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Wrinkling of Plastic Sheets

Wong, Pellegrino 2006:

» Shearing of a rectangular plastic sheet
> 380mm x 128 mm x 25um
E = 71240N/mm?, v = 0.31

Prescribed displacement at horizontal edges

v

v

» 3mm shear




Models of wrinkling

Tension field theory

» Scalar “wrinkling density field”
» Partial differential equation / relaxed energies

» No details, but averaged effect of the wrinkles on stress distribution

Semi-analytical models

» Semianalytical solutions of plate/shell equations
> Power laws for wrinkle amplitude/wavelength

» Only in specific situations

Full continuum mechanics
» Detailed local wrinkling behavior
> Very expensive

> Let's see...




Linear elasticity

> Geometrically linear
» St. Venant—Kirchhoff material
» £ =71240N/mm? v =0.31

RWTHAACHEN



Linear elasticity
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Finite-strain elasticity

Kinematics
» Deformation ¢ : Q — R®
» Deformation gradient F' = Vi
» Strain C = FTF

Mooney—Rivlin material (for example)
» Energy density
W (F) = a||F||* + b||Cof F||* + T(det F),  a,b>0

» Volumetric term
['(s) :=s>—logs

is C% and convex




Finite-strain elasticity
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Finite-strain elasticity
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Finite-strain elasticity

Gammal(s)

s*s - I\og(s)
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Why doesn’t the solver converge?
» Energy volumetric term

W(F)=--+TD(detF) with I(s):=

prevents local inversion / flipping of elements
» Object/elements very thin

» Very difficult to find admissible correction steps

2 — log s
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Shell models

Dimensional reduction

» Object is virtually 2-dimensional = model it by 2d equation

\

Zoo of models
» Shells vs. plates vs. membranes
» Kirchhoff type (schubstarr) vs. director theories
» 4th order vs. 2nd order

» 1 director vs. 3 directors




Shell models

Dimensional reduction

» Object is virtually 2-dimensional = model it by 2d equation
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» Kirchhoff type (schubstarr) vs. director theories
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Shell models

Dimensional reduction

» Object is virtually 2-dimensional = model it by 2d equation
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Zoo of models

» Shells vs. plates vs. membranes
» Kirchhoff type (schubstarr) vs. director theories
» 4th order vs. 2nd order

» 1 director vs. 3 directors




Geometrically Nonlinear Cosserat Shells

\

Kinematics:
» QO CR?
» Midsurface deformation: m : Q — R®
» Microrotation field: R : Q — SO(3)

Strain measures:
» Deformation gradient: F := (Vm|R3) € M**?
» Translational strain: U := RTF
» Rotational strain: £ := RTVR
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Geometrically Nonlinear Cosserat Shells

Hyperelastic material law: [Neff] (h = shell thickness)
h3
J(m, R) = / (AW (U) + = Woana () + WV ()] i
Q

Membrane energy:
1

_ X V2 V2 HA 1 132
Wnern(U) = pallsym(U—I) |+l skew (U~ )| +2M+)\2((detU 1) +(

Bending energy:

A .
Whend () = pillsym(85)[|* + prc||skew (&)1 + 2uu+ X trfsym ()]

Curvature energy:
1 1
Weun(8) = pLe P ||I8)7

Theorem ( )

Under suitable conditions, the functional J has minimizers in
H'(2,R?) x WHHP(Q, SO(3)).
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Manifold-Valued Boundary Value Problems

Partial differential equations for functions
é:Q— M, QCcR?Y d>1,

M a Riemannian manifold.

Applications:

Liquid crystals: S?, PR?, SO(3)
Cosserat shells and continua: S?, SO(3)
o-models: SU(2), SO(3)

Image processing: S?, Sym™(3)

v vV Vv Vv

v

Positivity-preserving systems: R*, Sym™(3)

[.]

v

The challenge: Nonlinear function spaces




Finite Elements for Manifold-Valued Problems

Partial differential equations for functions

¢:Q— M, QC Rd, d>1, M a Riemannian manifold.

Problem: Discretization
» Finite elements presuppose vector space structure
» But codomain M is nonlinear

Find a discretization that:
» works for any Riemannian manifold M
» is conforming

» is frame-invariant (i.e., equivariant under isometries of M)




The Pragmatic Approach

Theorem ( )

For each manifold M there exists a smooth, isometric embedding into a
Euclidean space RY .

Algorithm

> Interpolate in RY

» Project back onto M

Theorem ( )

Optimal discretization error bounds.

Properties

» Simple and fast, if an “easy” embedding/projection is given
But

» What if such an embedding is not available?

» Not elegant, because relies on embedding.
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Generalizing Lagrangian Interpolation

Reference element Tf:
> Arbitrary type

» Coordinates ¢

» Lagrange nodes v;, it =1,...,m

» Shape functions {¢;} of p-th order

Lagrange interpolation:

Assume values v1,...,v,, € M given at the Lagrange nodes.
If M is a vector space, interpolation between the v; can be written as

m

S vigi(6) = argmin 3 pu(©)lls — gl
=1 =1

qeM

Indeed, if M =R: gradientis 237", i(€)(vi — q)




Geodesic Interpolation

Idea: Generalize
argmin’ > i(€) o — al”
qeM i—1
to

arg min Z i (&) dist(v;, q)2
geM =

(dist(-, -) being the Riemannian distance on M)

Definition (Geodesic interpolation )
Let v; € M, i=1,...,m be coefficients and § coordinates on Ti.. Then
YP(v,€) = arg mmz @i (€) dist(vi, q)*
geM =

is the p-th order geodesic interpolation between the v;.

Properties:
» Reduces to standard Lagrange interpolation if M = R™
» Reduces to geodesics if d = 1, p = 1 (hence the name)
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Well-Posedness

Existence of minimizers of:

» p = 1: all weights ¢;(&) are nonnegative — [Karcher(1977)]
» p > 1: weights may become negative.

Idea:
There is a minimizer if the v; are “close enough” to each other on M.

Theorem ( )

Denote by B, (po) the geodesic ball of radius v around po € M. There are
constants D, p with 0 < D < p, depending on the curvature of M and the
total variation of the weights y;, such that if the values vi, ..., v,, are
contained in Bp(po) for some po € M, then the minimization problem has a
unique local minimizer in B,(po).
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Differentiability and Symmetry

Differentiability:

Lemma ( )

Under the assumptions of the previous theorem, the function Y7 (v; &) is
infinitely differentiable with respect to & and the v;.

Objectivity: Equivariance under an isometric group action

Lemma (Objectivity, )

For any isometry Q) acting on M and any & € Ti.r we have

QY (v; &) = T(Qu;&).

Consequence: Discretizations of frame-invariant models are frame-invariant.
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Geodesic Finite Elements

Construct global finite element spaces:

Definition (Geodesic finite elements)

Let M be a Riemannian manifold and G a grid for a d-dimensional domain,

d > 1. A geodesic finite element function is a continuous function vy, : G — M
such that for each element 7' of G, v, |7 is given by geodesic interpolation
onT.

Denote by VM the space of all such functions.
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Conformity

Nonlinear Sobolev space:
Let M be smoothly embedded into R™. Define

H'"(Q,M):={ve H(QR™) |v(s) € M ae}

Conforming discretization:

Lemma ( )

Geodesic finite elements are conforming, i.e.,

v c HY(Q, M).
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Evaluation of Geodesic Finite Elements

Definition:
T = arg min i (&) dist(vi, g 2
(5 gm Zw q)
Values:
Minimize

Z i (&) dist(vs, q)

by a Newton-type method in dim M variables. [Absil et al.]

Gradients: i.e., 9Y/0¢
Total derivative of F(£,q) := afg = 0 yields

OF(¢.q) T _  9F(,q)

aq o o

» Evaluate q := Y(v;&)

> Solve a small linear system




Gradient and Hessian of an Energy Functional

Assume PDE has minimization formulation for functional
J(v) = / W (Vou(z),v(z),z)dz on H'().
Q
Conformity: functional is well-defined on geodesic FE space

Gradient of J:

> Derivatives of geodesic FE function values wrt. to coefficients

» Derivatives of geodesic FE gradients wrt. to coefficients

Total derivative again:

OF  9°Y PF 9dq O°F 9q dq O*F *F g

9q v, 06 Ovdq Of 02 v Of  Ovi0E  DqOE i

Hessian of the energy functional J: Even worse...




Gradient and Hessian of an Energy Functional

Assume PDE has minimization formulation for functional o‘
° ‘,

J(v) ::/QW(VU(Q:),v(x),m) dz on Hl(S;ll \

\
po&

Conformity: functional is well-defined on geodesic FE s

Gradient of J: Q(

» Derivatives of geodesic FE functio& rt. to coefficients
» Derivatives of geodesic FE gra&n

o,
Total derivative again: 0&\ ‘\o\
M“_m_éé‘.aqw_aq.an@ﬁq
Oq Ov; Of % Oq 0¢ 0q¢2 Ov 0¢  Ov; q ¢ Ov;
RS 52
Hessian t@energy functional J: Even worseQ

rt. to coefficients




Discretization Error Measurements

Minimize harmonic energy:

6:0 5 57, E(¢):/HV¢H2dw
Q

The inverse stereographic map minimizes E in its homotopy class.

Setup
» Domain Q = [-5,5]°
» Dirichlet boundary conditions
» Discretization error for d =2, p =1,2,3:
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A priori Bounds [with P. Grohs and H. Hardering]

Linear result:

Let J be a quadratic coercive functional on H} (). Let u be the minimizer of
J in H}(SY), and uy, the minimizer in a p-th order Lagrangian finite element
space contained in Hg. Then

[l = unl[ g1 < ChPul.

Questions for a proof in nonlinear spaces:
» What replaces the error ||u — up || z17?
» Appropriate measure of solution regularity |u|?

» Ellipticity/coercivity in a nonlinear function space?

And:
» Do we get optimal orders?

» Do we need more regularity than in the linear case?
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A priori error bounds [with P. Grohs and H. Hardering]

Distance

d
. D
Duatuo?i= [ lostute), @)z et [ |- tog(ate). o)
a=17D ’

» Not a distance metric
» But:  distyi(u,v) < CDi2(u,v) and |[i(v) —i(uw)| g1 < CDi2(u,v)

2
dx.
u(x)

Convexity
Definition (Convexity along paths)
Let H be a set of functions from €2 into M. Let

J:H—R

be a C? energy functional. We say that .J is elliptic along a curve T': [ — H if
there exist constants A\, A such that

d? .
APl < arJT@) < AL
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Theorem ( )

Assume that J is elliptic along geodesic homotopies. Denote

u = argmin J(w) ( “continuous solution”)
weH g

and
1
Hy 1 := H N some extra smoothness

Let V C Hy ;, and
v = arg min J(w). (“discrete solution”)
weV

Then we have that

A .
D1 2(u,v) < 022\/ 5\ Jréfv D12 (u, w)

with a constant C only depending on the product K L and the curvature of M.
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Nonlinear Bramble—Hilbert Lemma

Definition (k-th order smoothness descriptor, )

For a function u : U — M defined on a domain U C R? define for p € [1, o0]
the homogenous k-th order smoothness descriptor
1/p
dx .
g(u(x))

Opurvr(u) = (/ 1 | utz)

2 1Bj1=Fk

Corresponding inhomogenous smoothness descriptor

Op,k,u (u E Op,i,u(

Slightly weaker than a covariant Sobolev norm.

RWTHAACHEN



Let A be a reference element, and [awu the interpolation of u at the Lagrange
nodes.

Lemma ( )

Fork>§andp2k—1 we have

DLQ(HAU, u)2 < C(u, A) . @k,A(u)z

~

with

2
C(u,A) = ( sup sup Hvlz log (p, Q)H
1<I<k (p,q)€lau(A) xu(A)

2
+ sup sup Hvlzvl log(p,q)H )
1<I<k (p,q)€Elau(A) X €u(A)

The implicit constants are independent of u and M.
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Theorem ( )

Let J be a C? energy, elliptic along geodesic homotopies. Denote

u=  argmin J(u), ( “continuous solution”)
veWh2, vjgo—qa

and assume that u € W*2(Q, M) N W'>°(Q, M) with k > d/2. With
K 2 Oco,1,0(u), and L arbitrary, define Hy 1. Let

h M
VL = Vp,h ﬂH}‘(,L

be a Lagrangian GFE space. Further, denote
o™ := argmin J(w). ( “discrete solution”)
weVh

Then, whenever p > k — 1, we have the a-priori error estimate

D1 2(u, vh) < e
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Discretization Error Bounds

Executive Summary:

Theorem ( )

Optimal orders under mild additional smoothness assumptions.
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Discretization Error Bounds

Executive Summary:

Theorem ( )

Optimal orders under mild additional smoothness assumptions.

Even prettier proofs in:

Hanne Hardering: “Intrinsic Discretization Error Bounds for Geodesic Finite
Elements”, PhD Thesis, FU Berlin, 2015
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Back to Wrinkling: The Wong—Pellegrino Experiment

Experiment:




Back to Wrinkling: The Wong—Pellegrino Experiment

Experiment:

Simulation:
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