
Life-Cycle of Structures and Infrastructure Systems – Biondini & Frangopol (Eds) 
© 2023 The Author(s), ISBN 978-1-003-32302-0 

Open Access: www.taylorfrancis.com, CC BY-NC-ND 4.0 license

Environmental influence on structural health monitoring systems

J.-H. Bartels
Institute of Concrete Structures, TU Dresden, Dresden, Germany

M. Kitahara
Department of Civil Engineering, The University of Tokyo, Tokyo, Japan

S. Marx
Institute of Concrete Structures, TU Dresden, Dresden, Germany

M. Beer
Institute for Risk and Reliability, Leibniz University Hannover, Hannover, Germany 
Institute for Risk and Uncertainty, University of Liverpool, Liverpool, UK

ABSTRACT: Monitoring is becoming increasingly important for the condition assessment of 
structures, as it allows continuous assessment. The aim is to identify changes in the condition of the 
structure that cannot be detected by purely visual inspection. In this paper, a typical measurement 
system used in practice is investigated under laboratory conditions with regard to its temperature 
dependence. A method for temperature compensation of laser distance measurements is presented 
and a Bayesian model updating is applied, with which a temperature compensation function over 
time can be determined semi-automatically. It is shown that the temperature-dependent transfer 
function should first be generated at the structure in order to perform a reliable temperature com-
pensation. Furthermore, the application of Bayesian Model Updating shows a reliable fit of the tem-
perature-dependent transfer function over time, so that the engineer is provided with a helpful tool 
for semi-automated temperature compensation in the case of time-variant behavior.

1 INTRODUCTION

For condition monitoring of structures, Structural Health Monitoring (SHM) is becoming 
increasingly important, as it allows continuous condition assessment of the structure and usefully 
supplements on-site inspections (Farrar and Worden 2007; Wedel and Marx 2022). The aim of 
monitoring is to identify changes in the condition of the structure that can only be inadequately 
detected by the purely visual inspection (Worden et al. 2007), whereby the goal of monitoring can 
only be achieved by comparing at least two different states: the reference state with the current 
state (Worden and Tomlinson 2019). For large infrastructures (e.g. wind turbines or bridges), 
however, the change in condition due to aging is very small (Hübler et al. 2022), so that precise 
measurements are required to be able to make reliable comparisons. The problem is that not only 
the behavior of the structure, but also other influences such as temperature affect the measure-
ment signal. The question arises how such influences can be quantified and compensated.

This paper aims to make a contribution to this by investigating a measurement system typ-
ically used in practice under laboratory conditions with regard to its temperature dependence 
and its time-dependent behavior. For this, a method for temperature compensation is pre-
sented and Bayesian Model Updating (BMU) is applied, with which a temperature compensa-
tion function can be determined semi-automatically. This paper consists of five chapters. In 
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chapter 2, the measurement principle of the investigated Laser Triangulation Sensor (LTS) is 
explained and the principle of BMU is described. In chapter 3 the experimental setup with the 
measurement system used and the exposures are explained. On this basis, the temperature 
dependence of the measurement signal is analyzed. With the help of time-variant investiga-
tions, BMU is applied in chapter 4 and it is shown that a reliable updating of the temperature 
dependence over time is possible. Chapter 5 concludes with a summary and an outlook.

2 THEORIES AND METHODOLOGIES

2.1  Laser triangulation sensor – measurement principle

In this paper, LTS is used because it enables to investigate a simple measurement principle 
and it can be used in Offshore Wind Turbine (OWT) or bridge monitoring. The LTS measures 
the distance to an object surface by calculating the angle and provides a non-contact method 
of position measurement (Murakami 1994).

Figure 1.  Measurement principle of LTS.

A laser beam is projected on the object surface O and a light spot S can be observed on it. The 
light spot is imaged through a lens with a numerical aperture sin(ui) (Dorsch et al. 1994; Berns 
et al. 2019). The position of the spot image S’ is determined with a position sensitive detector 
called photodiode array (PDA). The PDA is based on the CCD principle (charge-coupled device) 
and contains light sensitive electronic components using the internal photoelectric effect. From 
the position of the light spot on the image plane, the position of the measuring object is calculated 
(Löffler-Mang 2012). For a detailed description of the measurement principle, the reader is 
referred to Bartels et al. 2023.

2.2  Bayesian model updating – Transitional Markov Chain Monte Carlo (TMCMC)

For engineering problems, mathematical models are typically used to simulate and evaluate the 
behavior of structures under load conditions. This virtual behavior corresponds only poorly to the 
real physical structure. To solve this problem, model updating techniques can be applied to update 
physical input parameters. The parameters then describe e. g. material properties of a structure 
(Worden and Tomlinson 2019). These parameters are measured on the real structure and are inte-
grated into the mathematical model of the virtual system to be updated, so that the difference 
between the mathematical model and the real physical behavior of the system is minimized.

The physical behavior of a system is described by a mathematical function M (x; J), where 
x defines the vector of unchangeable model parameters and J the vector of changeable model 
parameters to be updated. The mathematical relationship between the requested quantity 
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D (e. g., the output of the measured distance by the LTS) and the mathematical prediction 
model M (x; J) is defined by

where 2 describes the model or measurement error. The uncertainty in the model parameters J 

can be accounted for using a probability density function (PDF). These problems are called for-
ward problems because they can be solved analytically or with simple Monte Carlo simulations 
(Li and Caracoglia 2019). Monte Carlo simulation is used to generate the requested data D for 
a known common PDF. The problem in reality is that the best-fit joint PDF is not known, which 
links the model parameters J to the requested quantity D. This is called the inverse problem (Lye 
et al. 2021). The advantage of implementing Bayesian inference in BMU process is that prior 
information about the requested model parameters J can be combined with the observed data D. 
Hence, the stochastic character of the quantity D to be inferred can be generated. So, if a set of 
n independent and identically distributed observations (D1; D2; . . .; Dn) is made, then the pre- 
information is updated using Bayes’ theorem (Mares et al. 2006). This leads to a posterior distri-
bution of the requested model parameters J under the condition of the observations made D

where D represents the observation vector, PðJÞ the statistical distribution of the prior, 
PðDjJÞ) the likelihood function, P(D) the evidence, and PðJjDÞ the posterior distribution. 
Instead of the analytical solution, the Monte Carlo method, which is easy to apply, is usually 
used. To apply the method, samples must be generated, which are performed using the itera-
tive TMCMC sampler. For more detailed information on the TMCMC algorithm, please 
refer to Ching and Chen 2007.

3 EXPERIMENTAL SETUP AND TRANSFER FUNCTION

For the investigation of the temperature influence on laser measurements, a total of six LTSs 
within a measuring system is exposed to different temperatures within a climate chamber and 
analyzed whether and in which way the measurement signal changes.

3.1  Sensors, measurement system and environmental influence

The experimental setup is shown in Figure 2.
The entire measuring system consists of LTS, cable and measuring amplifier. As can be seen 

in Figure 2, the LTSs are fixed on a base plate with upstand and measure the horizontal distance 
to the upstand. The special feature: the base plate and the upstand are made of the material 
Alloy 36, an iron-nickel alloy with a small coefficient of thermal expansion of αT,Alloy36 = 0.50 
10-6 1/K. Compared to this material, construction steel (αT,Stahl = 13.00 10-6 1/K) has 
a coefficient of thermal expansion more than 20 times higher. With this design, it is possible to 
attribute changes in the measurement signal to the measurement system, since the influence of 
base plate strain due to temperature change is negligible. LTSs with a measuring range of 
10 mm are tested, which measure within the measuring distances 16 mm to 26 mm. To examine 
the entire measurement range of the LTS, three initial distances dsel between the sensor and the 
upstand are selected (dsel ≈ [17 mm; 21 mm; 25 mm]).

3.2  Temperature-dependent transfer function

In the climate chamber, temperatures are varied between -10 °C and +50 °C in 10 K steps. 
The planned temperature curve can be seen in Figure 3.
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By varying the temperature, a reproducible test of the LTS with respect to the temperature 
dependence is possible. Each temperature level is kept constant for 4 h and the respective tem-
perature change by 10 K is achieved within 30 min. Keeping the temperature constant for 4 
h has two objectives: on the one hand, the temperature inertia of the experimental setup is 
overcome, so that the temperature can be assumed for the measuring system, the base plate 
and the ambient temperature. On the other hand, a representative amount of data can be gen-
erated over this period. With a sampling rate of 1 Hz, 14,400 measured values are generated 
over 4 hours. Only the constant temperature and measurement distance ranges are cut and the 
arithmetic mean is calculated as the expected value.

This procedure is carried out for all temperature levels, so that a total of seven expected values 
are calculated from -10 °C to +50 °C in 10 K steps. The values are related to the measured 

Figure 2.  Experimental setup for the LTS investigation of temperature and time dependence.

Figure 3.  Intended temperature regulation for the determination of the temperature-dependent transfer 
function.
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distance at 10 °C (reference value). This quotient between the measurement distance at a given 
temperature and the measurement distance at 10 °C is referred to as the transfer factor H(T). The 
individual transfer factors are approximated by a 2nd degree regression polynomial to the so- 
called temperature-dependent transfer function (see Figure 4). The detailed description of the pro-
cedure for calculating the temperature-dependent transfer function is given in Bartels et al. 2022.

3.3  Time-dependence of the transfer function

With the knowledge of the temperature dependence of the LTS, the time dependence of the 
transfer function is to be analyzed in the next step. For this, the measurement system is sub-
jected to a modified temperature and humidity curve (see Figure 5) using the same experimental 
setup as shown in Figure 2.

The temperature and humidity can be divided into four phases, with each phase starting and 
ending at a temperature of 20 °C. This has the advantage that the measurement signal can be com-
pared with the output signal (also at 20 °C) after each aging phase. In order to be able to record the 
time variance of the transfer function, the test for determining the temperature-dependent transfer 

Figure 4.  Temperature dependent transfer function for one LTS.

Figure 5.  Intended temperature and humidity regulation for the aging tests.
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function according to chapter 3.2 is carried out after each 240-hour aging test and compared with 
the transfer function from Figure 4. The result is shown in Figure 6.

To enable the humidity to be controlled as well, the experimental setup had to be installed 
in a different climate chamber that can vary both the temperature and the humidity. At time 
t = 0 h the experimental setup is in the “old” climate chamber, at time t = 720 h the experi-
mental setup is in the “new” climate chamber.

It can be clearly seen that the reconstruction of the measuring system has led to a change in 
the temperature-dependent transfer function. This circumstance means that this transfer func-
tion should only be determined in practice after successful installation of the measurement 
system on the structure when the system is no longer moved. A determination in the laboratory 
would lead to unreliable and non-reproducible results. After reconstruction the temperature- 
dependent transfer function does not change much over the considered test period of 1440 h, so 
that a time-invariant temperature-dependent transfer function can be assumed.

4 BAYESIAN MODEL UPDATING OF TRANSFER FUNCTION

The question arises whether the results from sections 3.2 and 3.3 can also be approximated 
with BMU. This would mean a partial automation of the measurement data evaluation and 
accordingly support the interpreting engineer in the quasi-real-time evaluation of the monitor-
ing data. For this, the transfer function from the manual approximation is compared with the 
one generated by BMU. The result of the BMU is shown in Figure 7.

Figure 6.  Investigation of the time variance of the temperature-dependent transfer function.

Figure 7.  Transfer function calculated with BMU.
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The initial transfer function at time point t = 0 h is updated for time point t = 720 h. The 
visual comparison between Figure 6 and Figure 7 shows a good agreement of the transfer 
functions at time point t = 720 h. This finding is quantified in the next step. For this, the 
mathematical model of the transfer function is important, which includes the parameters #i to 
be updated. With equation (3)

the transfer function for updating is defined at time t = 0 h, where T describes the tempera-
ture. In the manual approximation of the transfer function at time t = 720 h, the parameters 
of the 2nd degree regression polynomial are determined so that they can be compared with the 
parameters of the transfer function at time t = 0 h. The quotient of the respective parameters 
results in the fitting factor #i. For the validation of BMU, the change of the transfer function 
is considered once between the time points t = 0 h to t = 720 h and between t = 960 h to t = 
1200 h. The results are listed in Table 1.

It becomes clear that the error between manual approximation and BMU is small. Both in 
the updating process between strongly varying transfer functions (t = 0 h to 720 h) and in the 
case of similar transfer functions (t = 960 h to 1200 h), the procedure is accurate. Nevertheless, 
the fitting factors in the BMU process are determined with an uncertainty, since an expected 
value is calculated on the basis of a large number of samples, which is calculated with 
a standard deviation. In future experiments, it will be investigated how large the standard devi-
ation of the individual parameters can be so that the smallest changes in the transfer functions 
can be reliably determined and are not lost in the standard deviation of the fitting factors #i.

5 CONCLUSION AND OUTLOOK

In this paper, a measurement system typically used in practice was tested under laboratory 
conditions with respect to its temperature dependence and its time-dependence. A method for 
the temperature compensation of LTSs was presented and furthermore a BMU was applied, 
with which a temperature compensation function can run semi-automatically over time.

It is shown that the generation of the temperature-dependent transfer function must first be 
applied on the structure to be monitored in order to perform reliable temperature compensation.

Furthermore, the application of a BMU with TMCMC algorithm shows a reliable fitting of 
the temperature-dependent transfer function over time. Thus, this procedure providing the 
interpreting engineer with a helpful tool for semi-automated temperature compensation in the 
presence of time-variant behavior of the measurement system.

Future studies will address the time variance of the measurement system in more detail. In 
addition, the uncertainty of the BMU must be taken into account when calculating the trans-
fer function so that marginal change in the measurement system and at the structure can be 
reliably captured. This is the only way to reliably assess structures using monitoring systems 
over several years.

Table 1. Comparison of manual approximation vs. BMU (TMCMC).

#1 #2 #3

t = 0 h to 720 h
2nd degree polynomial 0.99903 -0.33468 7.52741

BMU (TMCMC) 0.99901 -0.35000 7.90000
Error 0.002 % 4.576 % 4.950 %

t = 960 h to 1200 h

2nd degree polynomial 1.00034 0.60755 0.68738
BMU (TMCMC) 1.00025 0.65980 0.68000
Error 0.008 % 8.600 % 1.074 %
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