Discretization of Manifold-Valued Partial Differential Equations

Oliver Sander, RWTH Aachen

Université catholique de Louvain, 17.3. 2015

RWIHAACHEN

Partial differential equations for functions

$$
\phi: \Omega \rightarrow M, \quad \Omega \subset \mathbb{R}^{d}, d \geq 1
$$

M a Riemannian manifold.

Applications:

- Liquid crystals: $S^{2}, \mathbb{P R}^{2}, \mathrm{SO}(3)$
- Cosserat shells and continua: $S^{2}, \mathrm{SO}(3)$
- σ-models: $\mathrm{SU}(2), \mathrm{SO}(3)$
- Image processing: $S^{2}, \mathrm{Sym}^{+}(3)$

- Positivity-preserving systems: $\mathbb{R}^{+}, \mathrm{Sym}^{+}(3)$
- [...]

The challenge: Nonlinear function spaces

Example: Liquid Crystals

Molecules with an orientation:

$$
\phi: \mathbb{R}^{d} \supset \Omega \rightarrow S^{2} \quad\left(\text { alt.: } \mathbb{R P}^{2}, \mathrm{SO}(3)\right)
$$

Properties: (nematic phase)

- Positional disorder
- Orientational order

Examples:

- Para-Azoxyanisole
- Soap, detergents
- Biomembranes

Modelling:

Source: Wikipedia

- Various elliptic and parabolic models

Example: Cosserat Shells

Director model for finite-strain shells:

- Configurations:

$$
\mathbb{R}^{2} \supset \Omega \rightarrow \mathbb{R}^{3} \times \mathrm{SO}(3)
$$

- Elastic, viscoelastic, and plastic materials
- Allows for size effects and microstructure
- Fully nonlinear, geometrically exact theory

Example: Cosserat Shells

Director model for finite-strain shells:

- Configurations:

$$
\mathbb{R}^{2} \supset \Omega \rightarrow \mathbb{R}^{3} \times \mathrm{SO}(3)
$$

- Elastic, viscoelastic, and plastic materials
- Allows for size effects and microstructure
- Fully nonlinear, geometrically exact theory

Example: Cosserat Shells

Director model for finite-strain shells:

- Configurations:

$$
\mathbb{R}^{2} \supset \Omega \rightarrow \mathbb{R}^{3} \times \mathrm{SO}(3)
$$

- Elastic, viscoelastic, and plastic materials
- Allows for size effects and microstructure
- Fully nonlinear, geometrically exact theory

(1) Geodesic Finite Elements
(2) Discretization Error Bounds
(3) Fun with Shells

Partial differential equation (PDE)
Find $u: \Omega \rightarrow \mathbb{R}$ such that $-\Delta u=f \quad\left(\right.$ mit $\left.\nabla u:=\sum_{i=1}^{d} \frac{\partial^{2}}{\partial x_{i}^{2}} u\right)$
Minimization formulation
Solutions u are minimizers of

$$
\mathcal{J}(v):=\frac{1}{2} \int_{\Omega}\|\nabla v\|^{2} d x-\int_{\Omega} f v d x
$$

in the Sobolev space $H^{1}(\Omega)$.
Finite elements
Look for minimizers u_{h} in the finite-dimensional subspace

$$
V_{h}:=\left\{v_{h} \in C(\Omega): v_{h} \text { is linear on each triangle of a fixed triangulation }\right\}
$$

Pick nodal basis in V_{h}
V_{h} is isomorphic to \mathbb{R}^{N}.
Algebraic formulation
Minimize $J(x)=\frac{1}{2} x^{T} A x-b^{T} x$ in \mathbb{R}^{N}.

Partial differential equation (PDE)
Find $u: \Omega \rightarrow \mathbb{R}$ such that $-\Delta u=f \quad\left(\right.$ mit $\left.\nabla u:=\sum_{i=1}^{d} \frac{\partial^{2}}{\partial x_{i}^{2}} u\right)$
Minimization formulation
Solutions u are minimizers of

$$
\mathcal{J}(v):=\frac{1}{2} \int_{\Omega}\|\nabla v\|^{2} d x-\int_{\Omega} f v d x
$$

in the Sobolev space $H^{1}(\Omega)$.
Finite elements
Look for minimizers u_{h} in the finite-dimensional subspace
$V_{h}:=\left\{v_{h} \in C(\Omega): v_{h}\right.$ is polynomial on each triangle of a fixed triangulation $\}$
Pick nodal basis in V_{h}
V_{h} is isomorphic to \mathbb{R}^{N}.
Algebraic formulation
Minimize $J(x)=\frac{1}{2} x^{T} A x-b^{T} x$ in \mathbb{R}^{N}.

Finite Elements for Manifold-Valued Problems

Partial differential equations for functions

$$
\phi: \Omega \rightarrow M, \quad \Omega \subset \mathbb{R}^{d}, d \geq 1, \quad M \text { a Riemannian manifold. }
$$

Problem: Discretization

- Finite elements presuppose vector space structure
- But codomain M is nonlinear

Find a discretization that:

- works for any Riemannian manifold M
- is conforming
- is frame-invariant (i.e., equivariant under isometries of M)

Theorem ([Nash])

For each manifold M there exists a smooth, isometric embedding into a Euclidean space \mathbb{R}^{N}.

Algorithm

- Interpolate in \mathbb{R}^{m}
- Project back onto M

Theorem ([Grohs, Sprecher, S, in prep.])
Optimal discretization error bounds.

Properties

- Simple and fast, if an "easy" embedding/projection is given

But

- What if such an embedding is not available?
- Not elegant, because relies on embedding.

Generalizing Lagrangian Interpolation

Reference element $T_{\text {ref }}$:

- Arbitrary type
- Coordinates ξ
- Lagrange nodes $\nu_{i}, i=1, \ldots, m$

- Shape functions $\left\{\varphi_{i}\right\}$ of p-th order

Lagrange interpolation:
Assume values $v_{1}, \ldots, v_{m} \in M$ given at the Lagrange nodes.
If M is a vector space, interpolation between the v_{i} can be written as

$$
\sum_{i=1}^{m} v_{i} \varphi_{i}(\xi)=\underset{q \in M}{\arg \min } \sum_{i=1}^{m} \varphi_{i}(\xi)\left\|v_{i}-q\right\|^{2}
$$

Indeed, if $M=\mathbb{R}: \quad$ gradient is $2 \sum_{i=1}^{m} \varphi_{i}(\xi)\left(v_{i}-q\right)$

Geodesic Interpolation

Idea: Generalize

$$
\underset{q \in M}{\arg \min } \sum_{i=1}^{m} \varphi_{i}(\xi)\left\|v_{i}-q\right\|^{2}
$$

to

$$
\underset{q \in M}{\arg \min } \sum_{i=1}^{m} \varphi_{i}(\xi) \operatorname{dist}\left(v_{i}, q\right)^{2}
$$

(dist (\cdot, \cdot) being the Riemannian distance on M)

Definition (Geodesic interpolation [S '11, S '13, Grohs '12])

Let $v_{i} \in M, i=1, \ldots, m$ be coefficients and ξ coordinates on $T_{\text {ref }}$. Then

$$
\Upsilon^{p}(v, \xi)=\underset{q \in M}{\arg \min } \sum_{i=1}^{m} \varphi_{i}(\xi) \operatorname{dist}\left(v_{i}, q\right)^{2}
$$

is the p-th order geodesic interpolation between the v_{i}.
Properties:

- Reduces to standard Lagrange interpolation if $M=\mathbb{R}^{m}$
- Reduces to geodesics if $d=1, p=1$ (hence the name)

Existence of minimizers of:

$$
\underset{q \in M}{\arg \min } \sum_{i=1}^{m} \varphi_{i}(\xi) \operatorname{dist}\left(v_{i}, q\right)^{2}
$$

- $p=1$: all weights $\varphi_{i}(\xi)$ are nonnegative $\longrightarrow[\operatorname{Karcher}(1977)]$
- $p>1$: weights may become negative.

Idea:
There is a minimizer if the v_{i} are "close enough" to each other on M.

Theorem ([S '12, Hardering '15])

Denote by $B_{r}\left(p_{0}\right)$ the geodesic ball of radius r around $p_{0} \in M$. There are constants D, ρ with $0<D<\rho$, depending on the curvature of M and the total variation of the weights φ_{i}, such that if the values v_{1}, \ldots, v_{m} are contained in $B_{D}\left(p_{0}\right)$ for some $p_{0} \in M$, then the minimization problem has a unique local minimizer in $B_{\rho}\left(p_{0}\right)$.

Differentiability:
Lemma ([S '11])
Under the assumptions of the previous theorem, the function $\Upsilon^{p}(v ; \xi)$ is infinitely differentiable with respect to ξ and the v_{i}.

Objectivity: Equivariance under an isometric group action

Lemma (Objectivity, [S '10, S '13])

For any isometry Q acting on M and any $\xi \in T_{\text {ref }}$ we have

$$
Q \Upsilon(v ; \xi)=\Upsilon(Q v ; \xi) .
$$

Consequence: Discretizations of frame-invariant models are frame-invariant.

Geodesic Finite Elements

Construct global finite element spaces:

Definition (Geodesic finite elements)

Let M be a Riemannian manifold and G a grid for a d-dimensional domain, $d \geq 1$. A geodesic finite element function is a continuous function $v_{h}: G \rightarrow M$ such that for each element T of $G,\left.v_{h}\right|_{T}$ is given by geodesic interpolation on T.

Denote by V_{h}^{M} the space of all such functions.

Conformity

Nonlinear Sobolev space:
Let M be smoothly embedded into \mathbb{R}^{m}. Define

$$
H^{1}(\Omega, M):=\left\{v \in H^{1}\left(\Omega, \mathbb{R}^{m}\right) \mid v(s) \in M \text { a.e. }\right\}
$$

Conforming discretization:

Lemma ([S '11])

Geodesic finite elements are conforming, i.e.,

$$
V_{h}^{M} \subset H^{1}(\Omega, M)
$$

Proof:

- Geodesic FE functions are piecewise C^{1} in M
- Geodesic FE functions are piecewise C^{1} in \mathbb{R}^{m} (smooth embedding)
- A function $v: \Omega \rightarrow \mathbb{R}^{m}$ that is piecewise C^{1} is in $H^{1}\left(\Omega, \mathbb{R}^{m}\right)$ if and only if $v \in C\left(\Omega, \mathbb{R}^{m}\right)$.

Algebraic minimization problem:

- On product manifold $N=M^{n}$, (n large)

Riemannian Trust-Region Method

- $x_{k} \in N$ the current iterate

- Instead of $J: N \rightarrow \mathbb{R}$ consider

$$
\hat{J}_{k}: T_{x_{k}} N \rightarrow \mathbb{R}, \quad \hat{J}_{k}=J \circ \exp _{x_{k}}
$$

- Get correction $v \in T_{x_{k}} N$ by a trust-region step for \hat{J}_{k} with quadratic model m_{k}
- If step was successful set

$$
x_{k+1}=\exp _{x_{k}} v
$$

Riemannian Trust-Region Method

Inner quadratic problem:

- m_{k} quadratic approximation of \hat{J}_{k}
- Sparse hessian
- Choice of trust-region norm \rightarrow pick ∞-norm
- Trust region

$$
K_{k, \rho}=\left\{v \in T_{x_{k}} N \mid\|v\|_{\infty} \leq \rho\right\}
$$

is described by box constraints in $T_{x_{k}} N$.

Monotone multigrid method: [Kornhuber '94]

- Multigrid method for quadratic problems with box constraints
- Linear multigrid speed
- Provable convergence for convex problems
- Also works for nonconvex quadratic models

Evaluation of Geodesic Finite Elements

Definition:

$$
\Upsilon(v ; \xi)=\underset{q \in M}{\arg \min } \sum_{i=1}^{m} \varphi_{i}(\xi) \operatorname{dist}\left(v_{i}, q\right)^{2}
$$

Values:
Minimize

$$
f_{\xi}(q):=\sum_{i=1}^{m} \varphi_{i}(\xi) \operatorname{dist}\left(v_{i}, q\right)^{2}
$$

by a Newton-type method $\operatorname{in} \operatorname{dim} M$ variables. [Absil et al.]
Gradients: i.e., $\partial \Upsilon / \partial \xi$
Total derivative of $F(\xi, q):=\frac{\partial f_{\xi}}{\partial q}=0$ yields

$$
\frac{\partial F(\xi, q)}{\partial q} \cdot \frac{\partial \Upsilon}{\partial \xi}=-\frac{\partial F(\xi, q)}{\partial \xi}
$$

- Evaluate $q:=\Upsilon(v ; \xi)$
- Solve a small linear system

Gradient and Hessian of an Energy Functional

Assume PDE has minimization formulation for functional

$$
J(v):=\int_{\Omega} W(\nabla v(x), v(x), x) d x \quad \text { on } H^{1}\left(\Omega_{1}\right)
$$

Conformity: functional is well-defined on geodesic FE space
Gradient of J :

- Derivatives of geodesic FE function values wrt. to coefficients
- Derivatives of geodesic FE gradients wrt. to coefficients

Total derivative again:

$$
\frac{\partial F}{\partial q} \cdot \frac{\partial^{2} \Upsilon}{\partial v_{i} \partial \xi}=-\frac{\partial^{2} F}{\partial v \partial q} \cdot \frac{\partial q}{\partial \xi}-\frac{\partial^{2} F}{\partial q^{2}} \cdot \frac{\partial q}{\partial v} \cdot \frac{\partial q}{\partial \xi}-\frac{\partial^{2} F}{\partial v_{i} \partial \xi}-\frac{\partial^{2} F}{\partial q \partial \xi} \cdot \frac{\partial q}{\partial v_{i}}
$$

Hessian of the energy functional J : Even worse...

Gradient and Hessian of an Energy Functional

Assume PDE has minimization formulation for functional

$$
J(v):=\int_{\Omega} W(\nabla v(x), v(x), x) d x
$$

Conformity: functional is well-defined on geodesic FE

Gradient of J :

- Derivatives of geodesic FE function a wrt. to coefficients
- Derivatives of geodesic FE gradien (wrt. to coefficients

Total derivative again:

$$
\frac{\partial F}{\partial q} \cdot \frac{\partial^{2} \Upsilon}{\partial v_{i} \partial \xi}=-\frac{\partial}{i} \cdot \frac{\partial q}{\partial \xi}-\frac{\partial^{2} F}{\partial q^{2}} \cdot \frac{\partial q}{\partial v} \cdot \frac{\partial q}{\partial \xi}-\frac{\partial^{2} F}{\partial v_{i}}-\frac{\partial}{\partial q \partial \xi} \cdot \frac{\partial q}{\partial v_{i}} .
$$

Hessian of the energy functional J : Even worse.

Algebraic minimization problem:

- On product manifold $N=M^{n}$, (n large)

Riemannian Trust-Region Method

- $x_{k} \in N$ the current iterate

- Instead of $J: N \rightarrow \mathbb{R}$ consider

$$
\hat{J}_{k}: T_{x_{k}} N \rightarrow \mathbb{R}, \quad \hat{J}_{k}=J \circ \exp _{x_{k}}
$$

- Get correction $v \in T_{x_{k}} N$ by a trust-region step for \hat{J}_{k} with quadratic model m_{k}
- If step was successful set

$$
x_{k+1}=\exp _{x_{k}} v
$$

Riemannian Trust-Region Method

Inner quadratic problem:

- m_{k} quadratic approximation of \hat{J}_{k}
- Sparse hessian
- Choice of trust-region norm \rightarrow pick ∞-norm
- Trust region

$$
K_{k, \rho}=\left\{v \in T_{x_{k}} N \mid\|v\|_{\infty} \leq \rho\right\}
$$

is described by box constraints in $T_{x_{k}} N$.

Monotone multigrid method: [Kornhuber '94]

- Multigrid method for quadratic problems with box constraints
- Linear multigrid speed
- Provable convergence for convex problems
- Also works for nonconvex quadratic models

Discretization Error Measurements

Minimize harmonic energy:

$$
\phi: \Omega \rightarrow S^{2}, \quad E(\phi)=\int_{\Omega}\|\nabla \phi\|^{2} d x
$$

Lemma

The inverse stereographic map minimizes E in its homotopy class.
Setup

- Domain $\Omega=[-5,5]^{2}$
- Dirichlet boundary conditions
- Discretization error for $d=2, p=1,2,3$:

solution field

L^{2}-error over mesh size

H^{1}-error over mesh size

Distributed and Unified Numerics Environment

Optimal A priori Discretization Error Bounds

[with P. Grohs and H. Hardering]

Linear result:

Theorem

Let J be a quadratic coercive functional on $H_{0}^{1}(\Omega)$. Let u be the minimizer of J in $H_{0}^{1}(\Omega)$, and u_{h} the minimizer in a p-th order Lagrangian finite element space contained in H_{0}^{1}. Then

$$
\left\|u-u_{h}\right\|_{H^{1}} \leq C h^{p}|u|
$$

Questions for a proof in nonlinear spaces:

- What replaces the error $\left\|u-u_{h}\right\|_{H^{1}}$?
- Appropriate measure of solution regularity $|u|$?
- Ellipticity/coercivity in a nonlinear function space?

And:

- Do we get optimal orders?
- Do we need more regularity than in the linear case?

A priori error bounds [with P. Grohs and H. Hardering]
Distance
$D_{1,2}(u, v)^{2}:=\int_{D}|\log (u(x), v(x))|_{u(x)}^{2} d x+\sum_{\alpha=1}^{d} \int_{D}\left|\frac{D}{d x^{\alpha}} \log (u(x), v(x))\right|_{u(x)}^{2} d x$.

- Not a distance metric
- But: $\operatorname{dist}_{H^{1}}(u, v)<C D_{1,2}(u, v)$ and $\|i(v)-i(u)\|_{H^{1}}<C D_{1,2}(u, v)$

Convexity

Definition (Convexity along paths)

Let H be a set of functions from Ω into M. Let

$$
J: H \rightarrow \mathbb{R}
$$

be a C^{2} energy functional. We say that J is elliptic along a curve $\Gamma: I \rightarrow H$ if there exist constants λ, Λ such that

$$
\lambda|\dot{\Gamma}|_{G}^{2} \leq \frac{d^{2}}{d t^{2}} J(\Gamma(t)) \leq \Lambda|\dot{\Gamma}|_{G}^{2}
$$

Nonlinear Céa Lemma

Theorem

Assume that J is elliptic along geodesic homotopies. Denote

$$
u=\underset{w \in H_{K}}{\arg \min } J(w) \quad \text { ("continuous solution") }
$$

and

$$
H_{K, L}^{u}:=H^{1} \cap \text { some extra smoothness }
$$

Let $V \subset H_{K, L}^{u}$ and

$$
v=\underset{w \in V}{\arg \min } J(w) . \quad \text { ("discrete solution") }
$$

Then we have that

$$
D_{1,2}(u, v) \leq C_{2}^{2} \sqrt{\frac{\Lambda}{\lambda}} \inf _{w \in V} D_{1,2}(u, w)
$$

with a constant C_{2} only depending on the product $K L$ and the curvature of M.

Nonlinear Bramble-Hilbert Lemma

Definition (k-th order smoothness descriptor)

For a function $u: U \rightarrow M$ defined on a domain $U \subset \mathbb{R}^{d}$ define for $p \in[1, \infty]$ the homogenous k-th order smoothness descriptor

$$
\dot{\Theta}_{p, k, U}(u):=\sum_{\sum_{j}\left|\beta_{j}\right|=k}\left(\int_{U} \prod_{j}\left|D^{\beta_{j}} u(x)\right|_{g(u(x))}^{p} d x\right)^{1 / p} .
$$

Corresponding inhomogenous smoothness descriptor

$$
\Theta_{p, k, U}(u):=\sum_{i=1}^{k} \dot{\Theta}_{p, i, U}(u) .
$$

Slightly weaker than a covariant Sobolev norm.

Nonlinear Bramble-Hilbert Lemma

Let Δ be a reference element, and $\mathbb{I}_{\Delta} u$ the interpolation of u at the Lagrange nodes.

Lemma

For $k>\frac{d}{2}$ and $p \geq k-1$ we have

$$
D_{1,2}\left(\mathbb{I}_{\Delta} U, u\right)^{2} \lesssim C(u, \Delta) \cdot \dot{\Theta}_{k, \Delta}(u)^{2}
$$

with

$$
\begin{aligned}
C(u, \Delta)=\left(\sup _{1 \leq l \leq k}\right. & \sup _{(p, q) \in \mathbb{I} \Delta u(\Delta) \times u(\Delta)}\left\|\nabla_{2}^{l} \log (p, q)\right\|^{2} \\
& \left.+\sup _{1 \leq l \leq k(p, q) \in \mathbb{I}_{\Delta} \sup _{u(\Delta) \times \in u(\Delta)}}\left\|\nabla_{2}^{l} \nabla_{1} \log (p, q)\right\|^{2}\right) .
\end{aligned}
$$

The implicit constants are independent of u and M.

Discretization Error Bounds

Theorem ([Grohs, Hardering, S, FoCM 2014])

Let J be a C^{2} energy, elliptic along geodesic homotopies. Denote

$$
u=\underset{v \in W^{1,2},\left.v\right|_{\partial \Omega=\Phi}}{\arg \min } J(u), \quad \text { ("continuous solution") }
$$

and assume that $u \in W^{k, 2}(\Omega, M) \cap W^{1, \infty}(\Omega, M)$ with $k>d / 2$. With $K \gtrsim \Theta_{\infty, 1, \Omega}(u)$, and L arbitrary, define $H_{K, L}^{u}$. Let

$$
V^{h}=V_{p, h}^{M} \cap H_{K, L}^{u}
$$

be a Lagrangian GFE space. Further, denote

$$
v^{h}:=\underset{w \in V^{h}}{\arg \min } J(w) . \quad \text { ("discrete solution") }
$$

Then, whenever $p \geq k-1$, we have the a-priori error estimate

$$
D_{1,2}\left(u, v^{h}\right) \lesssim h^{k-1}
$$

Discretization Error Bounds

Executive Summary / tl;dr:

Theorem ([Grohs, Hardering, S, FoCM 2014])

Optimal orders under mild additional smoothness assumptions.

Kinematics:

- $\Omega \subset \mathbb{R}^{2}$
- Midsurface deformation: $m: \Omega \rightarrow \mathbb{R}^{3}$
- Microrotation field: $R: \Omega \rightarrow \mathrm{SO}(3)$

Strain measures:

- Deformation gradient: $F:=\left(\nabla m \mid R_{3}\right) \in \mathbb{M}^{3 \times 3}$
- Translational strain: $U:=R^{T} F$
- Rotational strain: $\mathfrak{K}:=R^{T} \nabla R$

Geometrically Nonlinear Cosserat Shells [With Patrizio Neff]

Hyperelastic material law: $(h=$ shell thickness $)$

$$
J(m, R)=\int_{\Omega}\left[h W_{\text {memb }}(U)+\frac{h^{3}}{12} W_{\text {bend }}(\mathfrak{K})+h W_{\text {curv }}(\mathfrak{K})\right] d x
$$

Membrane energy:
$W_{\text {memb }}(U)=\mu\|\operatorname{sym}(U-I)\|^{2}+\mu_{c}\|\operatorname{skew}(U-I)\|^{2}+\frac{\mu \lambda}{2 \mu+\lambda} \frac{1}{2}\left((\operatorname{det} U-1)^{2}+\left(\frac{1}{\operatorname{det} U}-1\right)^{2}\right.$
Bending energy:

$$
W_{\text {bend }}\left(\mathfrak{K}_{\mathfrak{b}}\right)=\mu\left\|\operatorname{sym}\left(\mathfrak{K}_{b}\right)\right\|^{2}+\mu_{c}\left\|\operatorname{skew}\left(\mathfrak{K}_{b}\right)\right\|^{2}+\frac{\mu \lambda}{2 \mu+\lambda} \operatorname{tr}\left[\operatorname{sym}\left(\mathfrak{K}_{b}\right)\right]^{2}
$$

Curvature energy:

$$
W_{\text {curv }}(\mathfrak{K})=\mu L_{c}^{1+p}\|\mathfrak{K}\|^{1+p}
$$

Theorem ([Neff])

Under suitable conditions, the functional J has minimizers in $H^{1}\left(\Omega, \mathbb{R}^{3}\right) \times W^{1,1+p}(\Omega, S O(3))$.

Geometrically Nonlinear Cosserat Shells [With Patrizio Neff]

Twisting of a strip:

- 10×1 strip clamped at one short end
- Time-dependent Dirichlet boundary conditions
- Free end twisted by 8π
- Challenge for a discretization: very large rotations

Distributed and Unifled Numerics Environment

Wrinkling of Plastic Sheets [With Patrizio Neff]
Wrinkling in experiments:

Distributed and Unifled Numerlcs Environment

Wrinkling of Plastic Sheets [With Patrizio Neff]

Wrinkling in experiments:

Simulation:

Distributed and Unifled Numerics Environment

