
Faculty of Mathematics Institute of Scientific Computing

C1 Finite Elements for Dune

Maik Porrmann

Master Thesis
to achieve the academic degree

Master of Science (M.Sc.)

First referee

Prof. Dr. Axel Voigt
Second referee

Dr. Simon Praetorius
Supervisor

Prof. Dr. Axel Voigt

Submitted on: 15th June 2022

Faculty of Mathematics Institute of Scientific Computing

Abstract

We present a DUNE module that provides three new types of finite elements, namely the cubic Her-

mite element on simplices, the quadratic Morley and the quintic Argyris triangle. They give DUNE

the capability to formulate conforming methods for fourth order problems in one and two dimen-

sions. We detail out, how they handle the lack of affine equivalence while still being usable on the

reference element, and discuss their positioning within the DUNE framework. Additionally, a partic-

ular focus lies on the possibility to strongly enforce essential boundary conditions. Including these

elements in DUNE routines and higher level discretization modules solely requires an adaptation of

the global interpolation routine in order to allow the evaluation of derivatives as degrees of freedom

and a minor adaption in the treatment of boundary conditions. We verify that the implemented el-

ements attain their theoretically predicted convergence rate for a series of numerical experiments,

ranging from second order elliptic problems to the minimization of a von-Kármán energy.

Statement of authorship

I hereby certify that I have authored this document entitled C1 Finite Elements for Dune indepen-

dently and without undue assistance from third parties. No other than the resources and references

indicated in this document have been used. I have marked both literal and accordingly adopted

quotations as such. There were no additional persons involved in the intellectual preparation of the

present document. I am aware that violations of this declaration may lead to subsequent withdrawal

of the academic degree.

Dresden, 15th June 2022

Maik Porrmann

Contents

Contents

1 Introduction 1
1.1 Preliminaries and Notation . 3

2 Finite Element Methods 5
2.1 A Short Introduction to Finite Element Methods 5

2.2 Finite Elements . 9

2.3 Finite Element Spaces . 14

2.4 Consequences of Affine Equivalence . 18

2.5 Boundary Value Problems . 20

3 Transforming Finite Elements 24
3.1 Transformation Theory . 24

3.2 Construction of the Basis Transformation Matrix 27

3.3 Strong Enforcement of Essential Boundary Conditions 31

4 Implementation 35
4.1 Dune . 35

4.2 Implemented Elements . 41

4.3 Essential Boundary Conditions . 45

5 Numerical Experiments 47
5.1 Interpolation . 47

5.2 Second Order Problems . 48

5.3 Fourth Order Problems . 52

6 Föppl-von-Kármán Energy 59
6.1 Problem setting . 59

6.2 Numerical Experiments . 62

7 Concluding Remarks 66

iv

1 Introduction

1 Introduction

Finite element methods have seen huge success since their framework has been developed in the

1970s. The theory developed back then often covered both finite elements of Lagrange type and

those of Hermite type and authors listed both types as almost equal choices, see for example

[Ciarlet, P G, 1978]. In nowadays literature and especially software however, elements of Hermite

type, that is finite elements that involve derivatives as degree of freedoms, have almost vanished.

Reasons for this include the higher polynomial degrees, complicated implementation of boundary

conditions, and the fact that modern finite element software typically only works on the reference

element. Due to the lack of affine equivalence (in a strict sense) of finite elements of Hermite type,

this is not straightforwardly possible. For higher order problems, where the C1-continuity of the

discrete spaces is required for a conforming method, multiple other approaches within the finite

element framework have been developed. In particular, finite elements of class C1 can be avoided

by rewriting the higher order problem as multiple second order problems, which leads to a mixed

method, or by means of the C0 interior penalty approach, analyzed in [Brenner and Sung, 2005],

which penalizes the jumps in normal derivatives across the facets of the triangulation. Even though

one does not obtain a strongly differentiable solution, the method still yields optimal orders of

convergence. In recent years, virtual elements methods have been developed, which offer easier

possibilities to implement differentiable spaces, see [Brezzi and Marini, 2013]. Despite those well

working alternatives, the class of C1 finite elements still provides a viable approach, and in principle

finite element frameworks can only benefit from providing them in addition to the typically avail-

able range of C0 elements. The present work aims to close this gap for the finite element toolbox

DUNE. It was motivated and in fact heavily relies on [Kirby, 2018, Kirby and Mitchell, 2019], who

proposed a clean and efficient way to implement finite elements of Hermite type and implemented

them in the FInAT framework.

We present a DUNE module named dune-c1elements. It is designed as an extension

module to dune-functions, has no additional dependencies, and is available via git (https:

//gitlab.dune-project.org/maik.porrmann/dune-c1elements).

The module contains the implementations for three types of finite elements, namely the cubic Her-

mite element, for one- to three-dimensional simplices, the Morley triangle and the Argyris triangle.

Of those, only the one-dimensional Hermite element and the Argyris triangle actually form finite

element spaces which are conforming in H2. The Morley element provides a nonconforming dis-

1

https://gitlab.dune-project.org/maik.porrmann/dune-c1elements
https://gitlab.dune-project.org/maik.porrmann/dune-c1elements

1 Introduction

cretization for problems posed in H2, but the two- and three-dimensional Hermite elements do not.

While these are implemented for the sake of completeness, and will in part be analyzed for second

order problems in Chapter 5, the primary focus of this work is on the Argyris triangle.

The implemented elements fulfill major parts of the DUNE interface for finite elements. In

particular, this means that they can be used straightforward in almost any assembling routine, which

is written for objects implementing DUNE’s interface. In contrast to most of the other finite elements

so far implemented in DUNE, finite elements of Hermite type are generally not affine equivalent.

Because the approach here is based on the construction of an affine equivalent finite element on

the reference simplex for each physical finite element, our elements can be used in routines that

assemble integrals on the reference simplex. However, some routines might use caching throughout

the iteration over the triangulation to speed up the evaluation of basis functions. Those approaches

do not work with our finite elements, since each finite element in a family has its own and different

reference finite element. Furthermore, the implemented nodal interpolation operator departs from

the DUNE interface, since it evaluates derivatives. Typically in DUNE, interpolation of a function

object, that only implements evaluation, but no derivatives, should be possible. For finite elements of

Hermite type, this is not trivial, as they include derivatives as degrees of freedom by definition. Some

alternative ways for Hermite interpolation have been proposed to overcome this, see for example

[Girault and Scott, 2002], but so far only the classical nodal interpolation operator is implemented.

This means in particular, that the standard interpolation routines for global interpolation into the

finite element spaces have to be amended, if for example the Argyris element is to be used by the

numerous high level discretization modules in the DUNE universe.

Strongly enforcing boundary conditions is a delicate topic for finite elements of Hermite type,

and among the reasons for their little usage. In order to provide a convenient interface for this, we im-

plement a version of the Hermite and Argyris elements that features only tangential or normal deriva-

tives as degrees of freedom. This allows the creation of subspaces that obey homogeneous boundary

conditions, as well as a straightforward interpolation of inhomogeneous boundary conditions by a

subset of boundary degrees of freedom. In this implementation, the choice of tangential and nor-

mal degrees of freedom only depends on the grid, with the only exception being non-rectangular

corners, where a change from clamped to free boundary conditions happens. The cost paid for this

possibility to strongly enforce boundary conditions comes in terms of a strict interface for boundary

interpolation, which requires the boundary data to be stated in terms of a single function. While this

might be inconvenient in some situations, for example inhomogeneous clamped conditions, in other

situations it might not cause problems. At any case, weakly enforcing boundary conditions remains

an option as well.

This thesis is structured as follows. In Chapter 2 we give a general introduction to the core

ideas of finite element methods, introducing the necessary definitions and general ideas. Chapter 3

reviews the transformation theory for finite elements from [Kirby, 2018] and proposes grid aligned

2

1 Introduction

variations for finite elements of Hermite type, which allow strong enforcement of boundary condi-

tions under certain conditions. Afterwards, some aspects and interfaces of the DUNE framework

are presented in Chapter 4 and the implementation of the finite elements is discussed. The last two

chapters contain numerical experiments. Those in Chapter 5 verify the expected rate of convergence

for elliptic problems, whereas in Chapter 6 the Argyris element is used to minimize a von-Kármán

like energy.

1.1 Preliminaries and Notation

Before we dive into the concrete topic of this work, we list a few concepts and definitions that will

be used throughout.

The problems considered in this thesis will be posed over a domain Ω. By that, we mean an

open, Lebesgue-measurable subset of Rd, whose interior is non-empty. The finite element methods

discussed will be based on dividing Ω into simplices. Here a simplex in d dimensions is the closed

convex hull of d + 1 vertices { vi }i=0,...,d, where the edge tangentials { vi − v0 }i=1,...,d are linear

independent. A one-dimensional simplex is an line segment, while a two-dimensional simplex is a

triangle. A triangulation of Ω is a finite set of simplices {Ti } such that

1. The pairwise intersections of the interiors of the simplices are empty,

2. the pairwise intersections of the simplices are either empty or contain exactly one complete

subsimplex,

3. and the union of simplices is the closure of Ω.

Most examples will be given in two dimensions. A two-dimensional simplex is called a triangle.

For i ∈ 0, 1, 2 we will denote the vertices of a triangle with vi, its edges with ei, where ei is the

opposed to vi and has the midpoint mi, the unit tangential τi and outer unit normal vector νi.

Furthermore, we use the following notations throughout this work:

• Pk(Ω) denotes the space of polynomials of degree k over Ω.

• Wk,p(Ω) denote the usual Sobolev spaces of p–integrable functions whose weak derivatives

up to order k are also p–integrable. The corresponding Hilbertspaces are denoted by Hk(Ω) :=
Wk,2(Ω). Furthermore, Hk

0 ⊂ Hk is the subspace of functions with derivatives up to order

k − 1 vanishing on ∂Ω.

• The scalarproduct of v,w ∈ Rn is denoted by v · w, the induced euclidian norm by |v|.

• The L2-scalar product is denoted by (·, ·), the induced norm by ∥·∥.

3

1 Introduction

• The scalar product on Wk,p(Ω) is denoted by (·, ·)k,p,Ω, for the induced norm we write

∥·∥k,p,Ω. For the Hilbertspaces Hk(Ω) we simply write (·, ·)k,Ω and ∥·∥k,Ω and if obvious

from context we will drop the Ω subscript.

• For a normed space V , V ′ denotes its topological dual space, that is, the space of continuous

linear functionals.

• The space Ck
b is the space of functions which have bounded strong derivatives up to order k.

4

2 Finite Element Methods

2 Finite Element Methods

2.1 A Short Introduction to Finite Element Methods

This section gives an informal overview over ideas and routines in finite element methods. It is by

no means exhaustive or complete. However, it recapitulates some important concepts and points to

various topics discussed in later sections.

2.1.1 Variational Problems

Finite element methods are typically used to solve variational problems, here given in an abstract

form:

Find u ∈ V such that

a(u, v) = b(v) ∀ v ∈ V , (2.1)

for some bilinear form a and some linear form b defined on a normed space V . Such a variational

problem is typically derived from a boundary value problem, that is a partial differential equation

with a set of boundary conditions, or from an energy minimization problem.

Definition 2.1 (Continuity of (bi) linear forms). A linear form b is continuous on V iff

∃C1 > 0: |b(v)| ≤ C1 ∥v∥V ∀ v ∈ V .

A bilinear form a is continuous on V ×W iff

∃C2 > 0: |a(v,w)| ≤ C2 ∥v∥V ∥w∥W ∀ v ∈ V , ∀w ∈ W .

Definition 2.2 (Coercivity). A bilinear form a is coercive on V (or V -elliptic) iff

∃α > 0: |a(v, v)| ≥ α ∥v∥2 ∀ v ∈ V .

The celebrated Lax-Milgram lemma is the main result in solution theory for variational prob-

lems and given below.

5

2 Finite Element Methods

Lemma 2.1 (Lax Milgram). Let V be a real Hilbertspace, a : V ×V → R a continuous and coercive

bilinear form and b : V → R a continuous linear form. Then (2.1) has a unique solution in V .

2.1.2 Galerkin Methods

The key idea of numerous numerical methods is to “approximate” V by a discrete space Vh and

to solve the resulting discrete problem. Strictly speaking, in (2.1) we have two spaces, one for the

solution u, called the trialspace, and one for the testfunctions v, called the testspace. While one can

use different discrete spaces, we will focus on the classical Galerkin method, where both spaces are

approximated by the same discrete space Vh. We distinguish between discrete spaces, that are sub-

spaces of the continuous test space (the conforming case) and those that are not (the nonconforming

case). For the latter, but also to include the effects of numerical methods like quadrature, one has to

define modifications the bilinear and linear form, denoted here by ah(·, ·) and bh(·).

The discrete problem then reads:

Find uh ∈ Vh such that

ah(uh, vh) = bh(vh) ∀ vh ∈ Vh. (2.2)

It is intuitively clear, that the error between the true solution u and the discrete solution uh depends

on the “approximation quality” of V by Vh as well as on the relation between a, b and ah, bh. This

is formalized in the two following lemmata, which give estimates for the error between the discrete

solution and the continuous solution.

For the conforming case Vh ⊂ V , it follows that a and b are well-defined on Vh, so, when

neglecting quadrature, ah is defined by ah(vh,wh) = a(vh,wh) and bh is defined by bh(vh) = b(vh)
for all vh,wh ∈ Vh.

Lemma 2.2 (Céa’s Lemma). Let V and Vh ⊂ V be real Hilbertspaces, a : V ×V → R a continuous

and coercive bilinear form, b : V → R a continuous linear form, u the solution to (2.1) and uh the

solution to (2.2).

Then

∥u− uh∥V ≤ C2
α

inf
vh∈Vh

∥u− vh∥V︸ ︷︷ ︸
discretization error

.

In the nonconforming case, where Vh ̸⊂ V , a,b and ∥·∥V are not a priori well-defined for

vh ∈ Vh. The discrete problem is formulated in terms of ah, bh and a mesh-dependent norm ∥·∥h,

which have to fulfill the following conditions:

• ∥·∥h : (V + Vh) → R is a norm on Vh + V := { v + vh : v ∈ V , vh ∈ Vh }.

• ah : (V + Vh) × (V + Vh) → R and bh : V + Vh → R must agree with a and b on V .

6

2 Finite Element Methods

• Additionally, ah has to be uniformly coercive on Vh, that is the coercivity constant α has to be

independent of h, and ah and bh have to uniformly continuous on V + Vh.

Lemma 2.3 (Strangs second Lemma). With the conditions stated above we have that for u being

the solution to (2.1) and uh being the solution to (2.2):

∥u− uh∥h ≤ (1 + C2
α

) inf
vh∈Vh

∥u− vh∥h︸ ︷︷ ︸
discretization Error

+ 1
α

sup
vh∈Vh,∥vh∥h ̸=0

|ah(u, vh) − bh(vh)|
∥vh∥h︸ ︷︷ ︸

consistency error

. (2.3)

2.1.3 Construction of Finite Element Spaces

So far, we have considered general Galerkin methods. A finite element method is a Galerkin method,

where the discrete space Vh is constructed by means of finite elements.

Let Th be a triangulation of the domain Ω. Finite elements define a discrete space PT , usually a

(sub)space of polynomials up to some degree, over each element T ∈ Th. The detailed definition

and examples are given in Section 2.2. With the help of those local spaces one constructs the

global basis, throughout this work denotet by Φ, of a discrete space defined on the whole domain Ω.

The choice of finite elements and the details of construction determine the global properties of the

obtained global space. In particular, a standard choice are finite elements of Lagrange type, where

only global C0 continuity is enforced. As a consequence, the obtained global spaces are not strongly

differentiable over the edges of Th. The focus of the present work, however, lies on finite elements

that yield subspaces of C1(Ω). For variational problems derived from a fourth order boundary value

problem, this is a necessary condition in order to stay in the conforming regime.

Section 2.3 is dedicated to the construction of finite element spaces and the ensuing global

properties are discussed in more detail. For this introductory section it suffices to state, that we

obtain a discrete space Vh with dimension n, thus every vh ∈ Vh obeys

vh =
n∑

i=1
viϕi, (2.4)

where vi ∈ R and Φ := {ϕi }i=1,...,n forms the aforementioned global basis of Vh.

7

2 Finite Element Methods

2.1.4 From a Discrete Variational Problem to an Algebraic Problem

Using (2.4), the discrete problem (2.2) can be written as

Find uh ∈ Vh such that

ah(uh, vh) = ah

 n∑
j=1

ujϕj ,
n∑

i=1
viϕi

 = bh

(
n∑

i=1
viϕi

)
= bh(vh) ∀ vh ∈ Vh,

where ui is the coefficient of uh to the i-th basisfunction and vi accordingly. By the linearity of ah

and bh we obtain an algebraic problem:

Find (uj)j=1,...,l ∈ Rl such that
l∑

j=1
ah(ϕj ,ϕi)uj = bh(ϕi) for i = 1, . . . , l,

where l = dim(Vh).

Note that the finite dimensionality of Vh was used to switch from a problem, whose solution is

element of a function space, to a problem, whose solution is a vector in Rl. Hence, it is natural to

formulate the problem as a system of linear equations, namely

Find u ∈ Rn such that

Au = b, (2.5)

Aij := ah(ϕj ,ϕi),

bi := bh(ϕi).

2.1.5 Assembling the Linear Equation System

The matrix entries Aij = ah(ϕj ,ϕi) usually have the form of integrals over derivatives up to order

q for a partial differential equation of order 2q. Since the domain of the basisfunctions is usually

small in comparison to the domain, the assembled system is sparse. Even though we will not go into

the details, it has to be stated, that the integrals are typically approximated by numerical quadrature.

Common finite element software works with the reference paradigm. Instead of evaluating the in-

tegrals over the different triangles T ∈ Th, they are transformed onto a reference triangle T̂ . If

one additionally has a reference finite element, that is a finite element defined over T̂ that is affine

equivalent to the finite element defined over T , one can calculate the integrals very efficiently. This

transformation and the concrete conditions under which it is applicable are discussed in Section 2.4.

While this works out of the box for many standard finite element methods, in particular those uti-

lizing Lagrange finite elements (see Example 2.11), we will see, that the classes of finite elements

8

2 Finite Element Methods

with higher regularity require an additional transformation.

2.1.6 Solving the Linear System

It remains to solve the assembled system. There exists a variety of direct or iterative solvers, many

of which were explicitly designed for solving large sparse systems arising from finite element meth-

ods. Frequent choices include direct solvers for small sized problems and iterative solvers like the

conjugate gradient method for symmetric and the biconjugate gradient stabilized method for non-

symmetric problems, both of which are often used together with suitable preconditioners. Among

the fasted methods for large systems are multigrid methods, where the solutions of coarser systems

are used to approximate the solutions of finer discretizations.

However, this is not the topic of this work and a detailed introduction to this topic is omitted here.

2.2 Finite Elements

This section introduces the concept of finite elements and equivalence relations between them. It

mostly provides definitions to be used in later sections. More detailed discussions can be found in

[Ciarlet, P G, 1978] and [Brenner and Scott, 2002].

Definition 2.3 (Finite Element). A triplet (T ,P ,N) is called finite element, if

1. T ⊂ Rd closed.

2. P is a (usually polynomial) function space defined over T .

3. N ⊂ Ck
b(T)′ is a finite set, linear independent and unisolvent on P .

The finiteness of P follows from finiteness of N and its unisolvence on P . The set N is often

called degrees of freedom or the node set of the finite element. Note that it contains general, albeit

linear and continuous, functionals. If the degrees of freedom of a finite element solely contain

function evaluations at different points, we say it is a Lagrange finite element. Their definitions

can be given solely in terms of those points, such that one can discuss Lagrange finite elements,

without ever explicitly stating the functionals. In literature like [Brenner and Scott, 2002], this is

mirrored languagewise, and so the term node often refers to one of those points as the location of

the corresponding degree of freedom, rather than the functional itself. In this work however, we do

not distinguish between nodes and degrees of freedom, and address the functionals in N by both

terms.

Definition 2.4 (Nodal Basis). For a finite element
(
T ,P ,N = {ni }i=1,...,dim(P)

)
the basis Ψ =

9

2 Finite Element Methods

{ψj }j=1,...,dim(P) of P fulfilling

ni(ψj) = δij (2.6)

is called nodal basis.

We will refer to (2.6) as delta property of Ψ and N . Additionally, for n ∈ N we say that ψ ∈ Ψ
is the nodal basis function associated with n if n(ψ) = 1. The notation ψn is used to indicate this

association.

Definition 2.5 (Nodal Interpolant). For a finite element (T ,P ,N), its nodal interpolant IN is de-

fined as

IN : Ck
b(T) → P , f 7→

∑
n∈N

n(f)ψn.

2.2.1 Equivalence of Finite Elements

We first define a equivalence relation between finite elements, which are defined on the same element

T .

Definition 2.6 (Interpolation equivalent finite elements). Two finite elements are called interpola-

tion equivalent, if their nodal interpolants are equal.

In fact interpolation equivalence is such a strong property, that for example in [Ciarlet, P G, 1978]

two interpolation equivalent finite elements are said to be the same finite element.

Furthermore, we consider equivalence relations between two finite elements defined on differ-

ent elements T and T̂ . To formulate those relations concisely, we introduce an operator that “moves”

functions from T̂ to T and an operator that “moves” functionals in the other direction.

Consider an invertible map F : T → T̂ .

Definition 2.7 (Pull-back). The pull-back operation of F is defined as

F ∗ : Ck
b(T̂) → Ck

b(T), F ∗(f̂) = f̂ ◦ F .

Definition 2.8 (Push-forward). The push-forward operation of F is defined as

F∗ : Ck
b(T)′ → Ck

b(T̂)′, F∗(n) = n ◦ F ∗.

Definition 2.9 (Affine equivalent finite elements). Two finite elements (T ,P ,N) and (T̃ , P̃ , Ñ) are

called affine equivalent, if there exists a affine map F : T → T̃ such that the following equivalencies

hold in the sense of sets:

10

2 Finite Element Methods

1. F (T) = T̃ ,

2. F ∗(P̃) = P ,

3. F∗(N) = Ñ .

It follows that the pull-backs of the nodal basis map onto the nodal basis of the affine equivalent

finite element, that is,

F ∗(Ψ̃F∗(n)) = Ψn.

The application of the above relation is discussed in Section 2.4.

Definition 2.10 (Interpolation-affine equivalent finite elements). Two finite elements (T ,P ,N) and

(T̃ , P̃ , Ñ) are called interpolation-affine equivalent if there is a finite element (T̃ , P̃ , N̂) such that

(T ,P ,N) is affine equivalent to (T̃ , P̃ , N̂) and furthermore (T̃ , P̃ , N̂) is interpolation equivalent to

(T̃ , P̃ , Ñ).

Remark 2.1. Note that Definition 2.9 differs for some traditional definitions of affine equivalent

finite elements. For example, Ciarlet defines affine equivalence in a way, that explicitly includes

finite elements of Hermite type, which here are considered only to be interpolation-affine equivalent.

This distinction is convenient for this work, as it coincides with the different treatment of affine and

interpolation-affine equivalent finite elements in Chapter 3.

Proposition 2.4. [Brenner and Scott, 2002]Suppose (T ,P ,N) and (T ,P , Ñ) are finite elements.

They are interpolation equivalent, if and only if span(N) = span(Ñ) holds in Ck
b

′.

In the following, we will consider families of finite elements over a triangulation of some do-

main Ω. However, instead of defining completely different finite elements on each triangle, typically,

we define a generic finite element { (T ,PT ,NT) }, where PT and NT are expressed in dependency

of T . This allows to define the family { (T ,PT ,NT) }T ∈Th
for a triangulation Th of Ω. Because

they are defined on subsets of Ω, in a sense they live in the physical world, and so the finite elements

in such a family are called physical finite elements. In contrast to them, we consider a reference

element T̂ , which is not considered to be related to Ω, upon which we define the reference finite

element (T̂ , P̂ := PT̂ , N̂ := NT̂).

Such a family is said to be an affine equivalent family, if each finite element is affine equivalent

to the reference finite element, and said to be an interpolation-affine equivalent family, if each finite

element in the family is interpolation-affine equivalent to the reference finite element.

2.2.2 Examples

In the following we give some examples that characterize different generic finite elements. We will

refer to these generic finite elements and their corresponding families throughout the later chapters.

11

2 Finite Element Methods

In order to express the degrees of freedom concisely, we follow the notation of (vectors of)

functionals in [Kirby, 2018], summarized in Table 2.1. In light of the theory developed there and

summarized in Chapter 3 it is helpful to write the degrees of freedom of a finite element as a vector,

using block notation, to fix an order. We will do so in the following and keep the order given here

throughout this work.

n ∈ Ck
b

′
n(f) m ∈ (Ck

b
′)d (m1, · · · ,md)

δa f(a)
δv

a ∂vf(a) ∇a (δx
a , δy

a)
∇̂â (δx̂

â , δŷ
â)

∇vw
a (δv

a, δw
a)

δvw
a ∂v∂wf(a) △a (δxx

a , δxy
a , δyy

a)
△̂â (δx̂x̂

â , δx̂ŷ
â , δŷŷ

â)
△vw

a (δvv
a , δvw

a , δww
a)

Table 2.1: Notation for degrees of freedom. Here, a denotes a point in T , â denotes a point in T̂ and
x, y are the coordinate axes in the global coordinate system, while x̂, ŷ are the coordinate
axes in the reference system.

Example 2.11 (Lagrange Simplex of degree k). The Lagrange finite element (T ,P ,N) of degree k

is given by:

• a simplex T ,

• P = Pk(T),

• N = (δzi)i=1,...,dim(P),

where multiple choices for the locations zi are possible. The standard choice are the vertices and for

higher orders k uniformly distributed points on the boundary of T and the inner of T .

A family of Lagrange finite elements of same degree (and point distribution) defined over the

elements of some triangulation Th is an affine family.

Example 2.12 (Cubic Hermite Triangle). The cubic Hermite finite element (T ,P ,N) in two dimen-

sions is given by:

• a triangle T ,

• P = P3(T),

• N = (δv0 ∇v0 δv1 ∇v1 δv2 ∇v2 δb) ,

where v0, v1, and v2 are the vertices of T and b is its barycenter.

12

2 Finite Element Methods

(a) Lagrange triangle of degree 3 (b) Hermite triangle

Figure 2.1: Cubic Lagrange and Hermite finite elements on a triangle. Dots represent the evaluation
of a function value whereas circles represent the evaluation of gradients.

The degrees of freedom of the one-dimensional cubic Hermite element simply consist of the

point evaluation and the derivative at each endpoint of its interval, whereas for the three-dimensional

element the point evaluations and gradient components at each vertex of the simplex are completed

by point evaluations at the barycenter of each facet.

The cubic Hermite finite elements defined over some triangulation Th do not form an affine

family, as the push-forward does not preserve the length and direction of the derivative degrees of

freedom. However, due to Proposition 2.4, they form an interpolation-affine family, since the full

gradient is used at each vertex. Hence, for the d-dimensional case, d directional derivatives are

mapped to d different but linear independent derivatives, if the mapping is invertible. The Lagrange

triangle of degree 3 and the Hermite triangle are depicted in Figure 2.1a and Figure 2.1b.

Example 2.13 (Morley Triangle). The Morley finite element (T ,P ,N) is given by:

• a triangle T ,

• P = P2(T),

• N =
(
δv0 δv1 δv2 δ

ν0
m0 δ

ν1
m1 δ

ν2
m2

)
,

where vi is the ith vertex, mi is the midpoint of the ith edge and νi is the outer unit normal vector

of the same edge.

In contrast to the Hermite element, the Morley element does not form an interpolation-affine

family, since at the edge midpoints only the normal derivative is contained in N .

13

2 Finite Element Methods

(a) Morley triangle (b) Argyris triangle

Figure 2.2: Morley and Argyris triangles. Additionally to the symbols from Figure 2.1, here arrows
represent the evaluation of the normal derivative and outer circles represent evaluation
of the unique entries in the Hessian matrix.

Example 2.14 (Argyris Triangle). The Argyris finite element (T ,P ,N) is given by:

• a triangle T ,

• P = P5(T)

• N =
(
δv0 ∇v0 △v0 δv1 ∇v1 △v1 δv2 ∇v2 △v2 δ

ν0
m0 δ

ν1
m1 δ

ν2
m2

)
,

The Morley triangle and the Argyris triangle are depicted in Figure 2.2a and Figure 2.2b.

For the same reason as for the Morley element, a family of Argyris elements is not an interpo-

lation-affine family. Both elements are only defined for domains in R2.

Similar to the Lagrange elements, all the mentioned finite elements can be generalized to fam-

ilies, elements of which have higher polynomial degree. However, we will restrict ourselves to the

examples above.

2.3 Finite Element Spaces

In this section the construction of finite element spaces over a domain Ω is described as a bottom-

up approach by identifying those degrees of freedom in finite element families, that correspond to

the same functional in Ck
b

′(Ω). Combining the nodal basis functions of these degrees of freedom

yields bases of discrete spaces, which obey global properties like continuity or differentiability.

14

2 Finite Element Methods

Throughout this section we consider a family of finite elements { (T ,P (T),NT) }T ∈Th
with nodal

basis ΨT , defined over a triangulation Th of Ω.

2.3.1 From Finite Elements to Finite Element Spaces

So far, we have had a local perspective on finite elements and their nodal basis functions. In order

to provide a global basis, elements of which are defined on the whole domain Ω, we change to a

global perspective and extend the domain of the local basis functions ΨT by setting them to zero

outside their respective element. We will not differentiate notationally between those two views on

the basis functions.

As a second (and technically optional) step, degrees of freedom from different finite elements, which

are restrictions of the same functional in Ck
b(Ω)′, are identified and their respective nodal basis

functions are combined. Depending on the type of identified degrees of freedom, this step enforces

global properties.

The union of (combined) nodal basis functions gives the global basis Φ of the global finite element

space. Likewise, the union of (identified) degrees of freedom gives the set of global degrees of

freedom M .

The global finite element space typically is (a subspace of) some space of piecewise polynomi-

als. The examples below refer to this class of spaces:

Sk,m(Th) := { v ∈ Cm(Ω) : v|T ∈ Pk(T) ∀T ∈ Th } , k,m ∈ N0. (2.7)

As a special case, Sk,−1(Th) := { v ∈ L∞(Ω) : v|T ∈ Pk(T) ∀T ∈ Th } denotes the space of

piecewise polynomials of degree k ∈ N0 which are discontinuous over the facets of Th.

2.3.2 Discontinuous Spaces

Discontinuous spaces form the most simple outcome of the described approach. For these spaces,

no nodes are identified, hence the global Basis Φ is the disjoint union of the element bases:

Φ =
⋃̇

T ∈Th
ΨT .

For example, when using Lagrange finite elements of order k defined over elements T of a trian-

gulation Th of Ω, one obtains the global space Sk,−1(Th). The spaces obtained are discontinuous

over the edges of the underlying triangulation and are hence only subspaces of L∞. Accordingly,

for problems posed in H1, usage of those spaces results in a nonconforming method. Discontinuous

spaces do find some application, but they are not of concern for this work.

15

2 Finite Element Methods

2.3.3 Continuous and Differentiable Spaces

Let N be an indexset, that assigns each degree of freedom of each finite element in the family a

unique index. Consider a subset Mm ⊂ N such that {ni }i∈Mm contains all those degrees of

freedom, that are restrictions of the same global functional m ∈ Ck
b(Ω)′. These degrees of freedom

are considered to be the same, in other words, they are identified with each other. Their associated

nodal basis functions {ψni }i∈Mm can be combined to a single global basis function ϕm such that

ϕm|T =

ψn ∈ ΨT , if n ∈ NT

0, otherwise
∀T ∈ Th, (2.8)

where n := m|Ck
b(T) is restriction ofm to Ck

b(T) if existent, or the null-functional. For facets shared

by two elements, we have possible discontinuities. These are discussed below.

Applying this approach onto all degrees of freedom yields the set of global degrees of freedom

M := {m ∈ Ck
b(Ω)′ : ∃T ∈ Th,m|Ck

b(T)′ ∈ NT } (2.9)

and a global basis Φ := {ϕm }m∈M , which fulfill the delta property by design.

By identifying degrees of freedom, we explicitly enforce some local properties of the resulting

function space, in the cases considered here, we enforce continuity or differentiability in the points,

where the functionals are located. For example, if we identify all local degrees of freedom that are

restrictions of δv for some vertex v ∈ Ω in the triangulation, then by the delta property all functions

in Φ are continuous in v. For many finite elements, those local properties induce global properties

as well. Examples are global continuity or differentiability, but also more special properties, like

in the case of the Morley triangle, convergence of a nonconforming method for certain problems.

Here, we focus on the case of continuity or differentiability. These properties typically hold inside

a triangle T , since the elements of Pk(T) are smooth.

The remaining conditions can usually be seen as an equality of the global basis functions over the

facets of neighboring elements, i.e., for two elements T and T ′ that share a facet f , the conditions

for continuity of any global basis function ϕ ∈ Φ on f can be expressed as

ϕ|T (x) = ϕ|T ′(x) ∀x ∈ f ∀ϕ ∈ Φ, (2.10)

whereas the conditions for differentiability would read

∇ϕ|T (x) = ∇ϕ|T ′(x) ∀x ∈ f ∀ϕ ∈ Φ. (2.11)

The first condition is fulfilled, if the global degrees of freedom, that are located on f and hence are

16

2 Finite Element Methods

shared by the two finite elements, fully specify p|f for all p ∈ P (T) ∪ P (T ′), whereas in order to

fulfill the differentiability conditions, they have to specify (∇p)|f for all p ∈ P (T) ∪ P (T ′). The

following examples will discuss these properties for the Lagrange, Hermite and Argyris element.

2.3.4 Examples

Example 2.15 (Continuous Lagrange Element). We consider Lagrange finite elements on simplices

with a point distribution such that the degrees of freedom located on each facet f are unisolvent on

Pk(f), like the one depicted in Figure 2.1a.

Continuity At every inner edge f = T1 ∩T2 the two generally different polynomials v|T1
∈ Pk(T1)

and v|T2
∈ Pk(T2), i.e., the restrictions of some discrete function v ∈ Vh, agree on exactly as

many degrees of freedom located on f as needed to fully specify a polynomial of degree k on

f . In other words, the combined function v is continuous over f , and since this holds for all

facets, v is continuous in Ω.

Differentiability The same argument however, can not be applied for differentiability, since the La-

grangian degrees of freedom do not specify any derivative values. Consequentially, a general

v ∈ Vh is not differentiable over the edges of the triangulation. However, they are weakly

differentiable, since they are strongly differentiable on the interior of every triangle T .

Conformity We have Vh = Sk,0(Th) ⊂ H1(Ω) by the arguments above. Let Φ be the basis of

Vh. Then Φ0 := Φ \ {ϕm : m is located on the boundary } is a basis of a discrete subspace

V 0
h ⊂ Vh that also fulfills V 0

h ⊂ H1
0. Using Lagrange finite elements, we can thus construct

discrete conforming spaces for problems posed in H1 and H1
0.

Example 2.16 (Cubic Hermite Element).

Continuity Since two neighboring Hermite elements, whose domains share a facet f , agree on the

values and gradients in the corners of f , they also agree on the tangential derivative along

f in the corners. That is, they agree on four linear independent functionals on f and hence

fully determine the values of a polynomial of order 3 on f . Hence, any discrete function

constructed by Hermite elements is continuous.

Differentiability In order to be differentiable along f , the two neighboring finite elements addi-

tionally have to agree on the normal derivative along f . For the one-dimensional case, this is

trivially given, as the normal derivative is just the derivative at f , which is a point. The one-

dimensional Hermite element therefore yields a subspace of C1(Ω). For higher dimensions

however, the normal derivative along f is a polynomial of order 2, but the two neighboring

finite elements only agree on the normal derivative at the corners of f , which makes up for

17

2 Finite Element Methods

two suitable functionals (for the two-dimensional case). Hence, the discrete function spaces

constructed with Hermite elements are not subspaces of C1.

Conformity The Hermite finite element in 1d can be used to construct subspaces of H2 and H2
0.

For 2d and 3d, similar as for the Lagrange elements, conforming subspaces for H1 and, with

some modifications also H1
0, can be constructed. Details on which degrees of freedom on

the boundary are to be selected are given in Section 3.3. Note that the created subspaces are

strict subspaces of S3,0(Th) for nontrivial triangulations, due to strong differentiability at the

vertices of Th.

Example 2.17 (Argyris Element).

Continuity By similar arguments as before, a discrete function obtained a family of Argyris ele-

ments is continuous. Since two neighboring Argyris elements agree on the gradient and the

Hessian at the corners of the shared edge e, they also agree on the first and second tangen-

tial derivative, which, together with the function value at the corners, makes up for six linear

independent functionals fully determining the quintic polynomial along e.

Differentibility In contrast to before, two neighboring Argyris elements also agree on the normal

derivative along the shared edge e, since the agree on δν
v1 , δνν

v1 , δν
m, δν

v2 , and δνν
v2 , where ν is

the normal unit vector of e, m the midpoint of e and v1 and v2 are its corners.

Conformity In summary, the construction of a finite element space using the Argyris elements

yields a subspace of S5,1(Th), since the discrete functions are twice differentiable in the ver-

tices of Th. It can be used for conforming methods in H2 as well as H2 ∩ H1
0 and H2

0, again

see Section 3.3.

2.4 Consequences of Affine Equivalence

Constructing finite element spaces from affine or affine-interpolation equivalent families has both

theoretical and practical advantages.

On the one hand, these properties can be used to obtain error estimates for a particular finite

element method. Those error estimates can be found similarly both in the case of an affine family

or of an interpolation-affine family. In principle, one starts by constructing a global interpolant Ih,

which is equal to the nodal interpolant IN of a finite element (T ,P ,N), when restricted to the

corresponding element, i.e., Ih|T = IN . In case of affine equivalent or interpolant affine families,

an error estimates for this interpolant can be obtained by an homogeneity argument from the error

estimate of the finite element’s nodal interpolants. For finite elements, which do not form interpolant

affine families, an error estimate for the global interpolant can sometimes be obtained by means of an

18

2 Finite Element Methods

almost affine property. We do not go into the details here, but refer to [Ciarlet, P G, 1978], where in

particular the almost affine property of the Argyris triangle is discussed. In combination with Céa’s

lemma or Strang’s second lemma, one can then obtain concrete error estimates for the particular

finite element method.

For implementational purposes, the properties of affine equivalent families allow applying the

reference paradigm. In essence, this means that routines implementing a finite element method

should exploit the definition of an affine family of finite elements, by avoiding to actually work

on the physical triangles, but rather on the reference triangle using the reference finite element. In

particular, in all assembling routines, integrals over T are transformed onto the reference element

T̂ and evaluated in terms of the reference basis ψ̂. For example, consider an entry Aij of the

system matrix of a Poisson equation. It will be discussed in more details in the subsequent section.

Neglecting boundary terms, we have

Aij =
∫

Ω
∇ϕj∇ϕidx =

∑
T ∈ωij

∫
T

∇ϕj∇ϕidx =
∑

T ∈ωij

∫
T

∇ψj,T ∇ψi,Tdx,

where ωij ⊂ Th is a set of triangles such that (domϕi ∩ domϕj) ⊂ ωij , {ϕi } is the global basis

and with an abuse of notation we let ψi,T denote the nodal basis function of the finite element on

T that corresponds to ϕi. These integrals on single triangles can be transformed to the reference

triangle,

Aij =
∑

T ∈ωij

∫
T̂
F ∗

T (∇ψj,T)F ∗
T (∇ψi,T) |det(DFT)| dx̂

=
∑

T ∈ωij

∫
T̂

(
∇̂F ∗

T (ψj,T)DFT

) (
∇̂F ∗

T (ψi,T)DFT

)
|det(DFT)| dx̂, (2.12)

where FT : T̂ → T is an affine mapping with Jacobian DFT . For affine equivalent families, we

have a reference finite element with nodal basis Ψ̂ and F ∗
T (ΨT) = Ψ̂ for all T ∈ Th, such that (2.12)

can be formulated purely in terms of the reference basis and the affine mapping.

Assembling routines typically compute the matrix entriesAij in the above form. To do so, it is neces-

sary, that for every physical finite element (T ,P ,N) in the family, there exists an affine equivalent

finite element defined over the reference element, such that we can evaluate the pullbacks of the

physical nodal basis. However, it is not necessary, albeit convenient, that all physical finite elements

have the same reference finite element. While the latter only holds for affine equivalent families,

the former can be constructed for the Hermite, Morley and Argyris elements as well. Chapter 3 is

dedicated to the construction of this affine equivalent finite element.

Lastly we note, that this approach can be generalized to non-affine diffeomorphisms, for example to

solve problems define on a surface. In this case, the structure of (2.12) remains the same, and the

19

2 Finite Element Methods

major question is how to obtain the pullbacks of the physical basis functions.

2.5 Boundary Value Problems

2.5.1 Reformulation as Variational Problem

When given a boundary value problem, that is a partial differential equation with boundary condi-

tions, one typically arrives at the corresponding variational problem, called weak formulation, by

multiplication with a testfunction and integration over the domain Ω, commonly followed by inte-

gration by parts to lower the differentiability requirements of the test- and trialspace. The boundary

conditions are incorporated in two different fashions. Loosely speaking, for a PDE of order 2q,

boundary conditions on derivatives up to order q, as well as periodic boundary conditions, are con-

sidered essential boundary conditions and are encoded in the testspace V , whereas higher order

boundary conditions are called natural boundary conditions and are encoded in the (bi-)linear forms

a and b. The so obtained problem is a variational problem in form of (2.1).

The solution to this variational problem is called weak solution, whereas the solution to the corre-

sponding boundary value problem is called strong solution. Typically, if the weak solution exists

and has the necessary degree of differentiability, it is also a strong solution.

2.5.2 Conforming Treatment of Essential Boundary Conditions

We first consider conforming methods, where the functions in the discrete space fulfill homogeneous

boundary conditions. Periodic boundary conditions can be included by different approaches, the

maybe most general constructs a conforming discrete space in the spirit of Section 2.3 by identifying

the degrees of freedom on the periodic part of the boundary. Homogeneous Dirichlet conditions (or

essential conditions on higher derivatives) are encoded in a discrete space Vh0 ⊂ Hk
0 by removing

the basisfunctions, that are associated to the global functionals needed to specify those conditions.

Inhomogeneous essential conditions lead to a affine space Vc := V0 ⊕ uc, where V0 is the subspace

of V that fulfills the corresponding homogeneous conditions and uc ∈ V fulfills the inhomogeneous

conditions. The variational problem

Find u ∈ Vc

a(u, v) = b(v) ∀ v ∈ V0

is rewritten to obtain a problem where test- and trialspace agree:

20

2 Finite Element Methods

Find ũ ∈ V0

a(ũ, v) = b(v) − a(uc, v) = b̃(v) ∀ v ∈ V0.

A suitable uhc approximating uc can be constructed by interpolating the boundary conditions into a

suitable set of degrees of freedom, i.e.,

uhc =
∑

m∈MΓ

m(g)ϕm, (2.13)

where g is a function encoding the inhomogeneous condition, called boundary data, and MΓ ⊂ M

is chosen such that:

Vh0 := Vh ∩ V0 = span (Φ \ {ϕm : m ∈ MΓ }) . (2.14)

The resulting discretized problem can be solved by the previously explained methods and the so-

lution to the discrete problem with inhomogeneous conditions is by uh = ũh + uhc, where ũh

(respectively uh) is the discrete approximation of ũ (respectively u).

This approach in only one of several ways to incorporate essential boundary conditions and not

always applicable. In particular, a suitable subsetMΓ is not always available. For example, consider

the classical Hermite element and a problem with Dirichlet boundary conditions. To construct a

conforming subspace Vh0 one needs to set the tangential derivative δτ
v for a vertex v on the boundary

to zero. However, if the grid is not axis aligned, this is not trivial, since only δx
v and δy

v are elements

of M . Hence, including such a boundary conditions requires a more complicated manipulation of

the linear equation system. While this is certainly possible, the finite elements presented in Chapter 3

are designed to avoid this by implementing tangential derivative degrees of freedom, thus offering a

suitable subset MΓ ⊂ M , and fall into the scope of the method presented above.

Example 2.18 (Diffusion Reaction equation with Dirichlet conditions). The strong form of the Dif-

fusion Reaction equation with all coefficients set to 1 and Dirichlet boundary conditions is given

by:

−∆u+ u = f in Ω, (2.15)

u = g on Γ.

Multiplication by a test function v ∈ C∞
c (Ω) and integration by parts yields

21

2 Finite Element Methods

Find u ∈ C2(Ω) such that∫
Ω

∇u∇v −
∫

Γ
v ∂νu︸ ︷︷ ︸
=0

+
∫

Ω
uv =

∫
Ω
fv ∀ v ∈ C∞

c (Ω) (2.16)

u = g on Γ.

At last, the smoothness requirements are weakened and the inhomogeneous boundary conditions

included. We arrive at

Find u ∈ H1
D(Ω) such that∫

Ω
∇u∇v +

∫
Ω
uv =

∫
Ω
fv −

∫
Ω

∇uD∇v −
∫

Ω
uDv ∀ v ∈ H1

0(Ω), (2.17)

where H1
D(Ω) := uD ⊕ H1

0(Ω) for some uD ∈ H1(Ω) that obeys uD = g on Γ. Provided, we have

a finite element space with a suitable subset of degrees of freedom MΓ, (2.17) can be discretized as

described above.

2.5.3 Nonconforming Treatment of Essential Boundary Conditions

In situations where no suitable set MΓ is available, one can opt for a nonconforming method to

incorporate boundary conditions. As briefly introduced in Section 2.1.2, the idea is to define a mod-

ified problem on a discrete space Vh, which is not a subspace of V , in this case because its elements

do not fulfill the boundary conditions. Clearly, the solution of the original problem also has to be

the unique solution of the modified problem. In Example 2.19, Nitsche’s method [Nitsche, 1971]

for Dirichlet boundary conditions is considered. It will be numerically investigated in Example 5.2.

Example 2.19 (Nitsche’s method for the Poisson equation with Dirichlet conditions). Consider the

strong form of the Poisson equation with Dirichlet boundary conditions

−∆u = f in Ω,

u = g on Γ.

Its weak formulation is given by:

Find u ∈ H1
D(Ω) := { v ∈ H1(Ω) : v = g on Γ } such that∫

Ω
∇u∇v −

∫
Γ
∂νuv =

∫
Ω
fv. (2.18)

22

2 Finite Element Methods

If u solves (2.18) it also solves∫
Ω

∇u∇v −
∫

Γ
∂νuv + η

∫
Γ
(u− g)v =

∫
Ω
fv ∀ v ∈ H1

0(Ω) (2.19)

for some penalization parameter η > 0. To restore symmetry of the bilinear form, another zero-term

is added and the nonconforming problem reads

Find u ∈ H1(Ω) such that∫
Ω

∇u∇v −
∫

Γ
∂νuv −

∫
Γ
(u− g)∂νv

+η
∫

Γ
(u− g)v =

∫
Ω
fv ∀ v ∈ H1(Ω). (2.20)

2.5.4 Treatment of Natural Boundary Conditions

Natural boundary conditions, given as B(u) = g on Γ with some differential operator B, are en-

forced by modifying the linear form of the variational problem. Typically the bilinear form contains

boundary integrals, where the expression B(u) appears in the argument. Substitution then leads to

an integral term, that only depends on v, and can hence be included in a modified linear form b̃.

2.5.5 Boundary Conditions for Fourth Order Problems

For fourth order problems there is a variety of boundary conditions, each given as a combination of

essential and natural conditions. Grouping them by their essential part we will consider:

Clamped conditions Both values and normal derivatives of u are specified along Γ. There are no

natural conditions.

Simply Supported conditions Only values of u are given as essential boundary conditions. There

are natural boundary conditions, the concrete form of which depends on the problem.

Free conditions There are no essential, but only natural boundary conditions.

23

3 Transforming Finite Elements

3 Transforming Finite Elements

This chapter deals with techniques to transform finite elements of non-affine families, such that

they can be used via the reference paradigm. It is effectively a summary of [Kirby, 2018], however

leaves out the discussion of the Bell element, but gives some details, how one can use the ideas of

[Kirby, 2018] to implement finite elements of Hermite type, that allow simple treatment of essential

boundary conditions.

3.1 Transformation Theory

We have introduced preliminary definitions in Section 2.2, in particular the general definition of a

finite element, as well as the pull-back and the push-forward. We extend these two operators onto

sets or vectors of functions, respectively functionals, by elementwise application. For the sake of

notational consistency, we write vectors of functions as column vectors and vectors of functionals

as row vectors and denote the pullback of the inverse mapping by F−∗ := (F−1)∗.

With this notation, we have for a vector N of l′ functionals and a vector Φ of l functions,

N(Φ) ∈ Rl×l′ with N(Φ)ij = nj(ϕi)

as well as

N(MΦ) = NM(Φ)

for any matrix M ∈ Rl′×l.

In Definition 2.3, the degrees of freedom are given as elements of the infinite-dimensional

dual space Ck
b

′. In the following, we will need to distinguish between them and their restriction to

element of P . Therefore, for a finite element (T ,P ,N), and for any n ∈ N , we define πn ∈ P ′ as

restriction of n to P by πn(p) = n(p) for all p ∈ P . Again, we vectorize this restriction operator,

such that P ′ ⊃ πN := {πn : n ∈ N }. Note the equivalence between the statement, that N is

unisolvent on P , and the statement, that πN is a basis of P ′ ([Ciarlet, P G, 1978]).

The basic idea on how to implement non-affine finite elements stems from the three following

lemmata.

First we establish the existence of an affine equivalent finite element for every physical finite

element.

24

3 Transforming Finite Elements

Lemma 3.1. LetF : T 7→ T̂ be an affine mapping and (T ,P ,N) be a finite element, then (T̂ ,F−∗(P),F∗(N))
is also a finite element and trivially affine equivalent to (T ,P ,N).

Proof. Since F is affine, both F ∗ and F∗ are invertible, they preserve vectorspace operations and

hence map linear independent sets onto linear independent sets. It follows that F−∗(P) is a vec-

torspace with

dim(F−∗(P)) = dim(P)

and

dim(F∗(N)) = dim(N) = dim(P).

Furthermore, F∗(N) ⊂ F−∗(P)′ since

F∗(n)(F−∗(p)) = n ◦ F∗(p ◦ F−1) = n(p)

is by definition linear for every p ∈ P and n ∈ N . In summary, πF∗(N) is a basis of F−∗(P)′.

Secondly, provide means to linearly transform finite elements, by showing that the duality be-

tween degrees of freedom and nodal basis goes through a linear transformation of the degrees of

freedom.

Lemma 3.2. Let (T ,P ,N) be a finite element with dim(N) = l and nodal basis Ψ and let S ∈ Rl×l

be regular, then (T ,P ,NS) is a finite element with nodal basis S−1Ψ.

Proof. Since πN is a basis of P ′ and S is regular, π(NS) = (πN)S is also a basis of P ′. Further-

more,

(πN)S(S−1Ψ) = (πN)SS−1(Ψ) = (πN)(Ψ) = I .

Because (S−1Φ) · (NS) = Φ · N , where Φ · N :=
∑dim(N)

i=1 ϕini is the nodal interpolant, the

two finite elements in Lemma 3.2 are interpolation equivalent.

Note, that we only considered the restrictions πN for the proof of Lemma 3.2. We therefore can

generalize it to the following form:

Lemma 3.3. Let (T ,P ,N) be a finite element with dim(N) = l and nodal basis Ψ and let S ∈ Rl×l

be regular. Consider Ñ ∈
(
Ck

b(T)′
)l

such that πÑ = (πN)S.

Then (T ,P , Ñ) is a finite element with nodal basis S−1Ψ.

In contrast to before, (T ,P , Ñ) and (T ,P ,N) are generally not interpolation equivalent. Note,

that due to the finite dimensionality of P ′, such a transformation matrix S exists for every choice of

Ñ with πñ ̸= 0 ∈ P ′ for all ñ ∈ Ñ .

25

3 Transforming Finite Elements

3.1.1 Connecting the Reference Finite Element to the Physical Finite Element

Let (T̂ , P̂ , N̂) be a reference finite element and (T ,P ,N) a physical finite element, such that there

exists an affine mapping F : T → T̂ .

In many cases, in particular for P being a full polynomial spaces and thus all finite elements

discussed in this work, we have that F ∗(P̂) = P . A famous example, where F ∗(P̂) ̸= P , is the

Bell element.

If F ∗(P̂) = P , then πF∗(N) and πN̂ are two bases of the same space P̂ ′, which implies the

existence of a matrix S such that πF∗(N)S = πN̂ . Note, that affine equivalent families form the

trivial case, where we have S = I .

For non affine families, this allows the construction of a finite element (T̂ , P̂ ,F∗(N)), which is

defined over the reference element T̂ , and affine equivalent to the physical finite element. Its nodal

basis, here denoted by Ψ∗, is given by Ψ∗ = S−1Ψ̂, where Ψ̂ is the nodal basis of the reference finite

element. Most importantly, we have Ψ∗ = F ∗(Ψ), for Ψ being the physical basis, which allows us

to use Ψ∗ when assembling integrals over the reference element as discussed in Section 2.4.

In lack of a better name, we will call this the physical reference finite element. For computa-

tional purposes, only the inverse of S is required, and by invertibility of the push-forward we obtain

an equation for the Basis Transformation Matrix R := S−1, namely

πN = (πF−1
∗ (N̂))R. (3.1)

Obviously, other equations forR are possible, too, but this one results in a concise notation, because

for gradients it represents the chain rule, as used in the discussions below.

26

3 Transforming Finite Elements

Figure 3.1: Transformation diagram between the different finite elements and their nodal bases. The
upper left finite element is the one we are interested in, but we will use the equation on
the right to construct the basis transformation matrix R.

3.2 Construction of the Basis Transformation Matrix

3.2.1 Hermite Element

For every physical Hermite element (T ,P ,N) and an affine transformation F : T → T̂ , an affine

equivalent finite element defined over the reference triangle T̂ is given by (T̂ , P̂ ,F∗(N)) with a

nodal basis F ∗Ψ = RΨ̂, where Ψ̂ is the nodal basis of the reference finite element (T̂ , P̂ , N̂) and R

as below. The relations between the different degrees of freedom are listed in Table 3.1a. We have

R =

1 0 0 0 0 0 0
0 J−1

v0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 J−1

v1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 J−1

v2 0
0 0 0 0 0 0 1

.

Note that, because we can apply Lemma 3.2, interpolation equivalency is preserved, i.e., the

physical reference finite element is also interpolation equivalent to the reference finite element. This

is generally true for interpolation-affine families, since the relations between F∗(N) and N̂ hold in

27

3 Transforming Finite Elements

Ck
b

′.

l ∈ N n ∈ N l F−1
∗ (n̂)RB

1 δvi δv̂i

2 ∇vi ∇̂v̂iJ
−1
vi

(a) Degrees of freedom of the Hermite element.
Here, x̂ = F (x) and J is the Jacobian of F .

l ∈ N n ∈ N l F−1
∗ (n̂)RB

1 δvi δv̂i

2 ∇νiτi
mi

∇̂ν̂iτ̂i
m̂i

ĜiJ
−1
mi
Gi

(b) Completed degrees of freedom of the Morley tri-
angle. Here, Gi := [νi τi]T and Ĝi := [ν̂i τ̂i]T .

Table 3.1: Global degrees of freedom of the cubic Hermite and the completed Morley triangle and
their relation to the push-forward of the reference degrees of freedom. The (completed)
transformation matrix Rc is block diagonal with submatrices RB ∈ Rl×l.

3.2.2 Morley Triangle

Recall, that the two Morley triangles are generally not interpolation-affine equivalent, since the nor-

mal derivatives at edge midpoints are not full gradients. Accordingly, we have span(F∗(N)) ̸=
span(N̂), but only span(πF∗(N)) = span(πN̂). We can still construct a physical reference el-

ement by Lemma 3.3, but consequentially it is not interpolation equivalent to the reference finite

element.

The construction ofR however is more complicated. The idea is to use the finite dimensionality

of P ′ to extend N to a completed set Nc, such that span(F∗(Nc)) = span(N̂c) holds. By the same

arguments as for Hermite element we have a matrix Rc such that F−1
∗ (N̂c)Rc = Nc. The entries

of Rc are given in Table 3.1b. Afterwards, we remove the additional degrees of freedom from the

transformed vector.

We require the nodes δτi
mi

, wheremi is the midpoint of the ith edge and τi is the tangential to the

ith edge. With the completed degrees of freedom at the edge midpoints containing the information

of the full gradient, they can now be related to the push forwards of the reference finite element.

In this case, the simple rule

p′
(
a+ b

2

)
= 1
a+ b

(p(a) − p(b)) ∀p ∈ P2 ([a, b]) (3.2)

is used to create a matrix D ∈ R6×9 that transforms the original node vector

N = [δv0 δv1 δv2 δ
ν0
m0 δ

ν1
m1 δ

ν2
m2]

to the extended node vector

Nc = [δv0 δv1 δv2 ∇ν0,τ0
m0 ∇ν1,τ1

m1 ∇ν2,τ2
m2].

28

3 Transforming Finite Elements

To be precise, the rule (3.2) for a tangential derivative δτi
mi

can be expressed in terms of degrees

of freedom, that lie on the ith edge

πδτi
mi

= 1
li

(πδvk
− πδvl

), (3.3)

where the ith edge has length li and ranges from the vertex vk to the vertex vl. Note, that (3.3) only

holds in P ′, but not in Ck
b

′. By using this rule to transform the degrees of freedom we obtain a finite

element by Lemma 3.3, that is not interpolation equivalent to the reference element.

We have

Nc = ND

with

D =

1 0 0 0 0 0 −l−1
2 0 −l−1

3

0 1 0 0 −l−1
1 0 0 0 l−1

3

0 0 1 0 l−1
1 0 l−1

2 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0

.

After transforming the extended node set, only the required nodes are selected by a binary matrix

E ∈ { 0, 1 }dim(Nc)×dim(N), containing ones at the main diagonal entries that correspond to the

indices of the functionals in Nc that are to remain in N .

The final transformation matrix R is given by

R = DRcE. (3.4)

3.2.3 Argyris Triangle

In principle, the approach for the Argyris element is the same as for the Morley element. A family of

Argyris finite elements over a triangulation Th is not interpolation-affine, again due to the presence

of normal derivative degrees of freedom at the edge midpoints.

The completed set of degrees of freedom can be obtained via a rule for the tangential derivative at

the edge midpoints by argument from interpolation theory, similar to (3.2).

In order to map the three unique elements of the Hessian matrix one has to apply the chain rule twice

and summarize the contributions in a matrix Θ. For an affine mapping F : T → T̂ , (x, y) 7→ (x̂, ŷ),

29

3 Transforming Finite Elements

l ∈ N n ∈ N l F−1
∗ (n̂)RB

1 δvi δv̂i

2 ∇vi ∇̂v̂iJ
−1
vi

3 △vi △̂v̂iΘ
2 ∇νiτi

mi
∇̂ν̂iτ̂i

m̂i
ĜiJ

−1
mi
Gi

Table 3.2: Completed global degrees of freedom of the Argyris element and their relation to the push
forward of the completed reference degrees of freedom.

one can omit the second derivatives of F and obtains

Θ =

∂x̂
∂x

2 ∂x̂
∂x

∂x̂
∂y

∂x̂
∂y

2

2∂x̂
∂x

∂ŷ
∂x

∂x̂
∂x

∂ŷ
∂y + ∂x̂

∂y
∂ŷ
∂x 2∂x̂

∂y
∂ŷ
∂y

∂ŷ
∂x

2 ∂ŷ
∂x

∂ŷ
∂y

∂ŷ
∂y

2

 . (3.5)

For non-affine mappings, one has to incorporate the second derivatives of F together with the gradi-

ent degrees of freedom at each vertex.

The relations between the completed physical degrees of freedom and the push-forwards of refer-

ence degrees of freedom is summarized in Section 3.2.3.

3.2.4 Orientation of Normal Derivatives

For the transformations of the Morley and Argyris element above, we so far concentrated on the

mapping of a single finite element onto the reference element. In this section, we discuss a compa-

bility conditions between neighboring physical finite elements.

To construct the global space in the manner of Section 2.3, one has to identify the normal derivative

degrees of freedom at each edge shared by two triangles. This requires the two finite elements to

agree on the orientation of their normal vectors.

A common strategy to ensure this is to introduce a global numbering of vertices in the triangu-

lation. The tangential of an edge is then defined as the normalized vector pointing from the vertex

with the lower index to the vertex with the higher index and finally the normal vector of the edge

is defined as the rotated tangential. Revisiting Section 3.2.2 and Section 3.2.3, the relations given

there still hold, if the normal and tangential vectors are correctly oriented throughout the family.

Another approach to this practical problem is to define νi as the outer normal vector of the

respective triangle, ti as its rotation, compute R as presented above and use an oriented transforma-

tion matrix Ro = OR. Here O is the identity matrix with diagonal entries −1 in those rows, that

correspond to normal degrees of freedom that should be oriented inwards.

Note that the orientation is a non-local information, in the sense that it cannot be computed in

30

3 Transforming Finite Elements

routines that work on a single physical triangle, at least not without evaluating the global numbering.

However, it can be computed and stored once, for example at the time of creation of the global basis

object, and later be accessed efficiently.

3.3 Strong Enforcement of Essential Boundary Conditions

The construction of conforming spaces is the most straightforward way to enforce essential boundary

conditions. Recall from Section 2.5, that in order to do so, we require MΓ ⊂ M , a subset of the

global degrees of freedom, that is used to encode the boundary conditions.

This set MΓ has to be chosen such that the basis Φ0 of the discrete space obeying the homogeneous

boundary is given by Φ0 = Φ \ {ϕm ∈ Φ : m ∈ MΓ }, where Φ is the basis of the discrete space

without boundary conditions. In the following, we consider Dirichlet boundary conditions on Γ,

i.e., Φ0 := {ϕ ∈ Φ : ϕ|Γ = 0 }, but the discussion can be straightforwardly extended to clamped

boundary conditions or boundary conditions on the union of a subset of boundary elements.

As usual, we switch from global to local perspective. For each finite element in the family

whose domain T intersects with the boundary, we consider the subset NΓ ⊂ NT of the degrees of

freedom, defined by NΓ = {n ∈ NT : ∃m ∈ MΓ with m|Ck
b(T) = n }. For implementational

purposes, the goal is to constructNΓ for each element, such that we can constructMΓ as their union.

Note, that for finite elements of Lagrange type, NΓ contains all degrees of freedom located on Γ∩T .

However, generally and particularly for finite elements of Hermite type, this is not the case.

Furthermore, for finite elements with derivative degrees of freedom, the suitable choice for NΓ

is not always a subset ofNT . Consider for example in the standard definition of the Hermite element,

where the derivatives are evaluated in the directions of the global coordinate axes. Additionally

assume, that T and Γ are such, that v1 and v2 are the endpoints of an edge e ∈ T ∩ Γ. Then for

i ∈ { 1, 2 }, the degree of freedom δw
vi

is only an element of P (T ∩ Γ)′, if w is tangential to e at

vi. Consequentially, the set { δv1 , δw
v1 , δv2 , δw

v2 } does only specify the values of a cubic polynomial

along e and thus would be a suitable choice for NΓ, if w is tangential to e. Thus, if neither of the

coordinate directions x and y is tangential to e, there is no suitable choice forNΓ. One could use the

whole gradient at v1 and v2, in order to implicitly set δτe
v1 and δτe

v2 , but if either v1 or v2 is not a corner,

this leads to a discrete boundary condition that the true solution does not necessarily fulfill. In other

words, the interpolation properties on the elements intersecting the boundary are lost and decrease

(or even total loss) of convergence is to be expected. By Céa’s lemma, this translates directly into

the convergence of the finite element method.

The consequence of the discussion above is that one can only construct Dirichlet condition con-

forming subspaces using standard Hermite elements by the means developed so far, if the boundary

is aligned to the coordinate axes. Note that this is trivially given for one-dimensional domains. In

the two-dimensional case, one can use the theory established in the previous sections to define finite

31

3 Transforming Finite Elements

elements with grid aligned derivative degrees of freedom at the boundary. For every vertex v at

the boundary with tangentials τ1 and τ2 and normal ν, instead of the gradient ∇v the grid aligned

Hermite element contains the degrees of freedom ∇τ1,τ2
v , if τ1 and τ2 are linearly independent, or

∇τ1,ν
v , if v is a vertex on the interior of a straight boundary segment as in the example above. The

approach can be straightforwardly extended to the Argyris element by replacing △v with △τ1,τ2
v or

△τ1,ν
v .

The degrees of freedomNt of the axis aligned Hermite element can simply be constructed from

the usual Hermite element by

Nt = N

1 0 0 0 0 0 0
0 (v1w1) 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 (v2w2) 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 (v3w3) 0
0 0 0 0 0 0 1

, (3.6)

where (viwi) is the matrix with the two directions at the ith vertex as columns. In three dimensions,

the situation is less clear, since a vertex at the boundary has generally arbitrarily many tangentials.

In principle, a similar approach could be implemented, that iterates over the tangentials, adds them

to the direction set if linear independent and afterwards fills the direction set with a normal vector if

needed.

Using this tangential and normal degrees of freedom, the set NΓ of degrees of freedom used to

construct the Dirichlet condition conforming subspace contains all degrees of freedom located on

the boundary, which are either function evaluations or tangential derivatives. The concrete choices

of NΓ for the Hermite and Argyris element are listed in Table 3.3. Not contained in this table are

fourth order problems with simply supported boundary conditions, since there we have the same

situation as for second order problems with Dirichlet conditions. Note, that with a more precise

distinction of degrees of freedom, one can also give a set NΓ,T ⊂ NΓ, a subset that only contains

those degrees of freedom needed to incorporate the respective boundary condition locally on each

element T . The global set can still be constructed byMΓ =
⋃

T ∈Th
NΓ,T . This allows one to include

different boundary conditions on different parts of Γ, with one exception. When discretizing a fourth

order problem with the Argyris element, a switch from clamped to free boundary conditions might

happen at a non-rectangular corner. In this case we would require the degrees of freedom at this

corner to be directed into the tangential τc and normal direction νc of the clamped part, such that

we can set δτc,νc
v to zero, without implying unnecessary conditions on the free part. However, with

the generic choice of directions described above the degrees of freedom would be directed into the

32

3 Transforming Finite Elements

Element Condition straight boundary corner

Hermite Dirichlet δv δ
τ
v δv δ

τ1
v δτ2

v

Argyris Dirichlet δv δ
τ
v δ

ττ
v δv δ

τ1
v δτ2

v δτ1τ1
v δτ2τ2

v

Argyris Clamped δv δ
τ
v δ

ττ
v δν

v δ
ντ
v Nv

Table 3.3: Elements of NΓ located at a vertex v for Dirichlet or clamped boundary conditions. Nv

is the set of all degrees of freedom located at a vertex v.

direction of the tangentials to both boundary segments meeting at the corner, and thus we would

have to set the whole Hessian to zero in order to set the second normal derivative. Consequentially,

for problems with such a switch, one needs to define a basis with directional derivatives that depart

from the generic choice in this corner.

Note, that the choice of the vector (v,w) for each vertex is again a non-local property, since is

only can be computed by the information obtained from the two triangle with boundary edges, that

intersect at the respective vertex. Together with the orientation of the normal vectors, this motivates

the implementation of a structure holding these non-local information for each element, as will be

proposed in Section 4.2.1.

Remark 3.1 (Scope of the tangential approach). The presented approach has some drawbacks that

should be mentioned.

As a first, it does require the boundary data β, that encodes the boundary condition with some

differential operator B in the form B(u) = β on Γ, to be defined on a neighborhood of Γ, such that

all derivatives can be evaluated.

Secondly, clamped boundary conditions are often given in a form that separates the condition

on function values from the condition on the normal derivative. However, the intersection of the two

sets of degrees of freedom needed to incorporate those conditions is not necessarily empty. Take for

example a problem with clamped boundary conditions in the form of

u = f on Γ (3.7)

∂νu = g on Γ, (3.8)

that is to be discretized with the Argyris element. At a corner v0 of the domain, enforcing (3.7) re-

quires setting δτ0
v0 and δτ1

v0 , but so does enforcing (3.8). In order to construct the boundary interpolant

uhc as presented in Section 2.5, we have to evaluatem(h) for allm ∈ MΓ for a function h satisfying

h = f , ∂νh = g on Γ.

Clearly such a function h, that encodes the data for all boundary conditions, is not trivially given

33

3 Transforming Finite Elements

for many problem settings. However, the method is applicable to all problem settings where the

boundary data is defined by the traces of some function h. Also, one might argue, that problems,

where such h does not exist, are not well-defined in a strong sense.

Finally, since the grid aligned nodal basis involves the inverse of (viwi), numerical issues can

arise, when the two tangential vectors become close to parallel. Hence, the grid aligned finite

elements should be used carefully, when approximating a boundary with very small but nonzero

curvature.

34

4 Implementation

4 Implementation

4.1 Dune

DUNE, the Distributed and Unified Numerics Environment [Blatt et al., 2016], is a modular C++

framework aiming at flexible but easy implementation of finite element, as well as finite volume

and finite difference Methods. This chapter mainly aims at the description of the implementation

of the three types of finite elements discussed in the previous chapters. To do so, first some of the

most important interfaces of DUNE are introduced. However, a complete description of DUNE and

its capabilities is out of the scope of this thesis. For a thorough introduction the reader is referred to

[Sander, 2020].

Throughout DUNE, little to no inheritance is used. Instead, DUNE uses a template based Duck

typing approach. This means, that interfaces are only defined as concepts, i.e., a description of

method signatures and exported types a class has to provide in order to implement the interface.

However, it is not always checked that a class fulfills the whole interface, or that those methods

work as expected. The advantage of this duck typing approach is that the compiler knows the full

types at compile time, and can thus apply his full range of optimizations. At the same time, this

leads to generic routines that can be used by different types implementing the same interface, like

different finite elements implementing the LocalFiniteElement interface, detailed out below.

Before we can turn to the finite elements implemented in the context of this work, we have to discuss

some of the most important interfaces in DUNE.

4.1.1 The dune-core Modules

DUNE is structured in modules. The most important group of modules is called dune-core mod-

ules and covers elementary parts of the aforementioned methods.

In particular, dune-grid [Bastian et al., 2008a, Bastian et al., 2008b] provides the Grid in-

terface and some implementations of it. Additional modules provide more general types of grids or

wrap other grid managers. The capability of DUNE to provide a variety of different grid managers

through a common interface is one of its strengths. After creation of the Grid object, most of the

code will only get in contact with the GridView object. This is a immutable view on the grid,

allowing traversal over entities of all codimensions, that is triangles, edges and vertices in the case

35

4 Implementation

considered here. In other words, it models a triangulation Th, whereas the Grid models a family of

triangulations by offering refinement methods.

Structurally separated from the Grid and its elements is the interface to the reference element

and the mapping from the reference element onto the physical elements. All of this is contained in

the module dune-geometry, which also provides quadrature rules on the reference element.

As the arguably most important dune-core module in the context of this work, the module

dune-localfunctions provides the LocalFiniteElement interface, which mirrors the

definition of a reference finite element quite closely. It provides the means to evaluate the nodal

basis at a local point, that is, a point in the reference domain, and offers access to LocalInter-

polation objects, which model the nodal interpolation operator of a finite element. In Figure 4.1

the structure of LocalFiniteElement is presented. Along with the general interface, the mod-

ule provides a variety of classes fulfilling this interface, ranging from the classical Lagrange finite

elements to Hdiv conforming elements. So far however, it contains no finite element of class C1.

The module dune-istl [Blatt and Bastian, 2007] offers an abstract linear algebra environ-

ment, implementing solver and preconditioner routines to be used in sequential or distributed set-

tings.

Finally, the dune-core modules are completed by a module named dune-common, which

offers a collection of tools used in all other modules like the basic matrix and vector types, but also

the build system.

The other modules mostly fall into one of the following groups:

Grid modules As mentioned, many of the concrete implementation of the Grid interface have

their own module. Some implement the interface directly, some serve as adapters to third

party grid managers, and some are wrappers around other grid implementations.

Discretization modules These modules provide implementations of concrete discretization schemes

and methods. They vary in the type of methods implemented, degree of abstraction and other

aspects like the degree of parallelization.

Extension modules While some of them extend modules of the above listed groups, others provide

additional tools of varying complexity. Most notably, the module dune-typetree provides

tree structures, that can be evaluated at compile time and the dune-functions module

provides a first layer of abstraction, by formalizing global functions and finite element spaces.

Due to its significance, it will be discussed separately in the following chapter.

4.1.2 The dune-functions Module

The dune-functions module provides interfaces that connect localized (finite element) func-

tions and global functions defined over a grid. It therefore depends on dune-localfunctions

36

4 Implementation

Figure 4.1: Most important methods of the LocalFiniteElement interface. The concrete ar-
gument and return types for the methods can be statically obtained from the exported
Traits types.

and dune-grid and offers an implementational model of discrete function spaces. Together with

the dune-istl module, it completes the basic toolbox for finite element routines.

Interface for Functions As the name indicates, dune-functions provides an interface for

functions. It distinguishes between global functions, to be evaluated in global (physical) coordinates,

and local functions, to be evaluated on the reference element. This distinction sets the environment

for a consequential application of the reference paradigm, as introduced in Section 2.4. This section

briefly summarizes the interface, for more details, see [Engwer et al., 2017].

DifferentiableFunction The main interface for functions (either global or local) is the

class DifferentiableFunction<Range(Domain),DerivativeTraits>. It is

a wrapper class, that implements a type erasure, similar to std::function, but adapted

37

4 Implementation

to the mathematical setting. As indicated by the name, this interface models a differentiable

function f . In particular, it provides the evaluation operator

Range operator()(Domain const & x) const;

which accepts an argument x of type Domain and returns the result of f(x) as an object of

type Range. Those two types form the signature of the function and are given, together with

a type DerivativeTraits describing the hierarchy of types returned by the derivatives

of f , as template parameters. The derivative of f is obtained by the free function

auto derivative(DifferentiableFunction<...> const & f);

Note that there is no automatic differentiation, instead the user has to provide the derivatives

upon creation of the DifferentiableFunction.

LocalFunction A function defined on the reference element is modeled by the interface Lo-

calFunction1. Mathematically, for a given function f and a triangulation Th, it models

the set of pull-backs {F T
∗ (f)}T ∈Th

, where F T : T̂ → T is the invertible mapping from the

reference element to the physical element. It fulfills the DifferentiableFunction in-

terface, but additionally provides a method

bind(Element const& T);

which selects the concrete pullback. Calling the evaluation method before the bind method

is undefined behaviour.

Mathematically, the derivative DF∗(f) of a pull-back does not equal the pull-back of the

derivative F∗(Df). However, since DF∗(f) is rarely needed, the dune-functions mod-

ule opted for a mathematical inconsistency here, and so

derivative(LocalFunction<...> const & f);

returns F∗(Df).

Interface for Discrete Spaces The dune-functions interfaces of finite spaces model the

structure laid out in Section 2.3 quite closely. The distinction between the global perspective and

the local perspective is explicitly modeled by separation of interfaces. At the top of the hierarchy is

the GlobalBasis interface, which models the global basis Φ, obtained by combining local basis

functions across elements. Switching from global to local perspective is done by calling glob-

alBasis.localView(), which returns an object implementing the LocalView interface. It

provides all the methods needed to assemble the integrals over the reference domain T̂ . For more

1Strictly, the object described here is a GridViewFunction, which is a concept refining the more general concept
of a LocalFunction by only accepting the elements of a GridView. A LocalFunction would accept all
elements of suitable type, independent of whether the particular element is contained in a particular triangulation.

38

4 Implementation

details, for example on indexing strategies and more, see [Engwer et al., 2018]. The structure of the

interfaces explained below is sketched in Figure 4.2.

Figure 4.2: Broad structure of the dune-functions interfaces for finite element spaces. An
asterisk denotes variable cardinality of an aggregation.

GlobalBasis At the top of the hierarchy of interfaces in dune-functions is the Global-

Basis interface. A GlobalBasis models a discrete function space basis defined over a

GridView. It hands out a localized view on the basis, the LocalView, and manages the

construction of global indices. While one can use specific implementations of the Global-

Basis interface, DUNE provides a default implementation that relies on a PreBasis. In

the language of design patterns, the DefaultGlobalBasis offers a number of template

methods, while the PreBasis implements the hooks called by those methods.

PreBasis Global properties of a finite element space are essentially encoded in the implemen-

tations of the PreBasis interface. It provides methods to access the global information

needed to work with the values obtained from the finite elements. In particular, it provides

a size() method returning the number of global basis functions as well as the method in-

dices(...) used to assign a global numbering to the local basis functions. In other words,

when the PreBasis implementation assigns the same global index to two or more local basis

functions, it identifies their degrees of freedom in the manner of Section 2.3. Different im-

plementations of the interface can hence implement different finite element spaces using the

same LocalFiniteElement implementations, for example discontinuous and continuous

Lagrange finite element spaces.

LocalView Typical assembling routines traverse over the elements of the triangulation and as-

semble the subintegral on each element. The LocalView interface models the restriction of

39

4 Implementation

a global to an element and therefore everything needed for the assembling of the integral over

this element.

In particular, it offers access to the basis tree, explained below, by the method tree() and

provides with the method index(Sizetype i) the mapping from the local index of a

reference basisfunction to a global (multi-) index of the corresponding global basis function

needed to specify the correct entry in the linear equation system.

Similar to the LocalFunction interface, the LocalView has to be bound to an element

e of the GridView via the method bind(Element const& e) in order to be usable.

This method start a chain of calls to various variations of bind(...) methods in potentially

all objects, to which the LocalView indirectly offers access. This includes all Nodes in

the Basistree, and the corresponding LocalFiniteElement objects they hold. This

call chain, called binding, is a central concept in the dune-functions interface. It allows

the implementations to collect expensive computations in a method that should only be called

once per element when iterating over a triangulation.

Basistree The basistree 2 returned by the method localView.tree() models a hierarchy

of finite elements that form the (physical) reference finite element. For a scalarvalued basis,

for example to be used for discretizing the Poisson equation, this tree only contains one node.

For vectorvalued finite element spaces, mixed methods and so on, the tree contains more than

one basis. LeafNodes are (mostly scalar) finite elements while inner nodes can be either

power nodes, containing multiple child nodes of the same type, or composite nodes, con-

taining child nodes of different types.

Take for example the Taylor-Hood element of degree k, used for discretization of the Stokes

equations. It contains a scalar Lagrange basis of degree k for the pressure and a vectorvalued

Lagrange basis of degree k+ 1 for the velocity. The corresponding tree would be a compos-

ite node of a Lagrange node of degree k and a power node of a Lagrange node of degree

k + 1.

LeafNode LeafNodes of the tree offer the finiteElement() method which returns an ob-

ject implementing the LocalFiniteElement interface. Additionally, they offer a method

localIndex(Sizetype i) with returns the local index of their ith basis function in the

root tree. The returned value can then be mapped to the global index by localView.index(Sizetype

j).

Note, that the LeafNode method finiteElement() does not have to return a object of a

class defined in dune-localfunctions but rather an object of a class that fulfills the interface.

2To precise, the method returns the root of said basistree

40

4 Implementation

It is hence a suitable place to return transformed finite elements. An example is the class Global-

ValuedLocalFiniteElement used to implement finite elements which utilize a range space

transformation, like the Piola transformation in case of the Nédélec element and others. While

the class implements the LocalFiniteElement interface, it is itself a wrapper around a corre-

sponding class from dune-localfunctions. Without going into the details here, it is to be

mentioned that this class served as a orientation for the classes implemented for the finite elements

described in Section 3.2. It is possible to implement those finite elements using GlobalValued-

LocalFiniteElement as well, but the class lacks the possibility to cache the transformation

for multiple evaluations on the same element, which is considered necessary given the expensive

construction of the transformation matrices.

4.2 Implemented Elements

We present a module named dune-c1elements3, which contains the implementations of the

finite elements we discussed in previous chapters. It is an extension module for dune-functions.

As such, it depends on dune-functions and its dependencies, namely the dune-coremodules

and dune-typetree.

As pointed out, the appropriate point to implement transformed finite elements is the return type of

the finiteElement() method. For finite elements using linear transformations of the reference

nodal basis, this will be an object of the class LinearTransformedLocalFiniteElement.

4.2.1 The LinearTranformedLocalFiniteElement Class

As the name indicates, this class models the linear transformation of a finite element on the reference

element, as discussed in Chapter 3. It is reusable in the sense, that all implementations use variations

of it by supplying different template parameters. Therefore, it is a template class in a C++ sense, but

also in the sense of design patterns. The class declaration reads

template <typename LinearTransformator,

typename LocalFiniteElement,

typename Element>

class LinearTransformedLocalFiniteElement;

The template parameters mirror the general approach of the class. They encode any informa-

tion on the actual finite elements and their transformation, while the LinearTransformedLo-

calFiniteElement class wraps them and provides the LocalFiniteElement interface to

be used by higher level code like assembling routines.

The first template parameter is a class LinearTransformator, which, in the language of Sec-

3Available at https://gitlab.dune-project.org/maik.porrmann/dune-c1elements

41

https://gitlab.dune-project.org/maik.porrmann/dune-c1elements

4 Implementation

tion 3.1, models the transformation from the reference finite element to the physical reference finite

element. This transformation is objectified and the corresponding object is included in the binding

process. This allows the aforementioned caching of the transformation matrix, which is filled upon

the call to bind(...) and reused for multiple evaluation calls on the same element.

The second template argument is the type of the reference finite element. The LinearTrans-

formedLocalFiniteElement class holds a pointer to the reference finite element and access

its methods to evaluate the reference nodal basis and to forward the LocalKey objects for each

degree of freedom.

Lastly, the classes are templated by the type of the element that they can be bound to4.

Evaluation of the Nodal Basis The LocalBasis interface from dune-localfunctions

does not grant access to single basis functions of a finite element, but only allows evaluation of the

whole basis altogether. This means that the implementation of the evaluation of the transformed

basis simply is a two-step procedure. First, the reference basis Ψ̂ is evaluated at a point x, then the

return values are computed by a matrix vector multiplication RΨ̂(x). Note that since the dune-

istl interface of a matrix vector multiplication does not mandate the vector to be a vector of

scalars, but only to be a vector of objects, which themselves implement vector space operations, this

approach works for the evaluation of the Jacobians and Hessians of the basis functions identically.

Accordingly, the LinearTransformator class does not implement different methods for those

cases, but simply one method that accepts vectors of vectors or vectors of matrices as well, which

mirrors the mathematical property of a linear transformation of basis functions.

Non-local Information As mentioned at various points in Chapter 3, the implemented elements

require a certain amount of non-local information, that is information which is not obtainable from

one physical element or from the reference element. This includes

• the orientation of normal vectors for each edge,

• the directions of derivatives used as degrees of freedom,

• the set NΓ,T of degrees of freedom to be used when incorporating essential boundary condi-

tions on an element T ∈ Th.

This information is collected upon the creation of the PreBasis, saved in a dedicated structure,

called ElementInformation, and passed down from the LeafNode to the LinearTrans-

formator and the LocalFiniteElement objects during the binding process. Note that there

is not direct way to access this information, except for the information, whether a specific degree of

freedom is contained in NΓ,T . This access will be discussed in Section 4.3.

4This is actually the concrete type of the implementation and differs for different grid managers

42

4 Implementation

Interpolation Traditionally in DUNE, the global interpolation routine uses the LocalInterpo-

lation object, which models the nodal interpolation operator of the reference finite element and

is obtained from the LocalFiniteElement. In the linearly transformed case however, this ap-

proach only mirrors the mathematical framework correctly, if the physical reference element and the

reference finite element are interpolation equivalent. In our case, this is only true for the Hermite

element.

To account for the lack of interpolation equivalency properly in the class structure and also be-

cause this allows a more efficient implementation, the LinearTransformator class can export

a GlobalInterpolation class, which is included in the binding process and is similar to the

LocalInterpolation interface, meaning it implements a method

template <class F, class C>

interpolate(F const & f, std::vector<C> & out);

which fills the coefficient vector out with (n(f))n∈F∗(N) for a LocalFunction f. However,

since the degrees of freedom contain the evaluation of derivatives, the object f to be interpolated

has to offer the amount of derivatives needed by the respective finite elements nodal interpolation

operator. This is a violation of the LocalInterpolation interface, which mandates the in-

terpolate(f,out) method to work if f only provides the evaluation operator.

The structure of the LinearTransformedLocalFiniteElement class and the interplay

with the LinearTransformator interface, as discussed below, is sketched in Figure 4.3.

4.2.2 The LinearTransformator Interface

In contrast to the template class LinearTranformedLocalFiniteElement, the LinearTrans-

formator is an interface, which is implemented by a class for every finite element we considered.

It provides the methods and classes to be used by the template class LinearTranformedLo-

calFiniteElement. Most parts of the interface have already been mentioned. For complete-

ness, they are listed here again.

• It sets up the transformation upon a call to bind(Element const& e, ElementIn-

formation const& eInfo).

• It applies the linear transformation on a vector of scalars, vectors or matrices via the ap-

ply(vector const& in, vector& out) method.

• It exports the class ElementInformation.

• It exports the class GlobalInterpolation.

43

4 Implementation

4.2.3 Concrete Implementations

With interfaces explained in the previous chapters, the concrete implementation for each of the

transformed finite elements is given by the following classes, here named by the interface they

implement. The concrete classes in the module are prefixed by the name of the finite element.

• The classes to implement the LocalFiniteElement interface, modeling the reference

finite element. This amounts to a class LocalBasis, which allows the evaluation of nodal

basis functions and their derivatives, a class LocalInterpolation which models the

reference nodal interpolation operator, a class LocalCoefficients, which provides the

LocalKey for each degree of freedom, and lastly a class LocalFiniteElement offering

access to the objects above.

• A class implementing the PreBasis interface. Additionally to the aforementioned encoding

of global properties, this class also collects non-local information upon creation and holds a

map which assigns each element of the GridView its ElementInformation object. For

the finite elements implemented so far, this map is objectified by a class ElementInfor-

mationMap, which is however not part of the public interface.

• The Node class mainly connects the different classes. Most importantly, it defines the correct

return type of the finiteElement() method. Furthermore, during binding, the Node

adds the ElementInformation object for the respective element as well as the reference

finite element to the argument list when calling the bind(...) methods of the transformed

finite element.

• The largest interface to fulfill is the LinearTransformator. Almost all the other classes

are parametrized with this class, mostly to get the types it exports, but also, because the

transformation is at the center of the mathematical theory and turns the other classes into a

working implementation of a transformed finite element space.

• As a very last point to note, all finite elements offer a factory method, like the method her-

mite<dim>() for the Hermite element, which returns a PreBasisFactory. This factory

object can be used with a GridView object to create a global basis, for example:

auto preBasisFactory = hermite<dim>();

auto globalBasis = makeBasis(preBasisFactory,gridView);

The object globalBasis offers the GlobalBasis interface and models a Hermite finite

element space in dim dimensions.

Summarizing the implemented interfaces, we state, that the new finite elements can be used straight-

forward in any assembling routine and interpolation routine, provided the former avoids caching and

44

4 Implementation

the latter hands down a function object that is differentiable appropriately many times. A proposal

implementation of such a method in contained in the module. Discretization modules, that want

to include our module, would have to adapt their interpolation routine as well as their interface for

Dirichlet or generally essential boundary conditions, as discussed below.

4.3 Essential Boundary Conditions

The design of an interface that allows a simple incorporation of different classes of essential bound-

ary conditions might be the most critical part of this implementation. This is due to several reasons.

First of all, the finite elements as well as the LinearTransformedLocalFiniteElement

class form an extension to the dune-functions module. In contrast to that, the interface for

boundary conditions generally is part of the more high level discretization modules. Consequentially,

there is no official interface for boundary conditions throughout the DUNE world. Furthermore, the

exemplary implementation given in [Sander, 2020], which is in fact used with some modification by

some discretization modules, uses all degrees of freedom on the boundary to incorporate Dirichlet

conditions. As discussed in Section 3.3, this is not possible for the finite elements of Hermite type.

In order to allow the construction of boundary condition conforming spaces, the implementa-

tions provide methods to answer the question, whether a specific degree of freedom is contained in

the set NΓ,T for Dirichtlet or clamped boundary conditions on a triangle T . Recall that NΓ,T does

not contain degrees of freedom, that are needed to incorporate the boundary condition on a neighbor-

ing element. Therefore, including different boundary conditions on different parts of the boundary

can be implemented straightforwardly, with the mentioned exception of a switch from clamped to

free conditions at a non-rectangular vertex.

Note, that these methods are not part of the official DUNE interface, and so there was no a priori

suitable place to implement them. As of now, they are part of the class LinearTransformed-

LocalCoefficients, an object of which is obtainable from the LinearTransformedLo-

calFiniteElement class. It implements the LocalCoefficients interface, which usually

only provides the LocalKey objects for each degree of freedom. The LinearTransformed-

LocalCoefficients class provides two additional methods, namely

bool isDirichlet(size_t i) const;

bool isClamped(size_t i) const;

which return true iff the ith degree of freedom is contained in NΓ,T for the respective kind of

boundary condition. Internally, the class accesses the ElementInformation object it is bound

to, which can implement a corresponding method, whose result is forwarded. If the ElementIn-

formation class does not implement such a method, the methods above always return true.

45

4 Implementation

Figure 4.3: Class diagram for linear transformed finite elements. The upper part is specific for each
element, i.e., there is a class HermitePreBasis, a class ArgyrisPreBasis, and
so on. The classes in the lower part are reusable. Template parameters are written in
dashed boxes of each class. Note, that this diagram omits a great number of methods, all
type information for methods as well as some template parameters like those for Range
and Domain.

46

5 Numerical Experiments

5 Numerical Experiments

This section contains a number of numerical experiments of increasing complexity, aiming to demon-

strate the capabilities of the implemented finite elements. At first, the properties of the global in-

terpolation operators are verified, that is, the global interpolation should be (numerically) exact for

polynomials up to the respective polynomial degree k of the finite element, and show an interpo-

lation error in terms of the L2-norm of order hk+1 for higher degrees. Secondly, the implemented

finite elements are used to discretize a number of suitable boundary value problems, ranging from a

Reaction-Diffusion equation with Neumann boundary conditions as the simplest case to the clamped

plate problem as a classical example of a fourth order problem.

Throughout this chapter, the problems are solved on a series of uniform red refinements of an

initial grid. Whenever easily possible, a fully perturbed grid, that is a grid obtained from a uniform

square grid by a perturbation of all vertex positions, is used. In some cases, manufacturing a solution

is easier on a rectangular boundary, in those cases only the position of the inner vertex is perturbed.

Both grids are shown in Figure 5.1.

5.1 Interpolation

As a first step, we consider the nodal interpolant as given in Definition 2.5. The theoretical inter-

polation estimates for interpolation involving derivative degrees of freedom are of the same quality

as those for Lagrange interpolation, as detailed out in [Ciarlet and Raviart, 1972], i.e., so long as

we have a unisolvent set of functionals on (a superspace of) a polynomial space of degree k, the L2

interpolation error for suitable functions is of order hk+1. However, since the global interpolation

operator for elements of Hermite type maps into a strict subspace of the range of the interpolation

operator of Lagrange finite elements, the error is expected to be higher in absolute terms. Further-

more, for both types of interpolation, the interpolation trivially fulfills v − Ihv ≡ 0 for all v ∈ Vh

and since the global polynomial space Pl(Ω) is a subspace of Vh for l ≤ k, the interpolation is exact

in those cases. The interpolation errors for the different finite elements are plotted in Figure 5.2 for

the one-dimensional case and in Figure 5.3 for two dimensions, each accompanied by the error for

Lagrange finite elements of the same degree. They show the expected behavior described above, i.e.,

(numerical) exactness for polynomials of less or equal degree, respectively, as well as the same order

of convergence for the general case, albeit generally a higher error, as the Lagrange interpolation

47

5 Numerical Experiments

(a) Square grid (b) Perturbed grid

Figure 5.1: Grids used for numerical experiments.

operators.

5.2 Second Order Problems

As the most simple example, we consider a second order problem with Neumann conditions. This

avoids any difficulties in the construction of boundary condition conforming subspaces, since we

have natural boundary conditions. We compare the error ∥u− uh∥1,2,Ω obtained by a standard finite

element routine using Hermite elements, Argyris elements and Lagrange elements of degree 3 and

5.

Example 5.1 (Reaction Diffusion Equation with Neumann Conditions). We manufacture a strong

solution u(x, y) = xn + yn for some n ∈ N with n > 1. The right hand side of the strong form is

chosen as

f(x, y) = −(n− 1)n
(
xn−2 + yn−2

)
+ xn + yn,

such that u solves the weak problem∫
Ω

∇u∇v +
∫

Ω
uv =

∫
Ω
fv +

∫
Γ
v∂νu ∀ v ∈ H1(Ω), (5.1)

for some domain Ω with boundary Γ.

The errornorms for Example 5.1 solved on the fully perturbed grid are depicted in Figure 5.4.

48

5 Numerical Experiments

1.00000.25000.0625
h

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

1e-04

||p
−
I h

p
|| 0

,2
,Ω

hermite

lagrange3

O(h 4)

(a) deg(p) = 3

1.00000.25000.0625
h

1e-08

1e-06

1e-04

1e-02

||p
−
I h

p
|| 0

,2
,Ω

hermite

lagrange3

O(h 4)

(b) deg(p) = 4

Figure 5.2: Interpolation error ∥p− Ihp∥L2 for one-dimensional Hermite element and Lagrange el-
ement of degree 3 and a polynomial p.

We find that the Hermite and the Argyris elements approach their theoretically optimal convergence

rate, with an error mildly higher than the Lagrange solution of respectively same degree. It seems

like the higher error in interpolation carries over to the boundary value problem, as expected by the

definition of the discretization error given by Céa’s lemma, even though the difference between the

Lagrange element of degree 5 and the Argyris element is smaller than the difference in interpolation.

For an example that involves the boundary condition conforming spaces, consider the Poisson

equation with Dirichlet boundary conditions. As discussed in Section 3.3, for the Hermite and the

Argyris element, they can be enforced in a strong sense, by constructing a discrete space that obeys

the boundary conditions, or in a weak sense via Nitsche’s method.

Example 5.2 (Poisson equation with Dirichlet Boundary Conditions). The weak formulation of the

Poisson problem with Dirichlet conditions is given by

Find u ∈ H1
D(Ω) such that∫

Ω
∇u∇v =

∫
Ω
fv ∀ v ∈ H1

0(Ω), (5.2)

where H1
D := { v ∈ H1 : v|γ = uD}. If u solves (5.2), it also solves the Nitsche formulation

Find u ∈ H1(Ω) such that∫
Ω

∇u∇v −
∫

Γ
v∂νu−

∫
Γ
(u− uD)∂νv + γ

∫
Γ
(u− uD)v =

∫
Ω
fv ∀ v ∈ H1(Ω), (5.3)

where γ > 0 is a parameter.

As before, a solution u(x, y) = xn + yn is prescribed and the problem to be solved is obtained by

49

5 Numerical Experiments

0.77800.19450.0486
h

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

1e-04

1e-02

||p
−
I h

p
|| 0

,2
,Ω

(a) deg(p) = 2

morley

hermite

lagrange3

argyris

lagrange5

O(h 3)

O(h 4)

O(h 6)
0.77800.19450.0486

h

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

1e-04

1e-02

||p
−
I h

p
|| 0

,2
,Ω

(b) deg(p) = 3

0.77800.19450.0486
h

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

1e-04

1e-02

||p
−
I h

p
|| 0

,2
,Ω

(c) deg(p) = 4

morley

hermite

lagrange3

argyris

lagrange5

O(h 3)

O(h 4)

O(h 6)
0.77800.19450.0486

h

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

1e-04

1e-02

||p
−
I h

p
|| 0

,2
,Ω

(d) deg(p) = 5

0.77800.19450.0486
h

1e-14

1e-12

1e-10

1e-08

1e-06

1e-04

1e-02

||p
−
I h

p
|| 0

,2
,Ω

(e) deg(p) = 6

morley

hermite

lagrange3

argyris

lagrange5

O(h 3)

O(h 4)

O(h 6)
0.77800.19450.0486

h

1e-14

1e-12

1e-10

1e-08

1e-06

1e-04

1e-02

||p
−
I h

p
|| 0

,2
,Ω

(f) p(x, y) = sin(xy)

Figure 5.3: Interpolation error ∥p− Ihp∥L2 for two-dimensional finite elements. From (a) to (e), p
is a polynomial, while for (f) we interpolate a trigonometric function.

50

5 Numerical Experiments

0.77800.19450.04860.0122
h

1e-12

1e-10

1e-08

1e-06

1e-04

1e-02

||u
h
−
u
|| 1

,2
,Ω

hermite

lagrange3

argyris

lagrange5

O(h 3)

O(h 5)

Figure 5.4: H1-Error for a Reaction-diffusion equation with Neumann boundary conditions

0.72140.18040.0451
h

1e-10

1e-08

1e-06

1e-04

1e-02

1

||u
h
−

u
|| 1

,2
,Ω

(a) Poisson equation on a square domain.

hermite

hermiteNitsche

lagrange3

argyris

argyrisNitsche

lagrange5

O(h 3)

O(h 5)

0.77800.19450.04860.0122
h

1e-10

1e-08

1e-06

1e-04

1e-02

1

||u
h
−

u
|| 1

,2
,Ω

(b) Poisson equation on the fully perturbed
grid. Here the tangential degrees of free-
dom are used.

Figure 5.5: L2-Error of two different approaches on Dirichlet boundary conditions. For the Nitsche
approach, the parameter η was set to 20.

setting f(x, y) = −(n− 1)n
(
xn−2 + yn−2).

The convergence plot for Example 5.2 solved on the two aforementioned grids is shown in

Figure 5.5. Several observations can be made. As a first, this experiment confirms the approach

of tangential derivative degrees of freedom, since solving the problem on the fully perturbed grid,

where the tangential derivative degrees of freedom are used, does not worsen the convergence qual-

itatively. Secondly, while the results achieved by Nitsche’s method overall show an optimal order

of convergence, it seems slightly less stable and in terms of the H1-error, strongly enforced bound-

ary conditions yield a mildly smaller error. Interestingly, the L2-error for the Argyris element was

slightly smaller for Nitsche’s method. However, we omit the plot here. As a third observation, both

the Hermite and the Argyris element yield the same order of convergence as the Lagrange elements

of respectively same degree, again with a small difference in absolute error in favor of the Lagrange

elements (both in terms of the L2 and H1 norm).

51

5 Numerical Experiments

5.3 Fourth Order Problems

After verifying, that the implemented finite elements can be used for second order boundary value

problems, we now turn to fourth order problems, as this is after all the primary use case. Typically,

for fourth order problems, one obtains a weak formulation in H2, and since for Ω ⊂ Rd, d = 1, 2,

H2 (Ω) is compactly embedded in C1(Ω̄), one has to use finite elements of class C1 to construct

conforming discrete spaces.

Of the implemented elements, only the one-dimensional Hermite element and the Argyris ele-

ment for the two-dimensional case are of class C1 and thus generally suitable for the discretization

of fourth order boundary value problems. The Morley element is suitable for a nonconforming dis-

cretization for some cases, the example here is the clamped plate problem. However, neither the two

nor the three-dimensional cubic Hermite are suitable for higher order problems.

In order to allow a comparison to an alternative approach, we introduce the C0 interior penalty

approach. In principle, the idea is to use standard Lagrange finite elements, but to modify the

variational problem by including terms that penalize discontinuities of the gradient over the edges of

the triangulation. This approach has been analyzed in [Brenner and Sung, 2005] and forms, together

with mixed methods, the main alternative to finite elements of class C1.

5.3.1 C0 interior Penalty Approach

For completeness, we quote Lemma 5 and its setup from [Brenner and Sung, 2005]1:

Consider the following variational problem

Given F ∈ H−1(Ω), find u ∈ H2
0(Ω) such that (5.4)

a(u, v) = F (v) ∀ v ∈ H2
0(Ω),

where

a(w, v) =
∫

Ω

(
D2w : D2v + β(x)∇w · ∇v

)
dx ∀w, v ∈ H2(Ω)

D2w : D2v =
2∑

i,j=1
wxixjvxixj . (5.5)

Define the jump of the gradient

s
∂v

∂n

{
:=

∂vT+

∂ne

∣∣∣∣
e

−
∂vT−

∂ne

∣∣∣∣
e
, (5.6)

where e ⊂ Ω is the shared edge of T+ ∈ Th and T− ∈ Th and ne is the unit normal vector pointing

1In fact, Brenner and Sung give a more general version, applicable to polygonal domains. To ease notation, we restrict
ourselves to a version only applicable to convex polygonal domains

52

5 Numerical Experiments

from T− to T+. If e ⊂ Γ, define
q

∂v
∂n

y
:= − ∂v

∂ne
with ne as the unit outward normal vector.

Similarly, inside Ω,
{{

∂2w
∂n2

}}
:= 1

2

[
∂2wT+

∂n2
e

+ ∂2wT−
∂n2

e

]
and for edges on the boundary

{{
∂2w
∂n2

}}
:=

∂2w
∂n2

e

∣∣∣
e
.

Lemma 5.1. For F ∈ H1(Ω), the solution u of (5.4) satisfies

Ah(u, v) = F (v) ∀ v ∈ Vh, (5.7)

where

Ah(w, v) = ah(w, v) + bh(w, v) + ηch(w, v),

ah(w, v) =
∑

T ∈Th

∫
T

(
D2w : D2v + β(x)∇w · ∇v

)
dx,

bh(w, v) =
∑

e∈Eh

∫
e

({{
∂2w

∂n2

}}s
∂v

∂n

{
+
{{
∂2v

∂n2

}}s
∂w

∂n

{)
ds,

ch(w, v) =
∑

e∈Eh

1
|e|

∫
e

s
∂w

∂n

{ s
∂v

∂n

{
ds.

Solving (5.4) with a C0 interior penalty approach then means solving (5.7) using H1 conforming

finite elements. The penalty parameter η has to be chosen, such that the method converges. Its lower

bound only depends on the shape regularity of Th.

These tools at hand, the performance of the implemented C1 finite elements is now investigated

for simple fourth order problems and compared to the penalty approach with Lagrange elements of

comparable degree.

5.3.2 Biharmonic Equation

In the strong form, the biharmonic equation is given by

∆∆u = f in Ω (5.8)

together with suitable boundary conditions.

In the usual manner, multiplication by a testfunction v, integrating over the domain and integration

by parts (applied twice) yield the corresponding weak problem∫
Ω

∆u∆v −
∫

Γ
∆u∂νv +

∫
Γ
v∂ν∆u =

∫
Ω
fv ∀ v ∈ V . (5.9)

This problem can be solved for several different types of boundary conditions, two of which are

considered here:

1. Simply supported boundary conditions with natural boundary conditions on ∆u with bound-

53

5 Numerical Experiments

ary data g and h, i.e.,

u(x) = g(x), v(x) = 0 ∀x ∈ Γ ∀ v ∈ V (5.10)

∆u(x) = h(x) ∀x ∈ Γ.

2. Clamped boundary conditions, where both the displacement and rotation at the boundary are

fully specified, with boundary data g and h, i.e.,

u(x) = g(x), v(x) = 0, ∂νu = h(x), ∂νv = 0 ∀x ∈ Γ ∀ v ∈ V . (5.11)

Both types of boundary conditions remove the space of linear polynomials from the testspace, which

is a necessary condition for the coercivity of the bilinear form.

Example 5.3 (Biharmonic equation with simply supported boundary conditions). For f(x, y) =
4π4 sin(πx) sin(πy),

u(x, y) = sin(πx) sin(πy)

is the unique solution of Problem 5.9 with inhomogeneous boundary conditions in form of 5.10,

where the boundary data is defined by the traces of u.

The convergence plot for Example 5.3 solved on the perturbed grid is depicted in Figure 5.6a.

Example 5.4 (Biharmonic equation with clamped boundary conditions). The testproblem with ho-

mogeneous clamped boundary conditions in the form of 5.11 and its solution is given by

Ω = (0, 1) × (0, 1)

f(x, y) = 8π4
(
1 − 3 sin2(πx) − 3 sin2(πy) + 8 sin2(πx) sin2(πy)

)
u(x, y) = sin2(πx) sin2(πy).

The convergence plot for Example 5.4 solved on the square grid is shown in Figure 5.6b.

For both types of boundary conditions, we note that both the Argyris element and the Lagrange

element with penalty approach converge at optimal order, until the result is perturbed by numerical

errors. In Figure 5.6a we see that this happens earlier for the Lagrange element than for the Argyris

element. This might be due to the high values in the stabilization terms in (5.7). However, it is

reasonable to state, that the both methods give qualitatively equal results for these experiments.

As a last example of the biharmonic equation we solve a weak formulation, for which the

Morley element provides a suitable nonconforming discretization. To achieve this, we add some

terms to (5.9), which sum up to zero when integrated by parts. The modified variational problem

54

5 Numerical Experiments

0.77800.19450.0486
h

1e-08

1e-06

1e-04

1e-02
||u

h
−
u
|| 1

,2
,Ω

Argyris

Lagrange

O(h 5)

(a) Biharmonic equation with inhomogeneous simply
supported boundary conditions.

0.72140.18040.0451
h

1e-08

1e-06

1e-04

1e-02

||u
h
−
u
|| 1

,2
,Ω

Argyris

Lagrange

O(h 5)

(b) Biharmonic equation with homogeneous clamped
boundary conditions.

Figure 5.6: Convergence behavior for the biharmonic equation with two different boundary condi-
tions.

with clamped boundary conditions on Γ reads:∫
Ω

∆u∆v − (1 − ν)
∫

Ω
2∂xxu∂yyv + 2∂yyu∂xxv − 4∂xyu∂xyv =

∫
Ω
fv ∀ v ∈ V .

This problem is often called clamped plate problem, as it models the vertical displacement u of

a clamped plate, that is, displacement and rotation at the boundary are prescribed, under a force

f . Here ν is a physical constant called Poisson’s ratio and its physically meaningful values are in

[0, 1/2], whereas mathematically we obtain a coercive form for values 0 < ν < 1, see [Brenner and Scott, 2002].

We repeat Example 5.4 with the modified form. The convergence plot for the Morley and Argyris

element are shown in Figure 5.7a. We see, that L2 error for the Morley element converges at second

order, which is in fact the expected order of convergence ([Kirby, 2018]). However, the H1 error also

converges at second order. To emphasize that for the Argyris element the differentiated treatment

of the degrees of freedom at the boundary is necessary, Figure 5.7b shows the lack of convergence

if one mistakenly uses all boundary degrees of freedom to incorporate the homogeneous clamped

conditions. Note that one could also solve the clamped plate problem with simply supported bound-

ary conditions. However, their natural part would differ from (5.10) by a term induced through the

modification.

Runtime comparison

Additional to the convergence behavior of a finite element method, the time spend for computation

is also an important factor. In a sequential setup, a finite element method can broadly be split into

two parts, firstly the assembling of the linear system and secondly the solving of the same.

55

5 Numerical Experiments

0.72140.18040.0451
h

1e-08

1e-06

1e-04

1e-02

1
er
ro
r

Argyris−L2

Morley−L2

Argyris−H1

Morley−H1

O(h 2)

O(h 6)

(a) Clamped plate problem for ν = 0.25. The Morley
element converges at second order for both the L2

and H1 error.

0.72140.18040.0451
h

1e-06

1e-04

1e-02

1

||u
h
−
u
|| 0

,2
,Ω

Argyris

Morley

O(h 2)

O(h 6)

(b) Loss of convergence when all boundary degrees
of freedom are set to zero.

Figure 5.7: Clamped plate problem, solved with Argyris and Morley elements.

5.3.1 Assembling time

For the comparison of the assembling time for say the Argyris element and the Lagrange element

of degree 5 we restrict ourselves to a straight forward implementation of the latter. In practice

however, affine equivalence is often exploited further by implementing optimizations like caching

of values of basisfunctions or even using a tabulator to precompute all values needed throughout

the assembling. Also, we need to distinguish between second and fourth order problems, since

for the latter an additional iteration over the edges of the triangulation is involved to assemble the

additional values of the C0 penalty approach. The assembling time for both cases is depicted in

Figure 5.8. For second order problems, it shows the expected behavior, namely longer computation

time for the linear transformed elements, as the additional transformation simply leads to additional

computations. For fourth order problems, we see that the cost of assembling the penalty is higher

than the cost of the transformation.

5.3.2 Solving time

A large part of the solving time depends on the size of the assembled matrix, that is, the dimension

of the discrete space. Since the Hermite and Argyris element feature multiple degrees of freedom in

vertices, for most refinement schemes their global bases should be strictly smaller than a Lagrange

basis of corresponding polynomial degree. For the discretizations used throughout this work, this

is confirmed in Figure 5.9. While the Morley element has the same amount of basis functions as

the Lagrange element of degree 2, the Hermite element has just slightly more than those and stays

well below the Lagrange element of degree 3. The Argyris element even has a similar amount of

56

5 Numerical Experiments

0.72140.18040.0451
h

1e-02

1

100
t

hermite

hermiteNitsche

lagrange3

argyris

argyrisNitsche

lagrange5

(a) Time for assembling of a second order problem.

0.72140.18040.0451
h

1

100

t

argyris

lagrange5

(b) Time for assembling of a fourth order problem.

Figure 5.8: Assembling time for (a) Example 2.19 and (b) Example 5.4. Note that the plot for the
fourth order problem contains one refinement step less, but reaches the same order of
magnitude.

basis functions as the Lagrange element of degree 3 for finer discretizations and is smaller than the

corresponding Lagrange element of degree 5 by about half an order of magnitude.

Note however, that this does not translate completely into runtime improvements, since global

basisfunctions located in vertices have a generally larger domain than those located on edges or

inside a triangle, which results in a less dense matrix. This is confirmed by Figure 5.10, where this

effect is especially visible for the direct solver. When using the iterative solver, the Argyris element

seems to be significantly faster than the Lagrange element of degree 5. However, since there are

many iterative methods and for this experiment no particular optimization in the choice of solver

happened, this result cannot be considered to be generally valid.

57

5 Numerical Experiments

0.72140.18040.04510.0113
h

100

1e4

1e+06

|Φ
|

morley

hermite

lagrange3

argyris

lagrange5

Figure 5.9: Number of global degrees of freedom for different finite element types on a series of red
refinements of the grids depicted in Figure 5.1.

0.72140.18040.0451
h

1e-02

1

t

hermite

lagrange3

argyris

lagrange5

0.72140.18040.0451
h

1e-02

1

100

t

hermite

hermiteNitsche

lagrange3

argyris

argyrisNitsche

lagrange5

Figure 5.10: Time in seconds for solving the linear equation system resulting from Example 2.19
with a direct solver (left) and an iterative solver (right). The iterative solver is a con-
jugated gradient descend method with a incomplete LU decomposition as a precondi-
tioner.

58

6 Föppl-von-Kármán Energy

6 Föppl-von-Kármán Energy

In this chapter, we discretize the minimization problem for a von-Kármán like energy. In order to

minimize this energy, we employ a gradient flow, which leads to two decoupled variational prob-

lems at each step, one of them containing a nonlinearity. Throughout this chapter, we follow the

discretization strategy and numerical experiments from [Bartels, 2017], who proposed the numerical

scheme in combination with Kirchhoff finite elements.

6.1 Problem setting

6.1.1 Variational Problems as Energy Minimization Problems

Many variational problems can be seen, or can be derived, as minimization problems. The quantity

to be minimized is called Energy E, is typically given in form of a functional and defined over some

suitable functionspace V .

Generalizing the rules from traditional Calculus, the minizer u := minv∈V E(v) obeys

E′(u)[v] = 0 ∀ v ∈ V , (6.1)

where E′ is the Fréchet derivative of E. If E′ is linear in both arguments and coercive, (6.1) has the

form of a variational problem in the sense of (2.1) and one can readily apply one of the approaches

laid out in the previous chapters.

If this is not the case, a common approach is to compute the gradient flow with respect to a

scalarproduct (·, ·)V on V :

(∂tut, v)V = −E′(ut)[v] ∀ v ∈ V . (6.2)

Time discretization then leads to a sequence (uti)i=1,...,n that converges to a local minimum of E, if

one exists and the initial solution is sufficiently close.

6.1.2 Von-Kármán Energies

Elasticity is a wide topic with many different models. We will consider an example from the class

of plate models, which describe a three-dimensional object, that is much smaller in one dimension

59

6 Föppl-von-Kármán Energy

than in the two others, as two-dimensional. They should be contrasted to shell models, which embed

the two-dimensional object in the three-dimensional space.

Consider a plate ω ⊂ R2 with thickness γ > 0. Typically, one is interested in the deformation

y : Ωγ := ω × (−γ/2, γ/2) → R3

that minimizes the elastic energy under a given force f. This energy is assumed to be represented by

a stored energy functional W , that, among other physical properties, only depends on the gradients

of y. The three-dimensional (hyper) elastic energy can thus be written as

E3d(y) =
∫

Ωγ

W (∇y)dx−
∫

Ωγ

f · ydx.

When including some more assumptions, like isotropy of the material, one can obtain more specific

energy functionals by rescaling of y and f in terms of γ. For a more detailed justification of the

von-Kármán energy (and other energies) we refer to [Ciarlet, 1988, Friesecke et al., 2006].

The energy in plate models generally contains both membrane and bending energies. When con-

sidering only one of those, one can eliminate the parameter γ completely. For an example, recall

the clamped plate model from Section 5.3, which contains only the bending energy. Von-Kármán

theories however, include both types of energy, and thus γ remains as a weight in the sum of two

energies. As a consequence, one can observe different phenomena depending on the choice of γ.

Without going further into the details of derivation, we state the energy to be considered:

E(u,w) = γ2

2

∫
ω

∣∣∣D2w
∣∣∣2 dx+ 1

2

∫
ω

|ε̃(u) + ∇w ⊗ ∇w|2 dx

−
∫

ω
g · udx−

∫
ω
fwdx. (6.3)

Here, u : ω → R2 is the in plane displacement and w : ω → R is the out of plane deflection, D2w is

the Hessian of w, ε̃(u) = ∇u + ∇uT twice the symmetric gradient and a ⊗ b = abT is the dyadic

product. The domain of E is a affine space A = A0 + (uD,wD) ⊂ H1(ω;R2) × H2(ω), where

A0 includes the homogeneous boundary conditions, while (uD,wD) satisfies the inhomogeneous

conditions. As common for plate bending problems, those boundary conditions have to be chosen,

such that we have a Korn inequality. In this case, we assume that

∥ũ∥H1 + ∥w̃∥H2 ≤ C(∥ε̃(ũ)∥ +
∥∥∥D2w̃

∥∥∥) ∀(ũ, w̃) ∈ A0. (6.4)

Boundary conditions for which (6.4) holds true are for example clamped conditions on a part of

∂ω with nonzero surface measure or simply supported boundary condition on the whole boundary,

which will be used in the examples in Section 6.2.

60

6 Föppl-von-Kármán Energy

6.1.3 Discrete Gradient Flow

The Frechet derivative of E is given by

E′(u,w)[y, z] = γ2(D2w,D2z) + 2(|∇w|2 ∇w + ε̃(u)∇w, ∇z) − (f , z)

+ (ε̃(u), ε̃(y)) + (∇w ⊗ ∇w, ε̃(y)) − (g, y) (6.5)

Given (6.4), it is clear, that ∥(u,w)∥A0
:=
√

∥ε̃(u)∥2 + ∥D2w∥2 is a norm on A0 and is induced by

the scalarproduct ((u,w), (y, z))A0
:= (D2w,D2z) +(ε̃(u), ε̃(y)). Exploiting the structure of (6.5)

one can separate the in plane and out of plane components and yields the gradient flow with respect

to (·, ·)A0 :

(D2∂tw,D2z) = − γ2(D2w,D2z) − 2(|∇w|2 ∇w, ∇z)

− 2(ε̃(u)∇w, ∇z) + (f , z), (6.6)

(ε̃(∂tu), ε̃(y)) = − (ε̃(u), ε̃(y)) − (∇w ⊗ ∇w, ε̃(y)) + (g, y). (6.7)

It remains to discretize the evolution. For the scheme proposed in [Bartels, 2017], this is achieved

by replacing the time derivatives with difference quotients

dtu
k = 1

τk

(
uk − uk−1

)
, dtw

k = 1
τk

(
wk − wk−1

)
,

and by exploitation of some properties of the discrete time derivatives and the structure of (6.6), they

yield

(D2dtw,D2z) = − γ2(D2wk,D2z) − 2(|∇wk|2∇wk, ∇z)

− 2(ε̃(uk−1)∇wk−1/2, ∇z) + (f , z), (6.8)

(ε̃(dtu)), ε̃(y)) = − (ε̃(uk), ε̃(y)) − (∇wk ⊗ ∇wk, ε̃(y)) + (g, y). (6.9)

For the details of derivation and concrete properties of the flow we refer to [Bartels, 2017], but note

that the flow is unconditionally stable and energy decreasing. The two equations are decoupled in

the sense that (6.8) does not involve uk. Hence, we can compute wk first and then uk, which avoids

a more complex mixed system.

Lastly it is to be mentioned, that (6.8) contains a nonlinear term and hence a limited number of New-

ton steps are applied to solve the equation. The Newton iteration causes a mild stability condition

on the step sizes τk.

Throughout the experiments in the following section, we use the scheme proposed, and deviate from

[Bartels, 2017] only in some ways. Firstly, we use the Argyris element presented in the previous

61

6 Föppl-von-Kármán Energy

chapters instead of the Kirchhoff element for deflection and a quintic Lagrange element instead of

a quadratic Lagrange element for displacement. This removes the need to define a discrete gradient

operator, which might lead to additional error sources. Secondly, since the computational effort

induced by the high polynomial degree prevents the usage of finer grids, we restrict ourselves with

coarser grids. Thirdly, we adapt some parameters, like step size and stopping criterions, which did

not allow the computation of relatively exact solutions on coarser grids.

6.2 Numerical Experiments

6.2.1 Experimental Rate of Convergence

First, we want to numerically investigate the performance of the method, in particular in com-

parison to the implementation with Kirchhoff elements. To do so, we follow example V.2 from

[Bartels, 2017], as cited below:

Example 6.1. Let γ = 1,ω = (0, 1) × (−1/2, 1/2) with clamped boundary conditions on ΓC = ∂ω

defined by traces of the functions

u(x, y) = 1
4

 0
−xy

 , w(x, y) = 1
2x

2 sin(y).

We have

g(x, y) = −1
2
(
−1 + 8x sin2(y) + 2x3(cos2(y) − sin2(y))

)
and

f(x, y) =γ2

2
(
−4 + x2

)
sin(y) − 1

4
(
−4xy cos(y) + 2(−x+ x3) sin(y)

)
− 1

4
(
24x2 − 4x4 sin3(y) + (18x4 − 3x6) sin(y) cos2(y)

)
.

We analyse the errors

δu = ∥ϵ̃(Ihu− uh)∥ , δw =
∥∥∥D2(Ihw − wh)

∥∥∥
for a series of l uniform red refinements of an initial triangulation, which divided ω into two triangles,

and for initial solutions given as small perturbation of the exact solutions.

The approximation with Kirchhoff elements showed a linear experimental order of convergence. For

the implementation with Argyris elements, the approximation errors are shown in Figure 6.1. We

observe an optimal rate of convergence in L2 norms and δw in the first few steps, after which it

62

6 Föppl-von-Kármán Energy

0.72140.18040.0451
h

1e-12

1e-10

1e-08

1e-06

1e-04

1e-02

||u− uh||L2

||̃ǫ(Ihu− uh)||L2

||w−wh||L2

||D 2(Ihw−wh)||L2

O(h 4)

O(h 5)

O(h 6)

Figure 6.1: Convergence plots for Example 6.1. For the first few triangulations, an almost optimal
rate of convergence is observed.

seems like the approximation is perturbed by numerical errors. Particularly interesting is that δu

also converges at sixth order, which is a priori unexpected. In absolute terms, the errors are much

smaller than the ones reported in [Bartels, 2017], which did not drop below 10−4 even for finer

triangulations. If we consider the approximation with Kirchhoff elements and quadratic Lagrange

elements for displacement as an finite element approximation of quadratic degree, then we can still

state, that the Argyris element with quintic Lagrange elements yields the same order of convergence

relative to the polynomial degree for deflection, and even a better relative convergence behavior for

the in plane displacement for this experiment.

6.2.2 Wrinkling Phenomena

As a last application, we try to produce folding and wrinkling patterns by simulating the von-Kármán

flow for smaller values of γ. Generally, the bending energy scales with γ3 while the membrane

energy scales with γ1, see [Friesecke et al., 2006]. For thinner plates and compressive boundary

conditions, we expect the emergence of folding and wrinkling phenomena, since membrane energy

dominates the bending terms.

We consider the following example, again following [Bartels, 2017]:

63

6 Föppl-von-Kármán Energy

Example 6.2. Let ω = (0, 1) × (−1/2, 1/2) and ΓC = { 0} × [−1/2, 1/2] and set f = g = 0 and

uD(x) =

 0
−x2/10

 , wD(x) = 0 (6.10)

for x = (x1,x2) ∈ ω.

The initial solution is given by the interpolant of

ũD(x) = uD(x), w̃d(x) = 1
2x

2
1(1 − x2

1) sin(4πx2).

The final configuration of the von-Kármán flow defined by Example 6.2 is depicted in Fig-

ure 6.2. Similar to the observations in [Bartels, 2017] we observe a dependency on the mesh size.

In our case, a mesh size h3 ≈ 2−3/
√

2 seems not sufficiently small to resolve the dynamic induced

by the small value of γ = 10−3. With an additional red refinement, we arrive at a discretization fine

enough to produce wrinkling. Compared to the results of the approach based on Kirchhoff elements

we note that the computed energy here is one to two orders of magnitude larger than the discretized

energy used in [Bartels, 2017]. It is unclear, whether our flow approximates an actually different

local minima or this difference is a result of the discretization via Kirchhoff elements and the corre-

sponding discrete gradient. Since the results look qualitatively similar, it is tempting to assume the

latter, but a detailed comparison of the computed solutions remains for future work.

64

6 Föppl-von-Kármán Energy

0.0e+00

6.0e-03

0.001

0.002

0.003

0.004

0.005

B
e
n
d
in

g
D

e
n
s
it
y

(a) For a 3 times refined triangulation the density of the bending energy
seems to accumulate around the edges.

0.0e+00

6.0e-03

0.001

0.002

0.003

0.004

0.005

B
e
n
d
in

g
D

e
n
s
it
y

(b) On the fourth refinement the edge accumulation is only present at edges
very close to the boundary and the expected wrinkles appear close to the
compressed boundary before with increasing distance they fade out into
a more coarse “folding” pattern.

Figure 6.2: Numerical Deformation for γ = 10−3 colored by bending energy density in the final
configuration of Example 6.2 solved on grids with meshsize (a) h3 ≈ 2−3/

√
2 and (b)

h4 ≈ 2−4/
√

2 (bottom).

65

7 Concluding Remarks

7 Concluding Remarks

So far, DUNE has lacked some historically famous examples of finite elements of class C1. We have

started to fill this gap by implementing some triangular examples of those, in particular the cubic

Hermite element in one dimensions and the quintic Argyris element in two dimensions, which give

DUNE users the possibility to solve fourth order problems with conforming finite element methods.

Additionally, the Morley triangle can be used for nonconforming methods. The implementation

provides special means to incorporate boundary conditions in a strong sense, as well as an adapted

global interpolation routine. For both cases, the interfaces of DUNE have been stretched to a certain

degree, and it should be noted, that the concrete implementions here might be subject to changes in

the future.

The implemented elements have been tested with a number of exemplary problems and the results

verified the theoretical convergence behavior throughout. We have also seen, that for fourth order

problems in two dimensions the Argyris element provides a qualitatively equal and possible more

efficient alternative when compared to the C0 interior penalty approach utilizing Lagrange finite

elements of equal polynomial degree. Of course, this high polynomial degree remains the main

disadvantage.

Furthermore, when using the Argyris element to solve an example of high complexity, namely the

gradient flow of a von-Kármán energy, we saw that the optimal convergence behavior goes through

the two-layered iterative scheme used to simulate the flow and to solve the non-linearity at each step.

This underlines the capability of the Argyris element to solve complex problems.

Future Work The module so far contains only the most common examples, namely the quintic

Argyris element, the cubic Hermite element, and the quadratic Morley element. All of those can be

generalized into families with higher polynomial degrees. In the case of the Morley element there

are even several families of Morley-like elements, like the family proposed in [Wang and Xu, 2013],

which gives nonconforming finite element spaces for elliptic problems of order 2m in Rn with

n ≥ m ≥ 1. A straightforward extension of the work presented here would be to expand the

module by implementing at least some members of some of those families. Additionally, so far

the Bell element as another famous example of C1 elements is missing and we have not considered

quadrilateral finite elements like the Bogner-Fox-Schmidt element at all.

As a general limitation, the Argyris element does not form hierarchical finite element spaces

66

7 Concluding Remarks

when constructed on a series of refinements. However, recently a modification of the Argyris ele-

ment has been proposed in [Carstensen and Hu, 2021], which overcomes this limitation by including

an additional basis function at newly created vertices. Implementing this variation would allow us-

ing it in multigrid methods, which might help to handle the computational effort resulting from the

high polynomial degree.

Finally, there are a number of applications to surface finite element methods to explore. The

dune modules dune-curvedgrid and dune-curvedgeometry form the basis of those meth-

ods in the DUNE world, by offering classes representing non-affine mappings for surfaces. Here the

surface mapping can be parametrized by finite element functions and one can easily imagine benefits,

if such a parametrization is differentiable. Additionally, given such a differentiable parametrization,

one could define the finite elements discussed in this work on such a surface. In this case, the major

theory of Chapter 3 would go through a generalization of affine equivalence to an equivalence under

diffeomorphisms, provided one has a suitable definition for the degrees of freedom, like for example

by replacing the normal by conormal derivatives. Technically problematic is the transformation of

the Argyris element, as this requires the second derivatives of the mapping, which are not provided

by the DUNE interface. Easier to implement is the Morley element, which would give the possibility

to implement shell theories. Of course, this would require careful numerical analysis of the prop-

erties of such finite elements on surfaces and the convergence of the resulting methods is far from

obvious.

67

Bibliography

Bibliography

[Bartels, 2017] Bartels, S. (2017). Numerical solution of a Föppl–von Kármán model. SIAM J.

Numer. Anal., 55(3):1505–1524.

[Bastian et al., 2008a] Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R.,

Ohlberger, M., and Sander, O. (2008a). A Generic Grid Interface for Parallel and Adaptive

Scientific Computing. Part II: Implementation and Tests in DUNE. Computing, 82(2–3):121–

138.

[Bastian et al., 2008b] Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Ohlberger, M.,

and Sander, O. (2008b). A Generic Grid Interface for Parallel and Adaptive Scientific Computing.

Part I: Abstract Framework. Computing, 82(2–3):103–119.

[Blatt and Bastian, 2007] Blatt, M. and Bastian, P. (2007). The iterative solver template library. In

Kagström, B., Elmroth, E., Dongarra, J., and Wasniewski, J., editors, Applied Parallel Computing

– State of the Art in Scientific Computing, pages 666–675, Berlin/Heidelberg. Springer.

[Blatt et al., 2016] Blatt, M., Burchardt, A., Dedner, A., Engwer, C., Fahlke, J., Flemisch, B., Gers-

bacher, C., Gräser, C., Gruber, F., Grüninger, C., Kempf, D., Klöfkorn, R., Malkmus, T., Müthing,

S., Nolte, M., Piatkowski, M., and Sander, O. (2016). The Distributed and Unified Numerics En-

vironment, Version 2.4. Archive of Numerical Software, 4(100):13–29.

[Brenner and Scott, 2002] Brenner, S. C. and Scott, L. R. (2002). The mathematical theory of fi-

nite element methods, volume 15 of Texts in Applied Mathematics. Springer-Verlag, New York,

second edition.

[Brenner and Sung, 2005] Brenner, S. C. and Sung, L.-Y. (2005). C 0 interior penalty methods

for fourth order elliptic boundary value problems on polygonal domains. Journal of Scientific

Computing, 22-23(1-3):83–118.

[Brezzi and Marini, 2013] Brezzi, F. and Marini, L. D. (2013). Virtual element methods for plate

bending problems. Computer Methods in Applied Mechanics and Engineering, 253:455–462.

[Carstensen and Hu, 2021] Carstensen, C. and Hu, J. (2021). Hierarchical argyris finite element

method for adaptive and multigrid algorithms. Computational Methods in Applied Mathematics,

21(3):529–556.

68

Bibliography

[Ciarlet, 1988] Ciarlet, P. (1988). Mathematical elasticity. North-Holland Sole distributors for the

U.S.A. and Canada, Elsevier Science Pub. Co, Amsterdam New York New York, N.Y., U.S.A.

[Ciarlet and Raviart, 1972] Ciarlet, P. G. and Raviart, P. A. (1972). General lagrange and hermite

interpolation in rn with applications to finite element methods. Archive for Rational Mechanics

and Analysis, 46:177–199.

[Ciarlet, P G, 1978] Ciarlet, P G (1978). The finite element method for elliptic problems. Studies in

Mathematics and Its Applications. North-Holland.

[Engwer et al., 2017] Engwer, C., Gräser, C., Müthing, S., and Sander, O. (2017). The interface for

functions in the dune-functions module. Archive of Numerical Software, Vol 5:No 1 (2017).

[Engwer et al., 2018] Engwer, C., Gräser, C., Müthing, S., and Sander, O. (2018). Function space

bases in the dune-functions module.

[Friesecke et al., 2006] Friesecke, G., James, R. D., and Müller, S. (2006). A hierarchy of plate

models derived from nonlinear elasticity by gamma-convergence. Archive for Rational Mechan-

ics and Analysis, 180(2):183–236.

[Girault and Scott, 2002] Girault, V. and Scott, L. R. (2002). Hermite interpolation of nonsmooth

functions preserving boundary conditions. Math. Comp., 71(239):1043–1074.

[Kirby, 2018] Kirby, R. C. (2018). A general approach to transforming finite elements. The SMAI

journal of computational mathematics, 4:197–224.

[Kirby and Mitchell, 2019] Kirby, R. C. and Mitchell, L. (2019). Code generation for generally

mapped finite elements. ACM Trans. Math. Softw., 45(4).

[Nitsche, 1971] Nitsche, J. (1971). Über ein variationsprinzip zur lösung von dirichlet-problemen

bei verwendung von teilräumen, die keinen randbedingungen unterworfen sind. Abhandlungen

aus dem Mathematischen Seminar der Universität Hamburg, 36(1):9–15.

[Sander, 2020] Sander, O. (2020). DUNE — The Distributed and Unified Numerics Environment.

Springer International Publishing.

[Wang and Xu, 2013] Wang, M. and Xu, J. (2013). Minimal finite element spaces for 2m-th-order

partial differential equations in Rn. Math. Comp., 82(281):25–43.

69

List of Figures

List of Figures

2.1 Cubic Lagrange and Hermite triangles . 13

2.2 Morley and Argyris triangles. 14

3.1 Transformation diagram . 27

4.1 LocalFiniteElement interface . 37

4.2 Interface for finite element spaces . 39

4.3 Class structure for Linear transformed finite elements 46

5.1 Grids. 48

5.2 Interpolation Error in 1d. 49

5.3 Interpolation Error in 2d . 50

5.4 Error for Reaction-Diffusion equation . 51

5.5 Error for Poisson equation. 51

5.7 Clamped plate problem, solved with Argyris and Morley elements. 56

5.8 Assembling time for (a) Example 2.19 and (b) Example 5.4. Note that the plot for

the fourth order problem contains one refinement step less, but reaches the same

order of magnitude. 57

5.9 Number of global degrees of freedom for different finite element types on a series

of red refinements of the grids depicted in Figure 5.1. 58

5.10 Time in seconds for solving the linear equation system resulting from Example 2.19

with a direct solver (left) and an iterative solver (right). The iterative solver is a

conjugated gradient descend method with a incomplete LU decomposition as a pre-

conditioner. 58

6.1 Experimental order of Convergence for von-Kármán flow. 63

6.2 Density of Bending energy and wrinkling pattern 65

70

List of Tables

List of Tables

2.1 Notation for degrees of freedom . 12

3.1 Transformation rules for Hermite and Morley degrees of freedom 28

3.2 Transformation rules for Argyris degrees of freedom 30

3.3 Subsets of boundary dofs for different boundary conditions 33

71

	Title page
	Contents
	Introduction
	Preliminaries and Notation

	Finite Element Methods
	A Short Introduction to Finite Element Methods
	Finite Elements
	Finite Element Spaces
	Consequences of Affine Equivalence
	Boundary Value Problems

	Transforming Finite Elements
	Transformation Theory
	Construction of the Basis Transformation Matrix
	Strong Enforcement of Essential Boundary Conditions

	Implementation
	Dune
	Implemented Elements
	Essential Boundary Conditions

	Numerical Experiments
	Interpolation
	Second Order Problems
	Fourth Order Problems

	Föppl-von-Kármán Energy
	Problem setting
	Numerical Experiments

	Concluding Remarks

		2022-06-15T11:37:54+0200
	Maik Porrmann

