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Model problem

a

b

⇒

Ω

Σ

Fluid–solid coupling
I Porous material, contains thin layer with

different material properties.
I Coupled processes:

1. Fluid-fluid: The fluid diffuses from the fracture
into the porous medium and vice versa.

2. Fluid-solid: The pressure applied by the fluid
onto the fracture faces induces a deformation.

3. Solid-fluid: The flow in the fracture is affected
by the fracture aperture b and thus on the
deformation of the surrounding solid skeleton.

4. Poroelasticity: The matrix fluid pressure
interacts with matrix stress

I Generally b� a⇒ use dimension-reduced
flow model.

,
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Governing equations

Darcy law in Ω\Σ

Averaged Darcy law on Σ
[Martin, Jaffré, Roberts ’05]
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Poroelasticity equations in Ω\Σ Coupling constraints on Σ, ξ ∈ (1/2,1]
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Poroelastic problem
For fixed fluid pressures pΩ, pΣ:

I Symmetric bilinear form:

aΩ
E (uΩ,vΩ) =

∫
Ω

σ(uΩ) : ε(vΩ).

I Coupling terms:

cΩ
E

(
pΩ;vΩ

)
=−

∫
Ω

∇pΩ ·vΩ ·ν dΓ

cΣ
E

(
pΣ;vΩ

)
=
∫

Σ
2pΣvΩ ·ν dΓ

I Define
V :=

{
v ∈ L2(Ω̃)

∣∣∣v |Ω± ∈ H1(Ω),JvKΣe = 0
}
.

and VE ⊂ V d as the space of functions satisfying the Dirichlet boundary
conditions

I Weak formulation: Find uΩ ∈ VE such that

aΩ
E

(
uΩ,vΩ

)
+ cΩ

E

(
pΩ;vΩ

)
+ cΣ

E

(
pΣ;vΩ

)
= 0 ∀vΩ ∈ V0

I Linear elasticity problem with pre-stress
,
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Poroelastic problem - Well posedness
For fixed fluid pressures pΩ, pΣ:

Theorem ([Folklore])

Assume ∇pΩ ∈ L2(Ω), pΣ ∈ H
1
2 (Σ) and uΩ

D ∈ H
1
2 (ΓE

D). Then there exists a unique
solution uΩ ∈ VE to the linear elasticity problem with pre-stress.
Furthermore the solution can be decomposed additively into a continuous function
uc and a singular part us. Near the crack tip the singular part can be approximated
by us = KIuI + KIIuII + KIIIuIII , where

uI,i ,uII,i ,uIII,i ∈ span

{√
r sin

Θ

2
,
√

r cos
Θ

2
,
√

r sinΘsin
Θ

2
,
√

r sinΘcos
Θ

2

}
,

for i = 1, . . . ,d where (r ,Θ) are the crack tip polar coordinates.
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Fluid–fluid problem
For fixed fracture width b:

I Symmetric, bilinear forms:

aΩ
F

(
b;pΩ, rΩ

)
=
∫

Ω
K∇pΩ ·∇rΩ dΩ +

∫
Σ

K ν

b

q
pΩ

yq
rΩ

y
dΓ

+
4

2ξ −1

∫
Σ

K ν

b

{
pΩ
}{

rΩ
}

dΓ,

aΣ
F

(
b;pΣ, rΣ

)
=
∫

Σ
bKτ

∇τ pΣ ·∇τ rΣ +
4

2ξ −1
K ν

b
pΣrΣ dΓ,

I Linear forms:

lΩF
(
rΩ
)

=
∫

Ω
f Ω
F rΩ dΩ and lΣF

(
b; rΣ

)
=
∫

Σ
bf Σ

F rΣ dΓ.

I Coupling terms:

cF
(
b; rΩ,pΣ

)
=− 4

2ξ −1

∫
Σ

K ν

b
pΣ
{

rΩ
}

dΓ,
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Fluid–fluid problem

Coupled weak problem - For fixed fracture width b:
Find

(
pΩ,pΣ

)
, such that

aΩ
F

(
b;pΩ, rΩ

)
+ cF

(
b; rΩ,pΣ

)
= lΩF

(
rΩ
)
∀rΩ ∈ H1

0 (Ω)

aΣ
F

(
b;pΣ, rΣ

)
+ cF

(
b;pΩ, rΣ

)
= lΣF

(
rΣ
)
∀rΣ ∈ H1

0 (Σ)

I Linear (if b is fixed!)

Existence and uniqueness?
I Simple but restrictive result: Existence and uniqueness for 0 < c ≤ b(x)≤ C

a.e. on Σ

I Crack front in domain =⇒ b(x)→ 0 for x approaching the crack front
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Fluid–fluid problem: Function Spaces

Existence and uniqueness with crack tips:

I Crack tip asymptotics yield: b(x) = dist(x ,γ)
1
2 near the crack tip and bounded

away from zero otherwise
I Denote by L2

b−1 (Σ) and L2
b(Σ) the sets of all measurable functions v : Ω→ R

for which the norms

‖v‖2
0,b−1,Σ :=

∫
Σ
|v |2 b−1 dx < ∞,

‖v‖2
0,b,Σ :=

∫
Σ
|v |2 b dx < ∞,

respectively. The spaces
(
L2

b±1 (Σ),‖ · ‖0,±,Σ
)

are Hilbert spaces
I We have

L2
b−1 (Σ) ↪→ L2(Σ) ↪→ L2

b(Σ)

,
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Fluid–fluid problem: Function Spaces
Crack-weighted Sobolev spaces:

I The spaces

H1
b (Σ) :=

{
s ∈ L2

b−1 (Σ) | ∇τ s ∈ L2
b(Σ)

}
,

H
1
2

b−1 (Σ) :=
{

s ∈ H
1
2 (Σ) | s ∈ L2

b−1 (Σ)
}
,

H1
b (Ω) :=

{
v ∈ V | γ±v ∈ H

1
2

b−1 (Σ)

}
,

together with the norms

‖s‖2
1,b,Σ := ‖s‖2

0,b−1,Σ +‖∇τ s‖2
0,b,Σ,

‖s‖2
1
2 ,b
−1,Σ

:= ‖s‖2
0,b−1,Σ +

∫
Σ×Σ

|s(x)− s(y)|2

|x− y |d
dx dy ,

‖v‖2
1,b−1,Ω := ‖γ+v‖2

0,b−1,Σ +‖γ−v‖2
0,b−1,Σ +‖u‖2

1

are Hilbert spaces.
I Define VF := V Σ

F ×V Ω
F (where V Σ

F ⊂ H1
b (Σ) and V Ω

F ⊂ H1
b (Ω)) as the spaces

of functions satisfying the Dirichlet boundary data.
,
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Fluid–fluid problem: Well-posedness

For fixed crack width b:

Theorem ([Hanowski ’16] )

Assume that Σ is a bounded parametrized surface with smooth boundary and that
the permeability tensor K is symmetric, bounded and uniform elliptic. Let b > 0 on
Σ a.e. and b ' dist(·,γ)

1
2 near the crack tip and ξ ∈

(
1
2 ,1
]
. Let ΓF

D 6= /0,
f Ω
F ∈ L2(Ω), f Σ

F ∈ L2
b(Σ), qΩ

N ∈ L2(ΓN) and qΣ
N ∈ L2

b(Σ). Furthermore, assume that

pΩ
D ∈W Ω

D := {s ∈ H
1
2 (ΓF

D) | EΩs ∈ Vb}

and
pΣ

D ∈W Σ
D := {s ∈ H

1
2 (γ

F
D ) | EΣs ∈ H1

b (Σ)},

where EΩ : H
1
2 (ΓF

D)→ V and EΣ : H
1
2 (γF

D )→ H1(Σ) are the standard extension
operators. Then there exists a unique solution (pΩ,pΣ) ∈ V Ω

F ×V Σ
F of the weak

coupled fluid–fluid problem.
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Fully Coupled Problem
Fixed-point formulation:

I Solution operator for the fluid problem :

Sf : H
1
2

00(Σ)→ V Ω
F ×V Σ

F , b 7→ (pΩ,pΣ)

I Solution operator for the elasticity problem:

Se : V Ω
F ×V Σ

F → VE , (pΩ,pΣ) 7→ uΩ

I Normal jump operator

j : VE → H1/2
00 (Σ), uΩ 7→ b := JuK ·ν

I Fixed Point Formulation:
b = (j ◦Se ◦Sf )b

Existence and Uniqueness:
I Dependency of the solution spaces for the pressures on the fracture width b!

Iterative approach leads to ’independent’ solution spaces in each iteration step.

,
TU Dresden, Coupling Deformation and Flow in Fractured Poroelastic Media, 11



Discretization: The eXtended Finite Element
Method
Challenge:

I Pressure pΩ and displacement uΩ discontinuous on Σ
I Derivatives of pΩ and uΩ singular at crack front

XFEM basic idea:
I Additional bespoke FE functions near the crack
I Reproduce discontinuity: Heavyside function
I Reproduce singularity:

Special singularity functions derived by asymptotic analysis
I Aim: Retain optimal discretization errors

xi−1 xi xi+1

HΦi

,
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Discretization - Details

Ω

Σ

Given:
I Grids for Ω and Σ and/or implicit crack representation
I Element subsets:

I K1: elements fully cut by the fracture
I K2: elements in the vicinity of the crack tip
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Crack Front Enrichment Functions
Crack front enrichment functions:

I (r ,Θ) front polar coordinates
I Standard enrichment functions for the displacement

(FE )1(r ,Θ) =
√

r sin

(
Θ

2

)
(FE )2(r ,Θ) =

√
r cos

(
Θ

2

)
(FE )3(r ,Θ) =

√
r sin

(
Θ

2

)
sin(Θ)

(FE )4(r ,Θ) =
√

r cos

(
Θ

2

)
sin(Θ)

I Laplace enrichment for the matrix pressure:

(FF )1(r ,Θ) =
√

r sin

(
Θ

2

)
(FF )2(r ,Θ) =

√
r cos

(
Θ

2

)
,
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Decoupling the system: Substructuring method
Algebraic problem:

I Linear coupled fluid–fluid problem
I Linear elasticity problem with pre-stress
I Nonlinear coupling through changing crack width b

Decouple by fixed-point iteration
I Iteration variable: fracture width function bk

Init: b0 ;
while (err > acc) do(

pΩ
k+1,p

Σ
k+1

)
← Solve fluid problem with bu = bk ;

uΩ
k+1← Solve the elasticity problem with pΩ = pΩ

k+1 and pΣ = pΣ
k+1 ;

bk+1← bk + β
(q

uΩ
k+1

y
·ν−bk

)
;

end

I Damping parameter β ∈ (0,1]
I Solve two linear, symmetric systems in each iteration step
I Direct subdomain solvers
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2D Example - Grid and Boundary conditions

ΓN

ΓD

γD γN

Grid
I Unstructured triangle grid for the bulk, uniform grid for the fracture

Boundary Conditions
I Solid: Zero Dirichlet and Neumann boundary conditions; Fluid: pΣ

0 = 0.5 MP,
zero Dirichlet and Neumann boundary conditions otherwise

,
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2D Example - Setting

Material Properties:
I Bulk Domain: Ω = [0,1]×

[
− 1

2 ,
1
2

]
km2

I Fracture: Σ =
[
0, 1

2

]
×{0} km

I Fluid: Homogeneous and isotropic
permeability tensors, with K = 0.1 mD
for the bulk and K ν = K τ = 100D

I Solid: St.Venant–Kirchhoff material law
with Young’s modulus E = 1GP and
Poisson ratio ν = 0.3

Parameters
I Damping parameter: β = 1
I Discretization parameter ξ = 0.75
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Discretization Error Rates
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Measuring the Solver Convergence:
I Constant rates, fast convergence, nearly independent of the mesh size!
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Discretization Error Rates
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Measuring the Discretization Error
I Compare with solution on fine grid
I Optimal error rates!
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3D Example

pΣ = pΣ0

∇τp
Σ · τ = 0

σ(uΩ) · n = 0,∇pΩ · n = 0

uΩ = 0, pΩ = 0

3d matrix + 2d fracture:

I Unit cube
I Half-penny crack
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