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Benchmarking

,
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Fractures in porous media

Ωe

Ωf

Γ̃

Domain contained in the medium with different ma-
terial properties

I Depending on the application:
I Filling: Only fluid or debris
I Rough surface or smooth surface
I . . .

⇒ Different approaches for the fracture
modelling (Stokes, Darcy, . . . )
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Modelling Fractured Porous Media

I Small-strain Biot Equation:

∇ · (σ(u)−αpI) = 0

with
σ(u) = E : e(u)

where

e(u) =
1
2

(∇u + ∇uT )

I Fluid equation (single phase):

S
∂p
∂ t
−∇ ·q =−α

∂ tr(e(u))

∂ t

with
q =−K∇p
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Reducing Complexity: The Fracture Flow
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Complexity reduction:
Two general approaches derived from equi-
dimensional formulation:

I Homogenization of large fracture networks
I Dimension reduction:

Via lubrication theory or averaging
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Deformation and Flow: Darcy Averaging

Bulk equations:
I Poroelasticity equations in Ω\Σ,
I Darcy law in Ω\Σ, α ∈ [0,1]

SΩ∂t p
Ω + α∇ · (∂t uΩ) + ∇ ·qΩ = f Ω

−K
(
∇pΩ−ρ

lg
)

= qΩ

Fracture equation:
I Averaged Darcy law on Σ

[Martin, Jaffré, Roberts ’05], with curvature terms

SΣb∂t p
Σ + SΣ(pΣ−{pΩ})∂t b + α∂t b + ∇τ ·qΣ +

q
qΩ

y
·ν = bf Σ−bκ{qΩ} ·ν

−b Kτ
(
∇τ pΣ−ρ

lgτ
)

= qΣ
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Deformation and Flow: Darcy Averaging

I Coupling constraints on Σ, ξ ∈ (1/2,1]

{
qΩ

}
·ν =

−K ν

b

(q
pΩ

y
−bρ

lg ·ν
)

q
qΩ

y
·ν =

4
2ξ −1

K ν

b

(
pΣ−

{
pΩ

})

−pΣ
ν
± = σ

(
uΩ

)
·ν±

b =
q

uΩ
y
·ν
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Deformation and Flow: Lubrication Equation

Bulk equations:
I Poroelasticity equations in Ω\Σ,
I Darcy law in Ω\Σ, α ∈ [0,1]

SΩ∂t p
Ω + α∇ · (∂t uΩ) + ∇ ·qΩ = f Ω + QL

−K
(
∇pΩ−ρ

lg
)

= qΩ

Fracture equation:
I Lubrication Equation on Σ

SΣb∂t p
Σ + α∂t b + ∇τ ·qΣ = f Σ−QL

− b3

12µ

(
∇τ pΣ−ρ

lgτ
)

= qΣ
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Coupling Deformation and Flow: Lubrication
Equation

I Coupling constraints on Σ

JpΩK = 0

pΣ = {pΩ}= pΩ

Jσ(uΩ)K · τ = 0

{σ(uΩ)} ·ν = bK−βpΩI
b = JuΩK ·ν
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Discretization: XFEM

Challenge:
I Displacement uΩ discontinuous on Σ
I Fracture averaging: Pressure pΩ discontinuous on Σ
I Singularities at the crack tip

XFEM basic idea:
I Additional bespoke FE functions near the crack
I Reproduce discontinuity: Heavyside function
I Reproduce singularity:

Special singularity functions derived by asymptotic analysis
I Aim: Retain optimal discretization errors

xi−1 xi xi+1

HΦi
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Discretization - Details

Finite element functions:
I Linear FE functions ΦΩ

i : Ω→ Rd (i = 0, . . . ,nΩ) in the bulk
I Linear FE functions ΦΣ

i : Σ→ R (i = 0, . . . ,nΣ) on the fracture
I Enrichment functions H for nodes in elements fully cut by the fracture
I Enrichment functions (FE )j for tip singularities of elasticity problem
I Enrichment functions (FF )j for tip singularities of bulk Darcy problem

Unknowns – Darcy Averaging: pΩ
h , pΣ and uΩ

h =
(

uΩ
h,k

)d

k=1
with

I pΩ
h ∈ span{ΦΩ

i }nΩ

i=1∪ span{HΦΩ
i }i∈K1 ∪ span{(FF )j Φ

Ω
i | j = 1,2}i∈K2

I pΣ
h ∈ span{ΦΣ

i }nΣ

i=1,

I uΩ
h,k ∈ span{ΦΩ

i }nΩ

i=1∪ span{HΦΩ
i }i∈K1 ∪ span{(FE )j Φ

Ω
i | j = 1, . . . ,4}i∈K2 .
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Crack tip enrichment
Darcy Averaging:

I (r ,Θ) front polar coordinates
I Enrichment functions for the displacement

(FE )1(r ,Θ) =
√

r sin

(
Θ

2

)

(FE )2(r ,Θ) =
√

r cos

(
Θ

2

)

(FE )3(r ,Θ) =
√

r sin

(
Θ

2

)
sin(Θ)

(FE )4(r ,Θ) =
√

r cos

(
Θ

2

)
sin(Θ)

I Laplace enrichment for the matrix pressure:

(FF )1(r ,Θ) =
√

r sin

(
Θ

2

)

(FF )2(r ,Θ) =
√

r cos

(
Θ

2

)

,
TU Dresden, Benchmarking:Deformation and Flow in Fractured Poroelastic Media, 12



Crack tip enrichment

Lubrication
I (r ,Θ) front polar coordinates
I Enrichment functions for the displacement (Kovalyshen, Detournay, 2010)

(FE )1(r ,Θ) = r
1
3 sin

(
Θ

2

)

(FE )2(r ,Θ) = r
1
3 cos

(
Θ

2

)

(FE )3(r ,Θ) = r
1
3 sin

(
Θ

2

)
sin(Θ)

(FE )4(r ,Θ) = r
1
3 cos

(
Θ

2

)
sin(Θ)

I Distance enrichment for the fracture

(FF )1(r ,Θ) = unclear (r?)
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Algebraic Problem

I Coefficient vectors p for the pressure, u for the displacement and fracture width

b = JuhK ·ν

I Static Problem

L(b)p = F F

Bu + Cp = F E

Linear for fixed fracture width b

I Dynamic Problem

M
∂p
∂ t

+ C
∂b
∂ t

+ L(b)p = F F

Bu + Cp = F E
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Solving the Static Problem
Algebraic problem:

I Linear coupled fluid–fluid problem
I Linear elasticity problem with pre-stress
I Nonlinear coupling through changing crack width b

Decouple by fixed-point iteration
I Iteration variable: fracture width function bk

Init: b0 ;
while (err > acc) do

pk+1← Solve fluid problem with b = bk ;
uk+1← Solve the elasticity problem with p = pk+1 ;
bk+1← bk + β (Juk+1K ·ν−bk ) ;

end

I Damping parameter β ∈ (0,1]

I Solve two linear, symmetric systems in each iteration step
I Direct subdomain solvers
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Solving the Time Dependent Problem

Dynamic Problem

M
∂p
∂ t

+ C
∂b
∂ t

+ L(b)p = F F

Bu + Cp = F E

Use first order finite Difference approximations

M
p(m+1)−p(m)

τ
+ C

b(m+1)−b(m)

τ
+ L(b(m+1))p(m+1) = F F

Bu(m+1) + Cp(m+1) = F E

and reorder

(1
τ

M + L(b(m+1))
)
p(m+1) = F F −C

b(m+1)−b(m)

τ
− 1

τ
Mp(m)

Bu(m+1) + Cp(m+1) = F E

=⇒ Looks like static problem!
,
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2D Darcy Averaging: Single Fracture, with Tip

I Domain Ω = [0,1]2 (in km), Σ = [0,0.5]×{0.5}
I E = 10GPa, ν = 0.3, α = 1, ρs = 0,
I µ = 1, K = 0.1mD, K ν = 100D, K τ = 100D, ρ l = 0,
I pΣ

0 = 10MPa, b0 = 10−6 m
I Zero boundary conditions on ΓN , ΓD and γN

I No damping: β = 1, ξ = 0.75
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2D Darcy Averaging: Solver Convergence

Algebraic error
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2D Darcy Averaging: Discretization errors

Measure discretization error
I Compare with solution on fine grid
I Optimal error rates!
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2D Lubrication model

Existing benchmark
I Appeared originally in Wijesinghe, 1986
I Single fracture, no tip
I Fluid-injection from the left
I Semi-analytical similarity solution
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Our implementation:
I Still hunting for bugs...
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3D Example

3d matrix + 2d fracture:
I Unit cube, tetrahedal mesh
I Half-penny crack
I Material parameters as previously
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3D Example: Colorful Pictures
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Implementation

Features:
I Pure DUNE code
I Extension modules for XFEM methods
I 2d and 3d
I Separate grid objects for fracture and bulk
I Coupled by dune-grid-glue
I Fracture grid supports networks
I Python bindings
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Open Problems

Hopes and dreams of a numerical analyst

Analysis
I Existence of solutions to the coupled problems
I Rigorous asymptotics at the crack tip

Discretization
I A priori error bounds

Solvers
I Robust & efficient multigrid methods for XFEM spaces
I Show fixed-point solver convergence

,
TU Dresden, Benchmarking:Deformation and Flow in Fractured Poroelastic Media, 24


	Numerical Tests

