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Altermagnetism is a recently identified magnetic symmetry class combining characteristics of con-
ventional collinear ferromagnets and antiferromagnets, that were regarded as mutually exclusive, and
enabling phenomena and functionalities unparalleled in either of the two traditional elementary mag-
netic classes. In this work we use symmetry and ab initio theory to explore X-ray magnetic circular
dichroism (XMCD) in the altermagnetic class. Our results highlight the distinct phenomenology in
altermagnets of this time-reversal symmetry breaking response, and its potential utility for element-
specific spectroscopy and microscopy in altermagnets. As a representative material for our XMCD
study we choose α-MnTe with the compensated antiparallel magnetic order in which an anomalous
Hall effect has been already demonstrated both in theory and experiment. The predicted magnitude
of XMCD lies well within the resolution of existing experimental techniques.

Recent theoretical studies have identified magnetic
crystals with unconventional characteristics. On one
hand, the crystal symmetries generate a compensated
antiparallel magnetic order. On the other hand, they
enable time-reversal (T ) symmetry breaking linear re-
sponses, such as the anomalous Hall effect (AHE) [1–10]
or charge-spin conversion effects [2, 11–16], and strongly
spin-polarized electronic band structures [2, 3, 6, 8, 16–
23]. Theoretical predictions have gone beyond the pre-
viously established notion in which these T -symmetry
breaking phenomena originate from a magnetization in
ferromagnets, or from a non-collinear order of spins on
certain lattices of magnetic atoms [1]. Ab initio cal-
culations in RuO2 or MnTe have identified large non-
relativistic spin splittings in the band-structure reaching
an ∼ eV scale [2, 3, 9, 17]. In contrast to ferromagnets,
and in line with the vanishing net magnetization in these
compensated collinear magnets, the sign of the spin split-
ting alternates across the band structure. The alternat-
ing spin polarization in both real-space crystal structure
and momentum-space electronic structure suggested the
term altermagnetism [2, 16].

Prompted by the theory predictions, the AHE has al-
ready been experimentally observed and ascribed to the
altermagnetic order in RuO2 or MnTe [9, 24]. The pre-
dictions of strong spin currents, opening the prospect of
robust writing and readout mechanisms in stray-field-free
ultra-fast memory devices [2, 12, 15, 16, 25], have been
supported by initial experiments in RuO2 [26–28].

In this Letter we focus on the X-ray magnetic circu-
lar dichroism (XMCD) at the Mn L2,3 edge and demon-
strate that, apart from the ferromagnetic or non-collinear

FIG. 1. Mn moments mA and mB in α-MnTe structure (with
Te octahedra) for the studied Néel vector L orientations. The
mirror planeM discussed in the text is marked in blue. While
in the right panelM is an element of the magnetic symmetry
groupk, in the left panel it is MT which leaves the system
invariant.

order [29, 30], it can also originate from the collinear al-
termagnetic order. Both AHE, the transverse electric-
current response to an applied electric bias, and XMCD,
the difference between absorption of left and right cir-
cularly polarized X-rays, are given by the Hall vector
h = (σzy, σxz, σyx); here σij = −σji are the antisymmet-
ric components of the (frequency dependent) conductiv-
ity tensor [1, 29]. AHE and XMCD are, therefore, gov-
erned by the same symmetry principles. Microscopically,
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they provide complementary information since XMCD
involves, besides the valence electronic states, also the
atomic core states.

Before presenting our microscopic calculations of
XMCD in α-MnTe, we summarize key symmetry con-
siderations relevant to altermagnets. We start from
non-relativistic spin symmetries which consist of di-
rect products of transformations in decoupled real (or-
bital) space and spin space and classify all crystals with
collinear magnetic order into the following three mutu-
ally exclusive symmetry types [2, 16]: First, a ferro-
magnetic (ferrimagnetic) class has one spin lattice or
opposite-spin sublattices not connected by any symme-
try transformation, i.e., there is no symmetry combining
a 180◦ spin-space rotation (CS2 ) with any real-space sym-
metry transformation. Next, an antiferromagnetic class
has opposite-spin sublattices connected by a real-space
translation or inversion [31, 32]. Finally, an altermag-
netic class has opposite-spin sublattices connected by a
real-space rotation (proper or improper and symmorphic
or non-symmorphic), but not connected by a transla-
tion or inversion. Unlike the ferromagnetic class with a
non-relativistic magnetization and spin-polarized bands
that break T -symmetry, and unlike the antiferromagnetic
class with non-relativistic zero net magnetization and
spin-unpolarized T -invariant bands, altermagnets have
non-relativistic zero net magnetization combined with
spin-polarized bands that break T -symmetry. The non-
relativistic altermagnetic symmetries thus suggest the
presence of T -symmetry breaking responses analogous
to ferromagnets. Simultaneously, the spin symmetries
point to qualitative difference in the phenomenology of
these responses between ferromagnets and the intrinsi-
cally anisotropic (even-parity d, g or i-wave) altermag-
nets [2, 16, 17].

Besides the above non-relativistic spin symmetries that
distinguish the three collinear magnetic classes, there are
spin symmetries common to all collinear magnets. First,
it is an arbitrary rotation of the spin space around the
direction of ordered moments. Second, all collinear (co-
planar) magnets share a CS2 T non-relativistic spin sym-
metry combining the spin-space inversion, i.e. the T
transformation, with the CS2 spin-space rotation around
an axis perpendicular to the ordered moments. In the
absence of the relativistic spin-orbit coupling (SOC), the
Hall vector is invariant under arbitrary spin-space rota-
tions, including the CS2 rotation. Since collinear magnets
are invariant under the above non-relativistic CS2 T spin-
space symmetry, the Hall vector must be also invariant
under this symmetry. Combined with the invariance un-
der the spin-space rotation, the Hall vector is forced to
be T -invariant, i.e., to vanish in the absence of SOC.

In relativistic physics, the real space and the spin space
are coupled eliminating pure spin rotations as well as the
CS2 T spin-space symmetry. In ferromagnets, the Hall vec-
tor is then always allowed in the presence of SOC because

FIG. 2. Mn L2,3 XAS experimental spectrum (top, blue)
and the LDA+DMFT AIM calculation (bottom, blue). The
XMCD predicted by the LDA+DMFT AIM for L ‖ [1100]
(red). Here XMCD is given by σyx (k ‖ c ⊥ L).

both the magnetization and the Hall vector transform as
T -odd axial vectors [16]. In altermagnets, the symme-
try lowering by SOC also enables the presence of the
Hall vector, but not necessarily for all directions of the
Néel vector. This is because the Néel vector may or may
not transform as a T -odd axial vector, depending on its
crystal direction [16]. In the latter case, the relativistic
symmetry lowering may not be sufficient to allow for the
T -odd axial Hall vector [2, 16]. This highlights the dis-
tinct phenomenology of AHE and XMCD in altermagnets
compared to ferromagnets.

We now proceed to the analysis of the XMCD in MnTe.
A schematic crystal of α-MnTe with NiAs structure (crys-
tallographic space group P63/mmc #194 [33]) is shown
in Fig. 1. The magnetic moments on Mn have a par-
allel alignment within the c-planes and an antiparallel
alignment between the planes. The face-sharing Te octa-
hedra surrounding the Mn atoms break the translation or
inversion symmetry connecting the opposite-spin sublat-
tices, but allow a non-symmorphic six-fold screw rotation
CR6 t1/2 to connect them [9, 16] rendering α-MnTe an al-
termagnet.

The X-ray absorption spectrum (XAS) and XMCD at
the Mn L2,3 edge are calculated using a dynamical mean-
field theory (DMFT) + Anderson impurity model (AIM)
approach of Refs. 34–36. Starting with a density func-
tional calculation using Wien2k [37] we construct a multi-
band Hubbard model [38, 39] spanning the Mn 3d and Te
5p bands. The Coulomb interaction within the Mn d-shell
is parametrized by U = 5.0 eV and J = 0.86 eV, and the
double-counting correction µdc = 22.5 eV. DMFT with
these parameters reproduces well the valence-band both
in experiment [40] and theory [41] as well as Mn 2p core-
level x-ray photoemission spectra [42], see SM [43].

In Fig. 2 we compare the calculated XAS with the ex-
periment. The measurements were performed on an epi-
taxial α-MnTe thin film grown on a InP (111) substrate
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FIG. 3. The Mn site-resolved contributions to XMCD cal-
culated by the LDA+DMFT AIM for two Néel vectors L =
[11̄00] (left) and [112̄0] (right). The top and bottom panels
correspond to k ⊥ L and k ‖ L, respectively. The XMCD
intensities are magnified by a factor indicated in panels.

by molecular beam epitaxy as described in Ref. 44. Sam-
ples were transported from the growth chamber to beam-
line I06 at Diamond Light Source in a vacuum suitcase.
The XAS measurements we performed using linearly po-
larized light propagating along the c-axis. The polar-
ization of the light was along the [112̄0] direction and
the measurement was performed at 200 K. Total elec-
tron yield detection was used to measure the absorption
signal. All features seen in the experimental spectra are
correctly reproduced; the only apparent exception is the
multiplet feature on the low-energy side of the L3 ab-
sorption edge, see SM [43] for discussion.

The main quantitative prediction of this work is in
Fig. 2 showing the XMCD spectrum calculated for the
Néel vector L = mA − mB parallel to [11̄00]. Here
mA(B) is the sublattice A(B) magnetization, and [11̄00]
is one of the three equivalent magnetic easy-axes in the
c-plane [9, 44]. The relativistic magnetic point group
for this Néel vector direction is m′m′m [9]. The screw
axis C2t1/2 and the corresponding symmetry-allowed Hall
vector h = (0, 0, σyx) are along the crystal c-axis. In
contrast, for L parallel to an in-plane hard axis [21̄1̄0],
the corresponding magnetic point group mmm implies
that all Hall vector components are zero, i.e., that a net
XMCD signal is excluded by symmetry. Note that exper-
imentally, the Néel vector can be reoriented within the
c-plane by moderate magnetic fields [44].

Thanks to the localized nature of the core states, X-
ray spectra are the sum of contributions from distinct
atomic sites, i.e., from the magnetic sublattices A and B
in the present case: σαβ = σAαβ + σBαβ . For Néel vector

(ii)

(i)

(iii)

(iv)

FIG. 4. The single-site XMCD for k ‖ L (left) and k ⊥ L
(right) for models (i)-(iv) described in the text. The XMCD
intensities are magnified by a factor indicated in panels. Note
that here the Mn atomic model is employed.

directions in the c-plane of α-MnTe, the sublattices A
and B are connected by the relativistic C2t1/2 symmetry,
which leads to σAyx = σByx, σAzy = −σBzy and σAxz = −σBxz.

The calculated site-resolved contributions to XMCD
for L along [11̄00] and [112̄0] are shown in Fig. 3. We
associate the x-axis of the conductivity tensor with the
direction of L. For both Néel vector directions, the two
sublattices taken separately yield large local XMCD sig-

nals from σ
A(B)
zy (i.e. for X-ray propagation vector k ‖ L),

which cancel each other exactly when summed over. For
XMCD given by σyx (X-ray propagation vector k ⊥ L),

the identical contributions σ
A(B)
yx of the two sublattices

are finite for L ‖ [11̄00], and add up constructively. For

L ‖ [112̄0], σ
A(B)
yx = 0 by symmetry.

The Onsager relations for the conductivity [1],
and correspondingly for XMCD, imply that
XMCD(L,m)=−XMCD(−L,−m). For L ‖ [11̄00]
in α-MnTe, a net magnetization m = mA + mB due to
canting of the sublattice moments towards the c-axis is
allowed by the relativistic symmetry. It was estimated to
be extremely small ≤ 2× 10−4 µB per Mn from ab initio
calculations, and remained experimentally undetectable
in the thin-film MnTe epilayers [9]. This implies a nearly
precise relationship, XMCD(L)=−XMCD(−L).

While XMCD and AHE follow the same symmetry
rules, they may originate from different terms in the
Hamiltonian and thus have different magnitudes or scale
differently upon changing the material parameters. An
example of such a behavior is different magnitudes of
MCD in optical and x-ray regimes related to their origin
in valence-band and core-level SOC, respectively.

For L ‖ [11̄00] in α-MnTe, and the corresponding net
XMCD given by σyx, it is instructive to analyze the



single-site XMCD contributions given by σ
A(B)
yx (k ⊥ L)

and σ
A(B)
zy (k ‖ L), although the sum over the two sublat-

tices of the latter vanishes as discussed above. In Fig. 4
we consider four different settings: i) full Hamiltonian,
ii) no valence 3d SOC, iii) no core-valence interaction
beyond monopole (e.g. no spin exchange), iv) a combi-
nation of (ii) and (iii).

For k ‖ L, the valence 3d SOC plays a negligible role.
The core-valence multipole interaction changes the shape
of the single-site XMCD spectra, but does not change the
magnitude of the effect. For k ⊥ L, we find a moderate
difference between (i) and (ii). The single-site XMCD
signal is substantially suppressed in (iii) and vanished
completely in (iv). This shows that the role of the va-
lence 3d SOC is marginal, while the core-valence multi-
pole interaction is crucial for XMCD in α-MnTe.

The order of magnitude difference between the single-
site XMCD for k ‖ L and k ⊥ L, as well as their qual-
itatively different behavior in case (iv), suggest a differ-
ent microscopic origin. The single-site XMCD for k ‖ L
corresponds to the conventional XMCD known from fer-
romagnets, which arises from the spin polarization of
the valence states and SOC in the core states while the
role of valence 3d SOC and core-valence interaction is
marginal [45].

To microscopically understand the XMCD for k ⊥ L
in α-MnTe, we have to answer the question: What is the
symmetry origin of vanishing of XMCD in case (iv)? We
use the atomic model for sake of simplicity, nevertheless,
the same symmetry arguments apply to the full Hamil-
tonian of α-MnTe. The terms corresponding to case (iv)
are included in

Ĥ0
at = εc

∑

m,σ

p̂†mσp̂mσ +
∑

m,m,σ,σ′

h
(2p)
mσ,m′σ′ p̂

†
mσp̂m′σ′

+
∑

m,m′,σ

h
(CF)
mm′ d̂

†
mσd̂m′σ + b

∑

m,σ

d̂†mσd̂m−σ

+ Updn̂pn̂d +
∑

i,j,k,l
σ,σ′

uσσ
′

ijkld̂
†
iσd̂
†
jσ′ d̂kσ′ d̂lσ.

(1)

The remaining terms to complete the full atomic-model
are

Ĥ1
at =

∑

i,j,k,l
σ,σ′

wσσ
′

ijkld̂
†
iσp̂
†
jσ′ d̂kσ′ p̂lσ +

∑

m,m′

σ,σ′

h
(3d)
mσ,m′σ′ d̂

†
mσd̂m′σ′ .

Here, the operators p̂†mσ and d̂†mσ, respectively, create
an electron in a core (2p) and valence (3d) orbital with
angular momentum projection m and spin projection σ =
±1. The magnetic order is represented by a Weiss field
b [46], chosen to point along the x-axis, without loss of
generality.

The XMCD signal for k ⊥ L (which is related to the
antisymmetric part of σxy) is obtained by the Fermi’s

golden rule

F±(ω) =
∑

f,i

∣∣∣
〈
f |T̂±|i

〉∣∣∣
2

δ (ω − Efi)

T̂± ≡
∑

σ

T̂σ± =
∑

m,σ

Γ±md̂
†
m±1σp̂mσ +H.c.

(2)

where Efi = Ef − Ei is the excitation energy from the

state |i〉 to state |f〉. The dipole operators T̂±, with real
coefficients Γm, describe absorption of circularly polar-
ized light propagating along the c-axis. The square of
the matrix element in (2) has the form

∣∣∣
〈
T̂±
〉∣∣∣

2

=
∑

σ

∣∣∣
〈
T̂σ±
〉∣∣∣

2

+
∑

σ

〈
T̂σ±
〉〈

T̂−σ±
〉
. (3)

First, we use the local C3 rotation symmetry about the
c-axis to show that the second term in (3) does not con-
tribute to F±(ω). Consider the C3 transformation act-
ing only on the valence orbital indices (valence SOC ne-
glected), and on both the core orbital and spin indices
(core SOC included) [47]. This operation commutes with
Ĥ0

at and thus

F±(ω) = 1
3

∑

g∈{I,C3,C23}

∑

f,i

∣∣∣
〈
f |gT̂±g−1|i

〉∣∣∣
2

δ (ω−Efi) . (4)

The transformation of the dipole operator

C3 T̂σ±C−13 = εT̂σ±e
−iσ π3 , (5)

introduces a spin-dependent phase shift (ε is an overall
phase factor) arising from the phase difference between
the valence spins (not rotated) and the core spins (ro-
tated). As a result the crossed spin term in (3) drops out
upon the summation in (4).

Next, we consider the role of T . The T -symmetry is
broken by the presence of the Weiss field b. However,
since the valence spin is coupled neither to the valence
orbitals, nor to the core spin or orbitals, the transforma-
tion T ′ ≡ T CS,3d2 [48] (T combined with a CS,3d2 rota-
tion of the valence spin) is an anti-unitary symmetry, see
SM [43] for details, which transforms the dipole operators
as

T ′T̂σ±T ′−1 = (−1)
σ−1
2 T̂σ∓. (6)

As a result we can replace

〈
f |T̂σ+|i

〉
→ (−1)

σ−1
2

〈
f |T̂σ−|i

〉
(7)

in the sum over eigenstates (2), which together with van-
ishing spin-crossed terms in (7), leads to F+(ω) = F−(ω),
and thus zero XMCD.

Turning on either of the terms in Ĥ1
at eliminates the

above symmetries, and the arguments for zero XMCD



break down. However, for L ‖ [112̄0], XMCD for the
full Hamiltonian Ĥ0

at + Ĥ1
at still vanishes. Because of

the presence of a mirror plane M perpendicular to L,
see Fig. 1, the Hamiltonian is invariant under m → −m
and σ → −σ transformations for both valence and core
orbitals. The MT̂+M−1 = T̂− then implies vanishing of
XMCD for L ‖ [112̄0].

Although both AHE and XMCD are given by the anti-
symmetric components of (frequency-dependent) σαβ ,
they arise from different terms in the Hamiltonian. AHE
originates from SOC in the valence orbitals, i.e., the
same interaction responsible for example for magneto-
crystalline anisotropy. The electron-electron interactions
tend to play a minor role for AHE [49], beyond estab-
lishing the magnetic order. XMCD in α-MnTe, on the
other hand, shows little sensitivity to valence SOC, but
arises from a combination of core SOC and core-valence
exchange interaction, which affect the excited state con-
taining a core hole. Only a minor modification of the
XMCD signal is observed when the relativistic effects in
the valence orbitals are completely neglected.

In conclusion, we have calculated XAS and XMCD at
the Mn L2,3 edge in a prototypical altermagnet α-MnTe.
We have measured XAS and found a good agreement
with the numerical results, establishing the reliability of
the theoretical approach. The magnitude of calculated
XMCD is well within the resolution of present-day in-
struments. The effect follows the same symmetry rules
as established for AHE. In α-MnTe, it is present for the
circularly polarized X-rays propagating along the c-axis
and the Néel vector in the plane perpendicular to the c-
axis. Within the plane, the effect vanishes for L ‖ [21̄1̄0]
and the other two equivalent in-plane axes. Unlike AHE,
SOC in the valence orbitals plays only a marginal role
for XMCD in α-MnTe.
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A. LDA+DMFT calculation for Mn L2,3 XAS and XMCD of α-MnTe

The LDA+DMFT calculation for Mn L2,3-edge X-ray absorption spectroscopy (XAS) and X-ray magnetic circular
dichroism (XMCD) spectra of α-MnTe proceeds in the two steps. Firstly, a standard LDA+DMFT calculation [1, 2]
is performed with the same implementation of Refs. [3, 4]. Then, the Mn L2,3-edge XAS and XMCD intensities are
computed from the Anderson impurity model (AIM) with the LDA+DMFT hybridization densities ∆(ω), where the
Mn 2p core orbitals and core-valence interaction are included explicitly. In the first step, the LDA bands obtained
with the WIEN2K package [5] are projected onto a tight-binding model spanning the Mn 3d and Te 5p bands [6, 7].
The LDA calculation is performed for NiAs structure (space group P63/mmc) with lattice parameters of a = 4.14 Å
and c = 6.71 Å [8, 9]. The tight-binding model is then augmented by the electron-electron interaction within the Mn
3d shell. The interaction is parameterized by Hubbard U = F0 and Hund’s J = (F2 + F4)/14 parameters where F0,
F2, and F4 are the Slater integrals [10, 11]. Consulting with previous DFT-based and spectroscopy studies for the
studied and typical divalent Mn compounds [12–16], we employ U = 5.0 eV and J = 0.86 eV in the present study. The
continuous-time quantum Monte Carlo method with the hybridization expansion formalism [17–19] is used to solve
the auxiliary AIMs for the two Mn sites in the DMFT self-consistent calculation. The valence spectral intensities and
hybridization densities ∆(ω) are computed on the real frequency axis after the self-energy is analytically continued
using maximum entropy method [20, 21]. To account for the electron-electron interaction already included in the
LDA description, the Mn 3d orbital energy is shifted from its LDA value by the double-counting correction µdc [1, 22].
While several ad hoc schemes exist to determine µdc, we treat µdc as an adjustable parameter fixed by comparison to
the experimental band gap, valence-band and Mn 2p core-level XPS data [3, 23]. Figure 1 shows the LDA+DMFT
valence-band spectra computed for different double-counting values µdc. The LDA+DMFT result implementing
µdc = 22.5 eV reproduces the experimental gap (∼ 1.27− 1.46 eV) [24–26] reasonably well. Besides, the presence of
incoherent spectral weight of the Mn 3d states around −8 eV is consistent with the early Mn L-edge resonant X-ray
photoemission spectroscopy (XPS) studies [15, 27]. In all calculated µdc values, the antiferromagnetically ordered
state is stabilized in the LDA+DMFT self-consistent calculations.

To further support the used model parameters, we calculate Mn 2p XPS spectra of α-MnTe, see Fig. 1. In contrast
to the Mn 2p XAS process where the Mn 2p core hole created by the X-rays is largely screened by an extra Mn 3d
electron added on the X-ray excited site, a dynamical charge response from the valence electrons to the Mn site,
traditionally called charge-transfer screening, affects substantially the Mn 2p XPS line shape [3, 13, 29]. Thus, the
Mn 2p XPS features are more sensitive to the parameters in the lattice model above. The Mn 2p XPS spectra are
calculated using the AIM with the LDA+DMFT hybridization densities ∆(ω). Note that ∆(ω) depends on two Mn
sites in the antiferromagnetic order. We used the same form of the AIM Hamiltonian and computational methods used
in Refs. [3, 4, 30]. In practice, ∆(ω) obtained with the LDA+DMFT calculation are represented by 25 discretized bath
states (per orbital and spin) in computing the spectral intensities with a configuration-interaction impurity solver.
The LDA+DMFT result with the optimal double-counting value (µdc = 22.5 eV) reproduces the experimental Mn 2p
XPS spectrum nicely, including the Mn 2p3/2 main-line and satellite splitting as well as fine features in the main line.
The µdc = 22.5 eV value is used for the simulated results in the main texts.

The same AIMs with the LDA+DMFT densities ∆(ω) are used for computing Mn L2,3-edge XAS and XMCD. The

ar
X

iv
:2

30
5.

03
58

8v
1 

 [
co

nd
-m

at
.m

tr
l-

sc
i]

  5
 M

ay
 2

02
3



Mn 2p3/2 

Mn 2p1/2 

Satellite 

FIG. 1. (left) LDA+DMFT orbital-resolved density of states calculated for different double-counting values µdc. In the crystal
structure of α–MnTe, the Mn 3d on-site levels are split into two doublets (egπ, egσ) and a singlet (a1g). (right) Mn 2p core-level
XPS spectra calculated by the LDA+DMFT AIM method with these double-counting values µdc. The experimental XPS
spectrum taken from Ref. [28] is shown together.

FIG. 2. (left) Mn L2,3 XAS intensities calculated by the LDA+DMFT AIM for different double-counting values µdc. The
experimental spectrum in Fig. 1 of the main text is shown. (right) Mn L2,3 MCD intensities (×6) computed for these µdc

values. For comparison, the XAS and XMCD intensities calculated by the Mn2+ atomic model are shown together (gray).

XAS spectral function is described by the Fermi’s golden rule

F
(i)
XAS(ωin) = − 1

π
Im〈g|T †i

1

ωin + Eg − Ĥ(i)
AIM

Ti|g〉.

Here, |g〉 is the ground with energy Eg, and ωin is the energy of the incident photon. Ti is the electric dipole transition
operator for circularly- or linearly-polarized X-rays [29, 31]. The index i (= 1, 2) denotes the X-ray excited Mn site in

the unit cell. The AIM Hamiltonian Ĥ
(i)
AIM contains the site-dependent DMFT hybridization densities ∆(ω), the Mn

3d-shell atomic Hamiltonian, the core-valence interaction with the Mn 2p core states, and the spin-orbital coupling
on the Mn 2p and 3d shells. The AIM for each Mn site is used to calculate the site contributions, and then the total



XAS and XMCD intensities are obtained by summing up the two-site contributions [4]. The spectral broadening
using a Lorentizan 400 meV and a Gaussian 100 meV (FWHM) is applied in the XAS and XMCD spectra to simulate
2p core-hole lifetime broadening and experimental instrumental broadening. We demonstrated in Fig. 2 that the
double-counting value µdc has little effect on the Mn L2,3 XMCD intensities in α-MnTe. In Fig. 2, we also show XAS
and XMCD intensities calculated by a Mn2+ atomic model that implements the same local Hamiltonian with the
LDA+DMFT AIM but neglects the hybridization with the bath orbitals. The Mn2+ atomic model gives similar XAS
and XMCD spectra with the LDA+DMFT AIM. The absorption of a core-level electron to the valence state is a local
excitation (forming a bound exciton between the core hole and Mn 3d electrons on the X-ray excited site) and the Mn
2p core-hole does not leave the excited Mn site. Thus, the single impurity model, even the atomic model, provides its
good description [4, 29, 32]. The Mn L2,3 XAS spectrum of MnTe exhibits rich multiplet features characteristic for a
Mn2+ ion with a moderate crystal field potential acting on the Mn 3d shell [32]. The present LDA+DMFT as well
as the atomic model calculation underestimates the intensity of the shoulder feature around 641 eV which is known
to be sensitive to a small change in the crystal field splitting [32]. Thus, the discrepancy is most likely due to an
underestimate of the crystal field splitting in the LDA Hamiltonian as discussed in Refs. [23, 33]

I. SYMMETRY CONSIDERATIONS

Here, we provide explicit form of the bilinear part of the atomic Hamiltonian in the angluar momentum (spherical
harmonics) basis with quantization axis along the crystallographic c-axis. The form of the crystal-field Hamiltonian
hCF in angular momentum basis |ml,ms〉 (ml = 1, 0,−1 for 2p and ml = 2, 1, 0,−1,−2 for 3d, and ms = 1/2,−1/2
for spin) implied by the 3-fold rotation axis (m − m′ = 3k for hCF

mm′ to be non-zero) and T -reversal symmetry

(hCF
−m−m′ = (−1)m+m′

hCF
mm′)

hCF =




a 0 0 x 0
0 b 0 0 −x̄
0 0 c 0 0
x̄ 0 0 b 0
0 −x 0 0 a

0

0

a 0 0 x 0
0 b 0 0 −x̄
0 0 c 0 0
x̄ 0 0 b 0
0 −x 0 0 a




.

Presence of Mx (hCF
−m−m′ = hCF

mm′) would further reduce x to be purely imaginary. For MnTe, a = 0.024 eV,
b = 0.064 eV, c = −0.177 eV, and x = x = 0.056 eV are found in the tight-binding Hamiltonian constructed from the
LDA bands. The spin-orbit coupling on the Mn 2p and 3d shell has the form of hsoc2p and hsoc3d in angular momentum
basis,

hSOC
2p =

ξ2p
2




1 0 0 0 0 0

0 0 0
√

2 0 0

0 0 −1 0
√

2 0

0
√

2 0 −1 0 0

0 0
√

2 0 0 0
0 0 0 0 0 1



.

and

hSOC
3d =

ξ3d
2




2 0 0 0 0 0 0 0 0 0
0 1 0 0 0 2 0 0 0 0

0 0 0 0 0 0
√

6 0 0 0

0 0 0 −1 0 0 0
√

6 0 0
0 0 0 0 −2 0 0 0 2 0
0 2 0 0 0 −2 0 0 0 0

0 0
√

6 0 0 0 −1 0 0 0

0 0 0
√

6 0 0 0 0 0 0
0 0 0 0 2 0 0 0 1 0
0 0 0 0 0 0 0 0 0 2




,



where the spin-orbit coupling constant values ξ2p and ξ3d are 6.846 eV and 0.040 eV in the Mn2+ atomic Hamiltonian,
respectively.

Transformation of dipole element under anti-unitary transformation T ′
〈
f |T̂σ+|i

〉
=
〈
T ′f |T ′T̂σ+|i

〉
anti-unitarity

=
〈
T ′f |T ′T̂σ+T ′−1|T ′i

〉
insertion of unity

= (−1)
σ−1
2

〈
T ′f |T̂σ−|T ′i

〉

∑

f,i

∣∣∣
〈
f |T̂σ+|i

〉∣∣∣
2

δ(ω − Efi) =
∑

f,i

∣∣∣∣
〈
f |T̂σ−|i

〉∣∣∣∣
2

δ(ω − Efi) T ′Ĥ0
atT ′−1 = Ĥ0

at Ĥ0
at|T ′f〉 = E|T ′f〉

In the last line we use the fact that the sum is invariant under arbitrary unitary transformation in the eigensubspaces
of Ĥ.

The T -symmetry of hCF is implemented by hCF
−m,−m′ = (−1)m+m′

(hCF
m,m′)∗. Therefore

T ĤCFT −1 = T hCF
m,m′ d̂†md̂m′T −1

= (hCF
m,m′)∗T d̂†md̂m′T −1

= (hCF
m,m′)∗(−1)m+m′

d̂†−md̂−m′

= ĤCF

The invariance of ĤCF under T (and therefore T ′) leads to the T ′-invariance of Ĥ0
at.
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[5] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals

Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universitat Wien, Austria, 2001), ISBN 3-9501031-
1-2 .

[6] A. A. Mostofi, J. R. Yates, G. Pizzi, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Comput. Phys. Commun. 185,
2309 (2014).
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