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Manifold-Valued Boundary Value Problems

Partial differential equations for functions

φ : Ω→M, Ω ⊂ Rd, d ≥ 1,

M a Riemannian manifold.

Applications:

I Cosserat shells and continua: S2, SO(3)

I Liquid crystals: S2, PR2, SO(3)

I σ-models: SU(2), SO(3)

I Image processing: S2, Sym+(3)

I Positivity-preserving systems: R+, Sym+(3)

I [...]

The challenge: Nonlinear function spaces



Example: Magnetic skyrmions

Quasi-particle in a magnetic material

I Maps m : R2 → S2

I Minimizers of

E(m) =

∫
R2

(1

2
|∇m|2 + κm · (∇×m) +

h

2
|m− e3|2

)
dx



Shell models

Dimensional reduction

I Model thin solid object by 2d equation

Kinematics:

I Ω ⊂ R2

I Midsurface deformation: m : Ω→ R3

I Direction field: R : Ω→ S2

I Microrotation field: R : Ω→ SO(3)
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Finite Elements for Manifold-Valued Problems

Partial differential equations for functions

φ : Ω→M, Ω ⊂ Rd, d ≥ 1, M a Riemannian manifold.

Problem: Discretization
I Finite elements presuppose vector space structure
I But codomain M is nonlinear

Find a discretization that:
I works for any Riemannian manifold M
I is conforming
I is frame-invariant (i.e., equivariant under isometries of M)



Projection-Based Finite Elements

Theorem ([Nash])

For each manifold M there exists a smooth, isometric embedding into a
Euclidean space RN .

Algorithm

I Interpolate in RN

I Project back onto M

Theorem ([Grohs, Sprecher, S, in prep.])

Optimal discretization error bounds.

Properties

I Simple and fast, if an “easy” embedding/projection is given



Projection-Based Finite Elements: The Projections

The unit sphere Sm

I v 7→ v
|v|

The special orthogonal group SO(3)
I Polar decomposition

I Minimization property
I Closed-form expression available, but unwieldy
I Better: evaluate iteratively

I Gram–Schmidt orthogonalization

I Embed into quaternions – interpolate there

Symmetric positive definite matrices

I Open set in Rm×m

I Projection?



Generalizing Lagrangian Interpolation

Reference element Tref:

I Arbitrary type

I Coordinates ξ

I Lagrange nodes ai, i = 1, . . . ,m

I Shape functions {ϕi} of p-th order

Lagrange interpolation:

Assume values v1, . . . , vm ∈M given at the Lagrange nodes.

If M is a vector space, interpolation between the vi can be written as

m∑
i=1

viϕi(ξ) = arg min
q∈M

m∑
i=1

ϕi(ξ)‖vi − q‖2.



Geodesic Interpolation

Idea: Generalize

arg min
q∈M

m∑
i=1

ϕi(ξ)‖vi − q‖2.

to

arg min
q∈M

m∑
i=1

ϕi(ξ) dist(vi, q)
2

(dist(·, ·) being the Riemannian distance on M)

Definition (Geodesic interpolation [S ’11, S ’13, Grohs ’12])

Let vi ∈M , i = 1, . . . ,m be coefficients and ξ coordinates on Tref. Then

Υp(v, ξ) = arg min
q∈M

m∑
i=1

ϕi(ξ) dist(vi, q)
2

is the p-th order geodesic interpolation between the vi.

Properties:
I Reduces to standard Lagrange interpolation if M = Rm
I Reduces to geodesics if d = 1, p = 1 (hence the name)



Well-Posedness

Existence of minimizers of:

arg min
q∈M

m∑
i=1

ϕi(ξ) dist(vi, q)
2

I p = 1: all weights ϕi(ξ) are nonnegative −→ [Karcher(1977)]
I p > 1: weights may become negative.

Idea:
There is a minimizer if the vi are “close enough” to each other on M .

Theorem ([S ’12, Hardering ’15])

Denote by Br(p0) the geodesic ball of radius r around p0 ∈M . There are
constants D, ρ with 0 < D < ρ, depending on the curvature of M and the
total variation of the weights ϕi, such that if the values v1, . . . , vm are
contained in BD(p0) for some p0 ∈M , then the minimization problem has a
unique local minimizer in Bρ(p0).

M

Bρ

BD



Differentiability and Symmetry

Differentiability:

Lemma ([S ’11])

Under the assumptions of the previous theorem, the function Υp(v; ξ) is
infinitely differentiable with respect to ξ and the vi.

Objectivity: Equivariance under an isometric group action

Lemma (Objectivity, [S ’10, S ’13])

For any isometry Q acting on M and any ξ ∈ Tref we have

QΥ(v; ξ) = Υ(Qv; ξ).

Consequence: Discretizations of frame-invariant models are frame-invariant.



Comparison

projection-based
 interpolation geodesic interpolation



Geodesic Finite Elements

Construct global finite element spaces:

Definition (Geodesic finite elements)

Let M be a Riemannian manifold and G a grid for a d-dimensional domain,
d ≥ 1. A geodesic finite element function is a continuous function vh : G→M
such that for each element T of G, vh|T is given by geodesic interpolation
on T .

Denote by VMh the space of all such functions.



Conformity

Nonlinear Sobolev space:
Let M be smoothly embedded into Rm. Define

H1(Ω,M) := {v ∈ H1(Ω,Rm) | v(s) ∈M a.e.}

Conforming discretization:

Lemma ([S ’11])

Geodesic finite elements are conforming, i.e.,

VMh ⊂ H1(Ω,M).



Discretization Error Measurements

Minimize harmonic energy:

φ : Ω→ S2, E(φ) =

∫
Ω

‖∇φ‖2 dx

Lemma

The inverse stereographic map minimizes E in its homotopy class.

Setup
I Domain Ω = [−5, 5]2

I Dirichlet boundary conditions
I Discretization error for d = 2, p = 1, 2, 3:
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A priori Bounds

Linear result:

Theorem

Let J be a quadratic coercive functional on H1
0 (Ω). Let u be the minimizer of

J in H1
0 (Ω), and uh the minimizer in a p-th order Lagrangian finite element

space contained in H1
0 . Then

‖u− uh‖H1 ≤ Chp|u|.

Questions for a proof in nonlinear spaces:

I What replaces the error ‖u− uh‖H1?

I Appropriate measure of solution regularity |u|?
I Ellipticity/coercivity in a nonlinear function space?
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Questions for a proof in nonlinear spaces:

I What replaces the error ‖u− uh‖H1?

I Appropriate measure of solution regularity |u|?
I Ellipticity/coercivity in a nonlinear function space?

Theorem ([Grohs, Hardering, S (2014), Hardering (2016)])

Optimal H1 and L2 discretization error bounds.



Magnetic skyrmions

Magnetic skyrmion
I Quasi-particle in a magnetic material
I Maps m : R2 → S2

I Minimizers of

E(m) =

∫
R2

(1

2
|∇m|2 + κm · (∇×m) +

h

2
|m− e3|2

)
dx



Magnetic skyrmions

Problem settings

I Hexagonal domain

I Unstructured triangle grid

I Dirichlet boundary conditions

I Projection-based finite elements of orders 1, 2, 3

Discretization errors:
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Wrinkling of Polyimide Sheets

Wong, Pellegrino 2006:

I Shearing of a rectangular plastic sheet

I 380 mm x 128 mm x 25µm

I E = 71240 N/mm2, ν = 0.31

I Prescribed displacement at horizontal edges

I 3 mm shear



Geometrically Nonlinear Cosserat Shells

Kinematics:

I Ω ⊂ R2

I Midsurface deformation: m : Ω→ R3

I Microrotation field: R : Ω→ SO(3)

Strain measures:
I Deformation gradient: F := (∇m|R3) ∈ M3×3

I Translational strain: U := RTF
I Rotational strain: K := RT∇R



Geometrically Nonlinear Cosserat Shells

Hyperelastic material law: [Neff] (h = shell thickness)

J(m,R) =

∫
Ω

[
hWmemb(U) +

h3

12
Wbend(K) + hWcurv(K)

]
dx

Membrane energy:

Wmemb(U) = µ‖sym(U−I)‖2+µc‖skew(U−I)‖2+
µλ

2µ+ λ

1

2

(
(detU−1)2+(

1

detU
−1)2

)
Bending energy:

Wbend(Kb) = µ‖sym(Kb)‖2 + µc‖skew(Kb)‖2 +
µλ

2µ+ λ
tr[sym(Kb)]

2

Curvature energy:
Wcurv(K) = µL1+p

c ‖K‖1+p

Theorem ([Neff])

Under suitable conditions, the functional J has minimizers in
H1(Ω,R3)×W 1,1+p(Ω,SO(3)).



Wrinkling: The Wong–Pellegrino Experiment

Experiment:



Wrinkling: The Wong–Pellegrino Experiment

Experiment:

Simulation: [S., Neff, B̂ırsan, Comp. Mech.]
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Thank you for your attention!
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