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Abstract
This paper presents a general approach to compute energy optimal flight paths for unmanned aerial vehicle (UAV) in urban 
environments. To minimize the energy required, the flight path is optimized by exploiting local wind phenomena, i.e., 
upwind and tailwind areas from the airflow around buildings. A realistic wind field of a model urban environment typical for 
continental Europe is generated using PALM, a Large Eddy Simulation tool. The calculated wind field feeds into the flight 
path planning algorithm to minimize the energy required. A specifically tailored A-Star-Algorithm is used to optimize flight 
trajectories. The approach is demonstrated on a delivery UAV benchmark scenario. Energy optimal flight paths are compared 
to shortest way trajectories for 12 different scenarios. It is shown that energy can be saved significantly while flying in a city 
using knowledge of the current wind field.

Keywords Flight path optimization · Unmanned aerial vehicle · Unmanned aerial system

1 Introduction

There are currently big challenges in last-mile logistics 
in urban environments. Novel approaches are becoming 
increasingly essential due to rising traffic and space use. The 
last step of a supply chain is the least efficient. However, 
electrically powered unmanned aerial vehicles (UAV) are 
an environmentally and time-efficient alternative in the last 
step of a supply chain, even in remote locations.

The adoption of last-mile logistics in urban environment 
by delivery UAVs motivates this work. UAVs can reduce 
urban street traffic and shorten delivery times. Furthermore, 
they also have the possibility of automation and are environ-
mentally friendly due to electric powering. In contrast to 

ground-based vehicles, UAVs have lower payload [1]. There-
fore, the efficiency of logistic UAVs has to be increased. An 
easy approach is optimizing the flight path for an energy 
optimal flight trajectory. Our previous work in [2] shows that 
exploiting local wind conditions in an urban environment 
can significantly reduce the power consumption.

This paper contributes an approach to obtain optimal 
energy efficient flight paths of typical delivery missions 
using the knowledge of the wind field in an urban envi-
ronment. This novel holistic approach consists of different 
aspects. First, a qualitative realistic wind field for an urban 
environment is necessary. Various methods ranging from 
simple statistical methods to complex approximative solu-
tions of the atmospheric boundary layer equations exist in 
literature. For a good overview, the reader is referred to [3]. 
In this paper, a Parallelized Large-Eddy Simulation Model 
(PALM) [4] is used to prognose the wind field, see Sect. 3. 
It is a Computational Fluid Dynamics (CFD) simulation, or 
to be more precise a Large Eddy Simulation (LES).

Second, ensuring an energy-optimal flight through differ-
ent wind conditions is a classical route optimization prob-
lem. There are various methods to find an optimal route: 
Branch-and-Bound [5], evolutionary computing, e.g., [6], 
multiple-agent-systems [7] neural network [8], and experi-
ence optimization can all be used in the embedded opti-
mization process. Common problems in UAV flight path 
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planning and optimization in literature deal with finding the 
shortest trajectory in scenarios with obstacles [9], hazardous 
weather avoidance [10], restricted air space [11], agricul-
tural applications, such as fertilizers and pesticide spray, in 
crop fields just on specific regions [12], and military objec-
tives like avoiding enemy radar sites [13]. A hybrid routing 
and scheduling problem of an UAV delivery system leads 
to minimizing the travel time [14]. In [15], modern airline 
trajectories have been optimized with respect to minimum 
fuel flow, considering flight paths constraint in the horizon-
tal plane. Most of the trajectory optimizations, e.g., [15–17], 
uses the A-star-algorithm or its variant Theta-Star, e.g., [10, 
18]. This type of Branch-and-Bound method has advantages 
in three dimensional path finding [15] and computational 
efficiency [19]. A custom-tailored A-star algorithm is pro-
posed in Sect. 4 to deal with the energy efficient path plan-
ning in urban environments. It specifically considers turning 
constraints of the UAV directly in the optimization.

Finally, pruning and smoothing techniques are required to 
achieve a flyable trajectory. The optimization itself is based 
on discrete grid points leading to a non-smooth, fractioned 
track. Pruning is a basic pre-smoothing technique to find 
shortcuts in grids for unrestricted air space. Path smoothing 
is defined using piecewise polynomials to achieve a con-
tinuous trajectory respecting the limits of the UAV flight 
envelope. We use continuous cubic Bézier spiral segments, 
derived in [20] to satisfy maximum curvature constraints of 
the UAV, see Sect. 4.3.

We generate a realistic city district to showcase the pro-
posed approach applied to a typical European area. Moreo-
ver, the applied holistic approach connects the generated 
wind field, using the Large Eddy Simulation tool PALM, 
path optimization, and flight trajectory modeling. The meth-
odology is verified by 12 delivery tasks, where their energy 
optimzied paths are compared to the shortest way in Sect. 5.

2  Problem formulation

A typical last-mile logistic scenario for a UAV is the deliv-
ery of goods in a city district flying from a pick-up point to 
a drop-off point. The route is operated by a fully electric 
fixed wing aircraft, similar in size and characteristics to a 
Phoenix Wings PWOne delivery UAV [21] with a wing span 
of 1.3m and a maximum take-off mass of 3.4 kg . Average 
cruise speed is 60 kph , where an estimated best glide ratio 
of 20 is assumed.

We develop a generic city model, which represents a 
typical European urban area. It is consisting of an arrange-
ment of eight uniquely shaped buildings with different 
building heights, as illustrated in Fig. 1. In detail, there 
are three residence buildings with a height of 50m , four-
terraced houses with a height of 20m and a supermarket 

building with attached office block with a height of 15m . 
This arrangement is developed to obtain a scenario with 
typical local wind effects. Exploiting these wind fields pre-
sents an opportunity to reduce the energy consumption of 
an UAV during a delivery mission.

This paper examines four delivery tasks with three dif-
ferent wind speeds each. This results in a total of 12 test 
scenarios. Figure 2 depicts these scenarios. Only one wind 
direction is used for all cases to stay in the influence zone 
of the high-rising buildings. These four delivery tasks are 
defined by flying from Point North to Point South and 
South to North, as well as Point West to Point East and 
East to West. In each scenario, the goal is to minimize 
the UAV’s energy required using local flow effects to its 
advantage. It is assumed that the aircraft always flies at a 
constant true airspeed corresponding to its best-perfor-
mance cruise speed. For each scenario, the same start and 
end altitude of 20m are assumed. This represents a realis-
tic initial altitude for take-off and landing in multicopter-
mode for air delivery in cities. Take-off and landing pro-
cedures are neglected for energy consideration. Average 
wind speeds in a typical continental European city are the 
basis for this investigation. Dresden, Germany, represents 
such a city, and its wind speeds averaged over a whole year 
are depicted in Fig. 3. At the height of 10m , three charac-
teristic wind speeds can be extracted to represent the wind 
speed specter. The average wind speed of the windiest and 
calmest days and the average wind speed over one year are 
summed up in Table 1. They were transformed into a wind 
profile shape, obtained by a wind tunnel experiment, taken 
from [22]. The upper end of such a profile is characterized 
by the undisturbed flow above with its speed. Table 1 sum-
marizes this freestream wind speed uW∞ for the profiles.

3  Wind field prediction using LES

The PALM system is used in the present paper to solve the 
large eddy equations and to obtain a realistic wind field 
within an urban environment for the following flight path 

Fig. 1  Generic city model, which represent a typical European urban 
area for simulating delivery tasks
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optimization. PALM1 was developed by the University 
of Hannover as a tool to simulate urban climate and its 
boundary layer [4]. It has been validated for flow around 

solid obstacles [24, 25] and used in various real urban 
environments [24–27]. A detailed description of PALM 
and its capabilities can be found in [4]. In short, PALM 
calculates the non-hydrostatic, filtered, incompressible 
Navier–Stokes equations in Boussinesq-approximated 
form. Furthermore, the subgrid-scale turbulent kinetic 
energy (SGS-TKE) is solved.

For the presented study, the topography of the generic 
city model was created in PALM. PALM uses equidistant 
horizontal grid spacings. Each grid volume can be either air 
or solid, i.e., representing a building. Due to the rectangular 
grid, oblique building walls require additional care in mod-
eling. If more than half of a grid volume is geometrically 
belonging to a building, the whole volume will be set as 
a solid. An obstacle-free extended computational domain 

Fig. 2  Flight scenario with con-
stant wind direction from west, 
as well as four tracks by flying 
from Point West to East, South 
to North and vice versa for each

Fig. 3  Average of mean hourly 
wind speeds (dark gray line), 
with 25th to 75th and 10th 
to 90th percentile bands for 
Dresden, representing a typical 
continental European city [23]

Table 1  Summary of wind speeds applied in scenarios

Explanation uW (z = 10m) 
in kph

uW (z = 10m) 
in m/s

uW∞ in m/s

Calmest day 12.9 3.6 6.5
Year-averaged day 16.4 4.6 8.3
Most windy day 19.8 5.5 9.9

1 https:// palm. muk. uni- hanno ver. de/.

https://palm.muk.uni-hannover.de/
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in the vertical, lateral, and flow directions is necessary to 
catch all flow effects. A guideline for CFD simulation of 
flows in the urban environment in [28] includes recom-
mendations for the distances from built-up area to bound-
ary. The simulation inlet and the top boundary should be at 
least five times the height of highest building away from the 
closest building to comply with this guideline. For urban 
areas with multiple buildings, the lateral boundaries can be 
closer and are placed four times the height of highest build-
ing away. The region behind the considered area is important 

to allow redevelopment of the flow behind the wake region. 
It depends on the blocked cross-sectional area of the build-
ings in flow direction [28]. Sensitivity studies with different 
computation domain sizes were conducted to eliminate arti-
ficial accelerations to fulfill these requirements. These yield 
a distance of 13.5 times the height of highest building from 
last building to outflow. The grid size for all experiments 
was set to Δx,y,z = 2.5m . This size offered the best trade-
off between computational time and accurate resolution of 
flow effects. The same setup was used for the different wind 
speeds described in Sect. 2. The setup of the topography for 
the scenarios is depicted in Fig. 4.

For the simulation, a realistic wind profile is very impor-
tant to achieve meaningful results. PALM is using a cycling 
boundary condition that uses the outflow as inflow, i.e., the 
outflow is turbulent after flowing through the urban area 
and is reused as realistic turbulent inflow until the whole 
simulation converges. Hence, it is necessary to set an initial 
wind profile to initialize the simulation. Therefore, a realistic 
baseline from a scaled wind tunnel experiment for urban 
environment applications was used. Since the simulation 
converges to some quasi-steady solution, it has to be checked 
finally, if the actual wind profile from PALM is still match-
ing with the wind tunnel experiment. For the simulation, 
the settings shown in Table 2 are used for PALM. The wind 
tunnel experiment was conducted at Technische Universität 

Fig. 4  Scenario for LES simulation with up- and downstream area

Table 2  Used settings in the 
LES model PALM

Setting Set in computation

Turbulence closure 1.5-order according to Deardorff
Pertubation pressure solver FFT with temperton-algorithm routines
Momentum advection Wicker-Skamarock-scheme 5th order
Scalar advection Wicker-Skamarock-scheme 5th order
Boundary conditions Horizontal: cyclic boundaryconditions

Volume flow conservation at right and north boundary
Bottom and building walls: constant flux layer following
Monin-Obukhov similarity
theory
Top: free-slip conditions

Instream bulk velocity ub with 1D wind profile for initialization
Discretization (space) Finite differences (Unchangeable)
Grid size nx 450 (corresponds to 1125m)
ny 240 (corresponds to 600m)
nz 100 (corresponds to 250m)
Discretization (time) Runge–Kutta-3
End time 14400 s

Averaging output time 3600 s

Coriolis force Switched off
External forcing and nesting Switched off
Ocean option and coupling Switched off
to atmosphere
Embedded models Switched off
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Dresden and its data is taken from [22]. Hence, the inflow 
averaged wind profiles were compared. Figure 5 shows both, 
rescaled wind tunnel experiment and LES simulation, nor-
malized to uref  , the velocity u in the height of z = 30m . They 
behave in a good consistency in the range of the building 
height. The variations above 50m can be neglected as these 
are outside the considered altitude range.

Before the data is used for trajectory optimization, it has 
to be ensured that the LES is fully developed. Therefore, it 
has to be checked, if a quasi-stationary state is reached and 
the grid spacing is small enough to resolve the turbulent 
transport with it. Both criteria are satisfied. The time series 
of kinetic energy E, turbulent kinetic energy E∗ and the max-
imum velocity components show no trends anymore after 
15100 s ( ≈ 4 h) of simulation time, so the simulation was 
converging. Furthermore, the subgrid-scale momentum flux 
w′′u′′ is one order of magnitude smaller than the resolved-
scale counterpart w∗u∗ after two hours of calculation time, 
see Fig. 6. From this, it can be concluded that the grid spac-
ing is sufficiently small according to [29].

The path planning algorithm needs the velocity compo-
nents of the wind at each grid point as input, but PALM 
provides the perpendicular component at each side face of 
the volume mesh [30],e.g., component u in Fig. 7. Hence, 

they are converted. In the converting process, the mean value 
of one velocity component is generated by respective com-
ponent of the four adjacent side faces that belong to the point 
and are perpendicular to the component.

4  Trajectory optimization

The objective of the flight path planning is to minimize a 
cost function J,

where s is the position vector of the aircraft, s0 the starting 
point, sf  the arrival point and A(s) the quantity to be mini-
mized at each step. To minimize the distance, for instance, 
A(s) is set to A(s) = 1 . In general, this is a complex optimi-
zation problem that is usually solved over a discrete grid 
instead of the continuous integral. Multiple solvers exist 
in literature to minimize Eq. (1), such as the Branch-and-
Bound algorithm [5] in the present paper or evolutionary 
computing-based ones [6].

4.1  Cost function

The optimization problem in the present paper is to minimize 
the energy supplied by the propulsion system for the UAV 
for a flight with variable altitude between a fixed starting and 
ending point (see Sect. 2 for the detailed problem). In order 
to achieve an optimal flight trajectory, a new cost function 
detailed in this section is proposed. First, the generic flight 
path cost function (2) is defined as an integral over the flight 
paths and then discretized in sequentially flown through grid 
points until ending point N.

(1)J = ∫
sf

s0

A(s) ds,

Fig. 5  Comparison between wind profile of wind tunnel experiment 
and LES simulation

Fig. 6  Subgrid-scale momentum flux w′′u′′ and resolved-scale coun-
terpart w∗u∗ , for each mean value over the height

Fig. 7  Converting wind component u from grid data u
i*,j*

 to point 
data u

i,j
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The second step is to derive a function for energy required 
to substitute the Ai in Eq. (2). First, we consider straightfor-
ward a 2D level flight and extend the approach to 3D space 
afterward. All flight mechanical assumptions are derived 
from corresponding standard literature, e.g., [31]. For sim-
plification, the energy supplied by the propulsion system is 
assumed to be proportional to the thrust force multiplied by 
the path covered by the UAV. For the UAV in steady cruise 
flight, it is assumed that the thrust force equals the aero-
dynamic drag force D. Using this assumption, the energy 
required between two points of the discretized flight path 
Ei is given by

where uUAV , TAS is the true airspeed (TAS) of the UAV and 
Δti is the time required to cover the distance between two 
grid points Δsi . By introducing Δti , it is possible to imple-
ment the wind influence as follows. Defining uUAV , i∗ as the 
ground speed at the i-th grid point, the time it takes to cover 
Δsi is given by

Considering now headwind uW,i and crosswind vW,i at the i-th 
grid point, the relationship between ground speed uUAV∗ and 
true airspeed is given by

Using Eqs. (3),  (4) and  (5) yields the following equation for 
the 2D energy required between two nodes:

In the next step, up- and downwinds are implemented for 
level flight. E.g., assuming no change in flight height due to 
upwind components requires the UAV to pitch down to hold 
the flight level. Hence, the upwind wW,i leads to a decrease 
of the flight path angle �i,wind:

A decrease of flight path angle leads to less required thrust 
due to the balances of flight mechanic forces, because a com-
ponent of the weight supports the force in flight direction. 

(2)J = ∫
se

s0

A(s) ds =

N
∑

i=0

Ai Δsi.

(3)Ei = D ⋅ Δsi = D ⋅ uUAV , TAS ⋅ Δti

(4)Δti =
Δsi

uUAV , i
∗
.

(5)uUAV , i
∗ =

√

(uUAV ,TAS − uW,i)
2 − v2

W,i
.

(6)Ei = D ⋅ uUAV , TAS ⋅
Δsi

√

(uUAV , TAS − uW,i)
2 − v2

W,i

.

(7)sin(�i,wind) =
wW,i

u∗
UAV ,i

.

Hence, at an upwind point, the perceived drag that needs to 
compensated by thrust reduces to:

with D0 as drag force in normal horizontal flight condition 
and mg the weight.

Considering now the 3D case allowing changes in alti-
tude, an additional summand is added to the flight path angle 
�i , i.e., �i = �i,path + �i,wind . The wind component is as defined 
in Eq. (7). The altitude changing component is given by

where Δsi,z is the vertical distance and Δsi,xy the horizontal 
distance to the next point. Implementing this into Eq. (6) and 
using the relationship in Eq. (8) yields:

The influence of vertical wind on ground speed uUAV , i∗ can 
be neglected because it is significantly smaller than the other 
components. The definition of D0 is set by the glide ratio G:

with L as lift force equal to the weight force and the glide 
ratio G of the fixed-wing UAV. Using Eq. (10), the cost func-
tion for the minimization of the total energy required can be 
written as:

4.2  Extended A‑star‑algorithm

As mentioned before, the A-Star-Algorithm is often used 
to optimize routes or trajectories. First, we want to give 
a brief explanation of the basic A-Star-Algorithm. After-
ward, a custom tailored version is proposed.The basic 
A-Star-Algorithm is an adaption of the Dijsktra-algorithm 
[19] and finds cost optimal paths from a starting to an 
ending point. Alg. A in the appendix shows and explains 
the exact steps of basic A-Star-Algorithm. In brief, the 

(8)Di = D0 − sin(�i,wind) ⋅ mg

(9)tan(�i,path) =
Δsi,z

Δsi,xy
,

(10)

Ei =
Δsi

√

(uUAV , TAS − uW,i)
2 − v2

W,i

⋅

(

D0 − sin(�i) ⋅ mg
)

⋅

uUAV , TAS .

(11)D0 =
L

G
=

mg

G

(12)

E =

N
∑

i=0

Δsi
√

(uUAV , TAS − uW,i)
2 − v2

W,i

⋅

(

D0 − sin(�i) ⋅ mg
)

⋅

uUAV , TAS .
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algorithm starts at the starting point and creates the opti-
mal path by following the best point at a branching. The 
best point is characterized by the lowest total cost of the 
path. This cost is defined by summing up the exact cost of 
the path from the starting point to the node s, g(s), and the 
heuristic estimated cost from node s to the ending point 
described by h(s). Hence, the algorithm starts to check all 
possible paths from the starting point in detail, but stops 
moving forward with a potential path if the considered 
branch is considered too expensive. This approach leads to 
computational savings time because not all possible paths 
need to be computed.

In this paper, the exact cost function g(s) of the algorithm 
is set to Eq. (12). The heuristic cost function h(s) provides 
A-Star an estimation of the minimum cost from any vertex 
s to the goal. On the one hand, the closer h(s) is to the exact 
cost of this path, the faster A-Star finds the best way [32]. 
On the other hand, if h(s) is greater than the exact cost, it 
is not guaranteed to find the best way. Hence, the heuristic 
function must be smaller than the exact cost. Heuristic costs 
must be the same scale as the exact cost. Therefore, in this 
paper, h(s) is defined on the basis of Eq. (3) as

where D is the aerodynamic drag force, Δss,sgoal the distance 
from point s to the ending point and w a weighting factor. 
The weighting factor is set to 0.001 to ensure staying below 
the exact cost. Equation (13) represents the energy required 
from point s to the final point if the UAV flies directly with-
out the influence of wind. However, it is possible that this 
energy required is approximately zero if favorable wind con-
ditions are present. An extensive parameter study showed 
that w = 0.001 always leads to the optimum path under 
acceptable computation time (in this scenario).

(13)h(s) = D0 ⋅ Δss,sgoal ⋅ w ,

An extension of the basic algorithm enables to consider 
a maximum curvature constraint of the UAV (specified in 
Sect. 4.3). At constant speed, an UAV would not be able 
to turn at smaller radii, e.g., due to a maximum allowed 
load factor. That imposes the demand for the curvature con-
straint. This constraint leads to a maximum allowed change 
of heading at a specific distance. Therefore, at each point s, 
the information about the point before has to be available to 
compute the angle between the two connecting lines. This 
angle is equivalent to the heading change of the UAV. As a 
consequence, each point s has different outgoing branches 
to leave s, depending on the direction of reaching this point. 
Thus, we introduce an extended A-Star-Algorithm. Alg. B in 
the appendix shows and explains the differences to the basic 
one, where a function ensures the prespecified requirements 
of the connecting lines between the points. Furthermore, the 
basic variable of just one point-to-point connection becomes 
one that consists of the point connections of three points to 
consist of the allowed path segment.

4.3  Path modeling

4.3.1  Path discretization

As a starting point in this paper, the vertices from PALM 
in Sect. 3 are used, namely 2.5m equidistant grid points. In 
the path finding problem, an aircraft can fly from the cur-
rent vertex to all adjacent vertices as illustrated in Fig. 8. 
This figure shows the 3D grid with the current vertex in 
black, the vertices on the same level in yellow, below them 
in green, and above them in red. However, an equidistant 
grid, as used for the wind field calculation, disregards any 
limits imposed by the UAV’s performance. For instance, an 
equidistant grid would lead to a flight path angle demand of 

Fig. 8  The connection lines from a vertex (black) to all adjacent vertices (red, green and orange) define possible tracks (blue arrows) in 3D space
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45 degrees which well exceeds the UAVs maximum achiev-
able climb speed. In addition to the flight path angle range, 
a minimum turn radius is considered in this paper. Both lead 
to a shrinking of the original grid in the vertical direction 
and an expansion in the horizontal one.

Specifically, the grid is adjusted in the following ways. 
The minimum turning radius rmin of the UAV, which is used 
for the horizontal grid distance, is defined by

where uUAV , TAS is the true airspeed (TAS), g the gravita-
tional acceleration, and nmax a maximum load factor of the 
UAV. Reference [33] shows that static load factors of UAVs 
do not exceed existing aviation regulations. Thus, a load 
factor of n = 2.5 is chosen for turning flights. The minimum 
horizontal flight grid distance Δfh is set to

where Δx can be substituted by Δy due to the equidistant 
grid of the LES.

The optimal gliding ratio G determines the vertical flight 
grid distance Δfv as:

Eq. (16) assumes flying with the maximum glide ratio as the 
best flight condition for descent, even if the glide path differs 
because of the wind influence. Hence, the value of climb 
ratio is the same as the maximum glide ratio, where it is 
assumed that the electric propulsion is powerful enough and 
close to its optimum operation condition for the climbing 
flight. Given the specifications of the UAV uUAV ,TAS = 60 kph 
and G = 20 , as well as LES grid Δx = 2.5m , Δfh is 
Δfh =

rmin

Δx
=

12.4m

2.5m
≈ 5 and Δfv is Δfv =

Δx

Υ
=

2.5m

20
= 0.125m . 

Since this derived vertical grid is finer than the one, used in 
PALM, wind components uw, vw,ww are derived by linear 
interpolation. The horizontal grid is coarser than the LES 
grid. Nevertheless, the wind field data of the points between 
it is taken into account for energy required determination.

4.3.2  Path pruning

The resulting path of an A-Star-Optimization run is char-
acterized by successive waypoints. The adjusted grid size 
as explained in the previous paragraph constrains each 
step size. However, there can be paths with lower cost by 

(14)rmin =
uUAV , TAS

2

g ⋅ tan(arccos(
1

nmax
))
,

(15)Δfh =
rmin

Δx
,

(16)Δfv =
Δx

G
.

ensuring a direct connection between non-adjacent points. 
Pruning or sometimes misleadingly called post-smoothing2 
is a method to find these shortcut after the first optimization 
constrained to the grid. A basic pruning technique is looping 
through the path obtained by A-Star-Algorithm and check if 
there is a straight connection between points without crash-
ing an obstacle (see Alg. C in the appendix). This method 
has a shortcoming, e.g., if searching for the shortest path. On 
the one hand, these line-of-sights lead to shorter tracks. On 
the other hand this algorithm is not able to find the shortest 
way, if there is a path with more than two convex courses. 
There will always be a stop at the protruding point, which is 
illustrated in Fig. 9.

The approach in this study is using the A-Star-Algorithm 
once again for the pruning step. Only the points s ∗ obtained 
by the first run are considered as vertices for the second 
run. Each vertex has a connection to every other vertex if 
there is a line of sight between them. The other A-Star-
Inputs are handled as follows. The exact cost g(s ∗) of going 
unbounded to the is defined by calculate this direct way. 
The heuristic cost h(s ∗) is set by straight-line cost without 
respecting obstacles like in the first run. The algorithm finds 
a path that is the true low-cost one. Due to the very low num-
ber of considered vertices, this step is computationally fast.

4.3.3  Path smoothing

Finally, the optimal waypoint-based paths have to be con-
verted to a flyable smooth trajectory. Therefore, a contin-
uous-curvature path-smoothing algorithm based on cubic 
Bezier curves, including a maximum curvature constraint 
[20], is used. This method is applied to the path in sec-
tions. Every section takes three path points into account. 
Every line between two path points is split into two halves 

Fig. 9  The basic pruning algorithm is not able to find a direct line if 
there is a doubled-convex path

2 In this paper, smoothing is defined as creating a flyable trajectory 
consisting of curves without sharp changes in heading.
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to retrieve turning points of one section with a continuous 
junction to the next section. On the basis of path point t3 , 
the procedure is illustrated in Fig. 10 and can be described 
as follows. Consider the section containing the points t2 , 
t3 and t4 . The proposed smoothing adds turning points tp23 
and tp34 halfway between t2 and t3 and t3 and t4 , respec-
tively. The original point t3 becomes a curvature steering 
point and hence, is no longer a part of the flight trajec-
tory. The smoothing procedure is detailed in [20]. In short, 
the points are transformed into one plane to become a 2D 
problem, first. Second, eight control points are determined 
that construct two cubic Bézier spiral curves between tp23 
and tp34.

One curve P is defined by the four control points 
B0,B1,B2,B3 via the function

Third, the control points are getting transformed back into 
3D space. Step 2 contains the consideration of the minimum 
turning radius constraint. The minimum turning radius rmin 

(17)
P(m) = B0(1 − m)3 + 3B1(1 − m)2m

+ 3B2(1 − m)m2 + B3m
3
, m ∈ [0, 1] .

of the UAV in Eq. (14) provides a maximum curvature kmax 
of the flight path:

and is considered by

where � is the half angle between the two lines. The dis-
tance dmin is compared with the length of the two lines 
tp2,3t3 and t3tp3,4 . Note that, it is possible that one line is 
shorter than dmin . To fulfill the constraint, we introduce sev-
eral approaches in this order: First, it is checked if skipping 
the path point, the point before or the following point, will 
improve the smoothing procedure. Second, it is checked if 
slightly shifting proper path point improves the smoothing 
procedure. Third, continuous-curvature segments can be 
defined, which cross the initial path line at the position of 
intended turning point. Hence, there is a difference between 
initial path and adjusted trajectory, if these techniques were 
applied. Equations (18) and  (19) show that the difference is 
increasing if the amount of heading changes and the trajec-
tory differs from the optimized path. Thus, there is just a 
small difference due to the implemented flight grid discre-
tization. All approaches include obstacle avoidance. Finally, 
the resulting trajectory sections are merged to obtain the 
continuous trajectory.

5  Results of trajectory optimization

This section presents the results of the flight path opti-
mization using the cost function proposed in Sect. 4.1. 
Overall, 12 different scenarios are tested according to the 
problem formulation in Sect. 2. Specifically, these are 

(18)kmax =
1

rmin

(19)dmin =
1.228 ⋅ sin �

kmax ⋅ cos
2 �

,

Fig. 10  Path smoothing of gray path between point t
2
 and t

4
 : Define 

turning points tp
2,3

 , tp
3,4

 and construct two cubic Bézier spiral curves

Fig. 11  Comparison between 
shortest-way-optimization 
(Orange Square) and smoothed 
energy-optimization (Blue 
Square) flight track in North-
South-North scenarios
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three scenarios with a freestream wind speed of 6.5m/s , 
8.3m/s and 9.9m/s per one of the four track directions. For 
each scenario, two different optimal trajectories are com-
puted. The first one is based on the energy optimal cost 
function of Eq. (12). The second one is a simple shortest 

path optimization as described in Eq. (2). The optimiza-
tion itself is in each case performed by the A-Star-Algo-
rithm. The grid resolution of the trajectory optimization 
is the adjusted LES grid from the wind field prediction as 
described in Sect. 4.3.

Fig. 12  Comparison between 
shortest-way-optimization 
(Orange Square) and smoothed 
energy-optimization (Blue 
Square) flight track in West-
East–West scenarios

Fig. 13  Flight path for 
uW∞ = 6.5m/s with wind field 
in height of 20m(→), buildings 
(red line), shortest way (orange 
line), energy optimized path 
after A-Star-Algorithm (dotted 
line), Pruning (line merged with 
circle) and Smoothing (green 
line), flying South to North
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Figures  11 and   12 show the results for the energy 
required of all scenarios. The energy savings in percentage 
are calculated as follows:

All scenarios are capable of achieving significant energy 
reduction. Furthermore, a clear trend of increased energy 
savings with higher wind speeds is present as expected. The 
only exception marks the East-West-8.3m/s-scenario. The 
shortest path optimization has no knowledge about the cur-
rent wind field. Thus, the same trend is more washed out and 
depends on head- or tailwind.

An example of the actual flight paths is given in Fig. 13, 
where orange is the shortest path and green the smoothed 
lowest energy required. Note that most of the energy savings 
actually come from exploiting regions of upwind and not 
tailwinds. This becomes clear when looking at the upwind 
along the trajectories, see Fig. 14. The energy optimized 
trajectory is leading through much larger upwind fields than 
the shortest way. If one observes Eq. (6), it can be seen that 

(20)p =
Eshortest way − Eenergy opt.

Eshortest way

⋅ 100% . small differences of upwind have a greater impact on energy 
required than small ones of tailwinds.

The obtained trajectories have some characteristics worth 
noting for further investigations. First, all energy optimized 
paths are close to the rooftops of the elongated buildings. 
The optimizer detects the strong upwinds in front of build-
ings, which explains why flying alongside a building with 
wind perpendicular to it yields lower energy required. This 
effect can be called ridge lift, similar to gliding in mountains. 
Hence, the North–South-North paths have more savings than 
West-East–West paths due to more opportunities to “slide” 
on the roofs. Second, flying with tailwinds yields to flying 
higher and flying with head winds yields to flying lower. 
This is expected considering the wind profile in the ground’s 
boundary layer. This altitude behavior is seen with tailwind 
in Fig. 15 and headwind in Fig. 16. Still, note that the alti-
tude changes are low. The energy required of climbing is 

Fig. 14  Upwind for uW∞ = 6.5m/s, South to North, flying shortest 
way (Orange line) and energy optimized path (Blue line)

Fig. 15  Altitude for uW∞ = 6.5m/s, West to East, flying shortest way 
(Orange line) and energy optimized path (Blue line)

Fig. 16  Altitude for uW∞ = 6.5m/s, East to West, flying shortest way 
(Orange line) and energy optimized path (Blue line)

Table 3  Flight tracks

Route uW∞ Shortest way track 
in m

Energy opti-
mized track in m

North-South 6.5 197.6 223.0
8.3 197.6 306.3
9.9 197.6 323.8

South-North 6.5 197.6 285.8
8.3 197.6 288.0
9.9 197.6 308.3

West-East 6.5 216.0 242.3
8.3 216.0 242.3
9.9 216.0 242.3

East–West 6.5 215.6 233.7
8.3 215.6 256.2
9.9 215.6 258.1
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much higher than staying on level. In contrast, descent is not 
able to retrieve these costs. Third, energy optimized flight 
paths have a remarkably longer track than the shortest way to 
exploit the favorable upwind locations. However, the energy 
savings compensate the additional way. Table 3 shows the 
flight tracks corresponding to all scenarios.  

Finally, some caveats of the used methodology shall be 
detailed. The heuristic approach of the A-Star-Algorithm can 
result in inconsistencies. A-Star is not guaranteed to find an 
optimal solution and the heuristic function must be chosen 
carefully, as it (notably) influences the results. However, 
these drawbacks are deemed acceptable to achieve decent 
computation time. Further, the heuristic cost function leads 
to a dependence on direction. The algorithm is more likely 
to lead the path to a favorable upwind location if this area is 
close to the starting point. Each point close to the starting 
point has a similar high heuristic cost and very low exact 
costs. The costs for the detour to the upwind location are 
low. At the end of the path planning, close to the destina-
tion, it is better to fly directly to the destination, because 
the costs flying to the upwind zone first, are too expensive 
without knowledge of upwinds. This effect can be seen when 
observing that flying with headwind (East to West) requires 
less energy than flying with tailwind (West to East), see 
Fig. 12. The same can be noticed in the North–South-North 
track in Fig. 11 with very low head- and tailwinds. In this 
case, a similar energy required would be expected. Moreo-
ver, the smoothing technique used is also direction sensitive. 
A 90-degree change of the pre-smoothed path close to the 
corner of a building yields to a suggested smoothed path 
through the obstacle. The smoothing technique redirects 
the UAV in different ways depending on the starting point 
that influences the path modification techniques. Thus, the 
delivery scenarios are designed without such case, e.g., a 
starting point between two terraced houses and a destination 
perpendicular to them.

The smoothing approach can cause unfavorable paths if 
it misses strong upwind zones. Especially the results of the 
aforementioned East–West-8.3m/s-scenario, differ highly 

from the trend of reduced energy required with increased 
wind speed. Hence, implementing smoothing techniques 
directly in the optimization process for further improvements 
may be ideal.

6  Conclusion

An approach to optimize 3D flight trajectories of a delivery 
UAV with respect to energy required was presented. The 
applied wind field was obtained by an LES simulation. It 
was shown that the tailored A-Star-Algorithm was distin-
guished for optimizing flight paths. The main result is that it 
is always beneficial to optimize the flight path at each wind 
speed to significantly reduce energy consumption. The test 
scenarios highlighted that upwinds provide the most saving 
potential for optimizing the flight path. In the future, more 
attention will be given to implementing smoothing tech-
niques into the optimizing process to improve the presented 
method. Furthermore, there has some higher energy required 
to be respected due to short curve sections, where higher 
lift produces more drag. The LES wind field is planned to 
be validated in a series of wind tunnel experiments at TU 
Dresden with a scaled city model.

Appendix A: Basic A‑Star‑Algorithm

The algorithm is structured in a main loop (line 1–29). At 
each step, it picks the node s out of the node list openPoints 
(line 9–11, at the beginning the starting point) with the 
smallest cost and processes that node. This cost is defined 
by summing up the exact cost of the path from the starting 
point to the node s, g(s), and the heuristic estimated cost 
from node s to the ending point described by h(s). After that, 
all connected neighbor nodes of node s are inserted in the 
node list openPoints, if they were not attended before (line 
15–26). This loop of the algorithm ends the checking for a 
path if the ending point is reached (line 12).
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Algorithm 1 Basic A-Star-Algorithm

Input: Neighbour list of points neighbourlist = [p0 : (pxxx, pxxy, ...), ..., pn :
(...)], cost list from point to neighbour cost(pi, pj), heuristic cost list
from point to destination h(pi)

Output: A-Star-Path path = [s0, ..., sn]
1: function AStar()
2: g(sstart) := 0
3: parent(sstart) := sstart
4: openPoints := ∅
5: openPoints.add(sstart)
6: closedPoints := ∅
7: while open �= ∅ do
8: s := None
9: for v ∈ openPoints do

10: if s = None or g(v) + h(v) < g(s) + h(s) then
11: s := v
12: if s = sgoal then
13: path =ReconstPath()
14: return ”Path found:”, path
15: for all s′ ∈ neighbours(s) do
16: if s′ /∈ openPoints and s′ /∈ closedPoints then
17: openPoints.add(s′)
18: parent(s′) := s
19: g(s′) := g(s)+cost(s, s′)
20: else
21: if g(s′) > g(s)+cost(s, s′) then
22: g(s′) := g(s)+cost(s, s′)
23: parent(s′) := s
24: if s′ ∈ closedPoints then
25: closedPoints.remove(s′)
26: openPoints.add(s′)
27: openPoints.remove(s)
28: closedPoints.add(s)
29: return ”Path does not exist!”

Appendix B: Extended A‑Star‑Algorithm

At each point s, the information about the point before has 
to be available to compute the angle between the two con-
necting lines. This angle is equivalent to the heading change 
of the UAV. As a consequence, each point list in the algo-
rithm has to contain the point s itself as well as the attended 
point before s−1 for three reasons. First, this information is 
necessary for checking the heading change constraint in 
allocation of the neighbor points (Alg. A, line 15). Second, 
it is required during the reconstruction of the path at the 
end (Alg. A, line 13). The parent-list consists of the ana-
lyzed connection between two points and the reconstruction 

algorithm collects these connections and put them to one 
path together. It is possible that this procedure contains 
two paths. These can be one desired path and one path with 
a connection that violates the constraint. Third, the algo-
rithm suspends points that were analyzed (Alg. A, line 28). 
However, this point has to be analyzed again, if the point is 
reached from another direction. Thus, the extended A-Star-
Algorithm contains the function angleReq() that ensures the 
prespecified requirements of the connecting lines between 
the point before s−1 , current point s and following point s′ 
(line 17). Furthermore, the point lists in the basic algorithm 
become lists that consist of the point connections ( s&s−1 as 
well as s′&s ) to prevent the mentioned shortcomings.
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Algorithm 2 Extended A-Star-Algorithm

Input: Neighbour list of points neighbourlist = [p0 : (pxxx, pxxy, ...), ..., pn :
(...)], cost list from point to neighbour cost(pi, pj), heuristic cost list
from point to destination h(pi)

Output: A-Star-Path path = [s0, ..., sn]
1: function AStar()
2: g(sstart&sstart) := 0
3: parent(sstart&sstart) := sstart&sstart
4: openPoints := ∅
5: openPoints.add(sstart&sstart)
6: closedPoints := ∅
7: while open �= ∅ do
8: n := None
9: for v ∈ openPoints do

10: if s = None or g(v) + h(v) < g(n) + h(n) then
11: n := v
12: s := n[0]
13: if s = sgoal then
14: path =ReconstPath()
15: return ”Path found:”, path
16: for all s′ ∈ neighbours(s) do
17: rightDirectionBoolean = angleReq(s−1, s, s′)
18: if s′&s /∈ openPoints and s′&s /∈ closedPoints and

rightDirectionBoolean then
19: openPoints.add(s′&s)
20: parent(s′&s) := n � Note: n = s&s−1

21: g(s′&s) := g(n)+cost(s, s′)
22: else
23: if g(s′&s) > g(n)+cost(s, s′) and rightDirectionBoolean

then
24: g(s′&s) := g(n)+cost(s, s′)
25: parent(s′&s) := n
26: if s′&s ∈ closedPoints then
27: closedPoints.remove(s′&s)
28: openPoints.add(s′&s)
29: openPoints.remove(n)
30: closedPoints.add(n)
31: return ”Path does not exist!”
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Appendix C: Basic pruning technique algorithm

Acknowledgements This research was funded by the German Federal 
Ministry for Economic Affairs and Climate Action under grant number 
20D2106C. The responsibility for the content of this paper is with its 
authors. The financial support is gratefully acknowledged.

Funding Open Access funding enabled and organized by Projekt 
DEAL.

Data availability The datasets generated during and analyzed during 
the current study are available from the corresponding author on rea-
sonable request.

Declarations 

Conflict of interest The authors declared no potential conflicts of inter-
est with respect to the research, authorship, and/or publication of this 
article.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Kirschstein, T.: Comparison of energy demands of drone-based 
and ground-based parcel delivery services. Transp. Res. D Transp. 
Environ. (2020). https:// doi. org/ 10. 1016/j. trd. 2019. 102209

 2. Rienecker, H., Hildebrand, V., Pfifer, H.: Energy optimal flight 
path planing for unmanned aerial vehicle in urban environments. 

In: Proceedings of the 2022 CEAS EuroGNC Conference. CEAS, 
Berlin, Germany CEAS-GNC-2022-031 (2022)

 3. Oettershagen, P., Muller, B., Achermann, F., Siegwart, R.: Real-
time 3d wind field prediction onboard UAVs for safe flight in 
complex terrain. In: 2019 IEEE Aerospace Conference, pp. 1–10. 
IEEE, New York City, United States (2019). https:// doi. org/ 10. 
1109/ aero. 2019. 87421 60

 4. Maronga, B., Gryschka, M., Heinze, R., Hoffmann, F., Kanani-
Sühring, F., Keck, M., Ketelsen, K., Letzel, M.O., Sühring, 
M., Raasch, S.: The parallelized large-eddy simulation model 
(PALM) version 4.0 for atmospheric and oceanic flows: model 
formulation, recent developments, and future perspectives. Geo-
sci. Model Dev. 8(8), 2515–2551 (2015). https:// doi. org/ 10. 5194/ 
gmd-8- 2515- 2015

 5. Land, A.H., Doig, A.G.: An automatic method of solving discrete 
programming problems. Econometrica 28(3), 497–520 (1960). 
https:// doi. org/ 10. 2307/ 19101 29

 6. de Camargo, J.T.F., de Camargo, E.A.F., Veraszto, E.V., Bar-
reto, G., Cândido, J., Aceti, P.A.Z.: Route planning by evolu-
tionary computing: an approach based on genetic algorithms. 
Procedia Comput. Sci. 149, 71–79 (2019). https:// doi. org/ 10. 
1016/j. procs. 2019. 01. 109

 7. Biswas, S., Anavatti, S.G., Garratt, M.A.: Particle swarm opti-
mization based co-operative task assignment and path planning 
for multi-agent system. In: 2017 IEEE Symposium Series on 
Computational Intelligence (SSCI), pp. 1–6. IEEE, New York 
City, United States (2017). https:// doi. org/ 10. 1109/ ssci. 2017. 
82808 72

 8. Yu, J., Su, Y., Liao, Y.: The path planning of mobile robot by 
neural networks and hierarchical reinforcement learning. Front. 
Neurorobot. (2020). https:// doi. org/ 10. 3389/ fnbot. 2020. 00063

 9. Tang, L., Wang, H., Li, P., Wang, Y.: Real-time trajectory genera-
tion for quadrotors using b-spline based non-uniform kinodynamic 
search. In: 2019 IEEE International Conference on Robotics and 
Biomimetics (ROBIO), pp. 1133–1138. IEEE, New York City, 
United States (2019). https:// doi. org/ 10. 1109/ robio 49542. 2019. 
89614 85

 10. Garcia, M., Viguria, A., Ollero, A.: Dynamic graph-search algo-
rithm for global path planning in presence of hazardous weather. 
J. Intell. Robot. Syst. 69, 285–295 (2012). https:// doi. org/ 10. 1007/ 
s10846- 012- 9704-7

Algorithm 3 Basic pruning technique algorithm

Input: A-Star-Path path = [s0, ..., sn]
Output: Pruned Path path = [t0, ..., tk]
1: function Pruning()
2: k := 0
3: tk := s0
4: for all i := 1..n− 1 do
5: if not LineOfSight(tk, si+1) then
6: k := k + 1
7: tk := si
8: k := k + 1
9: tk := sn

10: return [t0, ..., tk]

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.trd.2019.102209
https://doi.org/10.1109/aero.2019.8742160
https://doi.org/10.1109/aero.2019.8742160
https://doi.org/10.5194/gmd-8-2515-2015
https://doi.org/10.5194/gmd-8-2515-2015
https://doi.org/10.2307/1910129
https://doi.org/10.1016/j.procs.2019.01.109
https://doi.org/10.1016/j.procs.2019.01.109
https://doi.org/10.1109/ssci.2017.8280872
https://doi.org/10.1109/ssci.2017.8280872
https://doi.org/10.3389/fnbot.2020.00063
https://doi.org/10.1109/robio49542.2019.8961485
https://doi.org/10.1109/robio49542.2019.8961485
https://doi.org/10.1007/s10846-012-9704-7
https://doi.org/10.1007/s10846-012-9704-7


 H. Rienecker et al.

1 3

 11. Babel, L.: Flight path planning for unmanned aerial vehicles 
with landmark-based visual navigation. Rob. Auton. Syst. 62(2), 
142–150 (2014). https:// doi. org/ 10. 1016/j. robot. 2013. 11. 004

 12. Srivastava, K., Pandey, P.C., Sharma, J.K.: An approach for route 
optimization in applications of precision agriculture using UAVs. 
Drones (2020). https:// doi. org/ 10. 3390/ drone s4030 058

 13. Bortoff, S.A.: Path planning for UAVs. In: Proceedings of the 
2000 American Control Conference, pp. 364–3681. IEEE, New 
York City, United States (2000). https:// doi. org/ 10. 1109/ acc. 2000. 
878915

 14. Sajid, M., Mittal, H., Pare, S., Prasad, M.: Routing and scheduling 
optimization for UAV assisted delivery system: a hybrid approach. 
Appl. Soft Comput. (2022). https:// doi. org/ 10. 1016/j. asoc. 2022. 
109225

 15. Rosenow, J., Lindner, M., Fricke, H.: Assessment of Air Traffic 
Networks Considering Multi-criteria Targets in Network and Tra-
jectory Optimization. In: Deutscher Luft- und Raumfahrtkongress 
2015. DGLR, Rostock, Germany (2015)

 16. Junwei, Z., Jianjun, Z.: Path planning of multi-UAVs concealment 
attack based on new a method. In: 2014 Sixth International Con-
ference on Intelligent Human-Machine Systems and Cybernetics, 
pp. 401–404. IEEE, New York City, United States (2014). https:// 
doi. org/ 10. 1109/ ihmsc. 2014. 198

 17. Li, J., Deng, G., Luo, C., Lin, Q., Yan, Q., Ming, Z.: A hybrid 
path planning method in unmanned air/ground vehicle (UAV/
UGV) cooperative systems. IEEE Trans. Veh. Technol. 65(12), 
9585–9596 (2016). https:// doi. org/ 10. 1109/ tvt. 2016. 26236 66

 18. Mandloi, D., Arya, R., Verma, A.K.: Unmanned aerial vehicle 
path planning based on A ∗ algorithm and its variants in 3d envi-
ronment. Int. J. Syst. Assur. Eng. Manag. 12(5), 990–1000 (2021). 
https:// doi. org/ 10. 1007/ s13198- 021- 01186-9

 19. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuris-
tic determination of minimum cost paths. IEEE Trans. Syst. Sci. 
Cybern. 4(2), 100–107 (1968). https:// doi. org/ 10. 1109/ tssc. 1968. 
300136

 20. Yang, K., Sukkarieh, S.: 3d smooth path planning for a UAV in 
cluttered natural environments. In: 2008 IEEE/RSJ International 
Conference on Intelligent Robots and Systems, pp. 794–800. 
IEEE, New York City, United States (2008). https:// doi. org/ 10. 
1109/ iros. 2008. 46506 37

 21. Pwone. Phoenix-Wings GmbH. https:// phoen ix- wings. de/ pwone/. 
Accessed 18 Oct 2021

 22. VDI-Richtlinie 3783 Blatt 12, Umweltmeteorologie, Physikalis-
che Modellierung von Strömungs- und Ausbreitungsvorgängen 
in der atmosphärischen Grenzschicht, Windkanalanwendungen. 
(Gründruck) (2022)

 23. Climate and average weather year round in dresden germany. 
Cedar Lake Ventures, Inc.. https:// weath erspa rk. com/y/ 75895/ 
Avera ge- Weath er- in- Dresd en- Germa ny- Year- Round. Accessed 
25 Jul 2022

 24. Letzel, M.O., Krane, M., Raasch, S.: High resolution urban large-
eddy simulation studies from street canyon to neighbourhood 
scale. Atmos. Environ. 42(38), 8770–8784 (2008). https:// doi. 
org/ 10. 1016/j. atmos env. 2008. 08. 001

 25. Kanda, M., Inagaki, A., Miyamoto, T., Gryschka, M., Raasch, 
S.: A new aerodynamic parametrization for real urban surfaces. 
Bound.-Layer Meteorol. 148(2), 357–377 (2013). https:// doi. org/ 
10. 1007/ s10546- 013- 9818-x

 26. Letzel, M., Gaus, G., Raasch, S., Jensen, N., Kanda, M.: Turbulent 
Flow Around High-rise Office Buildings in Downtown Tokyo. 
Dynamic Visualization in Science, No. 13100, 2008

 27. Tack, A., Koskinen, J., Hellsten, A., Sievinen, P., Esau, I., Praks, 
J., Kukkonen, J., Hallikainen, M.: Morphological database of 
Paris for atmospheric modeling purposes. IEEE J. Sel. Top. Appl. 
Earth Obs. Remote Sens. 5(6), 1803–1810 (2012). https:// doi. org/ 
10. 1109/ jstars. 2012. 22011 34

 28. Franke, J., Baklanov, A.: Best Practice Guideline for the CFD 
Simulation of Flows in the Urban Environment: COST Action 732 
Quality Assurance and Improvement of Microscale Meteorologi-
cal Models, (2007)

 29. Palmgroup: E3: Flow Around a Cubical Building. Institute of 
Meteorology and Climatology, Leibniz Universität Hannover, 
(2020). Institute of Meteorology and Climatology, Leibniz Uni-
versität Hannover

 30. Arakawa, A., Lamb, V.R.: Computational design of the basic 
dynamical processes of the UCLA general circulation model. In: 
Methods in Computational Physics: Advances in Research and 
Applications, Vol. 17, pp. 173–265. Elsevier, Amsterdam, Nether-
lands (1977). https:// doi. org/ 10. 1016/ b978-0- 12- 460817- 7. 50009-4

 31. McClamroch, N.H.: Steady aircraft flight and performance. Prince-
ton University Press, Princeton (2011). (ISBN: 9781680159097)

 32. Pathfinding with A ∗ . Python Pool. http:// theory. stanf ord. eduam 
itp/ GameP rogra mming/Accessed 28 Jun 2022

 33. Majka, A.: Flight loads of mini UAV. Solid State Phenom. 198, 
194–199 (2013). https:// doi. org/ 10. 4028/ www. scien tific. net/ ssp. 
198. 194

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.robot.2013.11.004
https://doi.org/10.3390/drones4030058
https://doi.org/10.1109/acc.2000.878915
https://doi.org/10.1109/acc.2000.878915
https://doi.org/10.1016/j.asoc.2022.109225
https://doi.org/10.1016/j.asoc.2022.109225
https://doi.org/10.1109/ihmsc.2014.198
https://doi.org/10.1109/ihmsc.2014.198
https://doi.org/10.1109/tvt.2016.2623666
https://doi.org/10.1007/s13198-021-01186-9
https://doi.org/10.1109/tssc.1968.300136
https://doi.org/10.1109/tssc.1968.300136
https://doi.org/10.1109/iros.2008.4650637
https://doi.org/10.1109/iros.2008.4650637
https://phoenix-wings.de/pwone/
https://weatherspark.com/y/75895/Average-Weather-in-Dresden-Germany-Year-Round
https://weatherspark.com/y/75895/Average-Weather-in-Dresden-Germany-Year-Round
https://doi.org/10.1016/j.atmosenv.2008.08.001
https://doi.org/10.1016/j.atmosenv.2008.08.001
https://doi.org/10.1007/s10546-013-9818-x
https://doi.org/10.1007/s10546-013-9818-x
https://doi.org/10.1109/jstars.2012.2201134
https://doi.org/10.1109/jstars.2012.2201134
https://doi.org/10.1016/b978-0-12-460817-7.50009-4
http://theory.stanford.eduamitp/GameProgramming/
http://theory.stanford.eduamitp/GameProgramming/
https://doi.org/10.4028/www.scientific.net/ssp.198.194
https://doi.org/10.4028/www.scientific.net/ssp.198.194

	Energy optimal 3D flight path planning for unmanned aerial vehicle in urban environments
	Abstract
	1 Introduction
	2 Problem formulation
	3 Wind field prediction using LES
	4 Trajectory optimization
	4.1 Cost function
	4.2 Extended A-star-algorithm
	4.3 Path modeling
	4.3.1 Path discretization
	4.3.2 Path pruning
	4.3.3 Path smoothing


	5 Results of trajectory optimization
	6 Conclusion
	Appendix A: Basic A-Star-Algorithm
	Appendix B: Extended A-Star-Algorithm
	Appendix C: Basic pruning technique algorithm
	Acknowledgements 
	References


