{\partial q}{\partial v} \cdot \frac{\partial q}{\partial \xi} - \frac{\partial^2 F}{\partial v_i \, \partial z} - \frac{\partial^2 F}{\partial q \, \partial \xi} \cdot \frac{\partial q}{\partial v_i}$$

Hessian of the energy functional J: Even worse.

Minimize harmonic energy:

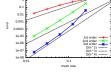
$$\phi: \Omega \to S^2, \qquad E(\phi) = \int_{\Omega} \|\nabla \phi\|^2 dx$$

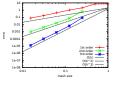
Lemma

The inverse stereographic map minimizes E in its homotopy class.

Setup

- ▶ Domain $\Omega = [-5, 5]^2$
- ► Dirichlet boundary conditions
- ▶ Discretization error for d = 2, p = 1, 2, 3:





solution field L^2 -error over mesh size

H1-error over mesh size

Linear result:

Theorem

Let J be a quadratic coercive functional on $H_0^1(\Omega)$. Let u be the minimizer of J in $H_0^1(\Omega)$, and u_h the minimizer in a p-th order Lagrangian finite element space contained in H_0^1 . Then

$$||u - u_h||_{H^1} \le Ch^p|u|.$$

Questions for a proof in nonlinear spaces:

- ▶ What replaces the error $||u u_h||_{H^1}$?
- ▶ Appropriate measure of solution regularity |u|?
- ► Ellipticity/coercivity in a nonlinear function space?

And:

- ▶ Do we get optimal orders?
- ▶ Do we need more regularity than in the linear case?

Distance

$$D_{1,2}(u,v)^2 := \int_D \left| \log(u(x), v(x)) \right|_{u(x)}^2 dx + \sum_{\alpha=1}^d \int_D \left| \frac{D}{dx^\alpha} \log(u(x), v(x)) \right|_{u(x)}^2 dx.$$

- ▶ Not a distance metric
- ▶ But: $\operatorname{dist}_{H^1}(u, v) < CD_{1,2}(u, v)$ and $\|i(v) i(u)\|_{H^1} < CD_{1,2}(u, v)$

Convexity

Definition (Convexity along paths)

Let H be a set of functions from Ω into M. Let

$$J:H\to\mathbb{R}$$

be a C^2 energy functional. We say that J is elliptic along a curve $\Gamma:I\to H$ if there exist constants λ,Λ such that

$$\lambda |\dot{\Gamma}|_G^2 \le \frac{d^2}{dt^2} J(\Gamma(t)) \le \Lambda |\dot{\Gamma}|_G^2.$$

Theorem ([Grohs, Hardering, S])

Assume that J is elliptic along geodesic homotopies. Denote

$$u = \underset{w \in H_K}{\arg \min} J(w)$$
 ("continuous solution")

and

$$H_{K,L}^u := H^1 \cap \text{some extra smoothness}$$

Let $V \subset H^u_{K,L}$ and

$$v = \underset{w \in V}{\arg \min} J(w).$$
 ("discrete solution")

Then we have that

$$D_{1,2}(u,v) \le C_2^2 \sqrt{\frac{\Lambda}{\lambda}} \inf_{w \in V} D_{1,2}(u,w)$$

with a constant C_2 only depending on the product KL and the curvature of M.

Definition (k-th order smoothness descriptor, [Grohs])

For a function $u:U\to M$ defined on a domain $U\subset\mathbb{R}^d$ define for $p\in[1,\infty]$ the homogenous k-th order smoothness descriptor

$$\dot{\Theta}_{p,k,U}(u) := \sum_{\sum_j |\beta_j| = k} \left(\int_U \prod_j \left| D^{\beta_j} u(x) \right|_{g(u(x))}^p dx \right)^{1/p}.$$

Corresponding inhomogenous smoothness descriptor

$$\Theta_{p,k,U}(u) := \sum_{i=1}^{k} \dot{\Theta}_{p,i,U}(u).$$

Slightly weaker than a covariant Sobolev norm.

Let Δ be a reference element, and $\mathbb{I}_\Delta u$ the interpolation of u at the Lagrange nodes.

Lemma ([Grohs, Hardering, S])

For $k > \frac{d}{2}$ and $p \ge k - 1$ we have

$$D_{1,2}(\mathbb{I}_{\Delta}U, u)^2 \lesssim C(u, \Delta) \cdot \dot{\Theta}_{k,\Delta}(u)^2$$

with

$$C(u, \Delta) = \left(\sup_{1 \le l \le k} \sup_{(p,q) \in \mathbb{I}_{\Delta} u(\Delta) \times u(\Delta)} \left\| \nabla_{2}^{l} \log (p, q) \right\|^{2} + \sup_{1 \le l \le k} \sup_{(p,q) \in \mathbb{I}_{\Delta} u(\Delta) \times \in u(\Delta)} \left\| \nabla_{2}^{l} \nabla_{1} \log (p, q) \right\|^{2} \right).$$

The implicit constants are independent of u and M.

Discretization Error Bounds

Theorem ([Grohs, Hardering, S, FoCM 2014])

Let J be a C^2 energy, elliptic along geodesic homotopies. Denote

$$u = \mathop{\arg\min}_{v \in W^{1,2},\ v|_{\partial\Omega = \Phi}} J(u), \qquad \textit{("continuous solution")}$$

and assume that $u\in W^{k,2}(\Omega,M)\cap W^{1,\infty}(\Omega,M)$ with k>d/2. With $K\gtrsim \Theta_{\infty,1,\Omega}(u)$, and L arbitrary, define $H^u_{K,L}$. Let

$$V^h = V_{p,h}^M \cap H_{K,L}^u$$

be a Lagrangian GFE space. Further, denote

$$v^h := \underset{w \in V^h}{\arg \min} J(w).$$
 ("discrete solution")

Then, whenever $p \ge k - 1$, we have the a-priori error estimate

$$D_{1,2}(u,v^h) \lesssim h^{k-1}.$$

Discretization Error Bounds

Executive Summary:

Theorem ([Grohs, Hardering, S, FoCM 2014])

Optimal orders under mild additional smoothness assumptions.

Discretization Error Bounds

Executive Summary:

Theorem ([Grohs, Hardering, S, FoCM 2014])

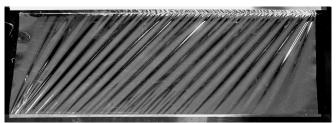
Optimal orders under mild additional smoothness assumptions.

Even prettier proofs in:

Hanne Hardering: "Intrinsic Discretization Error Bounds for Geodesic Finite Elements", PhD Thesis, FU Berlin, 2015

Back to Wrinkling: The Wong-Pellegrino Experiment

Experiment:



Back to Wrinkling: The Wong-Pellegrino Experiment

Experiment:

Simulation:

