Geometric finite element methods for oriented materials

Oliver Sander

joint work with Philipp Grohs, Hanne Hardering, and Patrizio Neff

15. 6. 2016

Partial differential equations for functions

$$
\phi : \Omega \to M, \qquad \Omega \subset \mathbb{R}^d, \ d \ge 1,
$$

 M a Riemannian manifold.

Applications:

- ► Cosserat shells and continua: S^2 , SO(3)
- \blacktriangleright Liquid crystals: S^2 , \mathbb{PR}^2 , SO(3)
- \triangleright σ -models: SU(2), SO(3)
- Image processing: S^2 , Sym⁺(3)
- \blacktriangleright Positivity-preserving systems: \mathbb{R}^+ , Sym $^+(3)$
- \blacktriangleright [...]

The challenge: Nonlinear function spaces

Example: Magnetic skyrmions

Quasi-particle in a magnetic material

- \blacktriangleright Maps $\mathbf{m}:\mathbb{R}^2\to S^2$
- \blacktriangleright Minimizers of

$$
E(\mathbf{m}) = \int_{\mathbb{R}^2} \left(\frac{1}{2} |\nabla \mathbf{m}|^2 + \kappa \mathbf{m} \cdot (\nabla \times \mathbf{m}) + \frac{h}{2} |\mathbf{m} - \mathbf{e}_3|^2\right) dx
$$

Dimensional reduction

 \triangleright Model thin solid object by 2d equation

Kinematics:

- $\blacktriangleright \Omega \subset \mathbb{R}^2$
- \blacktriangleright Midsurface deformation: $m:\Omega\to\mathbb{R}^3$

Dimensional reduction

 \blacktriangleright Model thin solid object by 2d equation

Kinematics:

- $\blacktriangleright \Omega \subset \mathbb{R}^2$
- \blacktriangleright Midsurface deformation: $m:\Omega\to\mathbb{R}^3$
- ► Direction field: $R : \Omega \rightarrow S^2$

Dimensional reduction

 \triangleright Model thin solid object by 2d equation

Kinematics:

- $\blacktriangleright \Omega \subset \mathbb{R}^2$
- \blacktriangleright Midsurface deformation: $m:\Omega\to\mathbb{R}^3$
- \blacktriangleright Microrotation field: $R : \Omega \rightarrow SO(3)$

Partial differential equations for functions

 $\phi:\Omega\to M,\qquad \Omega\subset\mathbb{R}^d,\ d\ge 1,\qquad M$ a Riemannian manifold.

Problem: Discretization

- \blacktriangleright Finite elements presuppose vector space structure
- \blacktriangleright But codomain M is nonlinear

Find a discretization that:

- \blacktriangleright works for any Riemannian manifold M
- \blacktriangleright is conforming
- is frame-invariant (i.e., equivariant under isometries of M)

Theorem ([Nash])

For each manifold M there exists a smooth, isometric embedding into a Euclidean space \mathbb{R}^N .

Algorithm

- \blacktriangleright Interpolate in \mathbb{R}^N
- \blacktriangleright Project back onto M

Theorem ([Grohs, Sprecher, S, in prep.])

Optimal discretization error bounds.

Properties

 \triangleright Simple and fast, if an "easy" embedding/projection is given

The unit sphere S^m

$$
\textbf{\textcolor{red}{\blacktriangleright}} \ \mathbf{v} \mapsto \textstyle\frac{\mathbf{v}}{|\mathbf{v}|}
$$

The special orthogonal group SO(3)

- \blacktriangleright Polar decomposition
	- \blacktriangleright Minimization property
	- \triangleright Closed-form expression available, but unwieldy
	- \blacktriangleright Better: evaluate iteratively
- \blacktriangleright Gram–Schmidt orthogonalization
- \blacktriangleright Embed into quaternions interpolate there

Symmetric positive definite matrices

- \blacktriangleright Open set in $\mathbb{R}^{m \times m}$
- Projection?

Generalizing Lagrangian Interpolation

Reference element T_{ref} :

- \blacktriangleright Arbitrary type
- \blacktriangleright Coordinates ξ
- \blacktriangleright Lagrange nodes a_i , $i = 1, \ldots, m$
- ► Shape functions $\{\varphi_i\}$ of p-th order

Lagrange interpolation:

Assume values $v_1, \ldots, v_m \in M$ given at the Lagrange nodes.

If M is a vector space, interpolation between the v_i can be written as

$$
\sum_{i=1}^{m} v_i \varphi_i(\xi) = \underset{q \in M}{\arg \min} \sum_{i=1}^{m} \varphi_i(\xi) \|v_i - q\|^2.
$$

Geodesic Interpolation

Idea: Generalize

$$
\argmin_{q \in M} \sum_{i=1}^{m} \varphi_i(\xi) \| v_i - q \|^2.
$$

to

$$
\arg\min_{q\in M} \sum_{i=1}^{m} \varphi_i(\xi) \operatorname{dist}(v_i, q)^2
$$

 $(\text{dist}(\cdot, \cdot)$ being the Riemannian distance on M)

Definition (Geodesic interpolation [S '11, S '13, Grohs '12])

Let $v_i \in M$, $i = 1, ..., m$ be coefficients and ξ coordinates on T_{ref} . Then

$$
\Upsilon^{p}(v,\xi) = \underset{q \in M}{\arg \min} \sum_{i=1}^{m} \varphi_{i}(\xi) \operatorname{dist}(v_{i}, q)^{2}
$$

is the *p*-th order geodesic interpolation between the v_i .

Properties:

- \blacktriangleright Reduces to standard Lagrange interpolation if $M=\mathbb{R}^m$
- Reduces to geodesics if $d = 1$, $p = 1$ (hence the name)

- \triangleright p = 1: all weights $\varphi_i(\xi)$ are nonnegative \longrightarrow [Karcher(1977)]
- $p > 1$: weights may become negative.

Idea:

There is a minimizer if the v_i are "close enough" to each other on M.

Theorem ([S '12, Hardering '15])

Denote by $B_r(p_0)$ the geodesic ball of radius r around $p_0 \in M$. There are constants D, ρ with $0 < D < \rho$, depending on the curvature of M and the total variation of the weights φ_i , such that if the values v_1, \ldots, v_m are contained in $B_D(p_0)$ for some $p_0 \in M$, then the minimization problem has a unique local minimizer in $B_o(p₀)$.

Differentiability:

Lemma ([S '11])

Under the assumptions of the previous theorem, the function $\Upsilon^p(v;\xi)$ is infinitely differentiable with respect to ξ and the v_i .

Objectivity: Equivariance under an isometric group action

Lemma (Objectivity, [S '10, S '13])

For any isometry Q acting on M and any $\xi \in T_{ref}$ we have

 $Q\Upsilon(v;\xi) = \Upsilon(Qv;\xi).$

Consequence: Discretizations of frame-invariant models are frame-invariant.

Construct global finite element spaces:

Definition (Geodesic finite elements)

Let M be a Riemannian manifold and G a grid for a d-dimensional domain, $d \geq 1$. A geodesic finite element function is a continuous function $v_h : G \to M$ such that for each element T of G, $v_h|_T$ is given by geodesic interpolation on T.

Denote by V_h^M the space of all such functions.

Nonlinear Sobolev space:

Let M be smoothly embedded into \mathbb{R}^m . Define

$$
H^1(\Omega, M) := \{ v \in H^1(\Omega, \mathbb{R}^m) \mid v(s) \in M \text{ a.e.} \}
$$

Conforming discretization:

Lemma ([S '11])

Geodesic finite elements are conforming, i.e.,

 $V_h^M \subset H^1(\Omega,M).$

Minimize harmonic energy:

$$
\phi : \Omega \to S^2, \qquad E(\phi) = \int_{\Omega} ||\nabla \phi||^2 dx
$$

Lemma

The inverse stereographic map minimizes E in its homotopy class.

Setup

- \blacktriangleright Domain Ω = [-5, 5]²
- \triangleright Dirichlet boundary conditions
- \blacktriangleright Discretization error for $d = 2$, $p = 1, 2, 3$:

TECHNISCHE

Distributed and Unified Numerics Environment

Linear result:

Theorem

Let J be a quadratic coercive functional on $H_0^1(\Omega)$. Let u be the minimizer of J in $H_0^1(\Omega)$, and u_h the minimizer in a p -th order Lagrangian finite element space contained in H_0^1 . Then

$$
||u - u_h||_{H^1} \le Ch^p |u|.
$$

Questions for a proof in nonlinear spaces:

- ► What replaces the error $||u u_h||_{H^1}$?
- Appropriate measure of solution regularity $|u|$?
- \blacktriangleright Ellipticity/coercivity in a nonlinear function space?

Linear result:

Theorem

Let J be a quadratic coercive functional on $H_0^1(\Omega)$. Let u be the minimizer of J in $H_0^1(\Omega)$, and u_h the minimizer in a p -th order Lagrangian finite element space contained in H_0^1 . Then

$$
||u - u_h||_{H^1} \le Ch^p |u|.
$$

Questions for a proof in nonlinear spaces:

- ► What replaces the error $||u u_h||_{H^1}$?
- Appropriate measure of solution regularity $|u|$?
- \blacktriangleright Ellipticity/coercivity in a nonlinear function space?

Theorem ([Grohs, Hardering, S (2014), Hardering (2016)])

Optimal H^1 and L^2 discretization error bounds.

Magnetic skyrmion

- \triangleright Quasi-particle in a magnetic material
- \blacktriangleright Maps $\mathbf{m}:\mathbb{R}^2\to S^2$
- \blacktriangleright Minimizers of

$$
E(\mathbf{m}) = \int_{\mathbb{R}^2} \left(\frac{1}{2} |\nabla \mathbf{m}|^2 + \kappa \mathbf{m} \cdot (\nabla \times \mathbf{m}) + \frac{h}{2} |\mathbf{m} - \mathbf{e}_3|^2\right) dx
$$

Problem settings

- \blacktriangleright Hexagonal domain
- \triangleright Unstructured triangle grid
- \triangleright Dirichlet boundary conditions
- \blacktriangleright Projection-based finite elements of orders 1, 2, 3

Discretization errors:

Wong, Pellegrino 2006:

- \blacktriangleright Shearing of a rectangular plastic sheet
- ▶ 380 mm \times 128 mm \times 25 μ m
- $\blacktriangleright E = 71240 \,\text{N/mm}^2, \, \nu = 0.31$
- \triangleright Prescribed displacement at horizontal edges
- \triangleright 3 mm shear

Kinematics:

- $\blacktriangleright \Omega \subset \mathbb{R}^2$
- \blacktriangleright Midsurface deformation: $m:\Omega\to\mathbb{R}^3$
- \blacktriangleright Microrotation field: $R : \Omega \rightarrow SO(3)$

Strain measures:

- ▶ Deformation gradient: $F := (\nabla m | R_3) \in \mathbb{M}^{3 \times 3}$
- \blacktriangleright Translational strain: $U \coloneqq R^T F$
- \blacktriangleright Rotational strain: $\mathfrak{K}:=R^T\nabla R$

Hyperelastic material law: [Neff] $(h = \text{shell thickness})$

$$
J(m, R) = \int_{\Omega} \left[hW_{\text{memb}}(U) + \frac{h^3}{12} W_{\text{bend}}(\mathfrak{K}) + hW_{\text{curv}}(\mathfrak{K}) \right] dx
$$

Membrane energy:

$$
W_{\text{memb}}(U) = \mu \|\text{sym}(U-I)\|^2 + \mu_c \|\text{skew}(U-I)\|^2 + \frac{\mu\lambda}{2\mu + \lambda} \frac{1}{2} \left((\det U - 1)^2 + \left(\frac{1}{\det U} - 1\right)^2 \right)
$$

Bending energy:

$$
W_{\text{bend}}(\mathfrak{K}_b) = \mu \|\text{sym}(\mathfrak{K}_b)\|^2 + \mu_c \|\text{skew}(\mathfrak{K}_b)\|^2 + \frac{\mu\lambda}{2\mu + \lambda} \text{tr}[\text{sym}(\mathfrak{K}_b)]^2
$$

Curvature energy:

$$
W_{\rm curv}(\mathfrak{K})=\mu L_c^{1+p}\|\mathfrak{K}\|^{1+p}
$$

Theorem ([Neff])

Under suitable conditions, the functional J has minimizers in $H^1(\Omega,\mathbb{R}^3)\times W^{1,1+p}(\Omega,\mathcal{SO}(3)).$

Experiment:

Distributed and Unified Numerics Environment

Experiment:

Simulation: [S., Neff, Bîrsan, Comp. Mech.]

Wrinkling

Thank you for your attention!

