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Abstract

In the context of additive manufacturing, the adjustment of process data to individual geometric features offers the potential to further
increase manufacturing speed and quality, while being widely underestimated in recent research. Unfortunately, the current non-
uniform data handling in the CAD-CAM-Link results in a downstream data loss, that prevents the availability of geometric knowledge
from being present at any time to apply the more advanced approaches of adaptive slicing and tool path generation. Automatic
detection of various geometric entities would be beneficial for classifying partial surfaces and volumetric ranges to gain customized
informational insights of geometric parameterization. In this work, an enhanced approach of geometric deep learning for the analysis
of voxelized engineering parts will be presented to align the inference representations to modeling paradigms for complex design
models like architected materials. Although the baseline voxel representation offers distinct advantages in detection accuracy, it
comes with an adversely large memory footprint. The geometry discretization leads to high resolutions needed to capture various
detail levels that prevent the analysis of fine-grained objects. To achieve efficient usage of three-dimensional (3D) deep learning
techniques, we propose a 3D-convolutional neural network-based feature recognition approach using signed distance field data to
limit the needed resolution. These implicit geometric data leverage the advantages of volumetric convolution while alleviating their
disadvantages through the use of the continuous signed distance function. When analyzing computer-aided design data for geometric
primitive features, a common application task in surface reconstruction of reverse engineering the proposed methodology, achieves
a detection accuracy that is in line with the accuracy values achieved by comparable algorithms. This enables the recognition of fine-
grained surface instances. The unambiguous shape information extracted could be used in subsequent adaptive slicing algorithms
to achieve individual geometry-based hatch generation.
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1. Introduction
From an industrial perspective, the advancing technology of
additive manufacturing (AM) has revolutionized manufacturing
procedures (Gao et al., 2015). Because of the condensed man-
ufacturing on a single machine, the simplification of design
considerations for AM has led to apparent freedom in the design
phase of computer-aided design (CAD). To deal with downsides
like anisotropic material properties, shape deviations, or residual
stresses, novel, and unresolved problems have occurred along the
manufacturing planning workflow (Livesu et al., 2017). Especially
with the application of computer-aided manufacturing tools
(CAM) in the product development pipeline, common procedures
of AM (Fig. 1) are following various requirements that pursue
different producibility objectives. Every substep in CAM for AM,
which consists of tessellation, part orientation, support structure,
slicing and machine tool path generation (TPG), is bound to
the physical boundary conditions of the actually chosen AM
technology.

The goal of having a ready-to-produce digital object at hand is
driven by different main approaches: first, modifying the geomet-
ric design by topology optimization (van de Ven et al., 2018); sec-
ond, compensation of manufacturing process restrictions by part
orientation and support structures (Langelaar, 2018); and third,
optimizing the actual manufacturing data and machine instruc-
tions by slicing and TPG (Dolenc & Mäkelä, 1994; Jiang & Ma, 2020;
Mohan Pandey et al., 2003). Only the latter two promise design
freedom and form fidelity by maxing out the limits of the AM man-
ufacturing technology constraints.

1.1. Adaptive slicing for AM of architected
materials

Since specific design characterizations are often missing, the gen-
eration of tool paths and slicing heights of a part model in two-
dimensional (2D) layers is a multi-criteria consideration. The op-
timal parametrization is frequently determined by experienced
expert knowledge or if no know-how is available through a trial-
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Figure 1: Extended product development pipeline in AM illustrating the integration of a geometric reasoning system in the CAD-CAM-Link.
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Figure 2: Exemplary adaptions of slicing and TPG of a design model in
connection to machine instruction modifications for AM.

and-error process. This workflow is feasible for the mass produc-
tion of similar parts, but the development of manufacturing-as-a-
services by contract manufacturers demands customized compo-
nents in small batch sizes. The approach of adaptive slicing (Mani
et al., 1999) offers opportunities to adjust to varying shape char-
acteristics on a per-layer basis to reduce the stair-stepping effects
(Fig. 2). By determining different machine instructions for each
region of interest (ROI), diverse algorithms infer the optimized in-
dividual slicing heights for a given structure and adjust the layer
parameters accordingly. The majority of the current algorithms
rely on some geometry metric that either incorporates surface
slope e.g., cusp angle/downskin angle (Cormier et al., 2000), cur-
vature radii (Hope et al., 1997), or volumetric differences (Alexa et
al., 2017), which are bound to a global tolerated threshold. Espe-
cially region-based adaptive slicing and TPG are of great impor-
tance when printing architected materials like micro-structures,
meta-materials, and scaffolds (see Fig. 3). Applying these archi-
tected materials is advantageous when creating lightweight struc-
tures by adapting stress and strain properties or optimizing heat
transfer rates by a higher surface-to-volume ratio. Also in medical
applications such as tissue-engineered bone scaffolds, architected
materials facilitate tissue growth (Lehder et al., 2021) by using
triply periodic minimal surfaces (TPMSs) such as Gyroid (Fig. 3c)
or Split P (Fig. 3d).

Given the geometric complexity of the architected materials,
the design process has substantially changed. Since the additional
geometric constraints provide and ensure technical feasibility,
the often considered low-restricted manufacturing process in AM
must also fulfill multiple supplementary requirements, which re-
stricts the design freedom (Tamburrino et al., 2018). This manifests
in the inability to design architected materials with the common
geometric modeling tools in engineering design. The boundary

representation (B-Rep)-oriented modeling in CAD limits the gener-
ation of complex geometries because the geometric manipulation
is inefficiently handled (Liu et al., 2021; Tamburrino et al., 2018).
Also, B-Rep-based modeling kernels are numerically fragile deal-
ing with model intersections of Boolean operations and imposed
subsurface constraints (Hoffmann, 2001; Nguyen et al., 2021). As
a consequence, hybrid modeling techniques are on the rise using
volumetric representations like voxel fields to design solid models
(Gao et al., 2015, Section 3).

Manufacturing structures with relatively high geometric com-
plexity in a region-based manner relies on explicit geometry
knowledge of the processed region and exact machining calibra-
tion. For example, in Korn et al. (2018) an adapted scan strat-
egy and slicing for lattice structures in laser beam melting is
presented. Since geometric details are near the scan resolution,
the needed geometric specification has to be passed through all
downstream processes of the design phase, to adapt the scan
strategy to specific strut diameters of the lattice structure. But if
the level of detail is not known beforehand, or the topology in-
formation is just not available, meaningful ROIs need to be de-
rived automatically to adapt to thin-walled sections or acute angle
corners. Common segmentation techniques like curvature-based
regression are not applicable, because an unambiguous estima-
tion of the threshold of continuous limits is difficult regarding the
complexity of architected materials. In addition, multi-criteria de-
cisions like material thickness, manufacturing resolution, and tol-
erances must be considered, so higher order recognition processes
are needed at any point of the development pipeline to adapt slic-
ing and TPG.

1.2. Advantages of geometric adaptivity
A causal purpose of all geometric adaptivity approaches remains
the discovery of an optimal trade-off between fabrication time,
structural stability, and surface quality with simultaneous shape
fidelity of a producible part, called boundary conditions. Only in
connection with a sufficient design knowledge of the geometric
structures and their topology at any processing stage, a fully cus-
tomized and optimal machine instruction parametrization can be
implemented. To substitute manual expert analysis steps, a fully
automated geometric reasoning system would be beneficial (Yang
et al., 2017), which analyzes printing parts in regard to geomet-
ric features and categorical classifications in regard to recognized
ROIs. The optimal parameter settings specific to the given part
model could be established by a structure-to-property linkage (Qi
et al., 2019; Wang et al., 2020), which combines predictions results
of simulations of different CAE tools, manufacturing procedures
with their boundary conditions, and design rules by a unique ROI.

This study focuses on the geometry analyzing and recognition
subsystem and presents an approach based on convolutional neu-
ral networks (CNN; LeCun et al., 1989) used in deep learning (DL).
The goal is to incorporate intrinsic properties of the geometric fea-
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(a) (b) (c) (d) (e)

Figure 3: Architectured-materials types: (a) fluorite unit cell, (b) honey comb unit cell, (c) TPMS Gyroid, (d) TPMS Split P, and (e) Fraktale noise.
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Figure 4: Number of articles of Titel, Keyword, Abstract search in Scopus (https://www.scopus.com) grouped by year of publication with varying search
query terms for AM and ML.

tures, which compose the component they slice. These recogni-
tion results should reflect a superior understanding of the given
geometric entities of a part model, with possibilities to distinguish
the functional surfaces from negligible surface or volume areas.
An adaptive slicing and TPG leveraging this understanding could
not only optimize for global and overall manufacturing instruc-
tions but could also prioritize partial surfaces and volumes, which
have an operational priority (Chen et al., 2021) and recommend
manufacturing feature designs (Yao et al., 2017).

2. Related Work in Neural Geometry
Analysis
The adaptation of machine learning (ML) techniques has attracted
the interest of the AM research field for some time (Fig. 4), but the
main application area was focused on parameter estimation and
prediction of manufacturing properties (Qin et al., 2022; Sarkon et
al., 2022). Due to the progressive recognition rates of general ap-
plicable artificial neural networks (ANN) and DL (Dong et al., 2021)
the field of AM is increasingly turning to the use of learned repre-
sentations of geometric features. The finding of how the geometric
data source needs to be processed is often not a straightforward
selection of the DL network to choose (Guo et al., 2020). Unstruc-
tured point clouds (Qi et al., 2017) or free-form surfaces (Sharma
et al., 2020) require different network architectures than raster
graphics or voxel fields in the volumetric domain. Because of the
beneficial regular-grid-like structure that can be used directly, this
study focuses on processing voxel fields by CNNs. The learned
convolutional operation allows the extraction of abstract feature
maps that can represent any semantic class (Fig. 5). The advan-
tage is a simultaneous observation of global contextual charac-
teristics of geometry and its local neighborhood relations (Garcia-
Garcia et al., 2017) at the same time. In addition, when applying
CNNs, the geometric sampling densities of the analyzed geometry

need less consideration in data pre-processing than for unstruc-
tured point cloud networks (Lang et al., 2019; Takashima & Kanai,
2021; Wang et al., 2022).

High-level feature representations can be generated by a
multi-stage approach of repeated convolution and pooling layers,
whereby the activation maps count represents the unfolded fea-
ture characteristics. To reduce the computational complexity and
add transformation invariance to the trained network, pooling
layers downsample the activation maps. The subsequent inverse-
convolutional operation enlarges the compressed abstract feature
maps to the input size, which allows for semantic segmentation
tasks. Another approach to generate transformation invariance
is the atrous convolution, also called diluted convolution. It ad-
dresses the issue of spatial downsampling of pooling layers by
introducing a spacing between the processed values of the con-
volutional kernel at different rates (Chen et al., 2017).

Initially developed for image data by Ronneberger et al. (2015),
the processing manner of CNN semantic segmentation enables
a pixel- or voxel-wise evaluation for concurrent classification,
localization, and regression tasks. By transferring CNNs to a
3D approach (3D-CNN), “3D U-Net” (Çiçek et al., 2016), and “V-
Net” (Milletari et al., 2016) are using voxels as volumetric input
data. To gain more discriminative results with constant com-
putational costs and the reduced number of trainable parame-
ters, in Kamnitsas et al. (2017) and Dolz et al. (2017) dual path-
way networks are proposed. By processing multiple input scales,
a probability increase to recognize non-prominent structures is
obtained.

CNN-based approaches have been applied in the field of AM to a
diverse application set (Sarkon et al., 2022): Several approaches ad-
dress parameter estimations, forecasting (Silbernagel et al., 2019),
and build time estimation (Oh et al., 2021). Thermal deviation tol-
erancing is conducted to compensate them in the design phase
(Chowdhury & Anand, 2016; Zhu et al., 2018, 2020). Also, CNN im-
age segmentation is used to optimize parameter settings in man-
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Figure 6: Cross-sectional (a) binary and (b) SDF representation of a bold.
Signed distance values interpolated between nearest isosurface values

and farthest values . Outer positive values of SDF are clipped.

ufacturing processes (Li et al., 2021), to detect material defects on
layer by layer basis (Wong et al., 2020) or to perform stress dis-
tribution predictions by learning FEA simulations (Khadilkar et
al., 2019). Besides AM, rapid progress is made in computer-aided
engineering by using CNNs in similar applications areas. Either
machining feature recognition for CNC-manufacturing (Shi et al.,
2021; Zhang et al., 2018), object classification (Dekhtiar et al., 2018)
or automated obtaining and generating of numerous modeling
options in generative design (Oh et al., 2019; Yoo et al., 2021) are
currently investigated and further developed.

3. A Signed-Distance Field Approach
With respect to the advanced recognition capabilities of DL and
the changed design perspective with hybrid modeling, it is there-
fore proposed to base the recognition subsystem directly on a
voxel representation and apply 3D-CNN architectures. Neverthe-
less, using the rasterized geometry characterization in the form of
voxels, a common trade-off of all mentioned algorithms is the spa-
tial aliasing effect. By the use of binary values (empty = 0, solid =
1), discrete density values (e.g., grayscales and floating-point val-
ues), or color descriptors, a low sampling resolution leads to indis-
tinguishable and vanishing fine-grained details (Fig. 6a). The prob-
lem with this naive approach is its dependency on discretization
accuracy, which leads to coarse surface representations. Recently
these discretization inaccuracies in volumetric modeling for AM
are be bypassed by using an implicit-based geometry representa-
tion, called signed distance field (SDF). SDFs are referred to as the
most anti-aliased representation of geometric objects in volumet-
ric grid processing (Jones et al., 2006) and allow efficient construc-
tive solid geometry operations. SDFs achieve subvoxel precision
and thereby very smooth surfaces and volumes, through value

interpolation (Bán & Valasek, 2020), storing the nearest surface
distance in each voxel cell (Fig. 6b).

An SDF is calculated by evaluating the continuous signed dis-
tance function for all points p of the SDF. This function dist(p) is
defined as follows:

dist(p) = sign(p) · min(|p − q|) (1)

with

sign(p) =
{

−1 if p ∈ �

1 else
(2)

where q is a point on the surface of the body and � is the set of all
points within the body. Consequently, the minimal distance to the
nearest surface is assigned to every point in the considered vol-
ume. Points within a body are identified by their negative signed
distance values, in contrast to the positive signed distance val-
ues of the points outside of a body. The exact volume boundary is
therefore represented as the isosurface by a zero-crossing of the
signed values. Especially in combination with level-set methods
and octree tree data structures, SDFs allow for very efficient com-
puting algorithms (Frisken et al., 2000; Museth, 2013), where values
only need to be calculated in the narrowband of the isosurface.

Implicit modeling by SDFs provides a toolset of high-level func-
tions that facilitate the robust creation of complex structures
for AM under varying material properties and global constraints
(Biswas et al., 2004). In Letov & Zhao (2022), a geometric mod-
eling framework is proposed for irregular lattice structure. Also,
implicit-based modeling is applied in contour representation in
process planning of AM and topology optimization of cellular
composites (Li et al., 2016), porous microstructures (Sivapuram et
al., (2016), octet-truss lattices (Kambampati et al., 2021; Nguyen
et al., 2022), or the design of structural optimized Voronoi struts
(Cheng et al., 2022). In the context of geometric analysis with DL,
SDFs are mainly used as output representations of CNNs instead
of using them as input values in supervised learning (Hou et al.,
2022; Liu et al., 2022b; Park et al., 2019). For example, in Fang et al.
(2021) and Xue et al. (2019) modified “U-Net” architectures are used
to infer 2D-SDF representations of a given organ from computed
tomography. The ability of SDFs to generate smooth continuous
surfaces is crucial for generating realistic representations of or-
ganic structures. A similar use case is the mesh reconstruction
from points of 3D geometries from 2D images, where a 3D-SDF is
generated through a single input image (Wang et al., 2020; Xu et
al., 2019). Thus, the corresponding depth information for a 2D im-
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age can be generated without additional depth sensor data (Lin et
al., 2020). Zhang et al. (2021) apply a learned SDF for multi-view-
reconstruction. In Matveev et al. (2022), a distance-to-feature map-
ping is inferred on 3D point or image-based patches to estimate
sharp geometric feature lines of components. Hou et al. (2022) pro-
poses the inference on an SDF for classifying brain biomarkers
(Yang et al., 2021). In conclusion, this study is to the best of the
author’s knowledge the first one to utilize 3D-CNNs for analyzing
geometries by input SDF values to infer higher level output prop-
erties of the analyzed design model for adaptive slicing and TPG
in AM.

With this SDF approach, the DL geometric reasoning system
could be grounded directly on the data representation that is
increasingly popular to model architected materials, addressing
the need for data-driven design strategies in AM (Zhang & Moon,
2021). In particular, the adaption and validation of the design and
process parameters can be executed on the same SDF field model.
The aforementioned structure-to-property would be explicitly de-
fined when for example regular-grid simulation techniques like
the lattice Boltzmann method are used. Therefore, the key objec-
tive of this study can be summarized as follows:

(i) The fundamental investigation of how SDF field values can
be incorporated into the recognition subsystem by DL. Aim-
ing to demonstrate whether beneficial recognition accura-
cies can be observed compared to the binary case for AM
applications.

(ii) An investigation of different 3D-CNN network architec-
tures and object scales, specifying the range of applications
in AM, to align the field resolution to the downstream man-
ufacturing resolution.

(iii) The definition of post-processing steps in part models to
improve the noisy output results of the artificial network
processing.

The actual investigation process is constrained by the condi-
tion of needing a learning setup that can be precisely validated.
Since no commonly accepted segmentation dataset for architec-
tural materials is available at the current stage of development,
the proposed SDF-3D-CNN-based approach is oriented to a gen-
eral reverse engineering (RE) task of surface reconstruction as an
exemplary application. Thus, the chosen alternative learning task
is defined as semantic segmentation of geometric primitives to
prove whether the SDF approach can identify geometric features
and various properties of local volumes with increased accuracy
compared to the binary voxel approach.

4. Method and Implementation Details
Following the current state of CNN development shown in Sec-
tion 2, three different baseline network architectures were im-
plemented to investigate and further develop these essential ap-
proaches. All architectures are based on learning convolutional
filters in 3D space, using 3 spatial dimensions (width, height, and
depth) and the SDF distance or the binary value (solid = 1, void =
−1) as the voxel element attribute.

The processed input SDF field section will be further referred to
as the observation tile. A certain resolution of the observation tile
is characterized by the edge length (EL) in voxels of the bounding
volume. Common resolutions applied in 3D-CNN-architectures
are typically 32 and 64 EL for full-voxel-based methods and up
to 256 EL for resource-efficient architectures (Riegler et al., 2016;
Wang et al., 2017). The promise of SDF values is the reduction of
the required observation tile resolution, to receive only an EL of

16 or 32 voxels. These tile sizes allow for simultaneous process-
ing of a 4096 or 32 768 voxels neighborhood, respectively, while
limiting the needed memory consumption. If the tile resolution is
sufficient for the recognition of fine-grained geometric primitives
compared to the standard data approaches needs to be evaluated
afterwards.

Based on the ideas of “3D U-Net” (Çiçek et al., 2016), the first ar-
chitecture (U-like), shown in Fig. 7a, represents the most straight-
forward approach to implement a neural segmentation of voxel
fields. The input data are initially handled by two consecutive 64-
filter convolutional layers, normalized through batch normaliza-
tion, and processed by a leaky ReLU activation. After the first fea-
ture extraction, the data are compressed through max-pooling to
the half tile size. At this stage, the feature extraction is repeated
through two consecutive 128-filter convolutional layers to encode
the input features into a distinct latent space. In the decoding sec-
tion of U-like, the inverse convolutional operation enlarges the 83

feature maps back to a size of 323. By skip connections from the
extraction stage, the symmetric encoder and decoder are com-
bined by concatenation to regain spatial attributes, lost due to
the pooling operation. After the following convolutional layers,
the softmax layer transfers the results to a voxel-wise multi-class
classification of the geometric primitives, which represents the
semantic segmentation of the input features. The final inference
can be derived by picking the geometric primitive with the high-
est probability for each individual voxel. Compared to the stan-
dard implementation, the number of trainable parameters is de-
creased, which allows for a much more efficient learning phase.

Being oriented to combine coarse and fine-grained information,
while creating a larger receptive field by multi-scale processing,
the second implemented architecture M-like is inspired by Kam-
nitsas et al. (2017) and Dolz et al. (2017). The major characteris-
tic is the dual-path architecture (Fig. 7b) including different ob-
servation scales. A second path handles with a doubled EL an
expanded area around the observation tile of the first path. By
having a lower resolution, in which only every second voxel per
tile axis is resolved, the computational cost of the eight times
larger volume is limited. This implementation induces volume
equality and simplifies the concatenation of the two paths. The
residual and not mentioned parts of M-like are identical to U-
like. In contrast to Kamnitsas et al. (2017) and Dolz et al. (2017)
the need for a subsequent interpolation is prevented because the
resulting output resolution corresponds to the observation tile
resolution.

The third evaluated architecture (Fig. 8) is based on Wang &
Lu (2018), using the atrous convolutional operation (Fig. 5). The
features are encoded by a twofold spatial dense extraction (SDE)
stage, consisting of stacked atrous residual blocks (ARB). The ARBs
layers represent the major processing step for the multi-scale ex-
traction of high-level semantics, reducing the computing com-
plexity and generating specific activation maps. Then the relevant
features are selected and converted into the segmentation of the
given volume through the so-called attention feature aggregation
block (AFA). Further details of the inner structure of the architec-
ture can be found in Wang & Lu (2018).

Most components, which could be resolved in the engineer-
ing and AM context, require more than 163 voxels to analyze the
entire geometry. Therefore a sliding window algorithm (Fig. 9) is
used to stepwise scan the whole geometry with the trained CNNs.
This enables the voxel resolution of the component model to
be set to a specific size so that an observation tile always pro-
cesses the same dimensions and allows the analysis of arbitrary
large components while keeping the graphic processing unit loads
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Figure 7: An overview over the (a) U-like and (b) M-like architectures: The input observation tile of size 32 shown in blue cyan is passed through
layers of convolution + batch normalization + leaky ReLU depicted in green , max-pooling in orange , skip connection in white , and a softmax
layer in red to infer the segmented output tile in violet . All feature maps are annotated with their respective dimension.

small enough to still be used on average personal computers.
Only the adjacent geometric structure and not the overall vol-
ume of the analyzed component should be necessary for this
task.

A hierarchical structure of an octree (Fig. 9a) is used to pick
out only windows that intersect with the SDF’s isosurface. These
individual windows are only processed in the narrowband of
the isosurface and specify the center of the observation tile
by the window corners (Fig. 9b). Because the padding mech-
anism in CNNs is leading to border effects (Alsallakh et al.,
2020), these are to be bypassed by an overlapping sliding win-
dows approach by a factor of 2∗μ (Fig. 9c). Whereby, μ speci-
fies the number of border voxels affected by incorrect detections
and τ the resulting voxel size of the octree. After the learning
phase, μ needs to be studied in more detail to obtain an optimal
estimate.

5. Experiments for Primitive Type Detection
5.1. Dataset preparation and learning approach
Overall, seven different types of geometric primitives will be in-
vestigated in this study and included in the training dataset. These
ruled primitive types are plane, sphere, cylinder, conus, and torus
(Fig. 10), which are the basis of reconstructing design models of
captured 3D-scans in RE. A comprehensive overview of the RE pro-
cessing pipeline and applied methods can be found in Buonamici
et al. (2018), while Berger et al. (2017) and Kaiser et al. (2019) provide
a deeper understanding of surface reconstruction and primitive
detection. In the field of DL, several primitive detection methods
have been proposed (Li et al., 2019; Sharma et al., 2020; Yan et al.,
2021), which provide an extensive baseline for comparison.

The fundamental data type used in AM is mostly a triangular
mesh representation. Out of triangular mesh, the SDF representa-
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Figure 8: Schema of the A-like network (Wang & Lu, 2018) with the main
building blocks (ARB, SDE, and AFA), which consist of different layers of,
convolution is shown in blue , batch normalization in black , ReLU in
pink , sigmoid in blue , atrous convolution in teal , and
concatenation in white �.

tion is directly calculated by Museth (2013), allowing for compact
and fast processing of sparse volumes. Next, the SDF represen-
tation is converted into a normalized form, usable for all imple-
mented network structures, and adapted to the observation tile
size. All values of an observation tile are scaled by dividing with
the voxel size itself to ensure that SDF representation is indepen-
dent of the chosen voxel resolution. Additionally, the SDF values
above 1 or below −1 are clipped to 1 or −1, respectively, to simplify
the representation ( Figure 12). This standardizes the unimportant
areas of all examples without altering the key information near
the object’s surface since all values between −1 and 1 remain un-
changed.

Because the meshes can be of different origins, and their trian-
gulation parameters and geometric structure differ significantly, it
requires a learning database that is modifiable at will. Since there
is no accessible data in the SDF or flexible mesh format available,
we collect existing B-Rep models from the ABC-Dataset (Koch et
al., 2019) for a synthetic data approach. Synthetic data mean, that
training data are generated in a virtual environment that allows
for automatic annotation, vast modification possibilities, and ex-
act input to ground-truth alignment. Each individually selected
B-Rep model must contain all primitive types and models with

additional geometric classes, such as freeform surfaces, are elim-
inated. To guarantee a diverse geometry set, all models with the
same file size except one are removed, resulting in a database of
12k models.

The per voxel SDF value and primitive class are directly derived
from the annotated triangular mesh of the B-Rep. Boundary voxel
values refer therefore unambiguous to one subsurface instance.
Labels are then transferred to the one-hot representation to cre-
ate the ground truth data. Only the nearest interior voxel to the
isosurface are labeled, the remaining interior and exterior voxels
belong to respective void class (Fig. 11).

Even if the B-Rep dataset enables a fast generation of vari-
ous examples, it is not able to catch all possible transformations
which could occur. To compensate for this downside, data aug-
mentations as well as transfer learning are used. Transfer learn-
ing allows to adapt and fine-tune of a pre-trained ANN to a new
task or domain while using and adjusting the features learned
from the original domain (Goodfellow et al., 2018; Peng et al., 2015;
Wang & Deng, 2018). Even if the learning setup does not corre-
spond exactly to the transfer learning term definition, it will be
used to indicate that the trained weights of the basic stage serve
as the initial weights of the subsequent transfer learning stage.
Thus, primary geometric features of the primitives will be learned
in a basic training stage and more advanced features such as the
neighborhood relations will be handled in the transfer learning
stage to adapt to the real-world domain. During the basic train-
ing stage, large amounts of easily generated synthetic data can be
used to teach the baseline architectures the fundamental charac-
teristics of geometric primitives. In the data augmentation, ran-
dom transformations like rotations and mirroring are applied to
the training samples.

A common drawback of all geometric discretization ap-
proaches, like the SDF approach, is the recognizable instance scale
representing some feature class. Similar to a receptive field, the
instance scale in the input tile evokes a stimulus in the input lay-
ers, which is sampled at a specific sampling rate. For example, a
circle section corresponds to a line, if the value change is smaller
than the sampling rate in the binary case. Therefore, no proper
recognition result will be observed, and the undersampling leads
to non-detectable features for too large sampling rates. For this
reason, a consequence of the chosen observation tile resolution
is the limitation of the detectable curvature, which could be over-
come by the floating-point surface distances of an SDF. While in
the field of medical imaging and computer vision this issue has
been considered (Ibtehaz & Rahman, 2020), it still needs to be dis-
covered beforehand how many measuring points are needed to
represent a specific scale of a geometry class in SDF input data.
For this reason, all B-Rep parts in the dataset are sampled at dif-
ferent sampling rates, ranging from 80 to 240 voxels in the most
extensive space direction per model with an increment of 20 vox-
els.

In Table 1, the distribution of the geometric primitives over
the used training, validation, and test datasets over the basic
and transfer learning stage are shown. Most of the basic training
dataset consists of samples only showing one geometric primi-
tive at different angles and transformations. A smaller number of
training examples consist of two merged primitives. These sam-
ples are necessary for a valid detection performance in transition
areas between multiple primitives.

As different training and validation sets are applied to the ba-
sic and the transfer learning stage, both training stages share the
same test set of the transfer stage in order to monitor the general
learning success in the real-world B-Rep domain. In addition, the
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Current Window

Observation Tile(a) (b) (c) 

Figure 9: Sliding window approach for exhaustive part model segmentation. (a) Bounding boxes of hierarchical octree structure, (b) narrowband and
isosurface of a subregion, and (c) sliding window overlap with processing parameters.
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Figure 10: Primitive types and color coding in the learning dataset: Cylinder , plane , sphere , conus , and torus . Here, c is the center, r is the
radius, a is the unit vector, R is the center radius, and ϕ is the half angle.
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Figure 11: Synthesis process of the training dataset: From B-Rep part models to various observation tiles of different primitive composites. The
interior void class is labeled in black .
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(a) (b)

Figure 12: Observation tile preparation. (a) Colorized label tile by primitive type. (b) CNN input values depicted by spheres, whose radii represent the
normalized and trimmed SDF values.

Table 1: Per voxel class distribution and overall tile instances per-
centage in the 32EL learning datasets. Class distribution of the ba-
sic datasets is balanced by undersampling.

Basic (%) Transfer (%)

Type Train Val Train Val Test

Plane 18.7 10.9 29.6 29.5 23.4
Cylinder 19.5 22.4 32.5 32.8 33.3
Conus 22.3 22.7 10.2 9.9 9.5
Sphere 18.7 20.6 13.8 13.7 13.3
Torus 20.8 23.2 13.9 14.1 14.3
Tiles (n) 66 981 11 300 34 732 3437 2963

basic stage is supplemented by the validation set of the transfer
stage to be considered in the hyperparameter optimization.

5.2. Evaluation metrics
In the learning phase, various evaluation metrics are applied to
measure and compare the recognition rates of the different net-
work architectures regarding the similarity to the ground truth.
True positives (TPs) and false positives (FPs) denote the number of
predicted positives in the incorrect/correct case, while true neg-
atives (TNs) and false negatives (FNs) account for the predicted
negatives in the incorrect/correct case.

The intersection over union (IoU), also called Jaccard index, is
utilized as an accuracy metric that is well suited because of its in-
sensitive to variations in the frequency of occurrence for different
labels (Taha & Hanbury, 2015).

mIoU = |S ⋂
G|

|S ⋃
G| = TP

TP + FP + FN
(3)

The similarity coefficient dice score (DS) is used to measure the
overlapping regions of the predicted segmentation S and the
ground truth segmentation G, and to apply a more outlier robust
metric by the weighted average of precision and recall.

DS = 2|S ⋂
G|

|S| + |G| = 2TP
2TP + FP + FN

(4)

Additionally, to investigate the exactness contour of the seg-
mentation, the average Hausdorff distance (AHD, Aydin et al., 2021;
Rucklidge, 1996) in voxel size is used to measure the similarity of
two point sets X and Y. By comparing the minimal Euclidean dis-
tance d(x,y) of each boundary point, a sensitive outliers metric is
introduced.

AHD(X,Y ) =
⎛
⎝ 1

X

∑
x∈X

min
y∈Y

d(x, y) + 1
Y

∑
y∈Y

min
x∈X

d(x, y)

⎞
⎠ /2 (5)

The AHD will be further presented in voxel units with 0.0 as the
optimum where the prediction corresponds to the ground truth.

5.3. Network training
To speed up the training process and to stabilize the gradient de-
scent of the cross-entropy loss function of ADAM, the supervised
learning was executed in batch training mode with a batch size of
4. For each architecture, an individual learning rate is determined
by grid search optimization (U-like = 0.1, M-like = 0.1, and A-like =
0.0001 with default moment estimates of ADAM), with a per epoch
learning rate decay of e0.03 and a sparse categorical cross-entropy
loss.

Considering the basic learning stage curve for U-like and A-like
(Fig. 13), the SDF approach shows the overall ability to generalize
a suitable solution for all different networks architectures. The
training recognition accuracy reaches a mIoU of 90.1% for the A-
likeSDF32EL network after 150 epochs, with the simpler U-likeSDF32EL

just behind with a mIoU of 87.2% after 250 epochs. The basic vali-
dation mIoUs rank between 83.5% and 86.2% on the validation set.
While A-like converges to a proper maximum, the apparent fluc-
tuating stochastic behavior does not affect the overall recognition
ability.

When tested on the transfer dataset, the capability of the
trained basic networks exhibits a domain gap with a lower mIoU
of 38.7% to 43.8%. It must be noted, that all networks in the basic
stage are inaccurate in adapting to the diverse geometry charac-
teristics of multi-class adjacent areas. Through the transfer learn-
ing stage, the test set overall accuracy is increased by roughly
40.0%, showing a mIoU of 82.5% to 88.4% for A-likeSDF32EL and U-
likeSDF32EL.

By comparing the resulting confusion matrices of A-likeSDF32EL

of the basic stage (Table 2) to the transfer learning stage (Table 3),
the recognition rates of all distinguishable classes become appar-
ent. This allows for a general assessment of the inter-class depen-
dencies. These can be explainable by the geometric class itself. For
example, since conical instances cannot be distinguished from a
cylinder when their apex angle is small enough, most FN and FP
can be observed at this class distinction. In addition, the class
distinction between all cylindrical and conical types to the pla-
nar class displays the discretization error and the instance scaling
problem, which denotes the fuzzy decision-making due to the res-
olution limits. Also, the conical primitive type reports the lowest
TP of 39.0% compared to other primitive type’s TP scores at both
stages.

Compared to the basic stage, a TP increase of 54.5% to 88.0%
of the spherical class can be accounted. While fundamental
class boundaries emerge at multi-class adjacent areas, charac-
teristic inter-class dependencies can be observed after the con-
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Figure 13: Resulting accuracy mIoU learning curves of U-like and A-like with 32EL in the basic stage. Validation accuracies are smoothed with moving
average of 20 points.

Table 2: Per-class confusion matrix of A-likeSDF32EL predictions on the test set after basic learning.

Predicted label
Interior Exterior Plane Cylinder Conus Sphere Torus

True label Interior 0.99 0.00 0.00 0.00 0.00 0.00 0.00
Exterior 0.00 1.00 0.00 0.00 0.00 0.00 0.00

Plane 0.00 0.04 0.57 0.28 0.05 0.04 0.01
Cylinder 0.00 0.04 0.21 0.54 0.03 0.15 0.03
Conus 0.01 0.04 0.35 0.17 0.39 0.00 0.04
Sphere 0.00 0.03 0.08 0.33 0.00 0.57 0.00
Torus 0.00 0.04 0.15 0.28 0.01 0.07 0.45

Table 3: Per-class confusion matrix of A-likeSDF32EL predictions on the test set after transfer learning.

Predicted label
Interior Exterior Plane Cylinder Conus Sphere Torus

True label Interior 1.00 0.00 0.00 0.00 0.00 0.00 0.00
Exterior 0.00 1.00 0.00 0.00 0.00 0.00 0.00

Plane 0.001 0.01 0.96 0.01 0.00 0.00 0.00
Cylinder 0.01 0.01 0.02 0.88 0.02 0.01 0.06
Conus 0.01 0.01 0.03 0.24 0.70 0.00 0.01
Sphere 0.01 0.00 0.00 0.01 0.00 0.96 0.02
Torus 0.01 0.01 0.00 0.07 0.00 0.02 0.89

ducted transfer learning. By considering the segmentation results
in Fig. 14, it can be noted that FP and FN occur especially at the
subsurface boundaries, and can thus be directly related to the
simplicity of the basic validation set. This complexity mismatch
is also the key difference in the data domains of the transfer
and basic datasets, which could be compensated by further labor-
intensive manipulation of the synthetic data. However, due to the
increased accuracy on the test set after transfer learning, the ac-
tual goal of predicting a sufficient variety of geometric transfor-
mations was already achieved.

It can be stated in the binary case that no comparable segmen-
tation results to the SDF approach could be achieved in the learn-
ing phase (Fig. 15). For all tile resolutions of A-like and U-like seg-
mentation results around 62.0% to 69.0% mIoU are reached in the

binary case. Also, the binary solution is much more outlier-prone
with AHD of 4.01 compared to 1.5 for the SDF case of U-like32EL.

5.4. Post-processing of predictions
To further improve the detection performance, several post-
processing methods are introduced to remove uncertainties in the
derived distributions on the one hand and to remove outliers of
homogeneous surface regions on the other hand.

The first post-processing step is inspired by the work of Mar-
tinez et al. (2019), who analyzed the class distributions for each
voxel over multiple inference runs with slightly modified CNNs
to infer the certainty of the achieved segmentation. Therefore,
in the progress of the post-processing pipeline (Fig. 16), uncer-

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/10/3/992/7104067 by guest on 16 M

ay 2023



1002 | An SDF data approach

(a) (b) (c)

Figure 14: Comparison of segmentation results in multi-class adjacent areas of a part model with U-like32EL of (a) basic learning stage, (b) ground truth,
and (c) transfer learning stage: Inaccurate region boundaries at class transitions in the basic stage evolve to unambiguous delimitation in the transfer
stage.

(a) (b) (c)

Figure 15: Comparison of semantic segmentation results of (a) binary (mIoU = 0.3), (b) ground truth, and (c) SDF (mIoU = 0.8) case of A-like32EL after the
transfer stage. While the SDF approach forms distinct and fine-grained features, misclassifications and incorrect region boundaries can be detected for
the binary approach.

Inference Output Uncertain data points
marked

Uncertain data points
replaced Outliers replaced

Figure 16: Post-processing steps to eliminate noisy segmentations by uncertainty processing and handling of prediction probabilities.

tain voxels are replaced with the most common label from the
immediate neighborhood of this voxel. To achieve this, the prob-
ability distribution for the possible labels is analyzed on a per-
voxel basis. For example, for U-like64EL, a class probability in the
semantic map of less than 80% implies a 95% chance of being
misidentified, from which it can be concluded that these vox-
els can be considered as uncertain. In the next step, the neigh-
borhood of a marked voxel is combined by the arithmetic mean
of all values from the final softmax layer, and the most often
occurring class in this area is assigned to the uncertain voxels.

The underlying assumption for this step is that a voxel most
likely belongs to the same geometric primitive as its immediate
neighbors.

After the deployment of the first post-processing approach usu-
ally a few single outliers or small patches of incorrect classi-
fied voxels remain existent. Therefore, the second post-processing
method replaces single outliers and small groups of labels within
an otherwise consistent area of labels in the immediate neighbor-
hood. This approach builds on the fact that continuous models
of real engineering parts are analyzed, which do not consist of
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Figure 17: Evaluation of the detection mIoU accuracy over the curvature radii r in the ranges of r = {r ∈ R : [ 1
16 ..8]} of the SDF32EL networks of U-like32EL

and A-like32EL . Instance scales of a cylinder primitive under 1
4 EL are not identifiable.

Table 4: Accuracy comparison of observation tile resolutions on
the transfer test dataset and the trainable parameters count
(TParams) of each network architecture.

Network Repr. mIoU(%) TParams

U-like Binary 62.3 64.4 69.2 12 774 167
SDF 82.5 88.4 89.2

M-like Binary 38.9 37.4 41.0 2128 519
SDF 43.4 43.8 51.2

A-like Binary 68.0 67.5 68.1 572 679
SDF 88.0 86.1 84.5

16 32 64
EL

point-like surfaces. Therefore, a single label or a very small patch
of labels in an otherwise uniform classified surface must be inad-
equately evaluated. If a minimum patch count of three voxels is
not reached, it is replaced by the most common label in the direct
neighborhood of these voxels.

Another possible post-processing step to be mentioned is the
use of conditional random fields (Krähenbühl & Koltun, 2011), like
in Chen et al. (2018) and Kamnitsas et al. (2017), to potentially in-
corporate smoothness terms and increase local class consistency,
creating more contiguous segmentation regions.

5.5. Parameter evaluation
Unfortunately, the proposed CNN is subject to limitations, which
are not only a consequence of the chosen SDF-based approach but
a consequence of the geometry discretization and the successive
evaluation of the overall geometry of a part model.

The aforementioned sliding window approach (Section 4) with
the pending parameter μ was therefore evaluated for the analy-
sis of entire engineering part models. To obtain the optimal border
overlap, increments of μ from 0 to 7 of each baseline network were
inferenced as a constituent part of the respective test run. Com-
pared to the non-overlapping sliding window case, an overlap of
μU − Like − 32 − EL= 4 and μA − Like − 32EL= 1 was determined sufficient,
having an improved �mIOU of 1.8% and 2.2% and �DS 2.8% and
3.2%, respectively, when segmenting entire part models of a test
set. Thus, the downsampling in the max-pooling layers of U-like

intensifies misclassifications at the observation tile borders com-
pared to the atrous-convolution in A-like.

To estimate the discretization configuration in the actual ap-
plication, precise limits of recognizable instance scales need to
be evaluated. These can transform between the units of the nor-
malized voxels and real length units. For this reason, a resolu-
tion investigation was conducted using the maximum recogniz-
able curvature of a cylindrical primitive. The comparison of dif-
ferent ranges of cylinder radii r demonstrates the different cylin-
drical scales (Fig. 17). For radii proportions between 1/16 and 1/8
of the tile dimensioning the mIoU were close to 50% and thus not
separable from other classes. This should lead for example to an
SDF voxel size of 0.4 mm for a minimal assumed r of 2.5 mm in
a part model. Nevertheless, this resolution configuration needs to
be adapted to the individual geometric features sizes of the archi-
tected materials type.

6. Results and Discussion
To further categorize the benefits of SDF processing, the applied EL
of 16 voxels of the observation tile will be compared to the com-
monly used EL of 32 and 64 voxels. To determine whether gen-
eral differences can be observed for the length gradations and if
the reduced length was chosen sufficiently (Table 4), each base-
line model was retrained with the respective resolution. The in-
dividual performances are summarized in Table 5, from which
different findings can be derived. Supplemented by the learning
results for the binary case, the main differences can be put into
perspective as to whether the SDF approach is a superior predic-
tion performance (Table 6).

In comparison with the binary case, it can be stated that
less eligible detection rates can be achieved. Although natu-
rally, the reliability of a TP detection increases with the sam-
pling rate, the continuous distance values of the SDF field at-
tenuate the need for more supporting points for an unambigu-
ous inference. With the additional consideration of the mem-
ory consumption of the graphical processing unit, an 32EL
can be a balanced compromise between available computa-
tional, detection probability, and training resources for universal
usability.
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Table 5: Comparison of overall mean accuracy results of 32EL of A-like and U-like after basic and transfer stage with per primitive mIoU
on the test transfer dataset. The exterior and interior voxel classes are included in the overall accuracies. Bold text highlights the highest
achieved accuracy per column.

Basic Transfer
Network Repr. mDS mIoU mAHD mDS mIoU mAHD PLmIoU CYmIoU COmIoU SPmIoU TOmIoU

U-like Binary 45.6 38.9 6.22 75.1 64.4 4.01 73.8 40.8 27.8 65.5 47.8
SDF 52.4 43.8 5.53 92.3 88.4 1.55 93.2 72.6 71.5 96.1 88.0

A-like Binary 49.0 41.6 5.96 77,4 67.5 3.65 77.4 37.7 49.4 67.2 49.1
SDF 50.8 43.4 5.51 91.8 86.1 1.89 92.3 64.7 68.6 93.2 81.5

Table 6: Example models for resulting performance of A-likeSDF32EL.

U-like
Binary SDF Ground truth B-Rep/CAD

Table 7: Segmentation scores of point-wise primitive detection ap-
proaches in DL using the ABC dataset. Segmentation IoU extracted
from Yan et al. (2021).

Network model mIoU

Our study: U-like 88.4%
Our study: A-like 86.1%
SPFN (Li et al., 2019) 80.1%
ParseNet (Sharma et al., 2020) 88.6%
HPNet (Yan et al., 2021) 94.2%

Unfortunately, the approach of M-like using a larger receptive
field by a dual-path architecture does not alleviate the detection
performances. On both data types, M-like convergence only to a
maximum mIoU of 51.2% across all ELs, while no expressive seg-

mentation can be derived. A defined rationale for why a reason-
able approximation proves difficult cannot be given. As a result,
M-like is no longer considered in the further discussion.

6.1. Baseline architecture comparison
The common U-like structure reports the highest segmentation
results of all networks in most metrics. Particularly noticeable is
that both networks are resistant to outliers with mAHD scores of
1.55 and 1.89 on the SDF case. Because this study is focused on
the general practicability and possible improvements through the
application of SDF values as input to CNNs, it is not intended to
conclude or recommend which model is to be preferred. However,
it can be stated that by using the SDF approach, both U-like and
A-like recognition performances were improved, which makes the
results potentially suitable for any 3D-CNN architecture.
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Cylinder Slice ► Bi-directional Scan

Sphere Slice ► Cross Scan 

Metameterial Generation SDF-3D-CNN Segmentation Adaptive Slicing

Figure 18: A-likeSDF32EL segmentation with observation tile bounding boxes of a lightweight hierarchical lattice structure. Only the BCC cell mesh
serves as a basis for the subsequent adaptive slicing and TGP.

6.2. Comparison to other approaches
The quantitative improvement over a binary approach is consid-
ered significant on the transfer set with an �mIoU between 20%
for U-like and 25% for A-like, confirming the assumption that the
discretization problems of the voxel field can be partially avoided.
As a result of the single-precision floating-point format and its
seven decimal digits of precision, a broader codomain as an addi-
tional input feature for the networks was available. In the future,
it could still be clarified how the codomain of the observation tile
could be normalized in such a way, that saturation phenomena of
the activation functions could be bypassed. The intrinsic advan-
tage of the SDF over the binary representation was often observed
with regard to fine-grained structures when distinctive features
have simply disappeared due to discretization in the binary case.

Through the domain adaption in the transfer learning stage,
the needed variety of geometry transformations and their under-
lying features enhanced the resulting segmentation performance
on the B-Rep test set. Compared to a single-stage learning process,
the mIoU, mDS, and mAHD are improved by a �5.4%, �4.2%, and
�0.6 for U-like32EL, respectively. This is probably due to the consis-
tent feature distribution of primitive transformations, which oth-
erwise would not be present, and would prevent a transforma-
tion invariance. Thus, the transfer learning stage should be con-
sidered for each AM application of a geometric reasoning system
to achieve a significant improvement of the recognition rate, with-
out an adaptation of the network architecture.

In summary, A-like and U-like networks can generalize to the
defined task of segmenting geometric primitives with the SDF ap-
proach, even for smaller observation volumes. A conclusive and
general opinion regarding the network structure to be selected
will not be given here because the distinct effects of dataset char-
acteristics can affect the detection performance in a wide range.
However, the use of the comparatively simple U-Like architecture
represents a valid starting point for any further research and ge-
ometric reasoning in adaptive slicing. Whereas, the fluctuation of
A-like can be taken as an indication that this network structure
has the greatest capacity for more complex features.

Compared to other models that address the detection of ge-
ometric primitives (Table 7), it can be observed that similar de-

tection results are achieved like Yan et al. (2021) or Sharma et
al. (2020) with A-like and U-like. An exhaustive comparison per-
formed on the same test dataset is out of the scope of this study.
Nevertheless, their network architectures are much more sophis-
ticated and constructed to the specific use case. The SDF frame-
work presented here is feasible for any needed feature recogni-
tion in the AM process pipeline and is therefore much more uni-
versal in its application with less labor-intensive pre- and post-
processing steps.

6.3. Use-case study in adaptive slicing
After proving the advantages of the SDF representation as input
values in 3D-CNN networks, a use-case study shows the integra-
tion of the trained A-like network into an exemplary CAM process
in AM (Fig. 18). This is to demonstrate a hypothetical and straight-
forward use case so that an otherwise static slicing and TPG re-
spond to different geometry domains.

Following the generation of the geometry segmentation, the in-
ferenced primitive labels are transferred to the inner volume by
their nearest surface labels. The individual slice parametrization
could be generated by distinguishing if a slice intersects with a
predetermined primitive type to adapt the slicing and TPG strat-
egy of the underlying AM process. With full integration into the
extended product development pipeline, there would certainly be
a need for a meaningful definition of the ROIs and further research
about the adaption of slicing strategies. As the presented label
approach is already volumetric, other spatial expansions to an-
notate such as 3D regions of specific thickness and multi-critical
downskin angles or other material quality aspects are conceiv-
able, which in turn require retraining of the 3D-CNN models by
the redefined dataset.

7. Conclusions
In the context of AM, the adaptive parameterization of slicing data
and TPG to individual geometric features offers the potential to
further increase manufacturing speed and quality by an auto-
mated geometric reasoning system.
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Therefore, this study presented a 3D-CNN-based feature recog-
nition of geometric primitives by leveraging SDF data, which is
becoming the common data representation for architected ma-
terials, providing a basic example of a structure-to-property link-
age. The SDF representation approach limits the needed resolu-
tion and enhances the recognition accuracy compared to a bi-
nary voxel representation. Thus problematic anti-aliasing effects
of Euclidean data types can be mitigated. By evaluating different
3D-CNN network structures, the feature recognition possibilities
were considered in detail, showing the overall segmentation ca-
pabilities on various tessellated B-Rep models.

Furthermore, the octree-based sliding window procedure en-
ables the observation of any volumetric expansion of part models
with the required voxel resolution.

In the future, learning more specific geometric features of ar-
chitected materials with thin-walled sections needs to be investi-
gated. Especially regarding the examination of implicit volumetric
feature characteristics, the currently used surface labeling needs
to be modified.
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