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Abstract: This paper presents a systematic linear parameter varying (LPV) control approach
for the 3-axis attitude control of an Earth-observation satellite in a sun-synchronous orbit.
The dynamics of the satellite depend on the orientation of the solar array, which completes a
full rotation every orbit, thus it is used as a scheduling parameter in the design. The satellite
has two additional flexible appendages; these are 2 scatterometers. The control objective is
to precisely track a given reference attitude using reaction wheels, while rejecting external
torque disturbances and sensor noise. The design follows a mixed-sensitivity approach, applying
a recently introduced weighting scheme. It allows traceable and effective controller tuning
by using a low number of physically interpretable weights. The controller is synthesised by
solving the induced L2-norm of the closed-loop interconnection of the controller and weighted
plant. Scheduling with the solar array orientation leads to an LPV notching behaviour in the
controller that effectively mitigates the effects of the array’s most prominent flexible modes. This
behaviour enables increased performance, when compared to a linear time invariant controller,
while maintaining robustness. The pointing performance of the synthesised controller over the
complete satellite lifecycle is verified using the European Space Agency’s standards for spacecraft
attitude control.

Keywords: Linear parameter-varying systems, robust control, aerospace, disturbance rejection,
tracking, high accuracy pointing

1. INTRODUCTION

Observation satellites must fulfil stringent pointing re-
quirements in order to produce high quality image data.
For this purpose, they are equipped with attitude control
systems. These control systems must operate accurately
under varying system dynamics as well as complex envi-
ronmental disturbances. To achieve optimal performance
at all times, the controller must be able to adapt to changes
in the spacecraft dynamics. Some of these changes result
from measurable parameter variations, which can then be
explicitly considered in the design and used for controller
scheduling during operations. Moreover, the resulting con-
troller must be robust towards uncertainty in the system
dynamics over the satellite’s life cycle. Given that satellite
pointing performance requirements are frequency-based,
H∞ control is the logical framework to directly incorpo-
rate the requirements into the design. A linear parameter
varying (LPV) framework that uses insights from classical
H∞ then provides an efficient approach to address both ro-
bustness and varying system dynamics effectively. It is able
to provide an optimal robust controller scheduled with the
measurable parameters in a single synthesis. Additionally,
design and analysis of LPV controllers can be conducted
using readily available tools such as the LPVTools toolbox
in MATLAB (Hjartarson et al., 2015).
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Fig. 1. MetOp-SG Satellite (ESA, 2013).

In recent years, there is growing interest in modelling
dynamical systems with respect to variable parameters, as
in Kassarian et al. (2022). Within the aerospace industry,
there are tools available for the modelling of uncertain
flexible space structures (Alazard and Sanfedino, 2020)
and methods for controlling them (Angeletti et al., 2022).
There are also techniques for obtaining linear models of
spacecraft that are parameterised with the motion of flex-
ible appendages, as in Guy et al. (2014). By extension,
the present paper details an LPV approach for the reac-
tion wheel based attitude control of an industry-standard
Earth-observation satellite that is parameterised with the
motion of a flexible solar array.



The given satellite has a flexible solar array that rotates
360◦, with a fixed angular rate, every orbit. It also has two
additional flexible appendages and uncertain mass and di-
mensional properties. Eumetsat’s MetOp and MetOp-SG
satellites are typical examples of such spacecraft, pictured
in Fig. 1. The biggest driver in the proposed design is the
rotating solar array, which changes the dynamics of the
spacecraft throughout the mission. Because of this, the
LPV design is scheduled with the motion of the array in
a grid-based approach, which is particularly suited to the
proposed problem due to the slow nature of the parameter
variation and resulting dynamical changes.

It is also important to consider that, in an industrial
setting, the design process must be well established, ver-
satile for different use-cases and intuitive for the design
engineer to follow. To address these matters, the con-
trol design applies a recently proposed weighting scheme
(Theis et al., 2020) to the grid-based LPV controller
synthesis. It facilitates highly traceable and particularly
easy tuning as the system requirements and constraints
directly translate into the weights. The scheme’s versatility
has so far been demonstrated on launchers (Biertümpfel
et al., 2022), flexible aircraft (Theis et al., 2020) and
auto-landing problems (Theis et al., 2018). Applying this
mixed-sensitivity weighting scheme using the grid-based
LPV method is motivated by a combination of optimal
robust control for flexible systems and traditional aircraft
gain-scheduling control design. It has the advantages of
H∞ controller design with the additional benefit that the
synthesised controller is automatically scheduled.

2. LINEAR PARAMETER VARYING SYSTEMS

LPV systems are a class of systems whose state space
matrices depend continuously on a time-varying parameter
vector ρ : R → P, where P ∈ Rnρ is a compact subset
chosen based on physical considerations. In addition, the
parameter rates of variation ρ̇ are assumed to lie within a
hyper-rectangle Ṗ defined by Ṗ = {ρ̇(t) ∈ Rnρ | |ρi(t)| ≤
νi, i = 1, . . . , nρ}. Hence, the set of all admissible trajecto-

ries is T = {ρ : R → P| ρ ∈ C1, ρ(t) ∈ P and ρ̇(t) ∈ Ṗ ∀t ≥
0}.
The state space matrices of an LPV system are continuous
functions of the parameter vector, i.e., A : P → Rnx×nx ,
B : P → Rnx×nu , C : P → Rny×nx , and D : P → Rny×nu .
An nth

x -order LPV system Gρ is defined by[
ẋ(t)
y(t)

]
=

[
A(ρ(t)) B(ρ(t))
C(ρ(t)) D(ρ(t))

] [
x(t)
u(t)

]
, (1)

where x(t) ∈ Rn
x is the state, u(t) ∈ Rn

u the input, and
y(t) ∈ Rn

y the output. The explicit dependence on t is
occasionally omitted to shorten the notation.

2.1 Induced L2-norm controller synthesis

The performance of an LPV system can be specified in
terms of its induced L2-norm

∥Gρ∥ = sup
u∈L2\{0},ρ∈T ,x(0)=0

∥y∥2
∥u∥2

. (2)

A generalization of the Bounded Real Lemma (Wu et al.,
1996) provides a sufficient condition to upper bound ∥Gρ∥.
The next theorem states this condition.

Theorem 1. (Wu et al., 1996): Gρ is exponentially stable
and ∥Gρ∥ ≤ γ if there exists a continuously differentiable
symmetric matrix function P : P → Rnx×nx such that
P (p) ≥ 0 and[

PA+ATP + ∂P PB
BTP −I

]
+

1

γ2

[
CT

DT

]
[C D] ≤ 0 (3)

hold for all p ∈ P and q ∈ Ṗ, where ∂P is defined as
∂P (p, q) =

∑nρ

i=1
∂P
∂ρi

(p)qi. In (3), the dependence of the

matrices on p and q has been omitted to shorten the
notation.

This theorem forms the basis for the induced L2-norm
controller synthesis in Wu et al. (1996). In short, consider
an open loop LPV system Gρ with inputs [wT , uT ]T

and outputs [zT , yT ]T . The objective is to synthesize a
controller Kρ:[

ẋK

u

]
=

[
AK(ρ) BK(ρ)
CK(ρ) DK(ρ)

] [
xK

y

]
(4)

such that the induced L2-gain of the closed loop inter-
connection of Gρ and Kρ, denoted by the lower fractional
transformation Fl(Gρ,Kρ), is minimized

min
Kρ

∥Fl(Gρ,Kρ)∥ (5)

This optimization problem can be solved via parametrized
LMI conditions, see Wu et al. (1996) for details. It should
be noted that the synthesis problem involves an infinite
collection of LMI constraints parametrized by (p, q) ∈ P×
Ṗ. A remedy to this issue, which works in many practical
examples, is to approximate them with finite-dimensional
LMIs evaluated on a grid. Tools to solve the synthesis
problem are readily available, e.g., Hjartarson et al. (2015)
which are used in this paper.

2.2 Mixed-sensitivity control architecture

Many requirements on feedback control systems can be
directly specified in terms of the induced L2-norm of
weighted sensitivity functions, e.g. disturbance attenua-
tion levels, tracking capabilities, the frequency range of
control activity, and robustness. Hence, it is common prac-
tice to design induced L2-norm optimal LPV controllers
by mixed-sensitivity loopshaping, see, e.g., Zhou et al.
(1996); Skogestad and Postlethwaite (2005). Defining the
output sensitivity function S = (I+GρKρ)

−1, the general-
ized closed loop of the weighted mixed-sensitivity problem
shown in Fig. 2 is[
z1
z2

]
=

[
WeV

−1
e 0

0 WuV
−1
u

] [
S SGρ

KρS KρSGρ

] [
Ve 0
0 Vd

] [
w1

w2

]
,

(6)
where We and Wu denote frequency dependent weights
and Ve, Vu, and Vd constant scaling factors. A high gain
in We reduces the sensitivity function leading to better
tracking and disturbance rejection capabilities. A high
gain in Wu reduces the control effort. Hence, Wu can
enforce controller roll-off at high frequencies, e.g. to avoid
excitation of flexible modes in a system. The static weights
are used as the main tuning knobs. Good initial values are
obtained based on the maximum expected disturbances
(Vd) and the maximum allowable errors (Ve) and inputs
(Vu). Theis et al. (2020) present a comprehensive treat-
ment of this parameterisation.
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Fig. 2. Weighted four-block mixed-sensitivity problem.

3. SATELLITE ATTITUDE CONTROL

3.1 Satellite and mission

The considered Earth-observation satellite is in an almost
circular (eccentricity ≈ 0), sun-synchronous orbit with an
altitude of 817km, an inclination of 99◦ and an orbital pe-
riod of ≈ 102 minutes. It orbits in a “normal” mode, with
the goal of maintaining its attitude aligned to a chosen ref-
erence frame while rejecting external torque disturbances
using only reaction wheels. Throughout this paper, plots
that detail the dynamical behaviour of the satellite are
normalised across frequency, to maintain confidentiality of
the model.

The satellite is modelled as a rigid central body with
three flexible appendages; two scatterometers and the solar
array which completes one full rotation each orbit to
maintain its orientation to the sun. The central body is
described by the linear Newton-Euler equations (7) with
mass mCB and inertia JCB. Given the small angular rates
of the problem, non-linearities are neglected.(

Σfext
Στext

)
=

[
mCBI3×3 03×3

03×3 JCB

](
r̈
ω̇

)
(7)

The sum of external forces fext and torques τext acting on
the spacecraft result in a translational and rotational ac-
celeration (r̈ and ω̇ respectively). The flexible appendages
(FA) are each modelled as a hybrid-cantilever beam con-
nected to the central body at a hinge point P (8). LP de-
scribes the modal contributions of the flexible appendage.
Each second-order mode (denoted i) has damping ζi and
natural frequency ωi.

(
fP

τP

)
=

[
mFAI3×3 03×3

03×3 JFA

](
r̈FA
ω̇FA

)
+ LT

P η̈

−LP

(
r̈FA
ω̇FA

)
= η̈ + diag(2ζiωi)η̇ + diag(ω2

i )η
(8)

As the solar array rotates, ζi and ωi change, as does the
location of the centre of mass. Thus the overall spacecraft
dynamics described by (7) and (8) change as a function
of the solar array angular position θSA. This describes
the LPV nature of the plant. Fig. 3 demonstrates how
the plant dynamics vary over a grid of solar array angles,
0 ≤ θSA < 360◦.

The external torques on the spacecraft are a summation of
the solar radiation pressure torque, aerodynamic torque,
gravity gradient torque and magnetic field torque which
are calculated using a detailed description of the space
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Fig. 3. Satellite dynamics as solar array rotates from
minimum angular displacement ( ) to maximum
( ).
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Fig. 4. Aerodynamic ( ), gravitational ( ), magnetic
( ) and solar( ) torques experienced by the
satellite during one orbit with respect to the solar
array (SA) angle.

environment, for example as in Pisacane (2008). The solar
radiation pressure is a summation of momentum exchange
for each surface due to the photons colliding with the
spacecraft. Similarly, the aerodynamic torque results from
collisions with residual atmosphere particles. Both are
computed using a geometrical 3-dimensional model of the
spacecraft. The gravity gradient torque results from the
geo-potential across the spacecraft due to the gravitational
field of Earth and the magnetic torque results from the
dipole moment created by the magnetic field. Each total
torque experienced by the satellite in the body reference
frame, as a function of the solar array angle during one
orbit, is shown in Fig. 4.

The satellite navigates using star tracker fusion which in-
troduces sensor noise described by high and low spacial fre-
quency error (HSFE, LSFE) and temporal error (TE).The
spectral errors are modelled as first-order Gauss-Markov
processes and the temporal error can be considered white
noise, as is common practice in industry.

3.2 Control problem definition

The satellite and mission describe a multi-input multi-
output (MIMO) tracking control problem. The goal is to
track a 0 reference attitude described in the spacecraft



Table 1. Pointing metrics (Ott et al., 2011)

Metric Type Time domain

APE
absolute
(abs)

σ2
abs = E

[
e(t)− µabs)

2
]

RPE
windowed
variance
(wv)

σ2
wv(∆t) = E

[〈
(e(t)− ⟨e(t)⟩∆t)

2
〉
∆t

]
PDE

windowed
mean
stability
(wms)

σ2
wms (∆t,∆ts)

= E

[(
⟨e(t)⟩∆t − ⟨e (t−∆ts)⟩∆t

)2]
body frame, θ, using only torque input generated by the
reaction wheels, τ , also described in the body frame.
Sensor noise must be attenuated and external disturbance
torques must be rejected such that the closed loop system
is able to achieve the specified pointing error requirements.
Three types of pointing metrics are considered, abso-
lute performance error (APE), relative performance error
(RPE) and performance drift error (PDE). For brevity,
the descriptions of these metrics are summarised in Table
1. Certain requirements and limitations are also imposed
on the design problem in the frequency domain to ensure
sufficient robustness of the system; the gain and phase
margins must exceed 6dB and 30◦ respectively, the peak of
each flexible mode must be below −6dB and the modulus
margin must be greater than 0.5.

4. CONTROLLER DESIGN

Two controllers were designed, one linear time invariant
(LTI) and one LPV controller, such that a reasonable
comparison could be drawn. Both design procedures fol-
lowed the mixed-sensitivity process described in section
2.2, while the LPV design made use of sinusoidal param-
eter dependent storage functions to capture the periodic
nature of the plant. The plant used for design only con-
tained the two flexible modes with the lowest frequencies,
as these are most influential on the plant dynamics and the
loopshaping problem. The augmented plant for the LTI
controller was constructed by weighting the nominal plant
(θSA = 0) in section 3.1, whereas the augmented plant
for the LPV design encompassed a discrete grid of plants,
each with a unique solar array angle (0 ≤ θSA < 360◦),
into one single LPV plant. This was modelled as a pss-
object, defined in the LPVTools toolbox (Hjartarson et al.,
2015). Other than the nature of the augmented plant, the
design process and weighting scheme for each controller
was largely the same.

All design weights are diagonal. Firstly W−1
e enforces the

shape of the sensitivity function. The crossover frequency
was pushed as high as possible to maximise the tracking
bandwidth while still ensuring the flexible modes are kept
below −6dB. At high frequency the gain of W−1

e is 6dB
to guarantee the required modulus margin. The tracking
bandwidth of the LTI controller had to be relaxed to
maintain robustness to the variations in the dynamics. Wu

imposes a roll-off on the controller, thus, at frequencies
above the available actuator bandwidth the gain is high.
The scaling weights were selected intuitively based on the
physical constraints of the system. Ve is the maximum
pointing error requirement and Vu the maximum torque
available from the actuators. Vd was selected such that
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Fig. 6. LPV controller design demonstrates notching of
flexible modes.

the ratio of expected disturbance to actuator effort is 20%.
For the LTI design the achievable tracking bandwidth was
lower in order to maintain the required flexible mode roll
off for all plant uncertainties, then the ratio of Vu/Vd was
increased to push the controller gain up and speed up the
response, see Fig. 5.

The resulting controllers have 18 states and the LPV
controller is gridded with the solar array angle at 8 points.
The advantage of the LPV design is that it notches
the first two flexible modes of the solar array at the
corresponding solar array angle, see Fig. 6. This means the
LPV controller is less sensitive to the changing frequency
of the flexible modes of the solar array as it moves. Thus,
while respecting design constraints, the bandwidth of the
LPV controller could be pushed higher than that of the
LTI controller.

5. CONTROL EVALUATION

The evaluation was completed in the frequency domain
using a closed-loop structure, as in Fig. 8, where Gρ is
scheduled with θSA. To make the evaluation more represen-
tative of an industrial-scale project, Gρ also encompasses
uncertainties to cover the lifecycle of the mission, sum-
marised in Table 2. Fig. 7 demonstrates how the dynamics
of the spacecraft are affected by the uncertainties. For the
frequency domain evaluation, noise and disturbances can



Table 2. Satellite parameter uncertainties.

Parameter Range (%)

Central body
Mass 10
inertia 20

Fuel
Mass 23
Inertia scales with mass

Solar array
Mass 10
Inertia 20
Cantilever frequency 10

Scatterometers
Mass 10
Inertia 20
Cantilever frequency 10
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Fig. 7. Nominal plant ( ) and a selection of plants over
the satellite lifecycle ( ).
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Fig. 8. Block diagram of structure used for analysis.

be approximated as white noise signals passing through
filters Wn and Wd respectively. Wn combines the effects
of HSFE, LSFE and TE as Wn = [WHSFE,WLSFE,WTE].
The spatial error Gauss-Markov processes are equated to
first order low pass filters, while the temporal error filter is
simply a gain. In comparison, the disturbance filter, Wd, is
a rational transfer function approximated from the power
spectral density of simulated torque data over the course
of three orbits. Similarly, for each error metric in Table 1, a
rational transfer function Fi exists that transfers the error
signal e into it’s respective error metric zi (Pittelkau and
McKinley, 2012). This frequency domain transformation is
represented by F in Fig. 8.

In terms of robustness to uncertainties, both controllers
meet the requirements with similar distribution. Fig. 9
shows the mean and range of the margins relative to their
respective requirements across a grid of plants covering

Table 3. Worst-case achieved pointing error
metrics for both K and Kρ across all uncer-
tainties in the plant (68% confidence level, 1σ).

Metric
∆t1/∆t2/∆ts [s]

Req.
[µrad]

K x/y/z
[µrad]

Kρ x/y/z
[µrad]

APE 300 361/360/639 50.7/49.6/41.9

RPE
6074/-/-

150 334/333/589 49.7/48.6/41.1

RPE
1/-/-

150 0.24/0.23/0.34 0.13/0.11/0.09

PDE
1.07/1.07/0.1

x = 7
y = 3

0.08/0.08/- 0.04/0.04/-

PDE
0/0/0.1

150 0.08/0.08/0.12 0.04/0.04/0.03

the full range of uncertainties. The LTI design is generally
more conservative, although its limiting factor is keeping
the flexible mode peaks below −6dB for all uncertainty
cases. This is due to its lack of LPV notching behaviour.

The pointing performance was assessed in frequency do-
main using the principal that the standard deviation σe of
a signal Se is equal the H2-norm of the transfer H(s) from
a white noise input to Se

σe =
(

1
2π

∫∞
−∞ Se(ω)dω

)0.5

=
(

1
2π

∫∞
−∞ |H(ω)|2dω

)0.5

= ∥H(ω)∥2

(9)

By assessing the H2-norm of the transfer function from
the input d to the output z as in Fig. 8, the point-
ing error metrics are obtained (the transfer from noise
n was neglected as its effect was negligible). Similarly
the 3σ values corresponding to the estimated maximum
torque commands were calculated from the H2-norm of
the transfer from d to u. Pointing metric and torque
command performance were verified against simulations
of a parameter-varying orbit with accurate torque data
(as in Fig. 4) and modelled sensor noise. Fig. 10 shows the
plotted APE of one simulated orbit. After the initialisation
transient, the APE remains within the required bounds,
notice there is a second transient when the satellite enters
eclipse. Similar results were seen with other performance
metrics. All pointing metrics were far exceeded with the
LPV design (see Table 3)) while respecting the robustness
margins, whereas the LTI design was unable to achieve
the APE and RPE pointing requirements. The maximum
torque commands for both controller designs were very
close, in x and y they are at approximately 60% saturation
and in z they are at less than 30% saturation for all plants.

6. CONCLUSION

This paper presented a comprehensive, linear parameter
varying (LPV) control design method for the 3-axis atti-
tude tracking of an Earth-observation satellite. The con-
troller is scheduled with the positional angle of a flexible
solar array that rotates around the body of the satellite
each orbit. The control method demonstrated improved
pointing performance when compared to a linear time
invariant approach for the same satellite, assessed accord-
ing to industrial standards. This improvement was due
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to the automatic parameter varying notching of the solar
array’s flexible modes. The presented design process may
be developed further for application to automated mode
transition during satellite operations by considering modes
together as one LPV system.
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Biertümpfel, F., Theis, J., and Pfifer, H. (2022). Observer-
based synthesis of finite horizon linear time-varying con-
trollers. In 2022 American Control Conference (ACC),
2956–2961. IEEE.

ESA (2013). Metop-sg. https://www.eoportal.org/
satellite-missions/metop-sg.

Guy, N., Alazard, D., Cumer, C., and Charbonnel, C.
(2014). Dynamic modeling and analysis of spacecraft
with variable tilt of flexible appendages. Journal of
Dynamic Systems, Measurement, and Control, 136(2),
021020.

Hjartarson, A., Seiler, P., and Packard, A. (2015). LPV-
Tools: A toolbox for modeling, analysis, and syn-
thesis of parameter varying control systems. IFAC-
PapersOnLine, 48(26), 139–145.

Kassarian, E., Sanfedino, F., Alazard, D., Chevrier, C.A.,
and Montel, J. (2022). Linear fractional transformation
modeling of multibody dynamics around parameter-
dependent equilibrium. IEEE Transactions on Control
Systems Technology.

Ott, T., Benoit, A., Van den Braembussche, P., and
Fichter, W. (2011). ESA pointing error engineering
handbook. In 8th International ESA Conference on
Guidance, Navigation & Control Systems, 17.

Pisacane, V.L. (2008). The space environment and its
effects on space systems. American Institute of aero-
nautics and Astronautics.

Pittelkau, M. and McKinley, W. (2012). Pointing error
metrics: displacement, smear, jitter, and smitter with
application to image motion mtf. In AIAA/AAS Astro-
dynamics Specialist Conference, 4869.

Skogestad, S. and Postlethwaite, I. (2005). Multivariable
feedback control: analysis and design. john Wiley & sons.

Theis, J., Ossmann, D., Thielecke, F., and Pfifer, H.
(2018). Robust autopilot design for landing a large civil
aircraft in crosswind. Control Engineering Practice, 76,
54–64.

Theis, J., Pfifer, H., and Seiler, P. (2020). Robust modal
damping control for active flutter suppression. Journal
of Guidance, Control, and Dynamics. Accepted for
publication.

Wu, F., Yang, X.H., Packard, A., and Becker, G. (1996).
Induced L2-norm control for LPV systems with bounded
parameter variation rates. International Journal of
Robust and Nonlinear Control, 6(9-10), 983–998.

Zhou, K., Doyle, J.C., and Glover, K. (1996). Robust and
Optimal Control. Prentice Hall, Upper Saddle River,
NJ, 1st edition.


