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Fluid—solid coupling
» Porous material, contains thin layer with
different material properties.
» Coupled processes:
1. Fluid-fluid: The fluid diffuses from the fracture
into the porous medium and vice versa.
2. Fluid-solid: The pressure applied by the fluid
onto the fracture faces induces a deformation.
3. Solid-fluid: The flow in the fracture is affected
by the fracture aperture b and thus on the
deformation of the surrounding solid skeleton.
4. Poroelasticity: The matrix fluid pressure
interacts with matrix stress

» Generally b < a=- use dimension-reduced
flow model.
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Darcy law in Q\ &

V.q? =12
—KVPQ _ qQ
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Darcy law in Q\ T

V'qQ _ fQ
—KVPQ _ qQ

Averaged Darcy law on ¥
[Martin, Jaffré, Roberts '05]

Ve-q=— [q%] v =bf"
—bK" -V p= =q*

Coupling constraints on X, § € (1/2,1]

(@7} v="1 "]

o] v =5e 5 (°F~ o7
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Darcy law in Q\ T
V-qQ =

—KVp? =q“

Poroelasticity equations in Q\ ©

0=V-(c(u?)—p"I)
e(u®?) = %(DuQ + (DuQ)T)

o(u) =E: e(u)

Averaged Darcy law on ¥
[Martin, Jaffré, Roberts '05]

Ve-q=— [q%] v =bf"
—bK" -V p= =q*

Coupling constraints on X, &

€ (1/2,1]

(@7} v =" "]
[a7] v = ’; (0"~ {p})

4

T 281
—pivi=o(u’)-
b= [u?] v
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For fixed fluid pressures p*?, p*:
» Symmetric bilinear form:

a‘,}(uQ,vQ):AG(uQ):s(vQ).
» Coupling terms:

cg (p%v?) = —/QVpQ-vQ-vdI'

¢t (p™;v?) = / 2p v vdrl
bs
> Define _
Vi= {v e L2(Q)‘ Vigs € H'(Q),[V]s, = o}.

and Ve C V9 as the space of functions satisfying the Dirichlet boundary
conditions
» Weak formulation: Find u? € Vg such that

ag (u?,v?) +c2 (o™ v?) + ¢ (p=;v?) =0 W e Vg

» Linear elasticity problem with pre-stress
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For fixed fluid pressures p*?, p*:
Theorem ([Folklore])

Assume Vp® € [2(Q), p* € Hz (X) and u € Hz (TE). Then there exists a unique
solution u* € Vg to the linear elasticity problem with pre-stress.

Furthermore the solution can be decomposed additively into a continuous function
u; and a singular part us. Near the crack tip the singular part can be approximated
by us = Kju; + Kyuy + Kyuy, where

o
u,,,u,,,,u,,,,espan{\fsm \fcos \fsm@sm— \fsm@cosE}

fori=1,...,d where (r,®) are the crack tip polar coordinates.

FEs
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For fixed fracture width b:
» Symmetric, bilinear forms:

a‘;(b;pﬂ,rﬂ):/QKVpQ-VerQJr/ K [p?] [r?] aT
tares L 0 ),

ag (b;p*,r¥) :/szTVrpzoVrrZJr

r
28 —1 bpr d

» Linear forms:
/?(r“):/ 2rPdQ  and  F(bir*) :/bf,_?rzdr.
Q X
» Coupling terms:

cr(b;r, p%) 25 /?p {r?}dr,
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Coupled weak problem - For fixed fracture width b:
Find (p?,p*), such that

ag (b;pr?) +cr (b;rhp=) = 12 (r?)  vr? € H}(Q)
af (b;p™, =) +cr (b;p% ™) = IE (r7)  Vr* € H)(%)

M

> Linear (if b is fixed!)

Existence and uniqueness?

» Simple but restrictive result: Existence and uniqueness for 0 < ¢ < b(x) < C
ae.onXx

» Crack front in domain = b(x) — 0 for x approaching the crack front
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Existence and uniqueness with crack tips:

» Crack tip asymptotics yield: b(x) = dist(x, y)% near the crack tip and bounded
away from zero otherwise

> Denote by L2 ,(X) and L5(X) the sets of all measurable functions v : @ — R
for which the norms

Moz = [ PO dx <o

VI ox = [ IVPbdx <=,
x

respectively. The spaces (L2.;(X), |- [lo..x) are Hilbert spaces

» We have
L2 (2) = LB(Z) = L(%)

TU Dresden, Coupling Deformation and Flow in Fractured Poroelastic Media, 8



RN
Fluid—fluid problem: Function Spaces DRESDEN

Crack-weighted Sobolev spaces:
» The spaces

HY(Z) :={s€ 2 ()| VeseLE(D)},
HE (D)= [seHim)|seiz ()},
H(Q) = {ve VIyive Hj1(z)},

together with the norms

||S||$,b,z = ||3H§7b71,>: + ||V13||g,b,za
2
2 2 Is(x) —s(y)|
s =S|l - +/ —————dxd
e e AL
VI g = 7 VI g 7 VIR o+ 0

are Hilbert spaces.
> Define Vg := VE x V2 (where VE C H}(X) and VZ C H}\(Q2)) as the spaces
of functions satisfying the Dirichlet boundary data.
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For fixed crack width b:
Theorem ([Hanowski ’16] )

Assume that ¥_ is a bounded parametrized surface with smooth boundary and that
the permeability tensor K is symmetric, bounded and uniform elliptic. Let b > 0 on
S a.e. and b~ dist(-,y)? near the crack tip and & € (3.1]. LetTh #0,

2 € 12(Q), fF € L2(X), g% € L2(Tn) and qi € L2(X). Furthermore, assume that

p2 e WS = {se H2(T5) | Egs € V)

and
1
pp € Wy = {se H2(y}) | Exs € Hy(X)},

where Eq : H2(I'E) — V and Es : H2(y5) — H'(X) are the standard extension
operators. Then there exists a unique solution (pQ, pz) € V,E} X V,’_-: of the weak
coupled fluid—fluid problem.
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Fixed-point formulation:
» Solution operator for the fluid problem :

1

SriHG(X) — VE X VE, b (p%pY)
» Solution operator for the elasticity problem:
Se: VEX VE 5 Vg, (p%,p%) — u®
» Normal jump operator
J Ve HAE), u?—bi=[u] v

» Fixed Point Formulation:
b= (joSe0Sr)b
Existence and Uniqueness:

» Dependency of the solution spaces for the pressures on the fracture width b!
Iterative approach leads to 'independent’ solution spaces in each iteration step.
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Discretization: The eXtended Finite Element LT,E(I:\ll-lEanglcTﬁ
Method

DRESDEN
Challenge:
» Pressure pQ and displacement u®® discontinuous on ¥
» Derivatives of p© and u® singular at crack front

XFEM basic idea:

Additional bespoke FE functions near the crack

Reproduce discontinuity: Heavyside function

Reproduce singularity:

Special singularity functions derived by asymptotic analysis
Aim: Retain optimal discretization errors

v

\4

v

\{
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Given:
» Grids for Q and . and/or implicit crack representation
» Element subsets:

» 1: elements fully cut by the fracture
» Jt5: elements in the vicinity of the crack tip
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Crack front enrichment functions:
» (r,©) front polar coordinates
» Standard enrichment functions for the displacement

(Fe)i(r,©) = Vrsin (j)
(Fe)2(r,©) = V/rcos <e>

Jsin(@)
Jsin(e)

)
)

(SIRORNS

(Fe)3(r,©) = /rsin (

o @

(Fg)a(r,©) = \/rcos (

» Laplace enrichment for the matrix pressure:

(FF)1(r,©) = +/rsin (

(MINO)

MNO)

(FF)2(r,©) = \/rcos <
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Decoupling the system: Substructuring method DRESDEN

Algebraic problem:
» Linear coupled fluid—fluid problem
» Linear elasticity problem with pre-stress
» Nonlinear coupling through changing crack width b

Decouple by fixed-point iteration
> lteration variable: fracture width function by
Init: by ;
while (err > acc) do
(Pi.1,PEL1) < Solve fluid problem with by = by ;
ui’. ; « Solve the elasticity problem with p? = pg, ; and p* = pf , ;
bicpt < b+ B ([ug (] -v—bx) ;
end

» Damping parameter § € (0, 1]
» Solve two linear, symmetric systems in each iteration step
» Direct subdomain solvers
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2D Example - Grid and Boundary conditions DRESDEN

FN

I'p

Grid
» Unstructured triangle grid for the bulk, uniform grid for the fracture
Boundary Conditions
» Solid: Zero Dirichlet and Neumann boundary conditions; Fluid: p§ = 0.5 MP,
zero Dirichlet and Neumann boundary conditions otherwise
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Material Properties:
» Bulk Domain: Q = [0,1] x [—3, 1] km?
» Fracture: ¥ = [0, ] x {0} km
» Fluid: Homogeneous and isotropic

permeability tensors, with K = 0.1 mD
for the bulk and KY = K* = 100D

» Solid: St.Venant—Kirchhoff material law
with Young’s modulus E = 1GP and
Poisson ratio v =0.3

Parameters
» Damping parameter: 8 = 1
» Discretization parameter £ = 0.75
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H

2
L
:

Relative H!'-Error
= o
3 8
S &
T T

1072

10—11 -

Iteration Step

Measuring the Solver Convergence:
» Constant rates, fast convergence, nearly independent of the mesh size!
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Discretization Error Rates

1= 12
G 107 S 1| —e— H'
5 5 It p15
5 = 5
M = |-+ a3
£02) £ ] h
= ks il--- w2
= = ]
| | £ | |
1072 10710 1072 10715
Mesh Size h® Mesh Size h
-2
“ |-
5 |4 p2
£ Jtn
| 1| -4 n?
= 4
";‘V
]
= E

1072 10715
Mesh Size h*
Measuring the Discretization Error
» Compare with solution on fine grid
» Optimal error rates!
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von Mises
3.41e+07+)

3e+7

2e+7

Interface Pressure

i T

9.896+06 le+07

3d matrix + 2d fracture:

> Unit cube
» Half-penny crack
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