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Wrinkling of Plastic Sheets

Wong, Pellegrino 2006:

I Shearing of a rectangular plastic sheet

I 380mm x 128 mm x 25µm

I E = 71240 N/mm2, ν = 0.31

I Prescribed displacement at horizontal edges

I 3 mm shear



Models of wrinkling

Tension field theory

I Scalar “wrinkling density field”

I Partial differential equation / relaxed energies

I No details, but averaged effect of the wrinkles on stress distribution

Semi-analytical models

I Semianalytical solutions of plate/shell equations

I Power laws for wrinkle amplitude/wavelength

I Only in specific situations

Full continuum mechanics

I Detailed local wrinkling behavior

I Very expensive

I Let’s see...



Linear elasticity

I Geometrically linear

I St. Venant–Kirchhoff material

I E = 71240 N/mm2, ν = 0.31



Linear elasticity

I Geometrically linear

I St. Venant–Kirchhoff material

I E = 71240 N/mm2, ν = 0.31



Linear elasticity
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Finite-strain elasticity

Kinematics

I Deformation ϕ : Ω→ R3

I Deformation gradient F = ∇ϕ
I Strain C = FTF

Mooney–Rivlin material (for example)

I Energy density

W (F ) = a‖F‖2 + b‖Cof F‖2 + Γ(detF ), a, b > 0

I Volumetric term
Γ(s) := s2 − log s

is C2 and convex



Finite-strain elasticity
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No solver convergence!
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Finite-strain elasticity
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Why doesn’t the solver converge?
I Energy volumetric term

W (F ) = · · ·+ Γ(detF ) with Γ(s) := s2 − log s

prevents local inversion / flipping of elements
I Object/elements very thin
I Very difficult to find admissible correction steps



Shell models

Dimensional reduction

I Object is virtually 2-dimensional ⇒ model it by 2d equation

Zoo of models

I Shells vs. plates vs. membranes

I Kirchhoff type (schubstarr) vs. director theories

I 4th order vs. 2nd order

I 1 director vs. 3 directors
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Geometrically Nonlinear Cosserat Shells

Kinematics:

I Ω ⊂ R2

I Midsurface deformation: m : Ω→ R3

I Microrotation field: R : Ω→ SO(3)

Strain measures:

I Deformation gradient: F := (∇m|R3) ∈ M3×3

I Translational strain: U := RTF
I Rotational strain: K := RT∇R



Geometrically Nonlinear Cosserat Shells

Hyperelastic material law: [Neff] (h = shell thickness)

J(m,R) =

∫
Ω

[
hWmemb(U) +

h3

12
Wbend(K) + hWcurv(K)

]
dx

Membrane energy:

Wmemb(U) = µ‖sym(U−I)‖2+µc‖skew(U−I)‖2+
µλ

2µ+ λ

1

2

(
(detU−1)2+(

1

detU
−1)2

)
Bending energy:

Wbend(Kb) = µ‖sym(Kb)‖2 + µc‖skew(Kb)‖2 +
µλ

2µ+ λ
tr[sym(Kb)]

2

Curvature energy:
Wcurv(K) = µL1+p

c ‖K‖1+p

Theorem ([Neff])

Under suitable conditions, the functional J has minimizers in
H1(Ω,R3)×W 1,1+p(Ω,SO(3)).



Manifold-Valued Boundary Value Problems

Partial differential equations for functions

φ : Ω→M, Ω ⊂ Rd, d ≥ 1,

M a Riemannian manifold.

Applications:

I Liquid crystals: S2, PR2, SO(3)

I Cosserat shells and continua: S2, SO(3)

I σ-models: SU(2), SO(3)

I Image processing: S2, Sym+(3)

I Positivity-preserving systems: R+, Sym+(3)

I [...]

The challenge: Nonlinear function spaces



Finite Elements for Manifold-Valued Problems

Partial differential equations for functions

φ : Ω→M, Ω ⊂ Rd, d ≥ 1, M a Riemannian manifold.

Problem: Discretization

I Finite elements presuppose vector space structure
I But codomain M is nonlinear

Find a discretization that:

I works for any Riemannian manifold M
I is conforming
I is frame-invariant (i.e., equivariant under isometries of M)



The Pragmatic Approach

Theorem ([Nash])

For each manifold M there exists a smooth, isometric embedding into a
Euclidean space RN .

Algorithm

I Interpolate in RN

I Project back onto M

Theorem ([Grohs, Sprecher, S, in prep.])

Optimal discretization error bounds.

Properties

I Simple and fast, if an “easy” embedding/projection is given

But

I What if such an embedding is not available?

I Not elegant, because relies on embedding.



Generalizing Lagrangian Interpolation

Reference element Tref:

I Arbitrary type

I Coordinates ξ

I Lagrange nodes νi, i = 1, . . . ,m

I Shape functions {ϕi} of p-th order

Lagrange interpolation:

Assume values v1, . . . , vm ∈M given at the Lagrange nodes.
If M is a vector space, interpolation between the vi can be written as

m∑
i=1

viϕi(ξ) = arg min
q∈M

m∑
i=1

ϕi(ξ)‖vi − q‖2.

Indeed, if M = R: gradient is 2
∑m
i=1 ϕi(ξ)(vi − q)



Geodesic Interpolation

Idea: Generalize

arg min
q∈M

m∑
i=1

ϕi(ξ)‖vi − q‖2.

to

arg min
q∈M

m∑
i=1

ϕi(ξ) dist(vi, q)
2

(dist(·, ·) being the Riemannian distance on M)

Definition (Geodesic interpolation [S ’11, S ’13, Grohs ’12])

Let vi ∈M , i = 1, . . . ,m be coefficients and ξ coordinates on Tref. Then

Υp(v, ξ) = arg min
q∈M

m∑
i=1

ϕi(ξ) dist(vi, q)
2

is the p-th order geodesic interpolation between the vi.

Properties:
I Reduces to standard Lagrange interpolation if M = Rm
I Reduces to geodesics if d = 1, p = 1 (hence the name)



Well-Posedness

Existence of minimizers of:

arg min
q∈M

m∑
i=1

ϕi(ξ) dist(vi, q)
2

I p = 1: all weights ϕi(ξ) are nonnegative −→ [Karcher(1977)]
I p > 1: weights may become negative.

Idea:
There is a minimizer if the vi are “close enough” to each other on M .

Theorem ([S ’12, Hardering ’15])

Denote by Br(p0) the geodesic ball of radius r around p0 ∈M . There are
constants D, ρ with 0 < D < ρ, depending on the curvature of M and the
total variation of the weights ϕi, such that if the values v1, . . . , vm are
contained in BD(p0) for some p0 ∈M , then the minimization problem has a
unique local minimizer in Bρ(p0).

M

Bρ

BD



Differentiability and Symmetry

Differentiability:

Lemma ([S ’11])

Under the assumptions of the previous theorem, the function Υp(v; ξ) is
infinitely differentiable with respect to ξ and the vi.

Objectivity: Equivariance under an isometric group action

Lemma (Objectivity, [S ’10, S ’13])

For any isometry Q acting on M and any ξ ∈ Tref we have

QΥ(v; ξ) = Υ(Qv; ξ).

Consequence: Discretizations of frame-invariant models are frame-invariant.



Geodesic Finite Elements

Construct global finite element spaces:

Definition (Geodesic finite elements)

Let M be a Riemannian manifold and G a grid for a d-dimensional domain,
d ≥ 1. A geodesic finite element function is a continuous function vh : G→M
such that for each element T of G, vh|T is given by geodesic interpolation
on T .

Denote by VMh the space of all such functions.



Conformity

Nonlinear Sobolev space:
Let M be smoothly embedded into Rm. Define

H1(Ω,M) := {v ∈ H1(Ω,Rm) | v(s) ∈M a.e.}

Conforming discretization:

Lemma ([S ’11])

Geodesic finite elements are conforming, i.e.,

VMh ⊂ H1(Ω,M).



Evaluation of Geodesic Finite Elements

Definition:

Υ(v; ξ) = arg min
q∈M

m∑
i=1

ϕi(ξ) dist(vi, q)
2

Values:
Minimize

fξ(q) :=
m∑
i=1

ϕi(ξ) dist(vi, q)
2

by a Newton-type method in dimM variables. [Absil et al.]

Gradients: i.e., ∂Υ/∂ξ

Total derivative of F (ξ, q) :=
∂fξ
∂q

= 0 yields

∂F (ξ, q)

∂q
· ∂Υ

∂ξ
= −∂F (ξ, q)

∂ξ

I Evaluate q := Υ(v; ξ)

I Solve a small linear system



Gradient and Hessian of an Energy Functional

Assume PDE has minimization formulation for functional

J(v) :=

∫
Ω

W (∇v(x), v(x), x) dx on H1(Ω1).

Conformity: functional is well-defined on geodesic FE space

Gradient of J :

I Derivatives of geodesic FE function values wrt. to coefficients

I Derivatives of geodesic FE gradients wrt. to coefficients

Total derivative again:

∂F

∂q
· ∂

2Υ

∂vi ∂ξ
= − ∂2F

∂v ∂q
· ∂q
∂ξ
− ∂2F

∂q2
· ∂q
∂v
· ∂q
∂ξ
− ∂2F

∂vi ∂ξ
− ∂2F

∂q ∂ξ
· ∂q
∂vi

.

Hessian of the energy functional J : Even worse...



Gradient and Hessian of an Energy Functional

Assume PDE has minimization formulation for functional

J(v) :=

∫
Ω

W (∇v(x), v(x), x) dx on H1(Ω1).

Conformity: functional is well-defined on geodesic FE space

Gradient of J :

I Derivatives of geodesic FE function values wrt. to coefficients

I Derivatives of geodesic FE gradients wrt. to coefficients

Total derivative again:

∂F

∂q
· ∂

2Υ

∂vi ∂ξ
= − ∂2F

∂v ∂q
· ∂q
∂ξ
− ∂2F

∂q2
· ∂q
∂v
· ∂q
∂ξ
− ∂2F

∂vi ∂ξ
− ∂2F

∂q ∂ξ
· ∂q
∂vi

.

Hessian of the energy functional J : Even worse...

Use
 a

uto
m

atic
 d

iff
ere

ntia
tio

n! 

(le
ss

 p
ain

)



Discretization Error Measurements

Minimize harmonic energy:

φ : Ω→ S2, E(φ) =

∫
Ω

‖∇φ‖2 dx

Lemma

The inverse stereographic map minimizes E in its homotopy class.

Setup
I Domain Ω = [−5, 5]2

I Dirichlet boundary conditions
I Discretization error for d = 2, p = 1, 2, 3:
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A priori Bounds [with P. Grohs and H. Hardering]

Linear result:

Theorem

Let J be a quadratic coercive functional on H1
0 (Ω). Let u be the minimizer of

J in H1
0 (Ω), and uh the minimizer in a p-th order Lagrangian finite element

space contained in H1
0 . Then

‖u− uh‖H1 ≤ Chp|u|.

Questions for a proof in nonlinear spaces:

I What replaces the error ‖u− uh‖H1?

I Appropriate measure of solution regularity |u|?
I Ellipticity/coercivity in a nonlinear function space?

And:

I Do we get optimal orders?

I Do we need more regularity than in the linear case?



A priori error bounds [with P. Grohs and H. Hardering]

Distance

D1,2(u, v)2 :=

∫
D

|log(u(x), v(x))|2u(x) dx+

d∑
α=1

∫
D

∣∣∣∣ Ddxα log(u(x), v(x))

∣∣∣∣2
u(x)

dx.

I Not a distance metric
I But: distH1(u, v) < CD1,2(u, v) and ‖i(v)− i(u)‖H1 < CD1,2(u, v)

Convexity

Definition (Convexity along paths)

Let H be a set of functions from Ω into M . Let

J : H → R

be a C2 energy functional. We say that J is elliptic along a curve Γ : I → H if
there exist constants λ,Λ such that

λ|Γ̇|2G ≤
d2

dt2
J(Γ(t)) ≤ Λ|Γ̇|2G.



Nonlinear Céa Lemma

Theorem ([Grohs, Hardering, S])

Assume that J is elliptic along geodesic homotopies. Denote

u = arg min
w∈HK

J(w) (“continuous solution”)

and
Hu
K,L := H1 ∩ some extra smoothness

Let V ⊂ Hu
K,L and

v = arg min
w∈V

J(w). (“discrete solution”)

Then we have that

D1,2(u, v) ≤ C2
2

√
Λ

λ
inf
w∈V

D1,2(u,w)

with a constant C2 only depending on the product KL and the curvature of M .



Nonlinear Bramble–Hilbert Lemma

Definition (k-th order smoothness descriptor, [Grohs])

For a function u : U →M defined on a domain U ⊂ Rd define for p ∈ [1,∞]
the homogenous k-th order smoothness descriptor

Θ̇p,k,U (u) :=
∑

∑
j |βj |=k

(∫
U

∏
j

∣∣∣Dβju(x)
∣∣∣p
g(u(x))

dx

)1/p

.

Corresponding inhomogenous smoothness descriptor

Θp,k,U (u) :=

k∑
i=1

Θ̇p,i,U (u).

Slightly weaker than a covariant Sobolev norm.



Nonlinear Bramble–Hilbert Lemma

Let ∆ be a reference element, and I∆u the interpolation of u at the Lagrange
nodes.

Lemma ([Grohs, Hardering, S])

For k > d
2

and p ≥ k − 1 we have

D1,2(I∆U, u)2 . C(u,∆) · Θ̇k,∆(u)2

with

C(u,∆) =

(
sup

1≤l≤k
sup

(p,q)∈I∆u(∆)×u(∆)

∥∥∥∇l2 log (p, q)
∥∥∥2

+ sup
1≤l≤k

sup
(p,q)∈I∆u(∆)×∈u(∆)

∥∥∥∇l2∇1 log (p, q)
∥∥∥2
)
.

The implicit constants are independent of u and M .



Discretization Error Bounds

Theorem ([Grohs, Hardering, S, FoCM 2014])

Let J be a C2 energy, elliptic along geodesic homotopies. Denote

u = arg min
v∈W1,2, v|∂Ω=Φ

J(u), (“continuous solution”)

and assume that u ∈W k,2(Ω,M) ∩W 1,∞(Ω,M) with k > d/2. With
K & Θ∞,1,Ω(u), and L arbitrary, define Hu

K,L. Let

V h = VMp,h ∩Hu
K,L

be a Lagrangian GFE space. Further, denote

vh := arg min
w∈V h

J(w). (“discrete solution”)

Then, whenever p ≥ k − 1, we have the a-priori error estimate

D1,2(u, vh) . hk−1.



Discretization Error Bounds

Executive Summary:

Theorem ([Grohs, Hardering, S, FoCM 2014])

Optimal orders under mild additional smoothness assumptions.
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Even prettier proofs in:

Hanne Hardering: “Intrinsic Discretization Error Bounds for Geodesic Finite
Elements”, PhD Thesis, FU Berlin, 2015



Back to Wrinkling: The Wong–Pellegrino Experiment

Experiment:
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Simulation:
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Thank you for your attention!
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