Nonsmooth multigrid methods for small-strain plasticity

Oliver Sander

DD24, Svalbard, 9. 2. 2017

Small-strain elastoplasticity

- Classic problem in numerical analysis
- Dual formulation: nonsmooth saddle point problem
- Primal formulation: minimization problem

Solvers

- Basically a solved problem
- Predictor-corrector methods

Nonsmooth multigrid

- MUCH faster than previous methods
- Globally convergent
- a.k.a. inexact predictor-corrector methods

Small-strain plasticity

Total strain:

$$
\varepsilon(\mathbf{u}):=\frac{1}{2}\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right)
$$

Additive split:

$$
\varepsilon=\mathbf{e}+\mathbf{p}
$$

- Elastic strain $\mathbf{e} \in \mathbb{S}^{d}$
- Plastic strain $\mathbf{p} \in \mathbb{S}_{0}^{d}$ is symmetric and trace-free.

Only elastic strain leads to stress:

$$
\boldsymbol{\sigma}=\mathbf{C}: \mathbf{e}
$$

Equilibrium conditions:

$$
-\operatorname{div} \boldsymbol{\sigma}=\mathbf{f}
$$

Evolution of p: Nonsmooth ODE

- Postulate existence of elastic set in space of stresses
- $\dot{\mathbf{p}}=0$ if $\sigma \in \operatorname{int} \mathcal{E}$
- $\dot{\mathbf{p}} \in N_{\mathcal{E}}(\boldsymbol{\sigma})$, if $\sigma \in \partial \mathcal{E}$

Dual formulation

- Unknowns: Displacement u and stresses σ

Primal formulation

Dissipation function

- Support function of the elastic set

$$
D(\mathbf{p}):=\sup _{\boldsymbol{\sigma} \in \mathcal{E}}\{\mathbf{p}: \boldsymbol{\sigma}\} \in \mathbb{R} \cup\{\infty\} .
$$

- Convex, positively homogeneous, lower semicontinuous, proper
- Dual flow rule

$$
\boldsymbol{\sigma} \in \partial D(\dot{\mathbf{p}})
$$

Variational inequality of 2nd kind:
Find $\mathbf{w}=(\mathbf{u}, \mathbf{p}):[0, T] \rightarrow W:=H^{1}\left(\Omega, \mathbb{R}^{d}\right) \times L_{2}\left(\Omega, \mathbb{S}_{0}^{d}\right)$ so that

$$
a(\mathbf{w}(t), \tilde{\mathbf{w}}-\dot{\mathbf{w}}(t))+j(\tilde{\mathbf{w}})-j(\dot{\mathbf{w}}(t)) \geq\langle l(t), \tilde{\mathbf{w}}-\dot{\mathbf{w}}(t)\rangle \quad \forall \tilde{\mathbf{w}} \in W, t \in(0, T)
$$

with

$$
\begin{aligned}
a(\mathbf{w}, \tilde{\mathbf{w}}) & :=\int_{\Omega}\left[\mathbf{C}(\varepsilon(\mathbf{u})-\mathbf{p}):(\varepsilon(\tilde{\mathbf{u}})-\tilde{\mathbf{p}})+k_{1} \mathbf{p}: \tilde{\mathbf{p}}\right] d x \\
j(\tilde{\mathbf{w}}) & :=\int_{\Omega} D(\tilde{\mathbf{p}}, \tilde{\eta}) d x, \quad\langle l(t), \tilde{\mathbf{w}}\rangle=\int_{\Omega} \mathbf{f}(t) \cdot \tilde{\mathbf{u}} d x .
\end{aligned}
$$

Dissipation functions

Von Mises plasticity

$$
\mathbf{p} \in \mathbb{S}_{0}^{d}, \quad D(\mathbf{p})=\sigma_{c}\|\mathbf{p}\|
$$

Tresca plasticity

$$
D(\mathbf{p})=\sigma_{c} \max \left\{\left|p_{1}\right|,\left|p_{2}\right|,\left|p_{3}\right|\right\}, \quad p_{1}, p_{2}, p_{3} \text { the eigenvalues of } \mathbf{p}
$$

Isotropic hardening

- Additional scalar variable η
- Von Mises plasticity with isotropic hardening

$$
(\mathbf{p}, \eta) \in \mathbb{S}_{0}^{d} \times \mathbb{R}_{+}, \quad D(\mathbf{p}, \eta)= \begin{cases}c_{0}\|\mathbf{p}\| & \text { if }\|\mathbf{p}\| \leq \eta \\ +\infty & \text { else }\end{cases}
$$

- Mutatis mutandis for Tresca plasticity with isotropic hardening

Discretization

Discretization in time

- Implicit Euler method
- Increments $\Delta \mathbf{w}_{n}:=\mathbf{w}_{n}-\mathbf{w}_{n-1}$ minimize the functional

$$
\mathcal{L}(\mathbf{w})=\frac{1}{2} a(\mathbf{w}, \mathbf{w})+j(\mathbf{p})-\left\langle l_{n}, \mathbf{w}\right\rangle, \quad \mathbf{w}=(\mathbf{u}, \mathbf{p}) .
$$

- Functional is strictly convex and coercive.

Discretization in space

- Displacements: first-order Lagrangian finite elements with values in \mathbb{R}^{d}
- Scalar basis functions $\phi_{i}, i=1, \ldots, n_{1}$
- Plastic strain: zero-order elements with values in \mathbb{S}_{0}^{d}
- Scalar basis functions $\theta_{i}, i=1, \ldots, n_{2}$

Algebraic increment functional:

$$
\begin{aligned}
L & :\left(\mathbb{R}^{d}\right)^{n_{1}} \times\left(\mathbb{S}_{0}^{d}\right)^{n_{2}} \rightarrow \mathbb{R} \\
L(w) & :=\frac{1}{2} w^{T} A w-b^{T} w+\sum_{i=1}^{n_{2}} \int_{\Omega} \theta_{i}(x) d x \cdot D\left(\sum_{j, k=1}^{d} p_{i, j k}\right) .
\end{aligned}
$$

Stiffness matrix:

$$
A=\left(\begin{array}{cc}
E & C \\
C^{T} & P
\end{array}\right)
$$

- Elasticity matrix

$$
\left(E_{i j}\right)_{k l}=\int_{\Omega} \mathbf{C}\left(\varepsilon\left(\phi_{i} \mathbf{e}_{k}\right): \varepsilon\left(\phi_{j} \mathbf{e}_{l}\right) d x, \quad 1 \leq i, j \leq n_{1}, \quad 1 \leq k, l \leq d\right.
$$

- "Plastic strain matrix"

$$
P_{i i}=\int_{\Omega}\left(\mathbf{C}+k_{1} \mathbf{I}\right) \theta_{i}(x)^{2} d x, \quad 1 \leq i \leq n_{2}
$$

- plus coupling terms C

Block structure

- n_{1} blocks of size d, followed by n_{2} blocks of size $d \times d$
- Canonical restriction operators R_{i}

Nonsmooth strictly convex minimization problem Separable energy

$$
L(w)=L_{0}(w)+\sum_{i \in \text { blocks }} \varphi_{i}\left(R_{i} w\right)
$$

- $L_{0}(w)=\frac{1}{2} w^{T} A w-b^{T} w$ is smooth, strictly convex, coercive
- Convex, proper, lower semi-continuous functionals $\varphi_{i}: \mathbb{R}^{n_{i}} \rightarrow \mathbb{R} \cup\{\infty\}$.

$$
\varphi_{i}(w):=\int_{\Omega} \theta_{i}(x) d x \cdot D\left(\sum_{j, k=1}^{d} p_{i, j k}\right)
$$

The algorithm

1. Nonlinear presmoothing (Gauß-Seidel)

- For each block i, inexactly solve a local minimization problem for

$$
L_{i}(w):=L_{0}\left(R_{i}^{T} w\right)+\varphi_{i}(w)
$$

in the variables of the i-th block.
2. Truncated linearization

- Freeze all variables where L is not differentiable.
- Linearize everywhere else

3. Linear correction

- One linear geometric multigrid step

4. Projection onto admissible set

- Simply in the ℓ^{2}-sense

5. Line search

- 1d nonsmooth convex minimization problem: use bisection

Theorem (Gräser, S. 2016)

Let $w^{0} \in \operatorname{dom} L$ and assume that the inexact solution local solution operator
\mathcal{M}_{i} satisfies the following assumptions:

- Monotonicity: $L\left(\mathcal{M}_{i}(w)\right) \leq L(w)$ for all $w \in \operatorname{dom} L$.
- Continuity: \mathcal{M}_{i} is continuous.
- Stability: $L\left(\mathcal{M}_{i}(w)\right)<L(w)$ if $L(w)$ is not minimal in the i-th block.

Then the iterates produced by the TNNMG method converge to the unique minimizer of L.

Smoothers

Local minimization problems for von Mises plasticity:

$$
L_{i}: \mathbb{S}_{0}^{d} \rightarrow \mathbb{R}, \quad L_{i}(p):=\frac{1}{2} p^{T} P_{i i} p-p^{T} r_{i}+\lambda_{i} \sigma_{c}\|p\|
$$

with

$$
P_{i i}=\int_{\Omega}\left(\mathbf{C}+k_{1} \mathbf{I}\right) \theta_{i}(x)^{2} d x
$$

Lemma (Folklore; Alberty, Carstensen, Zarrabi, 1999)

The exact minimizer is

$$
p^{*}=\frac{\max \left\{\left(\left\|\operatorname{dev} r_{i}\right\|-\lambda_{i} \sigma_{c}\right), 0\right\}}{\lambda_{i}\left(2 \mu+k_{1}\right)} \frac{\operatorname{dev} r_{i}}{\left\|\operatorname{dev} r_{i}\right\|}
$$

Alternative:

- Steepest descent methods

Linear correction problems

- Newton linearization

$$
H_{k}=\left(\begin{array}{cc}
E & C \\
C^{T} & P+\nabla^{2} \varphi\left(w_{k}\right)
\end{array}\right)
$$

- Freeze degrees of freedom where dissipation function is not differentiable
- Do one geometric multigrid iteration

Semi-definite Hesse matrices

- Freezing of variables leads to semi-definite Hesse matrices.
- Modify linear geometric multigrid to handle semi-definiteness

Alternative

- $\widetilde{P}:=P+\nabla^{2} \varphi\left(w_{k}\right)$ is block-diagonal; computing pseudo-inverse \widetilde{P}^{+}is cheap.
- Pseudo-Schur-complement $S:=E-C \widetilde{P}^{+} C^{T}$ is positive definite.
- Do linear multigrid step for the Schur complement system.

State of the art

Predictor-corrector with consistent tangent

1. Predictor

- Freeze all variables where L is not differentiable.
- Linearize everywhere else
- Solve exactly!

2. Corrector

- For each plastic strain block i, solve a local minimization problem for

$$
L_{k}(w):=L_{0}\left(R_{i}^{T} w\right)+\varphi_{i}(w)
$$

in the variables of the i-th block.
3. Line search

- 1d nonsmooth convex minimization problem

Benchmark: Square with a hole $-2 d$

Geometry and boundary conditions

levels	cells	vertices
1	176	105
2	704	385
3	2816	1473
4	11264	5761
5	45056	22785
6	180224	90625

Evolution of the plastic zone

- One nonlinear smoothing step per iteration
- Using exact local solver
- TNNMG: one $V(3,3)$-cycle for the linear correction
- Predictor-corrector: Solve linear correction with UMFPack

Time to solution

Wall-time normalized with problem size

- This is a logarithmic plot!

Wall-time normalized with problem size

- This is a logarithmic plot!
- On finest grid, TNNMG is about 40 times faster than predictor-corrector!

Wall-time normalized with problem size

- This is a logarithmic plot!
- On finest grid, TNNMG is about 40 times faster than predictor-corrector!
- Unfair comparison: UMFPack uses my second CPU core

Conclusion and outlook

Conclusion

- Direct multigrid method for small-strain von Mises plasticity
- Much faster than state-of-the-art algorithms
- Nevertheless provably convergent
- Interpretation as inexact predictor-corrector methods

Outlook
Works also for

- Tresca flow rules and others
- Isotropic hardening and others
- Certain gradient plasticity models
- Certain crystal plasticity models

