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Abstract: The paper presents a novel approach for robustness analysis of nonlinear dynamic systems
in the vicinity of a reference trajectory. The approach linearizes the system with respect to a nominal
trajectory and calculates a guaranteed upper bound on the worst-case gain. In contrast to existing
methods rooted in linear time-varying systems analysis, the approach accurately includes perturbations
that drive the system away from the reference trajectory. The approach further includes a bound for the
error associated with the time-varying linearization. Hence, the results obtained in the linear framework
provide a valid upper bound for the worst-case performance of the nonlinear system. The calculation of
the upper bound relies on the dissipation inequalities formulated in the framework of integral quadratic
constraints. It is therefore computationally much cheaper than sample-based methods such as Monte
Carlo simulation. The feasibility of the approach is demonstrated on a numerical example.
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1. INTRODUCTION

Numerous engineering problems require a system to follow a
predefined trajectory. Examples include robotic manipulators
(Hošovský et al., 2016), aircraft on final approach (Biertümpfel
and Pfifer, 2022), missiles (He et al., 2015), space launch ve-
hicles (Biertümpfel et al., 2021), and vehicles for atmospheric
re-entry (Juliana et al., 2004). The performance of such systems
depends on how accurate the trajectory is tracked. Uncertainties
and disturbances can cause the system to diverge from the pre-
defined trajectory. For example, the ascent trajectory of a launch
vehicle is calculated specifically for the mass of the vehicle
and will be different if the mass is different. Thus, robustness
analysis is an important tool to ensure that the system works as
intended.

System dynamics are usually modeled by nonlinear differential
equations. Robustness analyses for these models require nu-
merical simulation and some kind of sample-based representa-
tion of the uncertainties and disturbances. This is the prevalent
“Monte Carlo” approach widely applied in industry. It requires
a very large number (often several millions) of simulations to
obtain statistically sound analysis results, see, e.g, Theis et al.
(2018). One approach to reduce the number of simulations and
hence decrease the time required to perform analyses is worst-
case optimization. Here, disturbances and uncertain parameters
are varied as the result of a numerical optimization with the
goal to maximize their adverse effect on performance, see, e.g,
Menon et al. (2009). However, neither of these approaches
is guaranteed to find the actual worst-case. The Monte Carlo
approach can simply miss the worst-case due to the inherent in-
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completeness of sampling and worst-case optmization is prone
to converging to local optima. Other approaches make use of
the both computationally and theoretically more tractable linear
system theory where methods to calculate actual upper bounds
for robust performance exist. The first step towards such an
analysis is the Jacobian linearization of the nonlinear differ-
ential equations with respect to the trajectory. This results in
a finite horizon linear time-varying (LTV) system whose state
space representation is a known function of time.

Multiple approaches to assess robust performance of LTV sys-
tems exist, e.g., analysis via gap metric in Cantoni and Pfifer
(2017) and via integral quadratic constraints (IQCs) in Jönsson
(2001). Recent approaches are based on an extension of the
LTV bounded-real lemma to IQCs by Moore (2015) and Fry
et al. (2017). A closely related formulation is used in Section
3. However, the analysis approaches so far are only concerned
with the effect of uncertainties in the state space representation.
They are not able to completely recover the behavior of the non-
linear system when parameters are varied along the trajectory.
In many applications, however, uncertain parameter-variations
are the driving factor for divergence from a nominal trajectory.
For example, a space launch vehicle can be thought of as having
a nominal mass trajectory during ascent where fuel is burned.
Due to inevitable uncertainties in the model of the propulsion
system, the true mass trajectory will be different from the nom-
inal one and this causes the launch vehicle to diverge from the
desired state trajectory.

The present paper extends the LTV robustness analysis frame-
work to include such effects. This is achieved by augmenting
the state space of the LTV system with a constant driving term
and including the terms associated with the parameter variation
as part of the state matrix. By covering these terms with norm-
bounded uncertainties, a form amenable to existing analysis



methods is then obtained. Specifically, the analysis problem is
shown in Section 2 to become a worst-case gain calculation
under uncertain initial conditions. Furthermore, the effects of
the linearization error along the trajectory are included in a
similar way. This makes it possible to relate the results of
the linear analysis in a meaningful way back to the nonlinear
robust performance analysis problem. In other words, an actual
bound on the worst-case performance of the nonlinear system
is obtained using linear analysis tools.

The approach bears similarities with first-order trajectory sen-
sitivity analysis, see, e.g., Geng and Hiskens (2019). Such ap-
proaches model parameter variation along the trajectory as an
additional disturbance input. However, these approaches do not
consider the combination with external disturbances that are a
key feature of robust performance analysis. The novel approach
is also related to the work of Schweidel et al. (2021), who in-
troduce a driving term to model divergence from the trajectory.
However, their approach is limited to a pre-sampled uncertainty
set and requires a linear fractional representation of the model.
This means, the analysis is restricted to previously fixed pa-
rameter trajectories which causes an incomplete-sampling issue
similar to the Monte-Carlo approach. Including bounds for the
linearization error in analyses has been previously suggested by
Takarics and Seiler (2015).

In summary, the present paper explicitly considers the effects of
parameter variation on the state trajectory and also includes the
uncertaintiy associated with the linearization error. It extends
the LTV robustness analysis framework for providing an upper
bound on the worst-case performance of nonlinear systems in
the vicinity of a reference trajectory. The approach is demon-
strated on a numerical example in Section 4.

2. PROBLEM FORMULATION

Consider a nonlinear system whose dynamics are defined by the
nonlinear ordinary differential equations (ODEs)

ẋ(t) = f(x(t), d(t), ρ(t))

e(t) = h(x(t), d(t), ρ(t)).
(1)

In (1), the signals x(t) ∈ Rnx , d(t) ∈ Rnd , and e(t) ∈ Rne
describe the state variable, the input, and the output, respec-
tively. The vector ρ(t) ∈ Rnρ denotes a time-varying parameter
vector. A common problem in applied control engineering is to
analyze the worst-case performance of the system (1) about a
known reference trajectory T := {x(t) = xT (t) ∧ d(t) =
dT (t) ∧ ρ(t) = ρT (t) ∀ t ∈ [0, T ]} over the finite time horizon
[0, T ]. The reference trajectory corresponds to a unique solution
that satisfies (1):

ẋT (t) = f(xT (t), dT (t), ρT (t))

eT (t) = h(xT (t), dT (t), ρT (t)) ∀t ∈ [0, T ].
(2)

The worst-case analysis is concerned with perturbations d∆ and
ρ∆ in the input and parameter vectors, respectively:

d∆(t) := d(t)− dT (t), ρ∆(t) := ρ(t)− ρT (t). (3)
The parameter perturbation ρ∆ is confined to a set P ⊂ R.

The worst-case performance, with respect to the output e at final
time T , of the nonlinear system over all possible parameter and
input perturbations along the trajectory T can be expressed as

sup
ρ∆∈P

sup
d∆∈L2[0,T ]

d∆ 6=0
x(0)=xT (0)

‖e(T )‖2
‖d∆(t)‖2[0,T ]

. (4)

Here, ‖d∆(t)‖2[0,T ] =
√∫ T

0
dT∆(t)d∆(t) dt is the finite

horizon L2-norm of the input perturbation and ‖e(T )‖2 =√
eT (T )e(T ) is the Euclidean norm of the output at the ter-

minal time. Computing the worst-case gain (4) is, in general,
only possible with a form of sample-based method. Common
examples include Monte Carlo simulations or nonlinear worst-
case optimization.

Alternatively, the worst-case gain can be approximated using
analysis methods for finite horizon LTV systems. This requires
a Taylor series expansion of f and h along the trajectory T .
Define x∆(t) := x(t)− xT (t). The expansion is

ẋ =ẋT +
∂f

∂x

∣∣∣∣
T
x∆ +

∂f

∂d

∣∣∣∣
T
d∆ +

∂f

∂ρ

∣∣∣∣
T
ρ∆ + εf

e =eT +
∂h

∂x

∣∣∣∣
T
x∆ +

∂h

∂d

∣∣∣∣
T
d∆ +

∂h

∂ρ

∣∣∣∣
T
ρ∆ + εh.

(5)

Here, εf and εh denote the Taylor expansion’s higher-order

terms and ∂f
∂x

∣∣∣
T

denotes the Jacobian of f with respect to x
evaluated along the reference trajectory T . The other Jacobians
are defined accordingly. The common LTV state space repre-
sentation

ẋ∆(t) = A(t)x∆(t) +B(t) d∆(t)

e∆(t) = C(t)x∆(t) +D(t) d∆(t)
(6)

is obtained by neglecting the higher-order terms εf and εh, and
assuming nominal parameters, i.e., ρ∆(t) = 0 for t ∈ [0, T ].
In (6), the perturbed output is e∆ = e − eT and the system
matrices are

A(t) =
∂f

∂x

∣∣∣∣
T
, B(t) =

∂f

∂d

∣∣∣∣
T
,

C(t) =
∂h

∂x

∣∣∣∣
T
, D(t) =

∂h

∂d

∣∣∣∣
T
.

(7)

The gain of the LTV system (6) defined as

sup
d∆∈L2[0,T ]

d∆(t) 6=0,x∆(0)=0

‖e∆(T )‖2
‖d∆(t)‖2[0,T ]

(8)

can be readily computed as for instance described in Green and
Limebeer (1995). The gain (8) relates perturbations in the input
to deviations from the nominal output eT . Since the reference
output is known and ‖e(T )‖2 ≤ ‖eT (T )‖2 + ‖e∆(T )‖2, the
result can, in principle, be used to establish an upper bound on
the robust performance metric (4). However, as this analysis
does not consider parameter perturbations and further neglects
the higher-order terms of the Taylor series expansion, no actual
guarantees are provided.
Remark 1. Uncertainties in the state space system (6) are fre-
quently included in an attempt to account for the neglected
parameter variation and higher-order terms. Examples are dy-
namic input uncertainties (Seiler et al., 2019) or parametric un-
certainties (Biertümpfel et al., 2021). This approach leads to a
worst-case LTV analysis over the newly introduced uncertainty
set. However, such uncertainties alone cannot drive the system
state away from the trajectory: e∆(t) = ẋ∆(t) = 0 as long as
d∆(t) = 0. In contrast, a parameter variation ρ∆ in (1) leads to
a variation in ẋ(t). This effect cannot be accurately represented
by such uncertainties.

Unlike the common approach described so far, the method in
this paper explicitly considers perturbations from the reference
trajectory, i.e., ρ∆(t) 6= 0 and bound the higher-order terms εf



and εh. Hence, it can be used to calculate guaranteed bounds on
the worst-case performance metric of the nonlinear system (4).

3. LTV WORST-CASE ANALYSIS FOR PERTURBED
TRAJECTORIES

In order to account for the parameter perturbation ρ∆ in the lin-
ear analysis, the state space representation (6) can be extended
as follows. First, define

E(t) =
∂f

∂ρ

∣∣∣∣
T
, F (t) =

∂h

∂ρ

∣∣∣∣
T
. (9)

With this, the Taylor series expansion (5) can be written as
ẋ =ẋT +Ax∆ +B d∆ + E ρ∆ + εf
e =eT + C x∆ +Dd∆ + F ρ∆ + εh.

(10)

A state space model for (10) is obtained by augmenting the state
vector x∆ with a constant driving term:[

ẋ∆

0

]
=

[
A Eρ∆ + εf

0 0

][
x∆

1

]
+

[
B

0

]
d∆

e∆ =
[
C Fρ∆ + εh

] [
x∆

1

]
+Dd∆.

(11)

This model is a completely equivalent representation for (10).
It is non-standard due to the constant driving term appearing
in the state vector. This trick, however, allows the parameter
variation to excite the system dynamics independently of the
disturbances. In a next step, the driving term is replaced by a
state variable xρ confined to U := {xρ ∈ R |x2

ρ ≤ 1}:[
ẋ∆

0

]
=

[
A Eρ∆ + εf

0 0

][
x∆

xρ

]
+

[
B

0

]
d∆

e∆ =
[
C Fρ∆ + εh

] [
x∆

xρ

]
+Dd∆.

(12)

The introduction of xρ leads to a homotopy-like analysis that
covers all parameter perturbations and higher-order errors from
the nominal LTV performance to the maximum bounds. In
other words, the influence of the parameter variation and the
higher-order terms vanishes for xρ = 0 and is completely
recovered for xρ = 1.

It has already been established that the parameter perturbations
ρ∆ are constrained to some bounded setP . Note that the higher-
order terms of the Taylor series expansion, εf and εh, are small
for reasonably small variations from the reference trajectory.
Assume that a bound at each point in time can be found and thus
that they are confined to sets Ef and Eh, respectively. Takarics
and Seiler (2015) propose a formal bound on εf and εh based
on the Lipschitz constant of the nonlinear system. Alternatively,
sampling can be used to obtain such a bound. In either case,
the terms ρ∆, εf , and εh can now be treated as time-varying
norm-bounded uncertainties. The worst-case gain of (12) can
be calculated as

sup
ρ∆∈P
εf∈Ef
εh∈Eh

sup
d∆∈L2[0,T ]
d∆(t)6=0

x∆(0)=0,xρ∈U

‖e∆(T )‖2
‖d∆(t)‖2[0,T ]

(13)

Together with the nominal output, this now provides an ac-
tual upper bound for the robust performance of the nonlinear
system (1). Note that the state xρ requires a non-zero initial
condition to take effect. Since all “actual” state variables have

zero initial conditions for the worst-case gain (13), the uncertain
LTV system (12) has only partially uncertain initial conditions.

The uncertain state space model (12) can be transformed into a
linear fractional representation (LFR), pictured in Fig. 1. This
LFR is written as Fu(G,∆) and can be interpreted as the feed-
back interconnection of the nominal dynamics of (11), denoted
byG, and the uncertainties, denoted by ∆. The uncertainty ∆ is

G

∆

de

wv

Fig. 1. Linear fractional representation of uncertain LTV system

block-diagnonal and its elements ∆i represent the components
of ρ∆, εf , and εh, where the entries corresponding to ρ∆ can
be repeated. As is common practice in robustness analysis, the
precise relation between the inputs v and outputs w of the
uncertainty ∆ is replaced by constraints on the input/output
behavior. Ultimately, this replacement leads to computationally
tractable conditions to compute upper bounds on the worst-case
gain (13) later on.

For now, assume that vi and wi are the input and output of the
ith uncertainty entry ∆i = δiIni , respectively, i.e. wi = ∆ivi.
Further let the uncertainty be bounded by |δi(t)| ≤ bi(t) ∈ R+

and arbitrarily fast time-varying. A constraint on vi and wi that
guarantees the boundedness of δi is given pointwise in time as[

vi

wi

]T [
b2iXi Yi

Y Ti −Xi

][
vi

wi

]
≥ 0 ∀t ∈ [0, T ], (14)

where Xi = XT
i > 0 and Yi = −Y Ti are so-called mul-

tipliers of appropriate dimension. These multipliers can be
time-varying. It is straightforward to show that (14) guarantees
|δi(t)| ≤ bi(t) for any choice of Xi and Yi, see for instance
Veenman et al. (2016). The values of the multipliers have a
direct impact on the bound calculation at the end of the section.
Thus, they will be used as free parameters in a semidefinite
optimization problem to find the smallest upper bound on the
worst-case gain.

The quadratic constraint (14) for a single entry ∆i is extended
to the whole uncertainty block ∆ in the following way as-
suming k entries in ∆. A new vector signal z is defined by

stacking all pairs vi, wi, i.e. zT =
[
[ vT1 wT1 ] , . . . , [ vTk wTk ]

]T
.

Additionally, a multiplier matrix M stacks all the individual
multipliers on its block diagonal such that

M =


[
b21X1 Y1

Y T1 −X1

]
. . . [

b2kXk Yk

Y Tk −Xk

]
 . (15)

Using these definitions for z and M , the input/output behavior
of ∆ can then be bounded by the pointwise-in-time quadratic
constraint zTMz ≥ 0 for all t ∈ [0, T ]. Thus, the uncertainty
in the interconnection Fu(G,∆) of Fig. 1 can be replaced
by adding w and z as additional external input and output,
respectively, where the output z must satisfy the quadratic



constraint defined by M . The so-extended state space model
is written as:[

ẋ∆

0

]
= Â

[
x∆

xρ

]
+
[
B̂1 B̂2

] [
w

d∆

]
[
z

e∆

]
=

[
Ĉ1

Ĉ2

][
x∆

xρ

]
+

[
D̂11 D̂12

D̂21 D̂22

][
w

d∆

] (16)

with
zTMz ≥ 0 ∀t ∈ [0, T ]. (17)

Remark 2. The quadratic constraints given in this section gen-
eralize into the well-known IQC framework. Specifically, the
constraint (17) holds for each point in time. Thus, integrating
it over the time interval must also satisfy the constraint, i.e.∫ T

0
zTMzdt ≥ 0. Using this more general integral quadratic

form would allow the combination of different types of uncer-
tainties in the analysis, e.g. time delays or uncertainties in the
original nonlinear system. For the sake of readability, the use of
the IQC form is not further pursued in this paper.

The following Theorem 1, based on the extended system (16),
provides an analysis condition to calculate an upper bound on
the worst-case gain (13).
Theorem 1. Let Fu(G,∆) be well posed ∀∆ satisfying the
quadratic constraint (17). Then the worst-case gain (13) is
bounded by the scalar γ > 0 if there exist a continuously
differentiable symmetric matrix function P =

[
P11 P12

PT12 P22

]
:

R+
0 → R(nx+1)×(nx+1) as well as scalar constants α1 > 0

and α2 > 0 such thatṖ + PÂ+ ÂTP PB̂1 PB̂2

B̂T1 P 0 0

B̂T2 P 0 −Ind

+

 ĈT1D̂T
11

D̂T
12

M
 ĈT1D̂T

11

D̂T
12


T

< 0

(18)
andP22(0)− α1 0 0

0 α2Ĉ
T
2 (T )Ĉ2(T )−P (T ) 0

0 0 α1−α2γ
2+1

 < 0.

(19)

Proof. Theorem 1 is a corollary of Theorem 2.3 in Moore
(2015). The proof provided there requires only minor modifi-
cations.

The theorem of Moore (2015) is concerned with uncertain
initial conditions for all states. For the application to the worst-
case gain calculation, the initial conditions for x are zero and
only the single initial condition for the pseudo-state xρ that
represents the driving term needs to be considered. This is done
in Theorem 1 through the partitioning of P into an nx × nx
matrix P11 (related to x) and a scalar P22 (related to xρ). The
upper left entry in (19) thus corresponds to the constraint on
xρ(0).

The condition (18) has to hold for all t ∈ [0, T ] and therefore
presents an infinite number of LMI constraints. The state-of-
the-art approach to circumvent this problem enforces the con-
dition only on a finite number of grid points ti ∈ [0, T ], see,
e.g., Pfifer and Seiler (2016). The decision variables in condi-
tions (18) and (19) are the matrix function P , the multiplier
matrices Xi and Yi from (15), as well as α1 and α2. The time-
dependent functions P ,Xi, and Yi must also be constrained to a

finite dimensional subspace to allow a computational solution.
Most commonly, these are expressed as linear combinations,
e.g. P (t) =

∑Nb
i=0 t

iPi, i = 0, 1, ..., Nb. Thus, the coefficient
matrices become the decision variables. Alternatively, more
sophisticated basis functions such as cubic splines can be used,
see Seiler et al. (2019). Feasible coefficients can be calculated
as a semidefinite program with the constraints (18) and (19) for
a given γ. A bisection over γ identifies the minimal feasible
upper bound.

4. NUMERICAL EXAMPLE

The example concerns the robustness analysis of a pendulum
along a prescribed trajectory. The penduluum has a constant
length l = 1.25 m and is acted upon by gravity (g = 9.81 m

s2 )
and by a tangential force F . The aim of the analysis is to
calculate the worst-case deflection angle φ at the final time
T due to a disturbance in the force F . The pendulum’s mass
m (kg) and damping σ (kg · m2/s) vary with time. They
constitute the exogenous parameter vector ρ for this example.
The motion of the pendulum is described by the following
nonlinear differential equations:[

φ̇

φ̈

]
=

[
φ̇

F cosφ
ml −

g sinφ
l − σφ̇

ml2

]
e = φ.

(20)

A reference trajectory over 10 s is obtained in the following
way: The reference deflection angle and rate are initialized
as φT (0) = 45◦ and φ̇T (0) = 0◦/s, respectively. For the
exogenous parameters, the following trajectory is defined:

ρT =

[
mT

σT

]
=

[
3− 0.1t

2 + 0.25t

]
. (21)

Lastly, the force is set to the constant value FT = 29.43 N.
Using these specifications, the nonlinear differential equations
(20) are integrated along the reference trajectory to obtain φT
and φ̇T . Note that even with a constant force acting on the
pendulum, the variations in the mass and damping still cause
a motion. While it is assumed that the damping is accurately
known, the mass variation m∆ about the reference trajectory is
considered ±0.25 kg uncertain in this example.

Linearizing the nonlinear system (20) along T yields the LTV
systemφ̇∆

φ̈∆

0

=
 0 1 0

− g
l cosφT

− σT
mT l2

( σT
m2

T l
2 − cosφT FT

m2
T l

)m∆+εφ̈

0 0 0


φ∆

φ̇∆

xρ


+

 0
cosφT
mT l

0

F∆

e∆ =
[
1 0 0

]φ∆

φ̇∆

xρ

 .
(22)

The higher-order terms of the Taylor series are represented
by εφ̈. A reasonable bound for εφ̈ is identified by sampling
the nonlinear dynamics (20) around the reference trajectory
and calculating the maximum linearization errors. For this



example, the linearization error is calculated for dispersions
±10◦, ±5◦/s, ±0.25 kg, and ±0.5 N around φT (t), φ̇T (t),
mT (t), and FT (t), respectively. A time-dependent bound bε(t)
is obtained from the pointwise-in-time linearization errors. This
leads to |εφ̈(t)| ≤ bε(t). The bound starts at 0.25 rad/s2 for
t = 0 s and ends at 0.63 rad/s2 at t = 10 s.

First, a Monte Carlo simulation of the nonlinear model is
performed to establish a baseline for comparison. The nonlinear
model is simulated with 3465 unique combinations of norm-
bounded disturbances (‖F∆‖2[0,T ] = 1) and time-varying mass
in the range of ±0.25 kg around mT (t). Fig. 2 shows selected
time series of the calculated deviations φ∆ ( ) from the
reference trajectory φT . The Monte Carlo simulation yields a
maximum deviation of 16.2◦. It requires a computational time
of 249 s on a standard desktop PC.

Next, the proposed worst-case calculation from Section 3 is ap-
plied. The extended state space system (16) with the quadratic
constraint (17) is analyzed with Theorem 1. A third-order poly-
nomial basis function is used to represent P , Xi, and Yi. The
conditions of Theorem 1 are evaluated on a grid with a density
of 0.1 s. The resulting semidefinite program is solved using
Matlab’s lmilab. A bisection over γ yields γ = 31.2◦. The
complete bisection takes 18 s on the same computer. This value
is the upper bound on the terminal deviation φ∆(T ) for all dis-
turbances with ‖F∆‖2[0,T ] = 1. Fig. 2 shows that all simulation
results remain inside this bound.

Finally, a “conventional” LTV analysis is performed for com-
parison. For this analysis, the pendulum is linearized without
accounting for the parameter variation and the higher-order
terms, leading to the standard LTV model (6). The state space
matrices in this models are functions of the reference massmT .
A standard approach is to consider this dependence as uncer-
tain. In other words, an uncertain mass variation of ±0.25 kg
is added to all entries mT in the state space matrices. Note
that this is not the same as directly including the mass per-
turbation m∆ in the linearization. The worst-case gain (8) of
this uncertain LTV system is calculated by sampling the mass
and applying the results of Green and Limebeer (1995). The
analysis yields γ = 2.4◦ which is clearly violated by the actual
simulation results, see again Fig. 2.

Note that the proposed worst-case analysis appears to be more
conservative than the Monte Carlo simulation. This is due to
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Fig. 2. Representative Monte Carlo simulation samples ( ),
most critical Monte Carlo result ( ), upper bound from
proposed method ( ), conventional analysis ( )

two main reasons. First, the Monte Carlo simulation can only
provide a lower bound for the worst-case performance, not an
upper bound. In other words, the performance cannot be better
than the worst-case obtained in Monte Carlo simulation, but it
could be worse. As previously discussed, this analysis depends
heavily on the sampling of the disturbances and perturbations.
In contrast, the proposed analysis provides a guaranteed upper
bound on the worst-case performance. This bound is also ob-
tained in a fraction of time (14-times faster) compared to the
Monte-Carlo simulation. Second, the proposed analysis con-
siders arbitrarily fast time-varying perturbations, whereas the
samples in the Monte Carlo simulation have finite variation
rates. Conservatism could thus be reduced by considering rate-
bounded parametric uncertainties, see, e.g., Veenman et al.
(2016).

5. CONCLUSION

The paper presents a novel approach for the analysis of non-
linear systems along uncertain trajectories. It formulates time-
varying parameter deviations from the nominal trajectory as
uncertain initial conditions of an extended state space system in
conjunction with time-varying uncertainties. The time-varying
uncertainties can be bounded by quadratic constraints, which
belong to the general IQC framework. Hence, the resulting
uncertain LTV system can be efficiently analyzed in the LTV
IQC framework. A numerical example demonstrates that the
approach requires significantly less computational effort than a
Monte Carlo analysis and indeed provides an upper bound for
the worst-case performance.
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