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ABSTRACT 
 
Structural Health Monitoring (SHM) is becoming increasingly important 
for monitoring infrastructures. However, one of the main challenges is 
that the changes due to aging are small, not only for structures, but also 
for SHM systems. Hence, the question is how should we distinguish such 
changes due to aging from measurement uncertainty. In this study, laser 
triangulation sensors (LTSs) are tested and the uncertainty due to 
temperature effects is studied. Furthermore, time-dependent experiments 
are performed and the SHM system is calibrated over time through 
Bayesian Model Updating, considering its temperature dependence. 
 
KEY WORDS: SHM; Bayesian Model Updating; temperature influence; 
laser triangulation sensor; measurement uncertainties; aging monitoring 
systems  
 
INTRODUCTION 
 
For condition monitoring of structures, Structural Health Monitoring (SHM) 
is becoming increasingly important, as it allows continuous condition 
assessment of the structure and usefully supplements on-site inspections 
(Farrar & Worden, 2007; Wedel & Marx, 2022). The aim of monitoring is to 
identify changes in the condition of the structure that can only be 
inadequately detected by the purely visual inspection (Worden et al., 2007), 
whereby the goal of monitoring can only be achieved by comparing at least 
two different states: the reference state with the current state (Worden & 
Tomlinson, 2019). For large infrastructures (e.g., wind turbines or bridges), 
however, the change in condition due to aging is very small (Klein et al., 
2022). Typical measurements in structures are displacement measurements, 
since changes in the condition of the structure can be detected mainly by 
relative displacements of individual components (Bergmeister et al., 2015; 
Marx et al., 2015; Mischo et al., 2022). Laser measurements based on the 
triangulation principle enable a precise and robust measurement principle in 
practice, which detects the smallest displacements on the structure and 
enables contactless measurement (Bartels et al., 2023a; Löffler-Mang, 2012). 

A general problem with monitoring systems, however, is that these systems 
age, just as structures do, and we suspect that the reliability of the monitoring 
system will decline over time. The question arises how aging of the 
measurement system can be considered in the data evaluation and how 
Bayesian Model Updating (BMU) enables a semi-automated data evaluation 
to give the interpreting engineer a tool that makes the data evaluation easier. 
This paper provides a contribution to this. 
For this, the basic idea of BMU is explained first. Then, laboratory 
experiments are used to investigate the temperature and time dependence 
of the measurement system. Subsequently, it is shown how the time-
dependent effects of the measurement system is reflected in the 
measurement data and how these effects can be taken into account in the 
condition assessment of structures. The semi-automatic data evaluation 
with BMU is described and potential improvements are discussed. The 
paper ends with a summary and an outlook.  
 
BAYESIAN MODEL UPDATING METHOD 
 
For engineering problems, mathematical models are typically used to 
simulate and evaluate the behavior of structures under load conditions. 
This virtual behavior corresponds only poorly to the real physical 
structure. To solve this problem, model updating techniques can be ap-
plied to update physical input parameters, e.g., material properties of a 
structure (Worden & Tomlinson, 2019). The physical parameters often 
cannot be measured directly. Therefore, a model update is required to 
derive these parameters so that the difference between the mathematical 
model and the real physical behavior of the system is minimized. 
The physical behavior of a system is described by a function M(x; 𝝑), where 
x defines the vector of unchangeable model parameters and 𝝑 the vector of 
changeable model parameters to be updated. The mathematical relationship 
between the requested quantity D and the prediction model M (x; 𝝑) is 
defined by 

𝑫 = 𝑀(𝒙, 𝝑) + 𝜖, (1) 

where 𝜖 describes the model or/and measurement error. The uncertainty 
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in the model parameters 𝝑 can be accounted for using a probability 
density function (PDF). The problem in reality is that the best-fit joint 
PDF is not known, which links the model parameters 𝝑 to the data D. 
The advantage of BMU is that prior information about the model 
parameters 𝝑 can be combined with the observed data D to infer the best-
fit joint PDF. This leads to a posterior distribution of the model 
parameters 𝝑 under the condition of the observations D, using Bayes’ 
theorem (Lye et al., 2021) 

𝑃(𝝑|𝑫) =
௉(𝑫|𝝑)∙௉(𝝑)

௉(𝑫)
, (2) 

where D represents the observation vector, P(𝝑) the prior distribution, 
P(D|𝝑) the likelihood function, P(D) the evidence, and P(𝝑|D) the 
posterior distribution. Since the analytical solution is usually not 
available for the posterior distribution P(𝝑|D), Transitional Markov 
Chain Monte Carlo (TMCMC) sampler is used to sample from the 
posterior distribution. Basically, BMU uses actual data to reduce the 
uncertainty in a model to gain a better understanding of the relationship 
between model parameters and data. One method for performing BMU 
is TMCMC, a special form of the Markov Chain Monte Carlo (MCMC) 
algorithm that is useful for problems with fast transient transitions in the 
distribution. Unlike other MCMC methods that assume a steady state, 
TMCMC starts in a transient state and then transitions to the steady state, 
allowing for faster convergence of the chain. For more detailed 
information on the TMCMC algorithm, please refer to Ching and Chen 
(2007). 
The accuracy of BMU with TMCMC is influenced by several factors, 
such as the quality and quantity of available data, the choice of model 
parameters, and the accuracy of the mathematical model. If the model 
does not describe the underlying physics or mechanisms with sufficient 
accuracy, the results may be unreliable. Therefore, it is important to use 
a model that describes the underlying physics or mechanisms with 
sufficient accuracy to achieve higher accuracy results. In the following 
sections, real measurement data in the form of distance measurements 
will be used to update a compensation model for the temperature effect 
on measurement systems using BMU. Therefore, the first step is to find 
a mathematical model that is as accurate as possible in order to minimize 
the uncertainties from the quality and quantity of the data as well as the 
uncertainties of the mathematical model. 
 
EXPERIMENTAL SETUP AND TRANSFER FUNCTION 
 
For the investigation of the temperature influence on laser 
measurements, a total of six Laser Triangulation Sensors (LTSs) within 
a measuring system are exposed to different temperature and air 
humidity levels within a climate chamber. The data is analyzed to 
determine whether and how the measurement signal changes. Initially, 
time-invariant investigations are carried out by examining the 
temperature dependence of the measuring system in short-term tests and 
using a temperature-dependent transfer function to compensate for the 
time-invariant systematic temperature influences. 
In the subsequent time-variant investigations, the measurement system 
is exposed to different temperature and humidity over time to determine 
whether the temperature-dependent transfer function changes. 
 
 
 
 
 
 
 
 

Sensors, Measurement System and Environmental Influences 
 
The experimental setup is shown in Figure 1. 

 
Figure 1. Experimental setup for the LTS investigation of temperature 
and time dependence. 
 
The entire measuring system consists of LTS, cable and measuring 
amplifier. As can be seen in Figure 1, the LTS is fixed on a base plate 
with upstand and it measures the horizontal distance to the upstand. The 
special feature is, that the base plate and the upstand are made of the 
material Alloy 36, an iron-nickel alloy with a small coefficient of thermal 
expansion (αT,Alloy36 = 0.50 ⋅ 10-6 1/K). Compared to this material, 

construction steel (αT,Steel = 13.00 ⋅ 10-6 1/K) has a coefficient of 
thermal expansion more than 20 times higher. With this design, it is 
possible to attribute changes in the measurement signal to the 
measurement system, since the influence of base plate strain due to 
temperature change is negligible (Bartels et al. 2023). LTSs with a 
measuring range of 10 mm are tested, which measure within the 
measuring distances 16 mm to 26 mm. To examine the entire 
measurement range of the LTS, three initial distances dsel between the 
sensor and the upstand are selected (dsel ≈ [17 mm; 21 mm; 25 mm]). 
In the first step of analyzing only the temperature dependency, 
temperatures are varied between -10 °C and +50 °C in 10 K steps. The 
intended temperature curve can be seen in Figure 2. 

 
Figure 2. Intended temperature regulation for the investigation of 
temperature dependency of the SHM system. 
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This temperature curve covers the order of magnitude of temperatures 
that can typically occur on engineered structures. A temperature change 
of 10 K is chosen to cover a large temperature range in a reasonable 
amount of time. In addition, the temperature is held constant for 4 h and 
cooled or heated for 30 min with a temperature gradient of 0.33 K/min 
to allow the experimental setup to follow the temperature gradient. To 
investigate possible hysteresis effects, the temperature gradient is started 
at 10 °C, then reduced to 0 °C and -10 °C, and then increased again to 
0 °C and 10 °C up to 50 °C in 10 K steps. This is to investigate whether 
the behavior of the measurement system depends not only on the current 
temperature but also on its previous states. Previous investigations have 
shown that there is no influence of hysteresis on the behavior of the 
measurement system (Bartels, 2022). 

 
Figure 3. Intended temperature and humidity regulation for the 
investigation of time dependency of the SHM system 
 
In the second step of analyzing the time dependency, the SHM system is 
subjected to a modified temperature and humidity curve (see Figure 3) 
using the same experimental setup shown in Figure 1. 
Following the temperature curve in Figure 3, the sequence between 
constant temperature and temperature change is chosen to be 4.50 h. The 
climate cycle consists of several phases, which are supposed to represent 
the natural conditions of the day-night cycle, but with an accelerated 
sequence by a factor of 5.33. During a phase, the temperature is 
cyclically varied between a maximum and a minimum temperature. To 
investigate long-term stability, a sequence of four phases was defined 
following previous studies (Herrmann et al., 2015) and the standards for 
environmental testing of electrotechnical products (Beuth Verlag GmbH, 
2007a, 2007b). The four phases are repeated continuously over the entire 
test period, with phase 1 starting after 10 d in each case. The climate 
cycle has been shown in previous research to be suitable for accelerated 
temperature and humidity exposure (Herrmann et al., 2015). Each phase 
begins with a temperature of 20 °C and the accelerated temperature 
progression of five temperature cycles per day is slow enough to keep 
the humidity as constant as possible and allow the samples to follow the 
temperature gradient. 
 
Temperature Dependent Transfer Function 
 
By varying the temperature, a reproducible test of the SHM system with 
respect to the temperature dependency is possible. Keeping the 
temperature constant for 4 h has two objectives: on the one hand, the 

temperature inertia of the experimental setup is overcome, so that the 
temperature can be assumed for the whole system, consisting of SHM 
system and base plate. On the other hand, a representative amount of data 
can be generated over this period. With a sampling rate of 1 Hz, 14,400 
measured values are generated over 4 h. Only the constant temperature 
and measurement distance ranges are cut out of the raw data signal, so 
that there are less than 14,400 measured data points used for the analysis. 

 
Figure 4. Temperature dependent transfer function for one LTS 

This procedure is carried out for all temperature levels resulting in a total 
of seven expected values from -10 °C to +50 °C. The values are related 
to the measured distance at 10 °C (reference value). This quotient 
between the measurement distance at a given temperature and the 
measurement distance at 10 °C is referred to as the transfer factor H (T). 
The individual transfer factors are approximated by a 2nd degree 
regression polynomial to the so-called temperature-dependent transfer 
function ℎ෠ (T), see Figure 4. The detailed description of the procedure 
for calculating the temperature dependent transfer function is given in 
(Bartels et al., 2023a). 
 
Time Dependence of the Transfer Function 
 
The temperature and humidity curve, shown in Figure 3, can be divided 
into four phases, with each phase starting and ending at a temperature of 
20 °C. This has the advantage that the output signal (at 20 °C) after each 
aging phase can be compared with the input signal (also at 20 °C) at the 
beginning of the experiment. In order to be able to record the time 
variance of the transfer function, the test for determining the 
temperature-dependent transfer function according to the 
aforementioned subsection is carried out after each 240-hour aging test 
and compared with the transfer function from Figure 4. The result is 
shown in Figure 5. 

 
Figure 5. Investigation of the time variance of the temperature-dependent 
transfer function 
 
In order to also control the humidity, the experimental setup had to be 
installed in another climate chamber in which both the temperature and 
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the humidity can be varied, as shown in Figure 3. At time t = 0 h, the 
experimental setup is in the “old” climate chamber, at time t = 720 h, the 
experimental setup is in the “new” climate chamber. Figure 5 shows that 
the temperature-dependent transfer function changes when the 
measurement system is disassembled and reassembled in a different 
location. After the measurement system is installed in the new climate 
chamber, the temperature-dependent transfer function hardly changes, so 
the time points 720 h, 960 h, and 1440 h were chosen to consider the 
time dependence of the measurement system. These values represent the 
time points after each aging cycle of 240 h. In practical applications for 
SHM systems, the transfer function must first be determined at the 
application site to compensate for the systematic temperature effect. It is 
not possible to determine the function in the laboratory and use it for on-
site measurements. The fact that the transfer function hardly changes 
over time once the measurement system is no longer moved helps us in 
a later section when applying BMU, as we do not have to consider a 
significant change in the functional structure, since it remains a 2nd 
degree polynomial. Since this temperature-dependent transfer function 
shows the relative change in measured value to the reference value at 
T = 10 °C, time variances can be derived out of Figure 5. If we look at 
the median at each time with the temperature of T = 20 °C, the time 
variance becomes visible over the period under consideration. The result 
for three LTSs (blue color) is shown in Figure 6. 

 
Figure 6. Median values of the laser displacement measurement over 
time at 20 °C and 50 % r.H. 

We determined the arithmetic mean at T = 20 °C after 120 h in each case, 
at 20 °C and 50 % r.H., so that compensation due to systematic 
environmental influences is not necessary to compare the values with 
each other. Since the SHM system is no longer moved at time t = 720 h, 
the period between 720 h and 1440 h is shown in Figure 6. 
Over time, the median value changes in all three cases. A measured value 
drift is visible. Such a measured value drift is often not uncommon in 
practice. If drift occurs in practice, it can be corrected by recalibrating 
the SHM system. In these laboratory experiments, LTSs 2, 4, and 6 are 
evaluated and not recalibrated to assess the change in measurement 
signal over time. The three sensors are chosen because they are installed 
on the specimens with initial distances of 17, 21, and 25 mm, which 
covers the entire measurement range of the LTSs used. In addition, all 
three sensors are installed on the same side of the specimen so that the 
results can be compared. If we were to compare the sensors on the 
opposite side with these sensors, non-detectable systematic influences 
such as light sources or influences from the air humidity circulation 
within the climate chamber could falsify the results. 
The measured value drift is visible in all three sensors, whereby the 
smallest measured value drift is observed for LTS 2 with an initial 
distance of 17 mm, and the largest measured value drift occurs for LTS 6 
with an initial distance of 25 mm. Furthermore, it can be seen that the 

slope of the regression line is positive for LTS 2 and LTS 4, while it is 
negative for LTS 6. In this regard, it should be noted that the change in 
measured value after the aging phases is very large for LTS 6 compared 
to LTS 2 and LTS 4, although identical environmental conditions are 
present for all three sensors and at all measurement time steps. In the 
evaluation of the data, this observation is reflected in the coefficient R2, 
which is comparatively small for LTS 6 with R2 = 0.06 and thus only 
inadequately describes the measured value drift over time. One reason 
for the unsteady change in the measurement signal over time could be 
the temperature-dependent change in sensor component position within 
the sensor housing, which can occur with LTS 6 due to quality 
differences in sensor manufacture, or which is more pronounced than 
with smaller initial distances due to the larger initial distance of 25 mm. 
Against the larger initial distance argues that the measured values of the 
comparison sensor LTS 5 in Figure 6 (orange color) do not scatter as 
much as LTS 6. Another reason could also be an aging of the sensor for 
the change in measured values, which is visible faster in LTS 6 than in 
LTSs 2 and 4. This will be investigated in the next step. 
With these results we speak in all three cases of a time-variant SHM 
system with reversible signal properties. Nevertheless, time variance 
with reversible measuring signal properties should not be mixed up with 
aging. We speak of aging when the SHM system is time variant and has 
irreversible signal system properties. The phenomenon of measurement 
drift is reversible with recalibration. The increase in measurement 
uncertainty, on the other hand, is irreversible. In the next step we will 
evaluate the change of the scatter of the measurement signal for the three 
sensors over time. 
Typically, two times the standard deviation (2 x SD) is specified in 
metrology as measurement uncertainty, as this allows a degree of 
reliability of at least 95 % for the range of measured values assuming a 
normal distribution. In the conducted tests the 2.5 % and the 97.5 % 
quantiles are calculated. In future analyses, the distribution type should 
be analyzed in more detail. With the help of the definition of the 
distribution type, more detailed information about the measurement data 
is possible, e.g., the interpretation of the measurement data as 
measurement noise. In this paper, the difference between the quantiles 
(95 % confidence interval) is calculated and shown for the different time 
steps of aging in Figure 7 for three different LTSs. 

 
Figure 7. Difference between 97.5 % and 2.5 % quantile of the laser 
displacement measurement over time at 20 °C and 50 % r.H. 

First of all, it is noticeable that the scattering tends to be lower at initial 
distances of 17 mm (LTS 2) than at 21 mm (LTS 4) or 25 mm (LTS 6). 
This is due to the fact that at greater distances a diffuse laser beam is 
produced rather than an ideal laser spot on the object surface. This 
scattering is also transferred to the position-sensitive detector so that the 
measurement with LTS becomes less accurate with increasing distance 
to the object surface (Bartels et al., 2023a). At t = 720 h the difference is 
approximately 1.00 µm for LTS 2 and 3.00 µm for LTS 4 and 6. If aging 
had taken place, the scattering would successively increase over the 
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considered time points. This cannot be observed for all three tested LTSs. 
At time points t = 840 h, 1,080 h, and 1,320 h, the scatter for all three 
LTSs is the same value as at time point t = 720 h. Therefore, so far, no 
aging of the measurement system can be assumed in the considered 
period. Nevertheless, at the times t = 960 h, 1,200 h and 1,440 h 
significant increases of the scatter are noticeable. It is not possible to say 
exactly where this increase in scatter comes from. However, it is 
noticeable that the scatter increases at the same times for all tested 
sensors. One reason could be the external power supply of the sensors, 
which can contaminate the output signal of the LTS when the power 
supply is highly loaded by other connected electrical devices. This 
assumption will be further investigated in future tests. 
 
ENGINEERING INTERPRETATION AND BAYESIAN MODEL 
UPDATING  
 
In this chapter, we will explain how we can use the previously achieved 
findings in SHM practice. For this, the transfer functions at the different 
points in time are to be considered first, with which a statement about 
the reliability of the measurement signal should be made. In addition, the 
application of BMU in SHM will be described. 
 
Engineering Interpretation of Theoretical Findings 
 
In Figure 5 it looks like the temperature dependent transfer function of 
the tested LTS barely changes. With the drift of the measured values 
shown in Figure 6, a time variance is inferred, while the almost constant 
quantile differences shows that no aging of the SHM system has yet 
occurred. To make the results from Figs.Figure 5-7 applicable to a 
practicing engineer, the temperature dependent transfer function is 
calculated at different points in time t = {720 h; 960 h: 1,440 h}. Figure 
8 shows three bundles of a set of curves at different times for LTS 4. A 
bundle of one transfer function is represented by the median values, the 
2.5 %, and the 97.5 % quantile at the specific time points. The reference 
value is at t = 720 h and 10 °C. It can be seen that the transfer function 
barely changes at low temperatures (e.g., -10 °C and 0 °C), whereas a 
widening of the function set can be seen at higher temperatures. This 
means that the polynomial bundles show an expansion with respect to 
each other for the three-time points considered, making the measurement 
less reliable. The reason for that is the aforementioned measurement 
drift. If we look at the quantile differences, it becomes clear that these do 
not change. This confirms the observations of no aging phenomena from 
Figure 7. 

 
Figure 8. Transfer functions at different times with 2.5 % and 97.5 % 
quantiles 

Using these transfer functions, both a temperature compensation of the 
raw data signal and an evaluation of a change in structural condition can 
be performed. The latter is shown in the following example. 
To have an order of magnitude of a typical distance measurement on real 
infrastructures, research articles were reviewed that describe SHM 
applications on real structures with laser distance measurements. For 
instance, for rigid railroad arch bridges, the deflection at the center of the 
arch is less than 0.30 mm (300 µm) (Bergmeister et al., 2015). 
Deflections of 15 mm (15,000 µm) are not unusual in monitoring 
systems used as a tool for bridge monitoring during soil compaction 
work (Marx & Wenner, 2015). In contrast, magnitudes smaller than 0.05 
mm (50 µm) have been reported for monitoring relative tower segment 
displacements during wind turbine tensioning operations (Klein et al., 
2022). Although the choice of the LTS depends significantly on the 
measurement task and the possible measurement range, the latter 
specification (50 µm) is defined as the minimum requirements for the 
measurement accuracy of the LTS for the example. A reference value in 
the middle of the measuring range of the LTS is assumed, so that the 
transmission factor is calculated to be 21.05 / 21.00 = 1.002. For 
example, at the time of t = 1440 h and a temperature of 20 °C, such a 
condition change would still be detectable, since this value is outside the 
range of the curves. However, as the SHM system ages, the transfer 
function could drift further. The quantile difference could also increase 
with time, so that at a certain point in time this condition change could 
not be detected on the structure. However, this requires calibration of the 
SHM system at certain intervals or replacement of certain measurement 
chain components. Another option is to calibrate the transfer function 
with the BMU. This has the advantage that the SHM system itself can be 
monitored at arbitrary times in quasi-real time by updating the 
mathematical model. This procedure will be shown in the next chapter. 
 
Application of Bayesian Model Updating 
 
For this, the transfer function from the manual approximation of the 
temperature dependent transfer function from time point t = 720 h to 
time point t = 960 h and from t = 960 h to t = 1,440 h is compared with 
the one generated by BMU to determine the error made in the semi-
automation of the updating. To perform BMU, only two things need to 
be done. First, the mathematical model that is to be updated has to be 
stored as a reference model. Second, the raw measurement data of the 
laser distance measurement clustered by temperature have to be 
imported. In this chapter, the manual approximation (2nd degree 
regression polynomial) is compared with the BMU and the error is 
calculated. 
For this, the mathematical reference model of the transfer function is 
important, which includes the parameters 𝜗௜  to be updated. With the 
equation (3) 

h෠(T, ϑi) = 1.0 ∙ ϑ1 + 1.2 ∙ 10-5 ∙ T ∙ ϑ2 - 7.4 ∙ 10-7 ∙ T2 ∙ ϑ3 (3) 

the transfer function for updating is defined at time t = 720 h, where T is 
the temperature. In the manual approximation of the transfer function at 
time t = 960 h, the parameters of the 2nd degree regression polynomial 
are determined so that they can be compared with the parameters of the 
transfer function at time t = 720 h. The quotient of the respective 
parameters results is the fitting factor 𝜗௜ . 
For the validation of BMU, the change of the transfer function is 
considered once between the time points t = 720 h to t = 960 h and 
between t = 960 h to t = 1,440 h. The results are listed in Table 1. 
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Table 1. Comparison of manual approximation and BMU (TMCMC) 

  𝜗ଵ 𝜗ଶ 𝜗ଷ 

t = 720 h to 960 h 

Manual 1.00020 2.03724 1.47984 

BMU 1.00051 2.09413 1.51431 

Error 0.010 % 2.793 % 2.329 % 

t = 960 h to 1440 h 

Manual 1.00034 0.60755 0.68738 

BMU 1.00025 0.65980 0.68000 

Error 0.008 % 8.600 % 1.074 % 

It becomes clear that the error between manual approximation and BMU 
is small. In both cases, the change of the transfer function over time is 
relatively small, although the period is 240 h in the first BMU process 
and 480 h in the second one. In both cases, the deviation is less than 
10 %. Nevertheless, the fitting factors in the BMU process are 
determined with some uncertainty, since an expected value is calculated 
on the basis of a large number of samples, which is computed with a 
standard deviation. In future experiments, it will be investigated how 
large the standard deviation of the individual parameters can be so that 
the smallest changes in the transfer functions can be reliably determined 
and are not lost in the standard deviation of the fitting factors. Moreover, 
the BMU was performed several times for both cases to check its 
reproducibility. In some cases, considerable deviations occurred since 
the parameters 𝜗௜ to be updated do not converge. This problem must be 
investigated and minimized in future calculations as best as possible to 
ensure practical use without errors. Therefore, the application of the 
BMU in SHM practice must be done with great care and caution. 
 
CONCLUSION AND OUTLOOK 
 
In this paper, a SHM system typically used in practice was tested under 
laboratory conditions for its temperature dependence and its time 
dependence. A method for the temperature compensation of laser 
measurements was presented. Then, the time dependent changes as well 
as the aging of a SHM system was investigated. Based on this, the 
application example of the theoretical findings was shown by means of 
a fictional example and the idea of BMU was implemented in the SHM 
process, with which an update of transfer functions can run semi 
automatically over time. Several findings were made in this paper, which 
can be described as follows: 

- Laser displacement measurements are temperature and time 
dependent. The temperature dependence represents a systematic 
measurement error that must be compensated for using the generated 
temperature dependent transfer function. We were able to detect the 
time dependence over the period considered because a drift of the 
median was observed. Aging shows up in the form of an increase in 
the quantile difference. The latter could not be identified so far. 

- It is shown that the generation of the temperature-dependent transfer 
function must first be applied to the structure to be monitored in 
order to perform reliable temperature compensation. After the SHM 
system is built into a different climate chamber, different results are 
obtained for the same LTS. 

- So far, the time variance of the SHM system is so low over the time 
period considered that even a supposedly minor change in the 
condition of the structure can be reliably detected. 

- The application of a BMU shows promising results for the semi-

automated fitting of the mathematical model of the transfer function 
of a SHM system over time. Thus, this procedure providing the 
interpreting engineer with a helpful tool for semi-automated 
temperature compensation in the presence of time-variant behavior 
of the measurement system. 

In future investigations, further aging tests will be carried out to confirm 
the assumption of increasing quantile differences and thus be able to 
show the effect of aging. In addition, we will analyze the raw 
measurement data in more detail by specifying the distribution of the 
measurement data. This allows us to make more informative statements 
about the measurement data, such as specifying an arithmetic mean 
instead of the median, or specifying the standard deviation instead of the 
quantile difference. These two parameters are typically given in 
metrology. Further, the BMU algorithm will be improved to make the 
update of the mathematical model more reliable than it is now. In 
addition, the concept presented here will be validated on real structures 
such as wind turbines and written up in future scientific papers. 
Nevertheless, the results show a promising approach for reliable SHM 
use. With this method, marginal change in the measurement system and 
at the structure can be reliably captured even over several years. 
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