

Benchmarking: Deformation and Flow in Fractured Poroelastic Media 2017, Hamburg

Katja Hanowski and Oliver Sander TU Dresden

December 5th, 2017

# Benchmarking



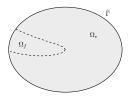
**Terrestrial Environmental Sciences Olaf Kolditz Thomas Nagel** Hua Shao Wenging Wang Sebastian Bauer Editors Thermo-Hydro-Mechanical-**Chemical Processes** in Fractured Porous Media: Modelling and Benchmarking

From Benchmarking to Tutoring



## Fractures in porous media





Domain contained in the medium with different material properties

- Depending on the application:
  - Filling: Only fluid or debris
  - Rough surface or smooth surface

<u>►</u> ...

 $\Rightarrow$  Different approaches for the fracture modelling (Stokes, Darcy,  $\ldots)$ 



Small-strain Biot Equation:

$$abla \cdot (\sigma(\mathbf{u}) - lpha 
ho \mathbb{I}) = 0$$

with

$$\sigma(\textbf{u}) = \mathbb{E}: \textbf{e}(\textbf{u})$$

where

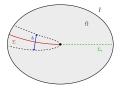
$$\mathbf{e}(\mathbf{u}) = \frac{1}{2} (\nabla \mathbf{u} + \nabla \mathbf{u}^T)$$

$$S \frac{\partial p}{\partial t} - \nabla \cdot \mathbf{q} = -\alpha \frac{\partial \operatorname{tr}(\mathbf{e}(\mathbf{u}))}{\partial t}$$

with

$$\mathbf{q} = -\mathbf{K}\nabla p$$

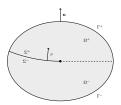




## Complexity reduction:

Two general approaches derived from equidimensional formulation:

- Homogenization of large fracture networks
- Dimension reduction:
   Via lubrication theory or averaging





Bulk equations:

- Poroelasticity equations in  $\Omega \setminus \overline{\Sigma}$ ,
- Darcy law in  $\Omega \setminus \overline{\Sigma}$ ,  $\alpha \in [0, 1]$

$$S_{\Omega}\partial_{t}p^{\Omega} + \alpha \nabla \cdot (\partial_{t}\mathbf{u}^{\Omega}) + \nabla \cdot \mathbf{q}^{\Omega} = t^{\Omega}$$
$$-\mathbf{K}(\nabla p^{\Omega} - \rho'\mathbf{g}) = \mathbf{q}^{\Omega}$$

## Fracture equation:

Averaged Darcy law on Σ

[Martin, Jaffré, Roberts '05], with curvature terms

$$S_{\Sigma}b\partial_{t}\rho^{\Sigma} + S_{\Sigma}(\rho^{\Sigma} - \{\rho^{\Omega}\})\partial_{t}b + \alpha\partial_{t}b + \nabla_{\tau} \cdot \mathbf{q}^{\Sigma} + \llbracket \mathbf{q}^{\Omega} \rrbracket \cdot \mathbf{v} = bf^{\Sigma} - b\kappa\{\mathbf{q}^{\Omega}\} \cdot \mathbf{v} \\ -b\mathbf{K}^{\tau}(\nabla_{\tau}\rho^{\Sigma} - \rho'\mathbf{g}^{\tau}) = \mathbf{q}^{\Sigma}$$



• Coupling constraints on  $\Sigma$ ,  $\xi \in (1/2, 1]$ 

$$\begin{aligned} \left\{ \mathbf{q}^{\Omega} \right\} \cdot \mathbf{v} &= \frac{-K^{\mathbf{v}}}{b} \left( \left[ \left[ \boldsymbol{\rho}^{\Omega} \right] \right] - b \boldsymbol{\rho}^{\prime} \mathbf{g} \cdot \mathbf{v} \right) \\ \left[ \left[ \mathbf{q}^{\Omega} \right] \right] \cdot \mathbf{v} &= \frac{4}{2\xi - 1} \frac{K^{\mathbf{v}}}{b} \left( \boldsymbol{\rho}^{\Sigma} - \left\{ \boldsymbol{\rho}^{\Omega} \right\} \right) \\ -\boldsymbol{\rho}^{\Sigma} \mathbf{v}^{\pm} &= \sigma \left( \mathbf{u}^{\Omega} \right) \cdot \mathbf{v}^{\pm} \\ \mathbf{b} &= \left[ \left[ \mathbf{u}^{\Omega} \right] \right] \cdot \mathbf{v} \end{aligned}$$



## Bulk equations:

- Poroelasticity equations in  $\Omega \setminus \overline{\Sigma}$ ,
- Darcy law in  $\Omega \setminus \overline{\Sigma}$ ,  $\alpha \in [0, 1]$

$$\begin{split} S_{\Omega}\partial_{t}\boldsymbol{p}^{\Omega} + \boldsymbol{\alpha}\nabla\cdot(\partial_{t}\mathbf{u}^{\Omega}) + \nabla\cdot\mathbf{q}^{\Omega} &= \boldsymbol{f}^{\Omega} + \boldsymbol{Q}^{L} \\ -\mathbf{K}\big(\nabla\boldsymbol{p}^{\Omega} - \boldsymbol{\rho}'\mathbf{g}\big) &= \mathbf{q}^{\Omega} \end{split}$$

## Fracture equation:

Lubrication Equation on Σ

$$S_{\Sigma} b \partial_t p^{\Sigma} + \alpha \partial_t b + \nabla_{\tau} \cdot \mathbf{q}^{\Sigma} = f^{\Sigma} - Q^L$$
$$- \frac{b^3}{12\mu} \left( \nabla_{\tau} p^{\Sigma} - \rho' \mathbf{g}^{\tau} \right) = \mathbf{q}^{\Sigma}$$



Coupling constraints on Σ

$$\llbracket p^{\Omega} \rrbracket = 0$$
  

$$p^{\Sigma} = \{p^{\Omega}\} = p^{\Omega}$$
  

$$\llbracket \sigma(\mathbf{u}^{\Omega}) \rrbracket \cdot \tau = 0$$
  

$$\sigma(\mathbf{u}^{\Omega}) \rbrace \cdot v = b\mathbf{K} - \beta p^{\Omega} \rrbracket$$
  

$$b = \llbracket \mathbf{u}^{\Omega} \rrbracket \cdot v$$

# Discretization: XFEM

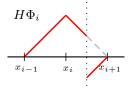


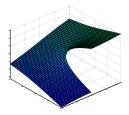
#### Challenge:

- Displacement  $\mathbf{u}^{\Omega}$  discontinuous on  $\Sigma$
- Fracture averaging: Pressure p<sup>Ω</sup> discontinuous on Σ
- Singularities at the crack tip

## XFEM basic idea:

- Additional bespoke FE functions near the crack
- Reproduce discontinuity: Heavyside function
- Reproduce singularity: Special singularity functions derived by asymptotic analysis
- Aim: Retain optimal discretization errors







## Finite element functions:

- Linear FE functions  $\Phi_i^{\Omega}: \overline{\Omega} \to \mathbb{R}^d$   $(i = 0, ..., n^{\Omega})$  in the bulk
- ► Linear FE functions  $\Phi_i^{\Sigma} : \overline{\Sigma} \to \mathbb{R}$   $(i = 0, ..., n^{\Sigma})$  on the fracture
- Enrichment functions H for nodes in elements fully cut by the fracture
- Enrichment functions (F<sub>E</sub>)<sub>j</sub> for tip singularities of elasticity problem
- Enrichment functions (F<sub>F</sub>)<sub>j</sub> for tip singularities of bulk Darcy problem

Unknowns – Darcy Averaging:  $p_h^{\Omega}$ ,  $p^{\Sigma}$  and  $\mathbf{u}_h^{\Omega} = \left(u_{h,k}^{\Omega}\right)_{k=1}^d$  with

- ►  $p_h^{\Omega} \in \operatorname{span} \{ \Phi_i^{\Omega} \}_{i=1}^{n^{\Omega}} \cup \operatorname{span} \{ H \Phi_i^{\Omega} \}_{i \in \mathscr{K}_1} \cup \operatorname{span} \{ (F_F)_j \Phi_i^{\Omega} \mid j = 1, 2 \}_{i \in \mathscr{K}_2}$
- $p_h^{\Sigma} \in \operatorname{span} \{ \Phi_i^{\Sigma} \}_{i=1}^{n^{\Sigma}},$
- ►  $u_{h,k}^{\Omega} \in \operatorname{span} \{\Phi_i^{\Omega}\}_{i=1}^{n^{\Omega}} \cup \operatorname{span} \{H\Phi_i^{\Omega}\}_{i \in \mathscr{K}_1} \cup \operatorname{span} \{(F_E)_j \Phi_i^{\Omega} \mid j = 1, \dots, 4\}_{i \in \mathscr{K}_2}.$



## Finite element functions:

- Linear FE functions  $\Phi_i^{\Omega}: \overline{\Omega} \to \mathbb{R}^d$   $(i = 0, ..., n^{\Omega})$  in the bulk
- Linear FE functions  $\Phi_i^{\Sigma}: \overline{\Sigma} \to \mathbb{R}$   $(i = 0, ..., n^{\Sigma})$  on the fracture
- Enrichment functions H for nodes in elements fully cut by the fracture
- Enrichment functions (F<sub>E</sub>)<sub>j</sub> for tip singularities of elasticity problem
- Enrichment functions  $(F_F)_j$  for tip singularities of bulk Darcy problem

Unknowns – Lubrication:  $p_h^{\Omega}$  and  $\mathbf{u}_h^{\Omega} = \left(u_{h,k}^{\Omega}\right)_{k=1}^d$  with

- ►  $p_h^{\Omega} \in \operatorname{span} \{ \Phi_i^{\Omega} \}_{i=1}^{n^{\Omega}} \cup \operatorname{span} \{ (F_F)_j \Phi_i^{\Omega} \mid j=1,2 \}_{i \in \mathscr{K}_2}$
- $u_{h,k}^{\Omega} \in \operatorname{span}\{\Phi_i^{\Omega}\}_{i=1}^{n^{\Omega}} \cup \operatorname{span}\{H\Phi_i^{\Omega}\}_{i \in \mathscr{K}_1} \cup \operatorname{span}\{(F_E)_j \Phi_i^{\Omega} \mid j = 1, \dots, 4\}_{i \in \mathscr{K}_2}.$

# 

# Crack tip enrichment

## Darcy Averaging:

- $(r, \Theta)$  front polar coordinates
- Enrichment functions for the displacement

$$(F_E)_1(r,\Theta) = \sqrt{r}\sin\left(\frac{\Theta}{2}\right)$$
$$(F_E)_2(r,\Theta) = \sqrt{r}\cos\left(\frac{\Theta}{2}\right)$$
$$(F_E)_3(r,\Theta) = \sqrt{r}\sin\left(\frac{\Theta}{2}\right)\sin(\Theta)$$
$$(F_E)_4(r,\Theta) = \sqrt{r}\cos\left(\frac{\Theta}{2}\right)\sin(\Theta)$$

Laplace enrichment for the matrix pressure:

$$(F_F)_1(r,\Theta) = \sqrt{r} \sin\left(\frac{\Theta}{2}\right)$$
$$(F_F)_2(r,\Theta) = \sqrt{r} \cos\left(\frac{\Theta}{2}\right)$$





#### Lubrication

- $(r, \Theta)$  front polar coordinates
- Enrichment functions for the displacement (Kovalyshen, Detournay, 2010)

$$(F_E)_1(r,\Theta) = r^{\frac{1}{3}} \sin\left(\frac{\Theta}{2}\right)$$
$$(F_E)_2(r,\Theta) = r^{\frac{1}{3}} \cos\left(\frac{\Theta}{2}\right)$$
$$(F_E)_3(r,\Theta) = r^{\frac{1}{3}} \sin\left(\frac{\Theta}{2}\right) \sin(\Theta)$$
$$(F_E)_4(r,\Theta) = r^{\frac{1}{3}} \cos\left(\frac{\Theta}{2}\right) \sin(\Theta)$$

Distance enrichment for the fracture

$$(F_F)_1(r,\Theta) = \text{unclear} (r?)$$





- ► Coefficient vectors *p* for the pressure, *u* for the displacement and fracture width
  - $b = \llbracket u_h \rrbracket \cdot v$

Static Problem

$$L(b)p = F^F$$
$$Bu + Cp = F^E$$

Linear for fixed fracture width b

Dynamic Problem

$$M\frac{\partial p}{\partial t} + C\frac{\partial b}{\partial t} + L(b)p = F^{F}$$
$$Bu + Cp = F^{E}$$

# Solving the Static Problem



## Algebraic problem:

- Linear coupled fluid—fluid problem
- Linear elasticity problem with pre-stress
- Nonlinear coupling through changing crack width b

## Decouple by fixed-point iteration

Iteration variable: fracture width function b<sub>k</sub>

```
Init: b_0;

while (err > acc) do

p_{k+1} \leftarrow \text{Solve fluid problem with } b = b_k;

u_{k+1} \leftarrow \text{Solve the elasticity problem with } p = p_{k+1};

b_{k+1} \leftarrow b_k + \beta (\llbracket u_{k+1} \rrbracket \cdot v - b_k);
```

end

- Damping parameter  $eta \in (0,1]$
- Solve two linear, symmetric systems in each iteration step
- Direct subdomain solvers



## **Dynamic Problem**

$$M\frac{\partial p}{\partial t} + C\frac{\partial b}{\partial t} + L(b)p = F^{F}$$
$$Bu + Cp = F^{E}$$

Use first order finite Difference approximations

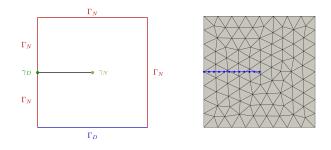
$$M\frac{p^{(m+1)} - p^{(m)}}{\tau} + C\frac{b^{(m+1)} - b^{(m)}}{\tau} + L(b^{(m+1)})p^{(m+1)} = F^{F}$$
$$Bu^{(m+1)} + Cp^{(m+1)} = F^{E}$$

and reorder

$$\left(\frac{1}{\tau}M + L(b^{(m+1)})\right)p^{(m+1)} = F^{F} - C\frac{b^{(m+1)} - b^{(m)}}{\tau} - \frac{1}{\tau}Mp^{(m)}$$
$$Bu^{(m+1)} + Cp^{(m+1)} = F^{E}$$

 $\implies$  Looks like static problem!





• Domain  $\Omega = [0, 1]^2$  (in km),  $\Sigma = [0, 0.5] \times \{0.5\}$ 

• 
$$E = 10 \text{ GPa}, v = 0.3, \alpha = 1, \rho^s = 0,$$

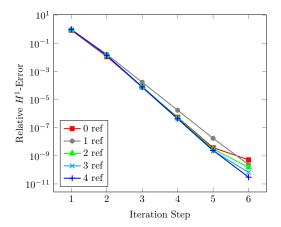
•  $\mu = 1, K = 0.1 \text{ mD}, K^{\nu} = 100 \text{ D}, K^{\tau} = 100 \text{ D}, \rho^{I} = 0,$ 

• 
$$p_0^{\Sigma} = 10 \,\mathrm{MPa}, \, b_0 = 10^{-6} \,\mathrm{m}$$

- Zero boundary conditions on  $\Gamma_N$ ,  $\Gamma_D$  and  $\gamma_N$
- No damping:  $\beta = 1, \xi = 0.75$



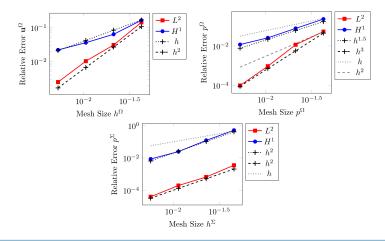
## Algebraic error





## Measure discretization error

- Compare with solution on fine grid
- Optimal error rates!



# 2D Lubrication model



## Existing benchmark

- Appeared originally in Wijesinghe, 1986
- Single fracture, no tip
- Fluid-injection from the left
- Semi-analytical similarity solution



## Our implementation:

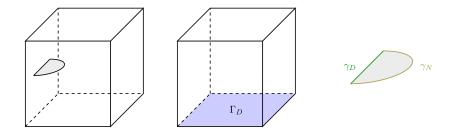
Still hunting for bugs...

# 3D Example



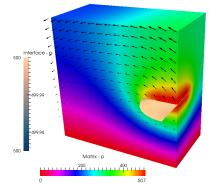
## 3d matrix + 2d fracture:

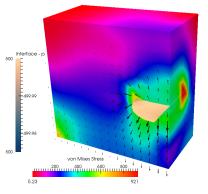
- Unit cube, tetrahedal mesh
- Half-penny crack
- Material parameters as previously



# 3D Example: Colorful Pictures







# Implementation

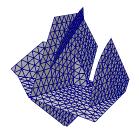


## Features:

- Pure DUNE code
- Extension modules for XFEM methods
- 2d and 3d
- Separate grid objects for fracture and bulk
- Coupled by dune-grid-glue
- Fracture grid supports networks
- Python bindings



**Distributed and Unified Numerics Environment** 





Hopes and dreams of a numerical analyst

## Analysis

- Existence of solutions to the coupled problems
- Rigorous asymptotics at the crack tip

## Discretization

A priori error bounds

## Solvers

- Robust & efficient multigrid methods for XFEM spaces
- Show fixed-point solver convergence