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Abstract

Due to increasing railway use, the capacity at railway yards and maintenance locations is becoming
limiting. Therefore, the scheduling of rolling stock maintenance and the choice regarding optimal lo-
cations to perform maintenance is increasingly complicated. This research introduces a Maintenance
Scheduling andLocationChoiceProblem(MSLCP). It simultaneouslydeterminesmaintenance locations
andmaintenance schedules of rolling stock, while it also considers the available capacity ofmaintenance
locations, measured in the number of available teams. To solve theMSLCP, an optimization framework
based on Logic-Based Benders’ Decomposition (LBBD) is proposed by combining twomodels, theMain-
tenance Location Choice Problem (MLCP) and the Activity Planning Problem (APP), to assess the capac-
ity of aMLCP solution. Within the LBBD, four cut generation procedures are introduced to improve the
computational performance: a naive procedure, two heuristic procedures and the so-calledmin-cut pro-
cedure that aims to exploit the specific characteristics of the problem at hand. The framework is demon-
strated on a realistic scenarios from theDutch railways. It is shown that the best choice for cut generation
procedure depends on the objective: when aiming to find a good but not necessarily optimal solution,
themin-cut procedure performs best, whereaswhen aiming for the optimal solution, one of the heuristic
procedures is the preferred option. The techniques used in the current research are new to the current
field and offer interesting next research opportunities.

1 Introduction
Inmany countries, rail transport is increasingly important. This is for example visible in TheNetherlands,
where the total number of passenger kilometers increased with more than 30% since 2018 [International
Union of Railways, 2018]. In order for a railway network to function properly, the rolling stock (i.e. lo-
comotives, passenger wagons and freight wagons, multiple units) that operates on the railway network
needs to receive maintenance on a regular basis. The aim of maintenance is to ensure that the rolling
stock that operates on the network remains available (to ensure a reliable train service), safe and comfort-
able for passengers [Dinmohammadi et al., 2016]. To this end, maintenance activities can be divided into
two categories: regular maintenance, corresponding to the maintenance activities with higher frequen-
cies (every 1 to 14 days) and shorter duration (1-3 hours) which can be performedwhenever the unit has a
planned standstill, and heavy maintenance, corresponding to maintenance types with lower frequencies
(every several months or less) and longer duration (up to several days) during which the unit is taken out
of service (see e.g. Andrés et al. [2015]). The current work focuses on regular maintenance in particular.
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In general, the maximum interval between consecutive maintenance activities is governed by strict rules
that are imposed by railway authorities.

Maintenance activities are carriedout at so-calledmaintenance locations,whichare railway yardswith
maintenance facilities, spread over the network. The number of personnel stationed at a location is the
operator’s decision and an important determinant of the capacity of a maintenance location. In partic-
ular, a distinction can be made between daytime operations (i.e. a location is opened during daytime)
and nighttime operations (i.e. a location is opened during nighttime). For example, in The Netherlands,
maintenance is usually carried out during nighttime.

The increasing use of the capacity of the railway network leads to two issues for rolling stock mainte-
nance. First, the complexity of this scheduling process – which is traditionally performed manually – is
increasing. This raises the need for tools that automate themaintenance scheduling process. Second, the
use of the capacity ofmaintenance locations during nighttime is under pressure and reaching its capacity.
As a result, a railway operator can consider to performmore maintenance activities during daytime, as is
the case in The Netherlands for example. These issues were originally addressed by Zomer et al. [2020b],
providing a model for theMaintenance Location Choice Problem (MLCP). However, they assumed an un-
limited capacity of maintenance locations and do not provide a maintenance schedule. The capacity of
maintenance locations is a challenging factor to incorporate,as it typically depends on the optimal plan-
ning of all maintenance activities (which is not readily available).

This research introduces a newmathematical problem formulation, theMaintenance Scheduling and
Location Choice Problem (MSLCP), which extends theMLCP. For a given rolling stock circulation, it de-
termines an optimalmaintenance schedule and an optimalmaintenance location choice while including
capacity constraints ofmaintenance locations. In order todo so, it introduces a separate problem to assess
the capacity of aMLCP solution, called the Activity Planning Problem (APP). To solve the MSLCP, an op-
timization framework based on Logic-Based Benders’ Decomposition (LBBD) is proposed by combining
twomodels, theMLCP andAPP. Within the LBBD, four cut generation procedures are introduced: a naive
procedure, two heuristic procedures, and lastly the so-called min-cut procedure which uses the specific
structure of the problem at hand. The performance ofMSLCP is demonstrated on a realistic case from the
Dutch railways.

The contribution of this research is threefold. First, it extends the model proposed by Zomer et al.
[2020b], by introducingmaintenance location capacity constraints and therebymaking themodel capable
of delivering a complete maintenance schedule. Second, it provides an efficient method to assess the re-
quired capacity of amaintenance schedulewhichhas as anadditional benefit that it canbeused toquickly
provide rolling stock dispatchers with a maintenance activity planning during operations. Third, it pro-
poses an advanced solution strategy for the inclusion of the capacity constraints based on Logic-Based
Benders’ Decomposition.

The remainder of this paper is structured as follows. Section 2 summarizes themost important existing
literature. Section 3 restates theMLCP based on Zomer et al. [2020b]. Section 4 formulates the APP, al-
lowing to assess the capacity of anyMLCP solution. Section 5 formulates theMSLCP, in which theMLCP
and APP are the main building blocks, and provides a solution strategy. Section 6 provides results for the
MSLCP and Section 7 gives themain conclusions.

2 Literature review
The current work considers rolling stock maintenance scheduling as well as rolling stock maintenance
location choice. This section aims to identify the contributions of the current work to the literature and to
obtain insights in themethodologies and techniques used in related research.

Section 2.1 discusses relevant scientific literature on rolling stockmaintenance scheduling. Section 2.2
discusses papers on rolling stock maintenance location choice. In addition, these two sections include
somecorresponding literature fromthefieldof aviation,which is relevantdue to the systematic similarities
with rolling stock maintenance scheduling. Finally, Section 2.3 summarises reviewed papers and states
existing gaps.
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2.1 Maintenance scheduling
Herr et al. [2017] considered a problem in which rolling stock units need to be assigned to train trips such
that maintenance constraints are satisfied. They proposed a MIP model and the objective that they used
is to schedule maintenance as late as possible, thereby making optimal use of the total allowable interval
betweenmaintenance activities.

Just as Herr et al. [2017], Andrés et al. [2015] considered the problem of assigning rolling stock units to
train trips. They used an aggregated space-time network in which the nodes are trip arrival times or trip
departure times with the corresponding location. A MIP model that minimizes total operating costs was
designed and a column generation approach was used to solve the problem in reasonable time.

Maróti and Kroon [2007] considered a problem regarding heavymaintenance. They proposed amodel
to make modifications to the regular rolling stock circulation to route rolling stock units to maintenance
locations and formulated it as an integer programmingproblem. In situationswhereonly one rolling stock
unit needs to be rerouted, this formulation provides the optimal solution; in situations where multiple
rolling stock units need to be rerouted the formulation is used within a heuristic framework.

Wagenaar and Kroon [2015] proposedwith amodel that reschedules rolling stock circulation after dis-
ruptions taking into account the current maintenance planning. They based their models on the compo-
sition model, which assigns rolling stock units to train trips. They came up with three models that have
comparable performance, dependent on the problem size.

Relatedproblemswereaddressed in theareaof aviation, for examplebyClarkeet al. [1997] andGopalan
and Talluri [1998], who aimed to assign specific aircraft to each flight from a given set of flights, and Sarac
et al. [2006], who developed a model that solves the aircraft maintenance scheduling problem including
maintenance constraints in an operational context.

2.2 Maintenance location choice
Tönissen et al. [2019] aimed at locating the maintenance facilities in the railway network. They came up
withmodels that determineoptimalmaintenance locations under line andfleet planning that is subject to
uncertainty or change. They proposed two-stage stochasticmixed integer programmingmodels, inwhich
the first stage is to open a facility, and in the second stage to minimize the routing cost for the first-stage
location decision for each line plan scenario.

Tönissen and Arts [2018] built on Tönissen et al. [2019] by including recovery costs of maintenance
location decisions, unplannedmaintenance,multiple facility sizes and economies of scale (providing that
a location twice as big is not twice as expensive). Since, as a result, the second-stage problembecomesNP-
hard, an algorithmwas providedwith the aim to avoid having to solve the second stage for every scenario.

Canca and Barrena [2018] considered the simultaneous rolling stock allocation to lines and choice for
depot locations in a rail-rapid transit context. They proposed a MIP formulation which appeared hard
to solve. Therefore they proposed a three-step heuristic approach determining first the minimum num-
ber of vehicles needed for each line, subsequently the routes of rolling stock on each line, and lastly the
circulation of rolling stock on lines over multiple days together with the depot choice.

Zomer et al. [2020b] introduced the Maintenance Location Choice Problem (MLCP). To solve it, the
authors developed aMixed Integer Linear Programmingmodel taking a rolling stock circulation as input,
and provided for this rolling stock circulation an optimal maintenance location choice that minimize the
total number of maintenance activities during nighttime, thereby reducing the pressure onmaintenance
locations during nighttime. However, they did not include the capacity of maintenance locations, nor
determine exact maintenance schedules, i.e. maintenance activities are assigned to maintenance oppor-
tunities, which are longer timewindows inwhichmaintenance has to take place at somemoment, and do
not consider actual moment whenmaintenance has to be performed.

Some related research can be found in the area of aviation. Examples are the works by Feo and Bard
[1989] and Gopalan [2014], who consider the problem of assigning aircraft to flights and simultaneously
determiningmaintenance locations and introduce various heuristics to solve the problem.
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2.3 Current work
In Table 1, the discussed literature is classified in several categories. It shows for each paper whether it
was written in the aviation (A) or in the railway (R) context, whether it considered the allocation of mo-
bile units (MU, i.e. rolling stock units or aircraft) to trips, whether it consideredmaintenance constraints,
whether it created an explicit maintenance schedule for every (relevant) MU and whether it considered
facility location choice optimization.

MU
allocation

Maintenance
scheduling

Location
choice

Herr et al. [2017] x x
Andrés et al. [2015] x x
Maróti and Kroon [2007] x x
Wagenaar and Kroon [2015] x x
Tönissen et al. [2019] x
Tönissen and Arts [2018]
Canca and Barrena [2018] x x
Zomer et al. [2020b] x
Current x x

Table 1: Overview of the literature discussed in Section 2.

This literature review indicates that several aspects have not been addressed in the currently existing
literature. First, although variants of problems relating to rolling stockmaintenance location andmainte-
nance scheduling have been investigated independently, this joint problem has not been tackled. That is,
no research has aimed to determine optimal opening of maintenance locations and simultaneously find
an optimal maintenance schedule for a given rolling stock circulation. Second, although some papers do
consider some type of a constraint for the available capacity at maintenance locations, such constraints
are typically rathergeneral and ignoremanypractical aspects. This research insteadaccuratelydetermines
the capacity ofmaintenance locations by first schedulingmaintenance activities optimally. Moreover, the
capacity ismeasured as theminimal number ofmaintenance teams necessary to fulfil a certain schedule,
which is also new. Third, the current paper delivers an exactmaintenance schedule, which provides oper-
ators at maintenance location with exact moments when each rolling stock unit needs to be maintained
and by whichmaintenance team.

3 Maintenance Location Choice Problem (MLCP)
This section summarizes the mathematical model of theMaintenance Location Choice Problem (MLCP)
Zomer et al. [2020b]. For more detailed explanations of the model and the computational experiments,
the reader may resort to Zomer et al. [2020b].

The following notation is used for the parameters of the model. Let 𝐼 be the set of rolling stock units,
𝑇 ∈ R the planning horizon in hours and 𝐿 the set of potential maintenance locations. The rolling stock
circulation is assumed to be given. Amaintenance opportunity (MO) occurs when a rolling stock unit is
standing still at a potential maintenance location. Let 𝐽𝑖 ≡ {1, ..., 𝐽𝑖 } denote the MOs for rolling stock unit
𝑖 ∈ 𝐼 . The location of a rolling stock unit 𝑖 at MO 𝑗 ∈ 𝐽𝑖 is denoted by 𝑙𝑖 𝑗 ∈ 𝐿. The start time of MO 𝑗 ∈ 𝐽𝑖 is
denoted by 𝑠𝑖 𝑗 ∈ R and the end time by 𝑒𝑖 𝑗 ∈ R.

Let 𝑑𝑖 𝑗 = 1 indicate that anMO occurs during daytime:

𝑑𝑖 𝑗 =

{
1 if 𝛿𝐷 ≤ 𝑒𝑖 𝑗 mod 24 < 𝛿𝑁

0 else
,
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where 𝛿𝐷 is the time daytime maintenance starts and 𝛿𝑁 the time nighttime maintenance starts. Unless
stated otherwise, 𝛿𝐷 = 7.00 and 𝛿𝑁 = 19.00. Let 𝐾 be the set ofmaintenance types, 𝐾 ≡ {1, ..., 𝐾 }. For each
maintenance type 𝑘 ∈ 𝐾 , let 𝑣𝑘 ∈ R+ be its duration in hours and let 𝑜𝑘 ∈ R+ be the maximum interval
between two consecutive maintenance activities of maintenance type 𝑘 in hours.

The decision variable 𝑦𝐷
𝑙
∈ {0, 1} to open a potential maintenance location during daytime is 1 if lo-

cation 𝑙 ∈ 𝐿 is available for daytime maintenance. Similarly 𝑦𝑁
𝑙
∈ {0, 1} is equal to 1 if location 𝑙 ∈ 𝐿 is

available for nighttimemaintenance. The number of potentialmaintenance locations that can be opened
during daytime is restricted by 𝐿𝐷𝑚𝑎𝑥 : ∑︁

𝑙 ∈𝐿
𝑦𝐷𝑙 ≤ 𝐿

𝐷
𝑚𝑎𝑥 . (1)

The assignment decisions ofmaintenance activities tomaintenance opportunities is encoded by 𝑥𝑖 𝑗𝑘 ∈
{0, 1}, which is 1 if maintenance of type 𝑘 is performed to rolling stock unit 𝑖 ∈ 𝐼 at MO 𝑗 ∈ 𝐽𝑖 , and 0
otherwise. It is required that the total time available at MO 𝑗 is not exceeded:∑︁

𝑘 ∈𝐾
𝑥𝑖 𝑗𝑘𝑣𝑘 ≤ 𝑒𝑖 𝑗 − 𝑠𝑖 𝑗 ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽𝑖 . (2)

Furthermore, an MO 𝑗 can only be used if the corresponding location is open at the moment of the MO.
Therefore, if 𝑑𝑖 𝑗 = 0 and 𝑦𝑁

𝑙𝑖 𝑗
= 0 then ∀𝑘 ∈𝐾 𝑥𝑖 𝑗𝑘 = 0, and similarly if 𝑑𝑖 𝑗 = 1 and 𝑦𝐷

𝑙𝑖 𝑗
= 0 then ∀𝑘 ∈𝐾 𝑥𝑖 𝑗𝑘 = 0,

which is encoded in a single linear constraint as follows:

𝑥𝑖 𝑗𝑘 ≤ 𝑦𝐷𝑙𝑖 𝑗 · 𝑑𝑖 𝑗 + 𝑦
𝑁
𝑙𝑖 𝑗
· (1 − 𝑑𝑖 𝑗 ) ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽𝑖 , 𝑘 ∈ 𝐾 . (3)

Finally, the intervals between two successivemaintenance activities 𝑗 and 𝑗 ′ of the same type 𝑘 should
be atmost 𝑜𝑘 apart. This ismodeled as follows: if 𝑥𝑖 𝑗𝑘 = 1 (and 𝑒𝑖 𝑗 + 𝑜𝑘 ≤ 𝑇 ) then ∃𝑗 ′ ∈ 𝑉𝑖 𝑗𝑘 : 𝑥𝑖 𝑗 ′𝑘 = 1, where
𝑉𝑖 𝑗𝑘 = {𝑝 ∈ 𝐽𝑖 : 𝑒𝑖 𝑗 < 𝑠𝑖𝑝 ≤ 𝑒𝑖 𝑗 +𝑜𝑘 }. For a correct start, let 𝑏𝑖𝑘 be the time since the lastmaintenance activity
of type 𝑘 for rolling stock unit 𝑖 at the start of the planning horizon, let𝑉𝑖0𝑘 = {𝑝 ∈ 𝐽𝑖 : 𝑠𝑖𝑝 ≤ 𝑜𝑘 + 𝑏𝑖𝑘 } and

1 ≤
∑︁
𝑝 ∈𝑉𝑖0𝑘

𝑥𝑖𝑝𝑘 ∀𝑖 ∈ 𝐼 , 𝑘 ∈ 𝐾 (4)

𝑥𝑖 𝑗𝑘 ≤
∑︁
𝑝 ∈𝑉𝑖 𝑗𝑘

𝑥𝑖𝑝𝑘 ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽𝑖 , 𝑘 ∈ 𝐾 : 𝑒𝑖 𝑗 + 𝑜𝑘 ≤ 𝑇 . (5)

The model aims to find 𝑥𝑖 𝑗𝑘 and 𝑦𝑙 satisfying the constraints (1) to (5) that minimize number of main-
tenance activities during the night:

min
∑︁
𝑖 ∈𝐼

∑︁
𝑗 ∈𝐽𝑖

∑︁
𝑘 ∈𝐾

𝑥𝑖 𝑗𝑘 (1 − 𝑑𝑖 𝑗 ) + 𝜀
∑︁
𝑖 ∈𝐼

∑︁
𝑗 ∈𝐽𝑖

∑︁
𝑘 ∈𝐾

𝑥𝑖 𝑗𝑘 . (6)

The second term penalizes every maintenance activity with an arbitrarily small penalty cost 𝜀 in order to
avoid unnecessary maintenance activities being performed.

4 Activity Planning Problem (APP)
TheMLCP delivers an assignment ofmaintenance activities tomaintenance opportunities. Maintenance
activities are not explicitly scheduled accurate to the minute, but may be performed anytime within the
MO. This alone does not allow to directly determine the required number of maintenance teams to effec-
tuate themaintenance schedule.

Therefore, the Activity Planning Problem (APP) is defined. The input of the APP is a set of jobs that
need to be performed and a maximum number of maintenance teams available. A job represents the ac-
tivities that need to be performed on one rolling stock unit during a specified maintenance opportunity.
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A jobmay contain onemaintenance activity of a specificmaintenance type, but can also containmultiple
maintenance activities of different maintenance types.

An important reason why different maintenance activities on the same rolling stock unit are grouped
into jobs is that, in practice, maintenance activities of different types on the same rolling stock unit of-
ten cannot be performed simultaneously, e.g. external cleaning and wheels inspection. To ensure this,
the slightly stricter assumption is made that maintenance activities on one rolling stock unit need to be
performed subsequently and uninterruptedly. This assumption is deemed acceptable in practice. It also
simplifies the model as it is not necessary to include separate, complicating constraints to prohibit that
maintenance activities of different types on the same rolling stock units are performed simultaneously.

The most important output of the APP is the number of teams necessary to perform the given set of
jobs, which is ameasure of the required capacity of aMLCP solution (or no output if this number exceeds
themaximumnumber ofmaintenance teams available). Thismeasure is essential for the development of
theMSLCP in Section 5. Additionally, theAPP gives the corresponding optimal activity planning, defining
the start and end times of each job, which has useful practical applications as well.

The APP can be applied on each individual maintenance shift to determine the required number of
maintenance teams. A maintenance shift is a period of time for which a planning is made. The current
research assumes each day contains twomaintenance shifts: a daytime shift and a nighttime shift. There-
fore, the output of APP are the shift plan and the required capacity.

TheAPP shows similarities with the class ofParallelMachine Scheduling Problems, as addressed by for
example Kravchenko andWerner [2009].

Section4.1 givesmathematical notationofAPP. Section4.2 explains the interactionbetweenMLCPand
APP including assignment of maintenance activities to shifts, setting release and deadline times and job
durations. Section 4.3 gives themodel formulation.

4.1 APPmathematical notation
Jobs Let𝑄 be a given set of jobs that need to be scheduled, and for each job 𝑞 ∈ 𝑄 let the release time
𝑟𝑞 ∈ R, the deadline time 𝑡𝑞 ∈ R and the duration 𝑣𝑞 ∈ R be given. For each shift at a location, one job for
everymaintenance opportunity that hasmaintenance activities assigned at this location during this shift.
The duration of the job is the sum of the duration of these main activities. The release time and deadline
are based on the start and end time of the respective maintenance opportunity (more details in Section
4.2). When constructing APP instances it is ensured that for each job, the time between the release and
deadline of the job is larger than or equal to the job duration.

Teams Each job needs to be performed by one and only onemaintenance team. The teamworks on this
job uninterruptedly, i.e. the job cannot be split into multiple separate parts (meaning preemption is not
allowed). Let𝑁 be the maximum number of available maintenance teams and define𝑁 = {1, ..., 𝑁 } to be
the set of maintenance teams.

Scheduling Themaintenance jobs are assigned tomaintenance teams, and the start time of eachmain-
tenance job is determined. The end time of the job is then automatically determined by adding the job
duration to the start of the maintenance job. The start time should be such that it is after the release time
of a job, and such that the end time is before the deadline of a job.

The current formulationof theAPPuses so-calledmoments. Amoment represents the opportunity of a
maintenance team to start a job. This is a construct used tomodel theAPP as a linear problem. Each team
has a set of moments available, corresponding to the maximum number of jobs that they can perform.
To any moment, a job can be assigned. If a job is assigned to a moment, the start time of this particular
moment is associated to the start time of the corresponding maintenance job. The introduction of the
conceptofmoments allows tomodel a sequential planning, by requiring that if a job is assigned tomoment
𝑚, moment𝑚 + 1 can start only after the job assigned tomoment𝑚 is finished.
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Let𝑀 be thenumberofmomentsavailableper teamanddefine𝑀 = {1, ...,𝑀 } tobe the setofmoments.
Note that themaximumnumber of moments used by a team occurs when a team is continually occupied
with maintenance activities of the shortest duration for the entire length of the maintenance shift. A suf-
ficiently large𝑀 can thus be obtained by dividing the total time available in a maintenance shift over the
minimum time required for each maintenance job. Moreover, the number of moments necessary never
exceeds the total number of jobs. Based on these two indications, Equation (7) gives an appropriate value
for𝑀 that is used in the current research.

𝑀 = min
(⌈

𝛿𝑁 − 𝛿𝐷
min𝑘 ∈𝐾 𝑣𝑘

⌉
, |𝑄 |

)
(7)

Objective The objective is to minimize the number of available maintenance teams necessary.

4.2 FromMLCP output to APP input
4.2.1 Assignment of maintenance activities tomaintenance shifts

The current research assumes maintenance shifts in two time windows: the daytime maintenance shift
between 7.00 and 19.00 and the nighttimemaintenance shift between 19.00 and 7.00.

Uniquemaintenance shifts are characterised by a combination ofmaintenance location, timewindow
(i.e. daytime or nighttime) and reference day (i.e. the day when themaintenance shift starts). An example
of a uniquemaintenance shift would be the night shift in Amsterdamonday 3, meaning the shift that starts
in Amsterdam at 19.00 on day 3 and ends in Amsterdam at 07.00 on day 4.

The following procedure is used to determine to what maintenance shift anMO belongs.

• Suppose anMO is classified as a daytimeMO. Then, by the definition of daytimeMOs, it is clear that
the entire MO is contained within the daytime time window. The reference day is therefore equal to
the end time of theMO and it belongs to the daytimemaintenance shift of that particular day.

• Suppose anMO is classified as a nighttimeMO.Note that this does not necessarilymean that the end
time is during nighttime (for example, anMO starting during nighttime and ending during daytime
is still classified as a nighttimeMO). For nighttimeMOs, it seems reasonable to assign these MOs to
the last nighttime maintenance shift that it was in. In other words, if the end time is between 0.00
and 19.00, it is classified as an MO during the nighttime shift with a reference day at the previous
day; if, on the other hand, the end time is between 19.00 and 0.00, this last maintenance shift is the
nighttimemaintenance shift with reference day on the current day.

Figure 1: Assignment of MOs to shifts. This figure presents four MOs (A, B, C and D), of which B is classified as daytime
MO and A, C and D are classified as nighttimeMOs in theMLCP.

An example is found in Figure 1. This figure presents fourMOs with their start and end time. Based on
the above described procedure, theseMOs can be assigned tomaintenance shifts: MO 𝐴 is assigned to the
nighttime shift of reference day 𝑛 − 1, MO 𝐵 is assigned to the daytime shift of reference day 𝑛 andMOs𝐶
and𝐷 are assigned to the nighttime shift of reference day 𝑛.
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4.2.2 Release and deadline times

For each of the maintenance jobs considered by the APP, a release time and a deadline time need to be
specified. It must be noted that in most cases, MOs are contained in either the daytime shift or the night-
time shift. In these cases, the release time is equal to the start of the MO and the deadline time is equal to
the end of theMO. However, there are alsoMOs that are not fully contained in the correspondingmainte-
nance shift, such asMOs𝐶 and𝐷 in Figure 1. Still, they are assigned to nighttimemaintenance shift 𝑛 and
therefore need to be performed in this shift.

In order to make sure that maintenance activities are performed as much as possible in the mainte-
nance shift that they were assigned to, the following rules are used to determine the release times.

• If amaintenance activity takes place in a daytimeMO, then its release time is equal to the start of the
correspondingMO.

• If a maintenance activity takes place in a nighttime MO and the start of the MO is after the start
of the maintenance shift, then the release time of the maintenance job is equal to the start of the
correspondingMO.

• If a maintenance activity takes place in a nighttimeMO and the start of theMO is before the start of
the maintenance shift, then the release time of the maintenance job is set to the start of the main-
tenance shift (usually 19.00). There is one exception to this rule: when, by setting the release time
to 19.00, the time available for maintenance (i.e. between the end of the MO and 19.00) is less than
the duration of themaintenance, then the release time is set to end timeminus the total duration of
maintenance in this job.

A similar, symmetric set of rules prevails for the determination of the deadlinemoment.

• If a maintenance activity takes place in a daytime MO, then its deadline time is equal to the end of
theMO.

• If a maintenance activity takes place in a nighttime MO and the end of the MO is before the end of
themaintenance shift, then the release time of themaintenance job is equal to the start of theMO.

• If a maintenance activity takes place in a nighttimeMO and the end of theMO is after the end of the
maintenance shift, then the deadline time of the maintenance job is set to the end of the mainte-
nance shift (usually 07.00). There is one exception to this rule: when, by setting the deadline time
to 07.00, the time available for maintenance (i.e. between the start of the MO and 07.00) is less than
the duration of themaintenance, then the deadline time is set to start time plus the total duration of
maintenance in this job.

4.3 APPmodel formulation
With thenotation anddefinitions above, theAPP cannowbedefined. Let 𝑧𝑛𝑚𝑞 ∈ {0, 1} be abinary variable
that signifies whether moment𝑚 for team 𝑛 is associated to job 𝑞 , where 𝑧𝑛𝑚𝑞 = 1 if and only if team 𝑛 at
moment𝑚 processes job 𝑞 . Let 𝑠𝑛𝑚 ∈ R be the start time of themoment𝑚 for team 𝑛, where 𝑦𝑛 ∈ {0, 1} be
a binary variable that signifies whether team 𝑛 is active or not: let 𝑦𝑛 = 1 if team 𝑛 is used for this schedule.

The APPmodel is then formulated as follows.

min
∑︁
𝑛∈𝑁

𝑦𝑛 (8)
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subject to ∑︁
𝑞 ∈𝑄

𝑧𝑛𝑚𝑞𝑟𝑞 ≤ 𝑠𝑛𝑚 ≤
∑︁
𝑞 ∈𝑄

𝑧𝑛𝑚𝑞 (𝑡𝑞 − 𝑣𝑞 ) ∀𝑛 ∈ 𝑁 ,𝑚 ∈ 𝑀 (9)

𝑠𝑛,𝑚+1 ≥ 𝑠𝑛𝑚 +
∑︁
𝑞 ∈𝑄

𝑧𝑛𝑚𝑞𝑣𝑞 ∀𝑛 ∈ 𝑁 ,𝑚 ∈ {1, ...,𝑀 − 1} (10)∑︁
𝑛∈𝑁

∑︁
𝑚∈𝑀

𝑧𝑛𝑚𝑞 = 1 ∀𝑞 ∈ 𝑄 (11)∑︁
𝑞 ∈𝑄

𝑧𝑛𝑚𝑞 ≤ 1 ∀𝑛 ∈ 𝑁 ,𝑚 ∈ 𝑀 (12)∑︁
𝑚∈𝑀

∑︁
𝑞 ∈𝑄
(𝑦𝑛 − 𝑧𝑛𝑚𝑞 ) ≥ 0 ∀𝑛 ∈ 𝑁 (13)

𝑧𝑛𝑚𝑞 ∈ {0, 1}, 𝑦𝑛𝑚 ∈ {0, 1}, 𝑠𝑛𝑚 ∈ R (14)

The objective (8) minimizes the number of teams necessary. Constraints (9) guarantee that the start
moment is after the release time of the corresponding job and before the latest start moment for the cor-
responding job (i.e. the deadlineminus the duration). Constraints (10) enforce that the start moments for
one team are sufficiently far apart so that maintenance activities do not overlap. Constraints (11) ensure
that every job is assigned to exactly one moment. Constraints (12) make sure that each moment is used
for at most one job. Constraints (13) establish that a team can only be used if it is ’active’. Constraints (14)
ensure that the integer decision variables are also binary.

5 Maintenance Scheduling and Location Choice Problem
The goal of theMSLCP is to find a solution to theMLCP that satisfies predetermined constraints regarding
the available number ofmaintenance teams. To this end, theMSLCP integrates theMLCP andAPP in one
framework using an approach called Logic-Based Benders’ Decomposition (LBBD), which is a generaliza-
tion of the recognizedmethod called Benders’ Decomposition [Hooker, 2011]..

Benders’ decomposition (BD) is amethodproposedbyBenders [1962]andaims toefficiently solve large-
scale linear optimization problems by decomposing the complete problem into a master problem and a
subproblem. First, themaster problem is solved. Basedon the solutionof themaster problem, a subprob-
lem is identified and solved. Based on the solution of the sub problem, constraints (also called cuts) are
added to the master problem, which is then solved again. This process continues in an iterative manner.
Optimality is reached when the objective value of the master problem is equal to the objective value of
the sub problem and the algorithm terminates. In classical BD, cuts are generated via a standard proce-
dure using duality theory. However, in order to do so it requires a specific form for the sub problem (i.e.
the complete problem needs to be formulated as onemixed integer program) and it requires that the sub
problem be linear and continuous. LBBD does not require that the sub problem take a specific form, at
the cost of the fact that it does not have a standard procedure to generate cuts.

Section 5.1 explains the use of LBBD to solve theMSLCP. Section 5.2 gives a formal mathematical for-
mulation of theMSLCP. Section 5.3 elaborates on the most important sub procedure of theMSLCP, the
cut generation procedure, and presents four different variants for it.

5.1 MSLCP solution approach
The current section proposes an algorithm for theMSLCP using LBBD, in which theMLCP is defined as
themaster problem and the APP as the sub problem.
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Figure 2: Graphical representation of theMSLCP, demonstrating how it integrates theMLCP and the APP.

Figure2visualises thecooperationbetween theMLCPand theAPP to includecapacity constraints. The
maintenance schedule of theMLCP is used to determine the required capacity in the APPmodel. If the
required capacity exceeds the available capacity, the information from the APP is used to add constraints
to theMLCP and theMLCP is run again.

TheMSLCPmodel repeatedly executes the following steps. First, an empty set of cuts is initialized. Sec-
ond, theMLCP subject to the current set of all generated cuts is solved. Third, by solving APP, a candidate
solution for a maintenance schedule, i.e. an assignment of maintenance activities to MOs, is generated.
The algorithm terminates when the APP results in a feasible solution for all time shifts. In that case all
constraints in theMLCP and all additional constraints handled by the APP are satisfied and an optimal
solution has been determined. Also, it terminates when the current running time exceeds the predeter-
minedmaximum running time. Otherwise, it returns to solvingMLCP again with newly generated cuts.

5.2 MSLCP algorithm

Maintenance shifts andmaintenance tams Let 𝑆 be the set of uniquemaintenance shifts. Let𝑁 be the
number of teams available at any location.

Master and sub problem solutions TheMSLCP iteratively solves the master and sub problem. Let 𝜌𝜅
be the solution of theMLCP after the 𝜅th iteration of theMSLCP (i.e. this corresponds to a maintenance
schedule, which is an assignment of maintenance activities to MOs). Let𝑄𝜌𝜅 (𝑠 ) be the set of jobs for shift
𝑠 ∈ 𝑆 , given the solution of theMLCP 𝜌𝜅 . Let APP(𝑄,𝑁 ) be the objective value obtained after running the
APP for set of jobs𝑄 . Use the notation APP(𝑄 ) = ∞ if the APP for the set of jobs𝑄 results in an infeasible
solution,meaning the required capacity exceeds𝑁 maintenance teams. To describe the capacity required
for a shift 𝑠 ∈ 𝑆 , given a solution 𝜌𝜅 of themaster problem, the notation APP

(
𝑄𝜌𝜅 (𝑠 )

)
is used.

Cuts IfAPP(𝑄 ) = ∞ for a given set𝑄 , it can be concluded that the combination of jobs in the set𝑄 results
in a violation of themaintenance location capacity. In this case, based on the set𝑄 , cuts can be generated
according to one of the procedures that are described in Section 5.3. A cut indicates a combination of jobs
that results in an infeasible solution of the APP. Let 𝐶 (𝑄 ) be the set of cuts based on set 𝑄 . For any cut
𝐴 ∈ 𝐶 (𝑄 ) it holds that 𝐴 ⊆ 𝑄 and APP(𝐴) = ∞.

Each cut can be translated into a constraint of theMLCP in the following way. Consider a cut 𝐴. Since
𝐴 ⊆ 𝑄 , every element in 𝐴 signifies a maintenance job which is notated as a tuple (𝑖 , 𝑗 , 𝐾 ) where 𝑖 is the
rolling stockunit, 𝑗 is the correspondingMOand𝐾 is the set of assignedmaintenance activities. To include
a cut 𝐴 in theMLCP, the constraint in Equation (15) needs to be added to prevent the combination of jobs
in the cut to show up in a next iteration of theMSLCP.∑︁

(𝑖 ,𝑗 ,𝐾 ) ∈𝐴

∑︁
𝑘 ∈𝐾
(1 − 𝑥𝑖 𝑗𝑘 ) ≥ 1 (15)

Multiple cuts, for example the set of cuts 𝐶 (𝑄 ), can be added by adding the constraint from Equa-
tion (15) to theMLCP for every cut 𝐴 ∈ 𝐶 (𝑄 ).
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Iterative procedure Let𝜅 be an index that tracks the current iteration. Let𝐶 ∗𝜅 be the set of cuts generated
up to and including the 𝜅th iteration. Let 𝐶 ∗0 = ∅. Let �0 be the start time of the algorithm. Let � be a
parameter restricting the total computation time until the process terminates (if no optimal solution is
found earlier).

Pseudo-code for the iterative procedure of the CMSCLP is given in Algorithm 1.

Algorithm 1MSLCP iterative approach
1: functionMSLCP(�)
2: 𝐶 ∗0 ← ∅
3: �0 ← current time
4: 𝜅 ← 1
5: while current time − �0 < � do
6: computeMLCP solution 𝜌𝜅 , subject to cuts in𝐶 ∗

𝜅−1
7: 𝐶 ∗𝜅 ← 𝐶 ∗

𝜅−1
8: for 𝑠 ∈ 𝑆 do
9: if APP(𝑄𝜌𝜅 (𝑠 )) = ∞ then
10: 𝐶 ∗𝜅 ← 𝐶 ∗𝜅 ∪𝐶 ( 𝐽𝜌𝜅 (𝑠 ))
11: end if
12: end for
13: if |𝐶 ∗

𝜅−1 | = |𝐶
∗
𝜅 | then

14: return 𝜌𝜅 as the optimalMLCP solution
15: end if
16: 𝜅 ← 𝜅 + 1
17: end while
18: return 𝜌𝜅 as the best found sub-optimalMLCP solution
19: end function

The algorithm starts by initializing 𝐶 ∗0 , �0 and 𝜅 , after which the iterative loop starts. This loop first
computes a solution to theMLCP subject to all cuts generated so far. Then, for each shift 𝑠 ∈ 𝑆 in which
the required capacity exceeds the available capacity, cuts are generated. The process terminates if either
an optimal MLCP solution is found, satisfying all constraints, or if the user-defined maximum running
time is exceeded.

5.3 Cut generation
If a solution to the MLCP is found that violates the maintenance location capacity constraints, cuts are
added to theMSCLP in order to constrain the solution space and prevent such a solution from showing
up again. A cut is a set of jobs that cannot occur together since it would result in a violation of available
capacity. Cuts result in a restriction of the solution space of themaster problem. For a quick convergence
of the algorithm, it is desirable to add cuts that are as restrictive as possible. In general, cuts with a smaller
amounts of jobs are more restrictive than cuts with larger amounts of jobs. As an example, suppose that
the set of maintenance jobs {𝐴, 𝐵,𝐶 } results in an infeasible solution but that the set of maintenance jobs
{𝐴, 𝐵} results in an infeasible solution as well. Both sets of jobs would constitute a valid cut, but the latter
set of jobs is smaller, hencemore restrictive and as a result more efficient to add.

The remainder of this section proposes four different cut generation procedures: a naive one, then two
heuristic ones (a basic and a binary search one), and lastly, a min-cut, which is a more complex one that
uses the structure of the problem.

5.3.1 Naive cut generation

Let𝑄 be a set of jobs for that results in a capacity violation, i.e. APP(𝑄 ) = ∞. Let 𝐶 (𝑄 ) be the set of cuts
generated for this set of jobs.
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Since𝑄 results in an infeasible solution to the APP, this set itself can be added as a cut. Hence,𝐶 (𝑄 ) =
{𝑄 }.

5.3.2 Basic Heuristic cut generation

To generate smaller cuts compared to the naive procedure, the Basic Heuristic cut generation procedure
is proposed. This procedure starts with an empty set �̃� and thenmoves random jobs iteratively from𝑄 to
�̃� . It checkswhether the current set of jobs �̃� results in a feasible solution of theAPP. If it does, the current
set �̃� is not yet an appropriate cut since the combination of jobs currently in �̃� is not infeasible: hence,
another job is added in a new iteration. If, on the other hand, it does not, then the current set of jobs is
added as a cut to theMLCP. Pseudo-code for this procedure is presented in Algorithm 2.

Algorithm 2 Basic Heuristic cut generation
1: functionHEURISTIC CUT GENERATION(𝑄 )
2: �̃� ← ∅
3: while APP(�̃� ) < ∞ do
4: pick random 𝑞 ∈ 𝑄
5: 𝑄 ← 𝑄 \ 𝑞
6: �̃� ← �̃� ∪ 𝑞
7: end while
8: end function

The proposed procedure is guaranteed to terminate since at some point, all jobs from𝑄 are moved to
�̃� , meaning that the contents of �̃� are equal to the initial contents of 𝑄 . For this set, it is already known
that APP(𝑄 ) = ∞ since this was required at the start.

The heuristic cut generationprocedure canbe runmultiple times to generatemultiple cuts. In general,
these cuts are not identical due to the fact that the choice on which job 𝑞 ∈ 𝑄 to move from 𝑄 to �̃� is
random.

5.3.3 Binary Search Heuristic cut generation

The Binary SearchHeuristic cut generation procedure uses the same idea as the BasicHeuristic cut gener-
ation procedure, but improves upon the efficiency of the former by applying a procedure that is inspired
by the principle of binary search (see for example Cormen et al. [2009, p.799]).

Let𝐴 bean initially empty set such that at anymoment in theprocedure, the jobs in𝐴 result in a feasible
solution, i.e. APP(𝐴) < ∞. Let𝐵 be a set of candidate jobs that, when added to the jobs in𝐴, at anymoment
in the procedure results in an infeasible solution: APP(𝐴 ∪ 𝐵) = ∞. The algorithm repeatedly splits 𝐵 into
two halves, a left half 𝐵𝐿 and a right half 𝐵𝑅 , and it computes APP(𝐴 ∪ 𝐵𝐿 ). If this results in an infeasible
solution, i.e. APP(𝐴 ∪ 𝐵𝐿 ) = ∞, then the set 𝐵𝑅 is discarded. In the subsequent iteration of the algorithm
the set B of candidate jobs is reduced to 𝐵𝐿 . If this results in a feasible solution, i.e. APP(𝐴 ∪𝐵𝐿 ) < ∞, some
jobs from 𝐵𝑅 still need to be added to achieve a ’just infeasible’ solution. In this case, the jobs in 𝐵𝐿 are
all included in the set 𝐴, and the remaining candidate jobs 𝐵 to decide on are the jobs 𝐵𝑅 . The algorithm
terminates when |𝐵 | = 1. Pseudo-code for the described procedure is given in Algorithm 3.

The following loop invariants hold (i.e. those expressions are true at the start andendof each iteration):

• APP(𝐴) < ∞, meaning that the set of jobs in 𝐴 is feasible

• APP(𝐴 ∪ 𝐵) = ∞, meaning that when the set of jobs in 𝐵 is added to the set of 𝐴, the resulting set of
jobs is infeasible.
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Algorithm 3 Binary Search Heuristic cut generation
1: functionHEURISTIC CUT GENERATION(𝑄 )
2: 𝐴 ← ∅
3: 𝐵 ← 𝑄

4: while |𝐵 | > 1 do
5: 𝐵𝐿 ← ∅
6: ℎ ←

⌈
1
2 |𝐵 |

⌉
7: for 𝑖 ← 1 to ℎ do
8: pick random 𝑗 ∈ 𝐵
9: 𝐵𝐿 ← 𝐵𝐿 ∪ {𝑗 }
10: 𝐵 ← 𝐵 \ {𝑗 }
11: end for
12: 𝐵𝑅 ← 𝐵

13: if APP(𝐴 ∪ 𝐵𝐿 ) = ∞ then
14: 𝐵 ← 𝐵𝐿
15: else
16: 𝐴 ← 𝐴 ∪ 𝐵𝐿
17: 𝐵 ← 𝐵𝑅
18: end if
19: end while
20: return 𝐴 ∪ 𝐵
21: end function

5.3.4 Min-cut cut generation

In order to find more efficient cuts, the current section designs a procedure that aims to find cuts with
a small amount of jobs, by making use of the specific structure of the problem. To this end, the Relaxed
Activity Planning Problem (RAPP) is defined, which is a relaxation of the APP. In this research, the RAPP
is developed for onemaintenance teamonly, although it is expected that the approach can be generalized
tomultiple teams.

The benefit of the definition of the RAPP lies in the fact that any infeasible solution to the RAPP is
also an infeasible solution to the APP. Recall that cuts need to be generated if the APP is infeasible (see
Algorithm 1). To generate cuts according to the min-cut cut generation procedure, the RAPP is solved. If
theRAPP turns out to be infeasible, themin-cut cut generation procedure described in this section can be
used. If the RAPP turns out to be feasible, the min-cut cut generation procedure cannot be used and one
needs to resort to other cut generation procedures.

The RAPP is a relaxation of the APP in two ways. First, the RAPP discretizes the planning horizon to
a set of instants, which are integer minutes, meaning that jobs can only start and end on integer minutes
and job durations should be specified as integers. In the practical context of the railway industry, this is
not expected tobeproblematic since rolling stockunits are usually plannedperminute. Second, theRAPP
allows for preemption of jobs. This means that, unlike in the APP, the work on a job does not need to be
performed uninterruptedly.

RAPPdefinition TheRAPPattempts toassign jobs toasmanydistinct instants as itsduration. Thisprob-
lem can be viewed as a variant of the bipartitematching problem [Cormen et al., 2009, p. 732], where jobs
need to be matched to instants, with this difference that jobs in the current problem usually need to be
matched to multiple instants instead of only one. The bipartite matching problem is often modeled as a
maximumflowproblem [Ford and Fulkerson, 1956], for which efficient solution algorithms exist [Cormen
et al., 2009, p. 732-735]. Following this approach, the current research defines the RAPP as a maximum
flow problem.

Let𝑄 be the set of jobs, and let 𝑟𝑞 , 𝑡𝑞 , 𝑣𝑞 be the release time, deadline time and duration for job 𝑞 ∈ 𝑄 ,
respectively, defined in minutes. It is assumed that the duration 𝑣𝑞 is integer. Let 𝑃𝑞 be the set of instants
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at which job 𝑞 is available. This comprises all minutes between 𝑟𝑞 and 𝑡𝑞 and can be expressed as follows:
𝑃𝑞 =

{
𝑥 ∈ N :

⌊
𝑟𝑞
⌋
≤ 𝑥 ≤

⌈
𝑡𝑞
⌉}
. Let 𝑃 be the set of all time instants at which at least one job is available,

𝑃 = ∪𝑗 ∈𝐽𝑃𝑗 .
Observe that the RAPP uses discrete time moments (in full minutes) instead of real-valued time mo-

ments. Since, in the railway industry, the release and deadline times are usually given in minutes, this is
not restrictive.

Step 1: find the maximum flow Define a source 𝑠 and a sink 𝑡 and let 𝐸𝐺 be a set of directed edges with
capacity 𝑐𝑒 for edge 𝑒 ∈ 𝐸𝐺 . Let𝐺 = (𝑁𝐺 , 𝐸𝐺 ) be a directed flow graph, where its set of nodes𝑁𝐺 is defined
by𝑁𝐺 = {𝑠 ∪𝑄 ∪ 𝑃 ∪ 𝑡 } and its set of directed edges 𝐸𝐺 is constructed as follows:

• A directed edge 𝑒 ∈ 𝐸𝐺 from node 𝑠 to node 𝑗 for all 𝑞 ∈ 𝑄 with capacity 𝑐𝑒 = 𝑣𝑞

• A directed edge 𝑒 ∈ 𝐸𝐺 from node 𝑞 to 𝑝 for all 𝑞 ∈ 𝑄 and 𝑝 ∈ 𝑃𝑞 , with unit capacity 𝑐𝑒 = 1. This
implies that, for each job, there is a directed edge to each instant at which it is available.

• A directed edge 𝑒 ∈ 𝐸𝐺 from 𝑝 to 𝑡 for all 𝑝 ∈ 𝑃 , with unit capacity 𝑐𝑒 = 1.

To illustrate theRAPP cut generation, an example instance is presented where onemaintenance team
has to perform four jobs: 𝑄 = {𝑞1, 𝑞2, 𝑞3, 𝑞4}. Jobs 𝑞1 and 𝑞2 can both be performed at instants 𝑝1 and 𝑝2
(i.e. 𝑃1 = 𝑃2 = {𝑞1, 𝑞2} and jobs 𝑞3 and 𝑞4 can be performed at instants 𝑝3 and 𝑝4 (i.e. 𝑃3 = 𝑃4 = {𝑞3, 𝑞4}).
As a result, the set of all instants 𝑃 = {𝑝1, 𝑝2, 𝑝3, 𝑝4}. All jobs have a duration of 2 instants. Figure 3 pictures
the associated flow graph.

Figure 3: Flow graph𝐺 corresponding to the RAPPmodel. Edges 𝑒 are annotated (𝑐𝑒 , 𝑓𝑒 ): the first index represents the
edge capacity and the second index represents the assigned edge flow. Red-colored edges (color: see online) represent
edges through which a strictly positive flow is assigned.

Once the flow graph has been determined, determine the maximum flow through the flow graph 𝐺
from the source 𝑠 to the sink 𝑡 and denote the resulting flow through each edge 𝑒 ∈ 𝐸𝐺 by 𝑓𝑒 . The RAPP is
considered to be feasible if and only if the value of the maximum flow equals the sum of all durations, or,
equivalently, equals the sum of all capacities on edges departing from 𝑠 , i.e. if and only if∑︁

𝑒 ∈𝐸𝐺
𝑓𝑒 =

∑︁
𝑞 ∈𝑄

𝑣𝑞 =
∑︁

𝑒 ∈{(𝑠 ,𝑣 ) ∈𝐸𝐺 :𝑣 ∈𝑄 }
𝑐𝑒 . (16)

The satisfaction of the aforementioned condition(s) represents the fact that all jobs have been completely
scheduled.
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Figure 3 pictures the assigned flow on each of the edges in 𝐺 . The maximum flow is 4, whereas the
sumof all job durations is 8, meaning that by Equation (16) theRAPP is not feasible. The remainder of the
current section discusses how this infeasible solution can be used to generate cuts.

Step 2: determine the residual graph To find jobs that cannot occur together, the concept ofminimum
cuts from graph theory is used. The capacity of the minimum cut is equal to the value of the maximum
flow, and the cut itself provides information about the edges that form a bottleneck in the current graph
[Taha, 2011, p. 269].

To determine the minimum cut, the concept of residual graph is used [Cormen et al., 2009, p. 716]. It
offers information on how the flow between edges can be changed and represents the amount of possible
additionalflow througheachedge. Itmayalsocontain so-called reverse edges, that represent thepossibility
of canceling already assigned flow.

To formally define the concept of the residual graph, let 𝑅 be a directed graph with the same nodes as
𝐺 and let its set of edges be denoted by 𝐸𝑅 , that is, 𝑅 = (𝑁𝐺 , 𝐸𝑅 ). Then, the set of edges 𝐸𝑅 is constructed as
follows. For every edge 𝑒 ≡ (𝑢,𝑣 ) ∈ 𝐸𝐺 :

• there is an edge 𝑒 ′ ≡ (𝑢,𝑣 ) ∈ 𝐸𝑅 with capacity 𝑐𝑒 ′ = 𝑐𝑒 − 𝑓𝑒 if and only if 𝑐𝑒 − 𝑓𝑒 > 0; and

• there is an edge 𝑒 ′′ ≡ (𝑣,𝑢) ∈ 𝐸𝑅 with capacity 𝑐𝑒 ′′ = 𝑓𝑒 if and only if 𝑓𝑒 > 0.

Thenodes that are reachable from 𝑠 comprise theminimumcut, and the edges connectingoneof these
nodes to one of the unreachable ones constitute together the bottleneck.

Figure 4: Residual graph 𝑅 corresponding to the infeasible solution from Figure 3. Each directed edge represents the
residual capacity between two nodes, if positive.

Figure 4 displays the residual graph 𝑅 corresponding to the earlier example in Figure 3. Take, for in-
stance the positive residual capacity of 2 from 𝑠 to 𝑞1: this signifies that an additional flow can be assigned
from 𝑠 to 𝑞1 (corresponding to the situation in which 𝑞1 is scheduled). However, in this case, the flowmust
continue to𝑝1 and𝑝2 (meaning that 𝑞1 is scheduled during𝑝1 and𝑝2). This can only be achieved if already
assigned flow to 𝑝1 and 𝑝2 flows back to 𝑞2 (signifying that 𝑞2, which was formerly scheduled at 𝑝1 and 𝑝2,
is not scheduled anymore) and from there flow further back to the source 𝑠 . The fact that there apparently
exists a path from 𝑠 via 𝑞1, 𝑝1 and 𝑞2 back to 𝑠 is an important observation: it signifies that 𝑞1 and 𝑞2 are
conflicting. This, in turn,means that 𝑞1 and 𝑞2 cannot be scheduled together and can be added as a cut. In
fact, all jobs on every path starting from 𝑠 and returning to 𝑠 constitute an infeasible combination of jobs.
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Figure 5: Reachable Components graph𝐻 , separating the various reachable components that are reachable from 𝑠 .

Step3: define theReachableComponents graph To formalize the ideaof conflicting jobs, theReachable
Components graph𝐻 is introduced. Its aim is to separate components that define different combinations
of jobs, each of which cannot occur together (i.e. result in an infeasible solution of the RAPP). Let𝐻 be a
directed graph and let it have the same nodes as𝐺 and with the set of edges 𝐸𝐻 , i.e. 𝐻 = (𝑁𝐺 , 𝐸𝐻 ). Let 𝐸𝐻
contain all edges in𝑅 that are not connected to the source 𝑠 or sink 𝑡 , that is,𝐸𝐻 = {(𝑢,𝑣 ) ∈ 𝑅 : 𝑢 ∉ {𝑠 , 𝑡 }, 𝑣 ∉

{𝑠 , 𝑡 }}. Let𝐷 (𝐹 , 𝑛) be the set of all nodes reachable in some graph 𝐹 starting from somenode𝑛 (also called
the descendants of 𝑛 in 𝐹 ). This set of reachable nodes can be obtained efficiently by the application of a
depth-first search [Cormen et al., 2009, p. 603-606].

From this, a set of cuts can be determined. Note that all separate sets of reachable nodes can be ob-
tained by starting at some job 𝑗 ∈ 𝐽 that is reachable from 𝑠 in 𝑅 and obtaining all jobs among its descen-
dants. In other words, for all 𝑞 ∈ 𝑄 : (𝑠 , 𝑞) ∈ 𝑅 the set 𝐶𝑞 = {𝑞 ∪ (𝐷 (𝐻 ,𝑞) ∩ 𝑄 )} comprises a set of jobs
that cannot occur together. These jobs result in an infeasible RAPP solution and, as a consequence, in an
infeasible APP solution; hence, they can be added as a cut for theMLCP.

To demonstrate the process of the determination of these cuts, return once again to the previous ex-
ample. Figure 5 presents the graph 𝐻 with two different components. In 𝑅 , the nodes 𝑞1, 𝑞3 and 𝑞4 are
reachable from 𝑠 . Hence, the cuts generated in this way are {𝑞1, 𝑞2}, {𝑞3, 𝑞4} and {𝑞4, 𝑞3}. This shows that
𝑞1 and 𝑞2 cannot occur together, and similarly that 𝑞3 and 𝑞4 cannot occur together.

Step 4: cut set post-processing All cuts according to the above described procedure can be added to
theMLCP, but some of thesemay be superfluous. First, the same cuts may be generatedmore than once.
Second, some cutsmay be generatedwhile amore specific cut is also generated: for example, consider the
generation of two cuts, the first with jobs 𝑋 ,𝑌 and 𝑍 and the second with jobs 𝑋 and𝑌 . The latter makes
the former redundant.

To remove redundant cuts, a straightforward procedure is applied that iteratively adds cuts only if it
is not a superset of a more efficient cut that was already added. To this end, let 𝐶 be the set of all cuts
generated by the RAPP and let (̃𝐶 ) be the set of cuts with all redundant cuts from𝐶 removed. Algorithm 4
gives pseudo-code for this procedure.
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Algorithm 4 Remove redundant cuts after min-cut cut genreation
1: function REMOVE REDUNDANT CUTS(𝐶 )
2: sort𝐶 by the cardinality of all its elements 𝑐 ∈ 𝐶
3: 𝐶 ← ∅
4: for 𝑐 ∈ 𝐶 do
5: add← true
6: for 𝑐 ∈ 𝐶 do
7: if 𝑐 ⊇ 𝑐 then
8: add← false
9: end if
10: end for
11: if add = true then
12: 𝐶 ← 𝐶 ∪ {𝑐 }
13: end if
14: end for
15: return𝐶
16: end function

6 Experimental results
The current section investigates the performance of the MSLCP model. It considers a smaller-scale in-
stance to investigate howwell themodel is able to find an optimal solution, and it considers a larger-scale
(and hence more realistic) instance to investigate how quickly the model is able to converge to a solution
that, although it may be sub-optimal, is useful in practice.

6.1 Scenario set-up
TheMSLCP framework is demonstrated on realistic scenarios from the Dutch railways. The problem in-
stance considered in the current section uses a rolling stock circulation originating from the main Dutch
railway operator, Netherlands Railways (NS). Specifically, it uses so-called BasisDag update (BDu) data for
the period between 10-4-2018 until 16-4-2018. In particluar, 4 rolling stock types are considered: ICM4,
DDZ4, DDZ6 and DD-AR3. These rolling stock types are chosen in such a way that they result in some
maintenance location capacity issues, especially at maintenance location Zwolle (Zl). This comprises a
total of 137 rolling stock units.

The planning horizon is set to 7 days, equal to the total number of days in the input data. The set of
nighttime maintenance locations 𝐿𝑁 and the set of potential daytime maintenance locations 𝐿𝐷 are as-
sumed to be equal to the set of all locations in the BDu. It is assumed that 5 locations can be opened for
daytimemaintenance atmaximum, i.e. 𝐿𝐷𝑚𝑎𝑥 = 5. Twomaintenance types are included,maintenance type
A having a duration of 30minutes and an interval of 24 hours, maintenance type B having a duration of 60
minutes and an interval of 48 hours. Rolling stock units are assumed to be as-good-as-new at the start of
the planning horizon, i.e. 𝑏𝑖𝑘 = 0 for all 𝑖 ∈ 𝐼 , 𝑘 ∈ 𝐾 . The technical parameter 𝜀 has a value of 𝜀 = 0.001. It
is assumed that at eachmaintenance shift (at each location, on each day), onemaintenance team is avail-
able, i.e. 𝑁 = 1. Note that this assumption is actually necessary for themin-cut cut generation procedure,
which is only defined for one maintenance team. Unless stated otherwise, the running time is restricted
to � = 2 hours.

Two scenarios are constructed. In both scenarios, the capacity of daytime maintenance shifts is con-
sideredonly,while the capacity ofnighttimemaintenance shifts is ignored. This choice is reasonable in the
light of the gradual introduction of a policy of daytime maintenance in practice, where capacity for day-
timemaintenance at first is limited. The set of shifts 𝑆 is dependent on the scenario used and is discussed
below.
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First, the single-shift scenario aims to investigate how quickly theMSLCP converges to optimality, that
is a solution without capacity constraint violations, for the proposed four types of cut generation proce-
dures. Reaching the optimal solution may take long, and since the time to find such an optimal solution
relates to the number of maintenance shifts for which capacity constraints are imposed, this scenario fo-
cuses at one maintenance shift: the daytimemaintenance shift at maintenance location Zl on 11-4-2018.
The set of shifts 𝑆 contains only thismaintenance shift. This particular shift was selected after exploratory
experiments showed that determination of the required capacity using the APP took most time for this
shift, and that it contains relativelymanymaintenance activities that are also overlapping. As a result, this
maintenance shift shows to be ’hard’ to solve. Using a hard-to-solve maintenance shift in the single-shift
scenario enables to investigate the performance of various cut generationprocedures in solving a capacity
violationof a specific shift, as opposed tousingamaintenance shift thatwouldbemore easy to solvewhich
would make it harder to demonstrate differences between cut generation procedures. In the single-shift
scenario, 10 different cut generation variants are investigated: cut generation by the naive cut generation
procedure (one variant), by the Basic Heuristic cut generation procedure, for 1, 2, 5 and 15 cuts (four vari-
ants), by the Binary Search Heuristic cut generation procedure, for 1, 2, 5 and 15 cuts (four variants) and
by themin-cut cut generation procedure (one variant). Themost important performance indicator is the
convergence of the current objective value of theMLCP as a function of either computation time or the
number of iterations.

Second, the all-shifts scenario accounts for the fact that, in practice, reaching an optimal solutionmay
take too much computation time. In particular, a sub-optimal solution with limited capacity violations
obtained quickly may, in practice, be preferred over an optimal solution without any violations taking ex-
cessive computation time. Therefore, it is worthwhile to know how quickly the number of capacity vio-
lations can be reduced. To investigate the performance of the proposed algorithms in this practical case,
the second scenario presents a more realistic setup and includes all daytime maintenance shifts. The set
of shifts 𝑆 contains maintenance shifts for all possible combinations of maintenance location and date in
the planning horizon. In the all-shifts scenario, three cut generation variants are considered: the naive cut
generation procedure, the Binary Search Heuristic cut generation procedure for 15 cuts, and the min-cut
cut generation procedure. Compared to the one-shift scenario, the seven other heuristic cut generation
methods, i.e. Basic Search Heurstic procedure with 1, 2, 5 and 15 cuts and the Binary Search Heuristic
procedure with 1, 2 and 5 cuts, are left out. The Binary Search Heuristic cut generation procedure with 15
cuts outperformed the other seven procedures, therefore only this one is considered. Themost important
performance indicator is the number of shifts forwhich the required capacity exceeds the available capac-
ity, i.e. the number of capacity violations, as a function of either time or the number of iterations. It has
been verified that a solution to theMLCP can be obtained in which all maintenance is performed during
nighttime is feasible. Hence, if one would allow for enough computation time, the number of capacity
violations would converge to zero with certainty.

The MSLCP, MLCP, APP and RAPP are implemented implemented using Python and solved using
Gurobi. For the implementation of the RAPP, the package NetworkX [Hagberg et al., 2008] is used. The
correspondingmaximumflow problem is solved using the preflow-push algorithm (see e.g. Cormen et al.
[2009, p. 765]), that is included in the implementationofNetworkX.An implementationcodeof theMSLCP
model is provided by Zomer et al. [2020a]. For reasons of confidentiality, the actual data could not be pro-
vided, but synthetic data is made available instead.

6.2 Results
This section provides the results generated for theMSLCP. Section 6.2.1 provides an illustrative example
for a particular maintenance shift, demonstrating how the MSLCP (described in Algorithm 1) is able to
find a schedule that satisfies capacity constraints. Then, Section 6.2.2 and Section 6.2.3 give results for the
two scenarios proposed in Secton 6.1.
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Figure 6: The maintenance schedule for the daytime maintenace shift in Zl on 13-4-2018 in the initial situation (left)
and after one iteration of theMSLCP (right). TheMSLCP finds a solution that requires only onemaintenance teamafter
one iteration. The x-axis shows the time period 8:00-17:00, and y-axis the jobs for this period. Grey boxes represent the
intervals of themaintenance opportunity duringwhich amaintenance job should take place. Blue represents the actual
scheduled time if the job is performed by team 1 and orange if it is performed by team 2.

6.2.1 Illustrative schedule

To demonstrate theworkings of theMSLCP, the schedule for the daytimemaintenance shift on 13-4-2018
at maintenance location Zl is examined. This shift is useful for demonstration purposes since it consists
of an interesting variety of maintenance jobs.

Figure 6 demonstrates schedules for this particular maintenance shift, computed by the APPmodel.
The maintenance jobs assigned to this shift are determined by the initialMSLCP solution (Figure 6, left)
and after one iteration (Figure 6, left).

The length of a maintenance job varies: it may represent a type A maintenance activity (30 minutes),
a type B maintenance activity (60 minutes) or a combination of both (90 minutes). The interval of the
maintenance opportunity (MO) during which a maintenance job should take place is depicted in grey,
and the actual scheduled time is shown in blue if it is performed by team 1 and in orange if it is performed
by team 2.

In the initial schedule of themaintenance shift (Figure 6, left), observe that the combination ofmainte-
nance jobs that need to be performed cannot be fulfilled by only one team and requires two teams instead
(see the orange job between 9:45 and 10:45). Since the required capacity exceeds the available capacity
of maintenance teams, theMSLCP procedure generates cuts and finds a newMLCP solution. In the new
MLCP solution (Figure 6, right), the assignment of maintenance activities to MOs has changed in such a
way that maintenance job 4 is not part of this maintenance shift anymore. As a result, a schedule can be
created that requires only one maintenance team and theMSLCP procedure has solved a capacity viola-
tion.

6.2.2 Single-shift scenario

Figure 7 provides a graphical representation of the development of the LBBD framework forMSLCP, i.e.
the objective function of the latestMLCP solution over time and over multiple iterations. It shows that all
heuristic cut generation variants achieved an objective of approximately 887. To be precise, the heuristic
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Figure 7: Convergence of theMSLCP in the single-shift scenario. For each cut generation variant, the course of the value
of theMLCP is displayed as a function of elapsed time (left) and as a function of the current iteration (right).

cut generation variants’ final objective values are between887.277 and887.2811, thereby coming closest to
the (unknown) optimal value and providing a lower bound (887.281) for it. Of these heuristic cut genera-
tion variants, the variants with higher number of cuts reach this objective value faster (i.e. in less time and
in less iterations) than the variants with lower number of cuts. The cut generation variant Binary Search
Heuristic with 15 cuts performed the best, i.e. it reached the value of 887 within the least amount of time
(22 minutes) and in the least amount of iterations (50 iterations). All heuristic cut generation procedures
reached the objective value of 887 within two hours, unlike the min-cut cut generation procedure (which
reached the objective value of 884 within 25 minutes in 192 iterations), and the naive cut generation pro-
cedure (which reached the objective value of 884 within 39minutes in 316 iterations).

Whencomparing theBinarySearchHeuristicwith theBasicHeuristic, it is found that their convergence
is similar in terms of iterations, but that the convergence of the Binary Search Heuristic is a bit quicker
time-wise. This is an indication that the improvement per iteration is comparable for both, but that the
time consumed per iteration is less for the Binary Search Heuristic.

As indicated, the single-shift scenario focuses at one particularmaintenance shift and attempts to find
a solution in which the capacity constraint for this shift is met. For this goal, the heuristic cut generation
variants outperform both the naive and themin-cut cut generation variants, in time as well as in number
of iterations. For the latter two, however,muchmore iterationswere performed. This is an indication that,
despite the fact that the computation time per iteration is lower, the cuts produced in each iteration by
the min-cut and naive cut generation procedures contribute to a lesser extent to the convergence of the
MSLCP than in the heuristic cut generation procedures.

In an attempt to find an optimal value to benchmark the cut generation variants, the best-performing
cut generation variant (heuristic binary searchwith 15 cuts)was run for 14hours. Still, no optimal solution
to theMSLCPwas found, although this run did provide a new lower bound to the optimal objective value
of 888.279.

Table 2 displays the computation time per iteration in various sub processes.
1Recall that theobjective value ismainly composedof the total number of daytimeactivities. The reason that the value is nonethe-

less not integer is due to the fact that, besides a unit value for each daytime activity, also a value 𝜖 is added for every performed
maintenance activity (see Section 3).
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sub processes
MLCP APP cut gen. other total

naive 9.3 0.3 0.0 0.1 9.8
Basic Heuristic (1 cut) 16.6 0.5 1.0 0.2 18.2
Basic Heuristic (2 cuts) 20.2 0.5 2.0 0.2 22.9
Basic Heuristic (5 cuts) 22.0 0.5 5.5 0.2 28.3
Basic Heuristic (15 cuts) 26.2 0.5 17.4 0.2 44.3
Binary Search Heuristic (1 cut) 16.3 0.5 0.9 0.2 17.8
Binary Search Heuristic (2 cuts) 19.4 0.5 1.9 0.2 21.9
Binary Search Heuristic (5 cuts) 23.1 0.6 5.0 0.2 28.8
Binary Search Heuristic (15 cuts) 25.0 0.5 14.9 0.1 40.5
Binary Search Heuristic (15 cuts) extended* 87.8 0.7 17.1 0.2 105.7
min-cut 9.5 0.4 0.5 0.2 10.5

Table 2: Computation time per iteration for each cut generation variant, in seconds, decomposed into the main con-
tributing processes to the computation time: the computation of an MLCP solution subject to all cuts generated, the
determination of a capacity violation using the APP, and the cut generation process itself, and other processes. The last
relates to all remaining computations, such as results storage. *The result for the extended computation time of 14hours.

It can be observed that the naive and min-cut cut generation variants require the least time per itera-
tion. This is in correspondence with the fact that in these variants many iterations could be run within 2
hours (see Figure 7).

Moreover, Table 2 shows that the generation of cuts in the Basic Heuristic version requires somewhat
more time than the Binary SearchHeuristic. This concurswith the expectation that can be drawn from the
design of both heuristics: the Binary Search Heuristic improves upon the Basic Heuristic in the sense that
it requires less iterations to generate a cut. Also, the iterations of the heuristic cut generation variants take
more time for higher numbers of cuts, which is a direct result of the time it takes to generate more cuts.

The average running time of the APP, necessary to determine whether capacity of amaintenance shift
is violated, is well below one second consistently over all cut generation variants.

The most time is consumed by solving theMLCP. Interestingly, theMLCP takes more time to run in
the heuristic cut generation variants than it does in the naive and min-cut cut generation variants. To
understand this, it is relevant to lookat thecomputation timeof theMLCP for theextended runof 14hours.
Figure 8 presents it as a function of the current iteration. It shows that the running time of theMLCP (as
well as its variance) increases for later iterations. The explanation for this is that due to the added cuts,
theMLCP becomes increasingly constrained and solving it becomes increasingly difficult. This leads to
higher computation times for theMLCP.

6.2.3 All-shifts scenario

Section6.2.2 examined the resultsobtainedbyusing theMSLCP inacontextwhere thenumberof available
maintenance teams of only one single maintenance shift was constrained. The capacity constraint for
this single maintenance shift appeared to be highly complicating. This means that many iterations of the
MSLCP are necessary to reduce the number of requiredmaintenance teams (so that, in turn, this number
meets the number of available maintenance teams). However, in realistic cases, it is not the case that the
constraints of each maintenance shift are as complicating. Therefore, the current section considers the
all-shifts scenario, attempting to solve the capacity violations for all shifts of the problem instance.

As a reference, the initial MLCP solution of the scenarios is used, i.e. without initial cuts. To obtain
numbers of the required maintenance teams, the APP was are solved for each maintenance shift. In this
solution, there are 34 daytime maintenance shifts to which at least one maintenance activity is assigned,
of which 13 require 1 maintenance team, 19 require 2 maintenance teams and 2 require 3 maintenance
teams. Thus, given the capacity of onemaintenance team per shift, there are 21 shifts with capacity viola-
tion.
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Figure 8: Computation time of the MLCP in seconds, per iteration of the MSLCP for the Binary Search Heuristic cut
generation version with 15 cuts per iteration, in an extended run of 14 hours.

Convergence As in the single-shift scenario, no optimal solutions were found within the running time
restriction of two hours. Figure 9 displays the convergence of theMLCP objective value in the all-shifts
set-up.

Figure 9: Convergence of theMSLCP in the all-shifts set-up. For three generation variants, the course of the value of the
MLCP is displayed as a function of elapsed time (left) and as a function of the current iteration (right).

At first, it can be noted that the course of theMLCP objective value for the three investigated cut gen-
eration variants is similar as for the single-shift scenario. As a result of the added cuts, the value of the
objective of the MLCP gradually increases. It can be seen that, in terms of iterations, the course of the
MLCP objective at the beginning of the run is very similar for themin-cut and Binary SearchHeuristic cut
generation processes.
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In the first couple of iterations (right side of Figure 9), both procedures are equally capable of detecting
’simple’ infeasible combinations of jobs that, when added as a cut to theMLCP, immediately cause a unit
step in the MLCP objective. The min-cut cut generation procedure has an advantage, since its running
time per iteration is shorter. This is reflected in the left side of Figure 9, where the increase in objective
value is quicker in case of the min-cut cut generation procedure. In a later stage, however, the cuts added
by theBinary SearchHeuristic cut generationprocedure yield abetter convergenceof theMLCP (right side
of Figure 9). Hence, from a time perspective, in a later stage the Binary Search Heuristic cut generation
procedure overtakes themin-cut cut generation procedure (as can be seen in the left of Figure 9).

Number of capacity violations By comparing the solutions of theMSLCPmodel (from the last iteration)
and theMLCP (i.e. the initial solution), it has been shown that optimality is not reached within 2 hours
of computation time, whichmeans that even the last solution obtained after 2 hours of computation time
contains maintenance shifts for which the capacity is violated.

A deeper look into the development of the number of capacity violations is taken. Figure 10 presents
the number of capacity violations as a function of elapsed time and as a function of the current iteration
for all cut generation procedures.

Figure 10: Numberof shifts forwhich the capacity is violated (i.e the required capacity ismore than1maintenance team),
for three cut generation variants, as a function of elapsed time (left) and as a function of the current iteration (right). The
naive cut generation procedure took longer than 2 hours since solving theMLCP in the last iteration (that started before
the threshold of 2 hours of running time) took very long; the process terminated as soon as this iteration was finished.

First, it becomes clear that, for each cut generation procedure, the number of maintenance shifts for
which the capacity is violated starts at 21 (the initial number of capacity violations) and is decreasing.
However, the decrease is not strictly monotonic. The added cuts as a result of the violation of capacity in
one of the maintenance shifts, may induce a newMLCP solution that assigns maintenance in such a way
that the capacity of maintenance shift which was formerly sufficient, now becomes violated.

Thenaivecutgenerationvariant is clearly theworstperforming. After twohoursof running time, it con-
tains considerably more maintenance shifts for which capacity is violated than the other two cut genera-
tion variants. More strikingly is the development of thenumber of violations in themin-cut cut generation
variant compared to theBinary SearchHeuristic cut generation variant. When looking at the development
in terms of the elapsed time, the capacity violations in the min-cut cut generation variant decrease at the
beginningmuchmore sharply than in thebinary search cut generation variant, afterwhich they inboth re-
main constant for around 5 capacity violations. Themin-cut cut generation variant found a solution with
5 maintenance shift violations or less after 7.6 minutes, whereas the Binary Search Heuristic cut genera-
tion procedure found such a solution only after approximately 44.2minutes. The practical implications of
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this are relevant: when no feasible solution can be obtained in reasonable time, the preferred option is to
get a good sub-optimal solution as quick as possible. Themin-cut cut generation procedure seems better
suited for this goal.

To gain a little more understanding on this behavior, observe also the capacity violations as a function
of the current iteration. At the beginning, the Binary SearchHeuristic andmin-cut cut generation variants
show a similar path. This implies that, in each iteration, the resulting cuts in both variants lead to similar
benefits in the reduction of capacity violations. However, the running time of the min-cut cut generation
procedureper iteration is considerably lower than in theBinarySearchHeuristic cutgenerationprocedure,
leading to a better performance in terms of computation time.

In the first couple of iterations, both procedures are equally capable of detecting ’simple’ infeasible
combinations of jobs that, when added as a cut to theMLCP, immediately cause a unit step in theMLCP
objective. Themin-cut cut generation procedure has an advantage, since its running time per iteration is
shorter. In a later stage, however, the cuts added by the Binary Search Heuristic cut generation procedure
yield a better convergence of theMSLCP. Hence, in a later stage theBinary SearchHeuristic cut generation
procedure overtakes the min-cut cut generation procedure (as can be seen in the left of Figure 9). Hence,
when an application does not require all capacity violations to be solved, themin-cut cut generation pro-
cedure is preferred since it reduces the number of capacity violations most quickly. However, when all
capacity violations need to be solved, the binary search heuristic cut generation procedure has a better
performance.

7 Conclusion
The current work proposes the Maintenance Scheduling and Location Choice Problem MSLCP, which
provides a rolling stockmaintenance schedule andamaintenance location choice, taking into account the
available capacity of maintenance locations, measured in the number of available maintenance teams.
It combines the MLCP model, introduced in Zomer et al. [2020b], and the APP model (proposed in the
the current research) using a framework called Logic-Based Benders’ Decomposition. In addition, four
different procedures for the generation of cuts are proposed.

The APP provides the required number of maintenance teams quickly, i.e. within seconds for realis-
tic problem sizes. This is beneficial since in theMSLCP context it needs to be run for every iteration and
therefore contributes to the efficiency of theMSLCPmodel. In addition, it provides an optimal mainte-
nance shift planning. As such, it is not only a valuable addition to theMLCP, but it can also be useful in
operational contexts where a shift planning is required.

TheMSLCP algorithm is designed to find a solution to theMLCP that includes maintenance location
capacity. It proposes a framework to incorporate complex constraints in scheduling problems. The cur-
rent research investigates the performance of theMSLCP in two scenarios. The first scenario focuses on
one particular maintenance shift for which the capacity is violated, demonstrating that the binary search
heuristic cut generation procedure with 15 cuts is the most promising procedure to solve the capacity vi-
olations of a hard-to-solve instance. The second scenario focuses on solving the capacity issues in multi-
ple maintenance shifts. The number of maintenance shifts for which the required capacity exceeded the
available capacity could be reduced from 21 to 5 in less than 8 minutes using the min-cut cut generation
procedure. Hence, themin-cut cut generation procedure is able to quickly decrease the number of main-
tenance shifts necessary to a reasonable amount, butwhen solving a hardmaintenance shift to optimality,
the min-cut cut generation procedure is outperformed by the binary search heuristic cut generation pro-
cedure with 15 cuts.

The current research has some limitations. First, it is assumed that maintenance jobs need to be per-
formed sequentially and uninterruptedly. Although, inmany practical cases, this is an acceptable or even
standard way of working, this assumption does not allow for the opportunity that maintenance activities
of different types are performed separately. Second, the min-cut cut procedure is defined for one main-
tenance team only. In the current situation at NS this is acceptable; since NS is making a shift to daytime
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maintenance, it is reasonable to expect that atmost onemaintenance team is available for daytimemain-
tenance. However, for applications in which the available number of maintenance teams is higher than
one, the current min-cut cut generation procedure cannot be used.

Severaldirections for future researchcanbe recommended. First, the furtherdevelopmentof theMSLCP
is considered to be an interesting research area. First, its cut generation process offers opportunities for
improvement, and the lessons learned from its development can potentially be used in many other re-
search areas related to scheduling of activities on locations and the capacities of these locations. Second,
for broader applicability, the min-cut cut generation procedure shall be generalized to handle an arbi-
trary number of teams. This can potentially be achieved by generating additional instants in theRAPP, so
that each team has its own dedicated instants. However, additional care must be taken since such an ap-
proachmay lead to the possibly undesired fact that onemaintenance activity can be performed bymulti-
ple teams. Third, an interestingnext research topic is the improvement of the computational performance
of theMLCP. This improvement is especially relevant in the light of theMSLCP algorithm, since it requires
to run theMLCP in each iteration. Looking at the structure of theMLCP, it may potentially be decoupled
intomultiple smaller sub-problems that are easier to solve, e.g. by decoupling by rolling stock unit, creat-
ing sub-problems for each individual rolling stockunit, or by consideringa rollinghorizon, first optimizing
a few days ahead and iteratively addingmore days to the optimization.
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