
1

PUF for the Commons: Enhancing Embedded
Security on the OS Level

Peter Kietzmann, Thomas C. Schmidt, Member, IEEE, and Matthias Wählisch, Member, IEEE .

Abstract—Security is essential for the Internet of Things (IoT). Cryptographic operations for authentication and encryption commonly rely
on random input of high entropy and secure, tamper-resistant identities, which are difficult to obtain on constrained embedded devices. In
this paper, we design and analyze a generic integration of physically unclonable functions (PUFs) into the IoT operating system RIOT that
supports about 250 platforms. Our approach leverages uninitialized SRAM to act as the digital fingerprint for heterogeneous devices. We
ground our design on an extensive study of PUF performance in the wild, which involves SRAM measurements on more than 700 IoT
nodes that aged naturally in the real-world. We quantify static SRAM bias, as well as the aging effects of devices and incorporate the
results in our system. This work closes a previously identified gap of missing statistically significant sample sizes for testing the
unpredictability of PUFs. Our experiments on COTS devices of 64 kB SRAM indicate that secure random seeds derived from the SRAM
PUF provide 256 Bits-, and device unique keys provide more than 128 Bits of security. In a practical security assessment we show that
SRAM PUFs resist moderate attack scenarios, which greatly improves the security of low-end IoT devices.

Index Terms—Physically Unclonable Functions, Embedded Security, Large-scale SRAM Analysis, Internet of Things, Operating Systems

F

1 INTRODUCTION

THE INTERNET of Things (IoT) comprises billions of
constrained devices but the low-cost IoT hardware

is challenged by basic security operations. High entropy
seeds for secure random number generation [1] and secure
hardware identities form the minimal set of primitives that
bootstrap the cryptographic subsystem needed for protecting
basic services of networked nodes. These numbers must
remain secret to prevent information leakage of past and
future transactions, and require resistance against readout
or tampering. Supplementary hardware security modules
(e.g., secure elements) can overcome these challenges but
increase device cost. In practice, many large-scale IoT deploy-
ments consist of cheap embedded devices without hardware
security features, and readily threaten the IoT [2] as well as
the global Internet [3].

Physical unclonable functions (PUFs) utilize intrinsic
hardware variations, which are a promising source of (i)
random variations on one device, and (ii) unpredictable
secrets between devices that become reproducible by exclud-
ing the variations from (i). A prevalent type of PUF input is
SRAM. After powering up the hardware, SRAM provides a
digital fingerprint from the patterns of uninitialized memory.
SRAM is available on almost every IoT platform and can
be exploited without additional hardware. This makes
the technology particularly attractive for low-cost devices.
Secret values are generated only during system startup and
consumed quickly after to lower the risk of a compromise.

• Peter Kietzmann and Thomas C. Schmidt are with the Department
Informatik, HAW Hamburg, Berliner Tor 7, 20099 Hamburg, Germany.
E-mail: {peter.kietzmann, t.schmidt}@haw-hamburg.de.

• Matthias Wählisch is with the Institut für Informatik, Freie Universität
Berlin, Takustr. 9, 14195 Berlin, Germany.
E-mail: m.waehlisch@fu-berlin.de

Manuscript received Jan. 17, 2023.

PUF

Zzzz

MCU

Fig. 1: PUF security services provided by an operating system
enable lightweight crypto-operations on low-cost hardware
in the IoT.

Consequently, SRAM secrets remain absent during regular
node operations.

There have been concerns, though, that the physical lay-
out of SRAM [4] as well as hardware aging [5] may introduce
systematic biases. Quantifying these subtle statistical effects
requires a comparative analysis between large quantities of
devices [6], which we contribute in this paper. Our large-
scale evaluation of more than 700 nodes clearly shows a
localized bias for certain bits in the SRAM response. An
attacker who tries to predict this pattern by using a large
number of measurements from similar devices could reach
an advantage in guessing the bit values at certain positions.
We quantify the remaining entropy of secrets derived by
these biased pattern and identify secret generation schemes
that are able to mitigate this weakness.

We further analyse hardware aging by extensive mea-
surements on nodes that naturally aged in the real-world
environment of an open access testbed. We find address spe-
cific wear-out effects that link to past experiment executions.
Our findings shall motivate testbed operators as well as

ar
X

iv
:2

30
1.

07
04

8v
1

 [
cs

.C
R

]
 1

7
Ja

n
20

23

2

software developers to invoke anti-aging strategies to their
firmware.

In this paper, we design and evaluate PUFs for the
multi-purpose operating system RIOT [7] for constrained
IoT devices [8]. To the best of our knowledge, a consistent
PUF integration into a commodity IoT operating system
is yet missing, even though IoT deployments increasingly
rely on some (open source) operating system (OS). IoT
applications built on top of an OS benefit from reduced
implementation overhead and enhanced dependability as
they reutilize existing, well-tested code such as network
stacks, drivers, or crypto-libraries. It further enables portabil-
ity across heterogeneous platforms.

We argue that operating system software should provide
crypto-primitives for PUF functions (see Figure 1) to make
its security benefits accessible to a wide range of IoT devices.
The application of software PUFs is not limited to low-cost
platforms, though, but can also assist security hardware,
which is occasionally vulnerable [9].

The remainder of this paper is structured as follows.
After providing background on PUFs and discussing prior
work (§2), we present our evaluation methodology (§3) and
perform an initial SRAM evaluation on 708 devices (§4), in
which we identify static bias and stress marks introduced
by past utilization. We derive requirements for supporting
SRAM PUFs on the OS-level, and introduce the RIOT OS
integration (§5). In a base-line evaluation of our solution (§6),
we quantify the uniqueness of SRAM PUF generation. Our
second analysis concentrates on the quality of random seed
and key generation, as well as its performance overhead (§7).
A subsequent security analysis reveals that the SRAM PUF
is secure under moderate attacker assumptions (§8). Finally,
we conclude and outline future research directions (§9).

2 PROBLEM STATEMENT AND RELATED WORK

Pappu et al. [10] are the first to introduce “physical one-
way functions” and the notion of a PUF dates back to
Gassend et al. [11]; both describe a technique to uniquely
identify and authenticate individual integrated circuits. The
research community identified PUFs as an attractive solution
for the IoT [12], because the intrinsic hardware variations
can feed security primitives on low-end devices without
increasing hardware cost. PUFs can be distinguished into
two classes [10], [13]. They either process many inputs
(i.e., challenges) to produce varying outputs (i.e., responses),
or only few inputs, i.e., a memory readout which produces
one response. A variety of use cases for PUFs emerged, such
as secure key storages [14], communication protocols [15],
[16], supply chain security [17], remote attestation [18],
firmware updates [19], or generic trust anchors [20].

The security of these applications as derived from PUFs
is only as strong, as the secrets extracted from the underlying
hardware variations. In this section, we review the funda-
mental properties, basic assessment measures, and pose the
question of potential weaknesses in PUFs.

2.1 Properties of Uninitialized SRAM

Reading out uninitialized SRAM produces a digital finger-
print. Manufacturing processes introduce variations in the

silicon of transistors that construct a memory cell. When
powered on, some cells drift to the logical state 1, others to
0, and cells without fluctuate according to environmental
conditions. The resulting patterns require a careful assess-
ment between devices (inter-device) in order to estimate their
uniqueness, and between power-cycles on one device (intra-
device), in order to quantify the (random) noise. This noise
can be utilized as an entropy source, or needs to be removed
for reliably reproducing an exact version of the pattern.
Aging Bias. Uniformly random variations result in an equal
proportion of stable cells that power up with 0 or 1 on a
single SRAM pattern. Aging and utilization, however, skew
this distribution, due to drifting voltage threshold values of
the transistors that form a memory cell [21]. The increased
probability for one symbol (1 or 0) introduces a bias, which
in turn benefits an attacker, who tries to guess bit values.
Guin et al. [22] find a bias of up to 54 % under artificial aging.
Holcomb et al. [23] counter that ‘normal’ use patterns of
intermittently powered devices prevent an identical skew.

The state-of-the-art motivates additional and more re-
alistic analyses of bias and aging on platforms that have
not been aged artificially, but have executed real-world IoT
applications for a long period of time.
Static Bias. In contrast to an aging bias, real-world PUFs may
be affected by a static bias at certain bit positions [24]. Rah-
man et al. [25] observe systematic correlation between SRAM
patterns across chips, and cell-neighborhood interactions due
a systematic physical arrangement on the silicon. Both effects
reduce the device uniqueness. An attacker, who owns a chip
of the same type, could utilize a local measurement to guess
bit values at specific positions with a better chance than 50 %,
which facilitates prediction of a secret value derived thereof.

Conditioning the SRAM resolves systematic bias. Bit
selection [26], [27] is an approach to exclude biased bit
addresses of the SRAM, but adds enrollment complexity
for each individual node. Storing a bit mask for cell selection
requires additional memory, which conflicts with limited
memory resources on IoT devices. Instead, extending the
SRAM PUF input increases the total amount of unbiased
bits that generate a secret, which ideally prevents successful
guesswork. Increasing the length, though, threatens fuzzy
extraction (see Section 2.4) which may leak information
about the secret, and requires a careful assessment of (i) the
remaining entropy as well as (ii) the increase in processing
overhead on resource constrained nodes.

2.2 Empirical Evaluation of PUFs

The common measure to quantify the unpredictability of a
pattern is given by the min. entropy metric:

Hmin(pmax) = −log2(pmax) (1)

For a single bit, pmax = max(p, 1 − p), i.e., the maximum
probability for attaining one (p) or zero (1− p) at the same
SRAM bit position. An ideal probability of pmax = 0.5
maximizes the min. entropy to Hmin = 1. This metric is used
to assess intra-device variations across multiple pattern of the
same device, or inter-device variations between the pattern
of multiple devices. Random noise increases the intra-device
min. entropy after a power-cycle, which facilitates seed

3

generation, but challenges a reliable key construction. Over-
dimensioning the fuzzy extractor (see Section 2.3) can mitigate
this effect, but increases the computational complexity—in
conflict with IoT device constraints.

Schrijen et al. [28] present intra-device measurements
across SRAM technologies under differing environmental
conditions. Variations across SRAM of different vendors are
less notable, but the startup noise between patterns of the
same device almost doubles when increasing the operation
temperature from 20°C to 80°C. Katzenbeisser et al. [29]
present similar results but find that the SRAM PUF is more
robust against varying operational conditions compared to
other PUFs (e.g., arbiter or flip-flop PUFs).

The inter-device min. entropy assesses device uniqueness
and the impact of bias. In the literature, inter-device min.
entropy values between 0.7 [30] and 0.9 [31] between
SRAM pattern are reported. Quantifying this metric requires
multiple samples which, however, is particularly challenging
since it involves many nodes.

Min. Entropy Convergence. The maximum probability pmax

in Equation 1 can be empirically sampled from a limited
number of probes n (i.e., nodes). Then the empirical estimator

H ′min(i, n) = −log2
[
max

(
i

n
, 1− i

n

)]
(2)

with i positive events (ones) in n samples from individual
nodes converges to the min. entropy in Equation 1. Statistical
convergence, however, is slow. According to the central limit
theorem [32],

|Hmin(pmax)−H ′min(i, n)| ∼
σ√
n

(as n→∞), (3)

where the dispersion σ = σH′
min
≈ 1.

Hence, estimating the inter-device bias from 100 samples
of SRAM PUFs still includes an error of 10%. Accordingly,
the largest available SRAM evaluation of 144 nodes [33]
bears an uncertainty of more than 8% This shows the need
for significantly larger samples in order to approximate the
inter-device min. entropy accurately, which we will present
in Section 4.

Bit-Aliasing. Maiti et al. [4] introduce bit-aliasing to quantify
systematic inter-device bias (cf. Section 2.1) among 125
FPGAs that implement a ring oscillator (RO) PUF. Large-
scale evaluations of RO PUFs on 217 FPGAs [34], [35], and
133 ASICs [36] show that the location of cells within the FPGA
affect performance properties. The bit-alias of uninitialized
SRAM between 50 [37] and 144 [33] devices reveals a slight
double-peaked distribution of the bit-alias scores due to
SRAM layout systematics, but seem to miss convergence
due to an insufficient sample size.Wilde et al. [6] identify
a research gap in convergence and deduce that qualified
inter-device bit-alias measurements require more than 600
devices to converge with an error below 5%.

Quantifying possible inter-device correlations using hun-
dreds of devices demands for high cost and engineering
efforts. In the subsequent analyses, we will tackle these
challenges by taking advantage of a large-scale testbed.

2.3 Random Seed and Key Generation

SRAM PUFs promise to support bootstrapping security on
embedded IoT nodes by deriving random seeds and private
keys from uninitialized memory. Commercial IoT platforms
more and more provide isolated PUF circuits for this purpose,
but an open software implementation that enables PUF-
functionality without dedicated PUF-circuitry is missing.
To enable software-based SRAM PUFs on a wide range of
heterogeneous IoT platforms, the hardware abstraction layer
of an operating system can enable low-level hardware access
and facilitate PUF-based seed and key generation.
Seed Generation. Random numbers are essential for
security. Commonly, a sequence generated by a true random
number generator (TRNG) acts as seed or refresh value for
a pseudo-random number generator (PRNG) as well as a
cryptographically secure PRNG (CSPRNG). Van der Leest et
al. [38] derive the min. entropy of repeated SRAM startup
patterns on a device for creating a random seed value. The
concept was applied to off-the-shelf MCUs [39] and revealed
a diverse picture. Not all embedded SRAM technologies
are qualified to produce high entropy seeds. SRAM, so the
lessons learned from this study, must be analyzed prior to
deployment. Krentz et al. [40] propose an SRAM seeding
mechanism and add antenna noise to uninitialized memory
pattern, thereby opening a side channel. The combined
values are conditioned with a van Neumann extractor, which
introduces variable runtime overhead.

SRAM must be uninitialized to obtain entropy between
power-cycles, which is why the PUF operation should only
take place during system startup before the memory has been
utilized. This startup sequence, however, might be executed
without a cold boot, possibly leading to zero-entropy seeding.
Hence, a PUF implementation needs to ensure a preceding
power-off cycle.
Key Generation. A reliable key generation depends on
the removal of random noise. The related concept of fuzzy
extraction was first presented in the context of biometric
authentication systems [41], [42] to reliably reconstruct an
exact version of a reference measurement. Fuzzy extractors
are based on error correction codes. Error correction schemes
for PUFs [43] were evaluated on an FPGA [44]. For complex-
ity reasons, not all codes are applicable to low-end devices
with its constrained resources. Korenda et al. [27] reduce
the computational requirements by identifying stable values
before encoding, which reduces the error probability. Leest et
al. [45] propose specific hardware implementations for soft-
decision decoders, which improve the correction capabilities
and require only half of the PUF bits for secret generation
compared to hard decision decoders.

A deployment of a fuzzy extractor proceeds in two phases,
enrollment and reconstruction. The enrollment is a trusted
process and produces helper data [46], which is later used to
reconstruct the PUF value. Helper data is publicly stored in
non-volatile memory.

A PUF response does not contain maximum entropy,
which flaws its immediate use as a cryptographic key.
Besides, it may be too long or too short, adjusting its length
to include a required amount of entropy. For mitigation,
a compression scheme can be used to create a key with
maximized entropy and to preserve forward secrecy of

4

the PUF response. Practical implementations [47], [48], [49]
employ a cryptographic hash function that compresses the
lengthy PUF response.

Error correction [46], and crypto-processing [50] quickly
exceed the computational-, and energy resources on con-
strained embedded devices. A modular and configurable
PUF implementation should ease the deployment under
varying environmental conditions and adjust to the capa-
bilities of heterogeneous platforms (e.g., processing power,
availability of crypto-acceleration).

2.4 Security Analysis of PUFs
The related work presents threats to PUFs mainly from three
angles.
Analytical Attacks. Public helper data techniques leak
information if the PUF is biased [51]. For the code offset
method, helper data lengths should be kept small to avoid
information disclosure–in conflict with PUF bias which may
increase the required length. Koeberl et al. [31] conservatively
estimate the entropy loss during helper data construction
for varying error correction codes in the fuzzy extractor, but
were criticized to be overly pessimistic [46]. Maes et al. [52]
present methods that calculate the entropy leakage exactly,
and de-biasing which resolves bias on an FPGA. Liu et al. [53]
present countermeasures to bias on an MCU.
Modeling Attacks. PUFs are susceptible to modeling
attacks [54], [55], [56]. Rührmair et al. [57] apply machine
learning to challenge-response pairs of PUFs with many
inputs and predict their outputs, which requires the ability
to eavesdrop PUF responses. Strieder et al. [58] exploit helper
data of PUFs with many inputs for training. PUFs with few
(or only one) input are less vulnerable to learning attacks
due to restricted input/output variables.
Hardware (Invasive) Attacks. Helfmeier et al. [59] cloned
SRAM of a common IoT device using a focused ion beam
instrument. Zeitouni et al. [60] present a side-channel analysis
on an SRAM PUF, using remanence decay. Both attacks
require physical control of the device under attack.

These analyses are tied to specific algorithms, or ded-
icated PUF implementations in hardware or software. A
practical threat model that analyses the remaining security
risks of SRAM PUFs on low-end hardware from the perspec-
tive of an IoT operating system is missing. We will fill this
gap in Section 8.

3 EXPERIMENT SETUP

We want to analyze the properties of uninitialized SRAM
on a large scale, and assess our measurements on IoT-
typical constrained hardware. Therefore, we chose an existing
testbed as an evaluation environment (Section 3.1), which
provides many off-the-shelf nodes (Section 3.2) and grants
open (remote) access for reproducibility. The drawback of this
approach, however, is that we cannot vary the operational
conditions of nodes.

On the software side of our experiments (Section 3.3),
we chose the open source IoT operating system RIOT [7]
for three reasons. (i) RIOT is an off-the-shelf OS that is used
in many IoT deployments [61] with support of numerous
heterogeneous platforms. In RIOT, PUF support brings

benefit to a broad range of systems and applications. (ii)
It provides support for the FIT IoT-LAB testbed nodes. This
allows us to easily benefit from the existing tools and facilities.
(iii) An active open source community, which had first hand
experiences with initial SRAM PUF trials [62], facilitates code
contributions.

3.1 Testbed Environment

We conduct our experiments on the FIT IoT-LAB testbed [63]
to attain a large number of nodes. The testbed consists of
seven sites with different topologies and a total number of
more than 1500 nodes of 25 architectures. The M3 nodes
make up the majority (≈ 800 nodes) and reflect properties of
commercial off-the-shelf class 2 IoT devices [8]. Nodes are
deployed across facilities of INRIA in France. Hence, all our
experiments are conducted under environmental conditions
of work offices.

We use 708 M3 nodes in our experiments. To automate
experiment control, we utilize the command-line interface
iotlabcli. Nodes serial outputs are piped to individual
log files. Note, when reproducing the experiments, high data
volumes are generated, while testbed users have limited
disk quota. Data compression, moving files periodically, and
asking for increased quota can assist.

3.2 Hardware Platform

Testbed. M3 nodes consist of a 32-bit ARM Cortex-M3 CPU,
integrated into the STM32F103REY MCU, which runs at max.
72 MHz and provides 64 kB embedded SRAM, 512 Bytes
internal flash, and 16 MB external NOR flash connected
via SPI. The MCU offers common features that we exploit:
(i) Low-power standby mode turns off the whole SRAM.
All content in SRAM and registers are lost, except for the
backup domain. (ii) Real-time clock remains operable during
standby, to trigger an interrupt for wakeup. (iii) Power
control registers indicate whether the MCU has been in
standby after a system restart. But this MCU lacks hardware
security features, i.e., a random number generator, crypto-
accelerator, and secure key storage.

The microchips of the M3 nodes in the FIT IoT-LAB
testbed originate from two lots and four wafers, two of
which build the majority of devices. We conducted several
experiments to find a systematic variation. But we could not
find significant differences between these batches, hence, we
treat them equally in our evaluation and exclude the results
of the batch comparisons.
Local. To evaluate the PUF performance on heterogeneous
IoT devices with varying architectures, we also deploy local
experiments on two different off-the-shelf IoT platforms: The
ESP32 which consists of an Xtensa 32-bit CPU that provides
520 kB SRAM, 4 MB flash, and operates at max. 240 MHz.
The HiFive which consists of a RISC-V RV32IMAC CPU that
provides 16 kB SRAM, 4 MB off-chip flash, and operates at
max. 320 MHz.

3.3 Software Platform

We base our PUF implementation on RIOT 2022.01. It
supports different architectures (8–32-bit CPUs), over 150

5

0 100 200 300 400 500 600 700

Device [#]

0

100

200

300

400

500

600

700

D
ev

ic
e

[#
]

Corr. Coef. = 1

0.02

0.03

0.04

0.05

0.06

Fig. 2: SRAM correlation between 708 nodes. The Pear-
son product-moment correlation coefficient of each pair
is encoded in gray intensity. Autocorrelation results in a
coefficient of one.

MCUs, and nearly 250 IoT boards. The OS provides multi-
threading with preemption, power management, and a
hardware abstraction layer to enable portability. We utilize
and complement these features in our implementation
(Section 5). RIOT provides its own IPv6 network stack (GNRC)
and supports multiple low-power radios as well as wired
interfaces. For the M3 nodes, we added drivers to access
power control registers and the external flash memory. To
broaden our experimental basis, we integrated the PUF
initialization to the ESP32 and HiFive architectures.

In our experiments, we trigger repeated power cycles
on the nodes. For this, we utilize existing RIOT interfaces,
namely, the power management (PM) interface to enter
standby, which turns-off the SRAM, and the real-time clock
(RTC) to generate a future wakeup interrupt.

4 LARGE FIELD STUDY OF UNINITIALIZED SRAM

4.1 Inter-device Correlation

We want to analyze the similarity between individual SRAM
patterns. Therefore, we read the whole memory of 708
available M3 nodes and compute the Pearson product-
moment correlation coefficient between the whole SRAM
readout of all node pairs. Figure 2 presents the matrix of
correlation coefficients as a measure of linear dependency
between nodes. A coefficient of 1 indicates perfect correlation
(pairs are equal), -1 represents negative correlation (pairs are
opposite), and 0 means (linear) independence. All coefficients
are small with a small positive bias (0.02–0.06), which
indicates high independence between the memory patterns
and motivates their usage as PUF source. Certain samples,
however, indicate a slightly increased coefficient when
compared to others. To better understand these correlations,
we chose to further analyze the inter-device relations with a
metric that incorporates the bit locality, e.g., the bit-alias [4]
quantifies inter-device bias (cf. Section 4.2).

0.3 0.4 0.5 0.6 0.7

Relative Bit Aliasing

0

2

4

6

8

F
re

q
u
en

cy

Fig. 3: Distribution of bit-alias values between 708 nodes.

4.2 Analysis of Static Bias
We calculate the bit-alias which quantifies the proportion
of one, for every bit position, between all devices. If the
chance for attaining one (p) or zero (1 − p) is unbiased,
the expectation value is p = 0.5 and the distribution of
p-values follows a normal distribution. Our evaluation
indicates repetitive pattern with (multiples) of 32 Bit blocks.
Rahman et al. [25] find similar effects and relate this to
the physical layout of the SRAM. We contacted the vendor
who, unfortunately, does not disclose information about the
physical layout. Figure 3 displays the histogram of the bit-
alias metric for all bit positions of the 64 kB memory. It
reveals a bimodal distribution with peaks around 0.4 and
0.6. Previous work [33] suggested a double-peak distribution,
but its sample size was too small [6]. To the best of our
knowledge, our results show the first SRAM evaluation of
the bit-alias with an error around 3 %.

Inter-device correlations in regions of SRAM can be
beneficial for an attacker. Analysing a large set of equally
produced devices may assist prediction of SRAM bit values
at certain positions. In detail, a deviation of ≈ 0.1 from
the ideal bit probability of p = 0.5 increases the chance
of guessing the correct value by 10 %. This lowers the inter-
device entropy, which we quantify in Section 6.1, and requires
careful consideration when generating keys (see Section 7.2).
While not all SRAM technologies seem to be affected by this
inter-device correlation, a pre-selection of uncorrelated bits
for the enrollment process can mitigate this effect [25].

4.3 Analysis of Aging
The MCU age is noted on the chip package and our local
M3 sample devices indicate a production date in January
2012. This is in line with testbed statistics that date back the
first experiment to September 2012. We further managed to
get experiment metadata from the testbed team. Figure 4
displays the active utilization time of our test nodes since
their deployment until the end of 2021. The majority of our
publicly accessible nodes have been operated 2.5–8 thousand
hours since their deployment. Thus, in contrast to prior work,
we analyze devices that naturally aged under real-world
conditions.

We want to analyze whether certain devices or memory
blocks show anomalous behavior, caused by aging or wear-
out from similar firmware images. Therefore, we quantify
intra-device bias by calculating the relative hamming weight,
e.g., the proportion of ones and zeros, across devices or
memory blocks. The proportion of ones and zeros should be

6

0 100 200 300 400 500 600 700

Node [#]

0
2500
5000
7500

10000
U

sa
g
e

[h
]

Fig. 4: M3 node active experiment operation time in hours.
Nodes are ranked according to their utilization.

equal (p = 1− p = 0.5) without bias. Our intra-device mea-
surements across the whole memory of all boards (Figure 5a)
show an average hamming weight of 0.508± 0.003(σ). This
slight (positive) bias is the effect of aging and is still small
compared to the results of Guin et al. [22] who find biases of
up to 0.54 after 336 hours (14 days) of stressed operation.

Figure 5b displays the hamming weight separated into
memory blocks. We show average values across all devices,
and two subsamples that include 50 % of the most and least
used devices. (i) An increase at ≈ 4 kB is introduced by the
bootloader. In real-world implementations, this can barely be
avoided and PUFs should exclude SRAM at that region. (ii)
The bias of heavier utilized devices increases less used ones
by ≈ 0.0025, which confirms aging by operation, with a small
magnitude. (iii) Besides (ii), the first ≈ 26.5 kB of memory
exhibit a higher skew compared to the remaining. Common
firmware sizes of large-scale networking experiments on
these testbed nodes report (e.g., [64]) memory requirements
of 22–28 kB in RAM, which matches the region of systematic
wear-out. Hence, we report strong indications of visible wear-
out effect by long-term testbed utilization. In practice, testbed
operators and PUF developers should include anti-aging
techniques to mitigate these effects in the future.

5 PUF DESIGN FOR THE RIOT OS
A wide availability of PUFs requires grounding in the ecosys-
tem of an OS. The heterogeneity of supported platforms
requires an integration into the configuration and the build
system to adjust the diverse device properties. OS tests and
tools provide useful interfaces to verify PUF viability and to
assess crucial configuration parameters (e.g., required SRAM
lengths). PUFs bootstrap system security and must therefore
extend the OS startup code, module initialization, and finally
the secure operation. Figure 6 presents an overview of our
PUF integration in RIOT for creating (i) a simple seed for
general purpose PRNG initialization, (ii) a secure seed for
CSPRNG initialization, and (iii) a secret key. In addition,
to ensure qualified PUFs, we provide a soft-reset detection
mechanism that prevents initialized SRAM (i.e., caused by
insufficient power-off cycles) from generating seeds or keys.

5.1 Compile-time Configuration

RIOT supports many boards of largely varying hardware
capabilities [65] that demand for a systematic compile-time
modeling of its features. This modeling enables extensible
code paths where possible, and facilitates reduced feature
sets on platforms without certain hardware capabilities.

0 200 400 600

Node [#]

0.480

0.500

0.520

0.540

p
1

All devices
25-75th percentile

Ideal

(a) Avg. and 25-75th perc. weight by device.

0 8 16 24 32 40 48 56 64

Memory Address [kiB]

0.504

0.508

0.512

0.516

p
1

26.5kiB

50% most used
All devices
50% least used

(b) Avg. weight by address.

Fig. 5: 64 kB SRAM is split and analyzed in blocks of 1024
Bytes. The relative hamming weight is displayed for every
device (5a) and memory address (5b); the latter distinguishes
the half most/least used devices.

RIOT uses a feature modeling based on Kconfig [50], [66].
Kconfig allows defining symbols that represent features,
based on which dependencies and conditional default
values are defined. For the PUF module, a platform can
indicate capabilities as follows. HAS_PM enables low-power
mode, and HAS_PM_TIMER enables programmatic wake-
up from low-power mode. HAS_PM_INDICATION enables
additional power-cycle detection during soft-reset detection.
HAS_CRYPTO_ACCEL enables crypto hardware acceleration
(future work).

Both seeders (Section 5.4) and the key generator (Sec-
tion 5.5) provide configurations for PUF algorithms: (i) sepa-
rate start addresses in SRAM, (ii) length of the considered
SRAM blocks, (iii) choice of a cryptographic hash function,(iv)
configuration of the error correction code for the key genera-
tor. Default values are chosen according to our evaluation.

5.2 Integration into OS Startup Routine

System Reset. RIOT provides a reset_handler, which is
the start point after every system reset. A default startup
routine follows four steps. (i) The data section is loaded from
flash to RAM. (ii) The .bss (block starting symbol) section
(used for uninitialized data) is set to zero. (iii) The MCU
and board specific components are initialized. (iv) The OS
kernel is loaded and (v) auto_init initializes modules prior
to starting applications.We perform our PUF initialization
prior to step (i), to obtain a pristine response of uninitialized
memory.
Linker Attributes and Erasure. To prevent PUF outputs
from erasure by the subsequent startup routine, a .noinit sec-
tion in the linker script of every supported CPU architecture
defines a PUF attribute with which we declare variables used
to store the PUF seeds and keys. Seeds are consumed during
auto_init to initialize (CS)PRNGs and further processed
for the case of a future soft-reset (see Section 5.3). Keys
can be utilized by the initialization of consuming modules
(e.g., encrypted storages) and are erased by the end of
auto_init. Hence, they do not sustain a soft-reset and
require a real power-off cycle to be re-generated.
Startup Delay. PUF execution adds a delay (see Section 7.3)
to the system startup, which is primarily introduced by

7

Modules Init
(CS)PRNG

Protocols &
Application

General Purpose Seed

1. Seeder 2. Seeder

Key Generator

R
es

et
D

et
ec

t.

PUF Module

Secure Seed

Secure Key

SRAM / Entropy

Flash / Configs.

Kernel Init

Fig. 6: Integration of the SRAM PUF module in the IoT operating system RIOT.

resource intensive crypto-operations on constrained de-
vices [50]. If available, crypto-accelerators can reduce that
time. When operated in software, the execution may degrade
due to the early PUF execution on perhaps uninitialized
system clocks, prior to MCU initialization. An interface that
allows conditional PUF execution during the next reset can
mitigate this affect in the future.

5.3 Detection of Soft Resets

Memory must be uninitialized for PUF operations, which is
achieved by a power-off cycle in the order of seconds [28].
Shorter resets can occur, however. In such cases, the PUF
procedure must not be executed to prevent duplicate seeds
and false key construction. Kietzmann et al. [1] present a
simple detection mechanism to catch soft-resets. In a nutshell,
the soft-reset writes a memory marker to a known address.
On soft-reset, the marker will persist in memory. Conversely,
a sufficient power-off cycle changes the value of the marker
and enables PUF operation. We extend this mechanism to
improve the reliability.
Sleep State Report Interface. The memory marker is at
risk to be manipulated during runtime, by software defects,
or intentionally by adversaries that manage to execute
malicious code (Section 8). This can cause an undetected
soft-reset, resulting in zero-entropy seeding and false key
reconstruction. We extend the power management (PM) API
in RIOT by a function to report the preceding state after a
reset. Only if the marker-based detection fails and the system
starts from deep sleep, PUF operation is executed. Not all
platforms support this feature, unfortunately.

5.4 Random Seed Generation

Uninitialized SRAM contains randomness for the seed
generator and is compressed to provide a concise value
of maximized entropy. We provision two seed generation
functions that take as input the SRAM start address and
considered memory length. By default, we utilize a randomly
chosen start address in the center of the memory map and
locate regions for both seed functions successively. Addresses
and lengths can be configured. A dynamic mechanism could
thus mitigate potential aging phenomena.
Construction. Our first seed is extracted by the lightweight
DEK hash [67] and compressed to an integer value which
is utilized to seed a non-secure general purpose PRNG. The
second seed is created for security purposes and bases on
compression by a cryptographic hash (SHA256 by default).
Hence, the size of the seed corresponds to the digest
length. It can be utilized to feed an entropy accumulator,

Golay
Encoder

Repetition
Encoder Helper

Random
Offset

Crypto
Hash

KeySRAM

(a) Enrollment

Golay
Decoder

Random
Offset Helper

Golay
Encoder

Repetition
Encoder

Crypto
Hash

Key

Repetition
Decoder

SRAM
(Noisy)

SRAM

(b) Reconstruction

Fig. 7: A fuzzy extractor based on the code-offset construction.
Offset is created at random. Deployments consist of enroll-
ment, and reconstruction during regular device operation.

or the CSPRNG initialization directly. Potential CSPRNG re-
seeding [1], however, requires a power-cycle to obtain fresh
entropy from the SRAM.
General Purpose vs Secure Seeds. General purpose seeds
must not be used in cryptographic contexts due to insufficient
entropy and lack of forward secrecy. Conversely, crypto-
graphic seeds can be used for general purpose, but exhibit
higher cost (see Section 7.3). The same seed must not be used
for both types of generators [1], since typical PRNGs are
invertible, hence, their outputs disclose information about
the initial value. Similarly to PRNGs, our general purpose
seed generator is invertible. Consequently, this seed can
disclose information about the initial PUF response. Hence,
cryptographic seed- and key generators should never operate
on a memory region that was used by the simple seeder
before.
Secure Seeds on Soft Reset. A fresh and secure seed that
was used on CSPRNG initialization should be disguised
after use to preserve privacy. Hence, we hash it after
CSPRNG seeding and keep the updated value in memory,
for a future soft-reset. This prevents backtracking of former
random sequences. A future soft-reset adds a soft-reset
counter and re-hashes it. This provides statistical variation
among soft-resets (general purpose seeds follow that same
procedure). Disclosure of the updated seed, however, makes
future sequences predictable. Hence, a status indication field
(using the .noinit PUF attribute) can report the PUF status
persistently. CSPRNG initialization can follow its own policy
to accept or reject seeding after soft-reset.

5.5 Key Generation
Our key generator follows the approach of the code offset
method [41]. Deployments of such a system consist of two

8

0 100 200 300 400 500 600 700

Sample Size [#]

0.4

0.6

0.8

1.0
R

el
.

M
in

.
E

n
tr

o
p
y

Hmin(pmax=0.5)

Hmin(p̂)

Hmin(pmax=0.7)

Ĥmin

1.000

0.515

0.746

(a) Convergence of the min. entropy estimators for different bias values

0 100 200 300 400 500 600 700

Sample Size [#]

0.000

0.001

0.002

S
td

.
D

ev
ia

ti
o
n σ(Ĥmin)

(b) Standard deviation of min. entropy measurements

Fig. 8: Expectation and measurement of the min. entropy for varying max. probabilities (pmax) and increasing sample sizes.

phases, namely the enrollment (Figure 7a), which has to be
executed in a trusted environment, and the reconstruction
(Figure 7b), which reflects regular device operation.
Enrollment. Our key generator provides two enrollment
options. (i) Helper data is calculated on the device itself.
This greatly simplifies a deployment and allows for re-
enrollment during deployment time (e.g., via firmware
updates). Re-enrollment must be authenticated, though, to
prevent invalidation of intact helper data. Self-assessment
takes a reference measurement utilizing a low-power power-
cycle. A true randomness source is required to generate the
random code offset [41] (cf. Figure 7). We utilize the PUF
based secure seed (see Section 5.4) to initialize a crypto-
secure SHA256PRNG, which provides unpredictable code
offsets of configurable lengths. (ii) Helper data is calculated
externally, which is convenient for devices with very limited
hardware resources. Thereby, a reference SRAM readout is
transmitted via UART and an external (trusted) party deals
with code offset generation and encoding. In turn, helper data
is formatted into a header file that is part of the subsequent
compilation of the firmware. This option requires individual
compilation for every device to deploy.

For the error correction scheme, we rely on lightweight
alternatives, namely, a concatenation of the Golay [68]- and
repetition codes, which provide output bit error probabilities
of approx. 10−5 to 10−7 for common PUF failure rates and
lengths [48]. Our modular OS integration allows a seamless
replacement of corrections codes in the future.
Reconstruction. A device can reconstruct the key after
a power-off cycle, utilizing the helper data. After error
correction, the key is calculated by a secure hash (SHA256 by
default) and stored in a reserved key variable (see Section 5.2)
to prevent overwriting by subsequent OS startup code.
Isolated memory resources are more secure and could hold
keys in future, if available on the hardware platform.

6 EVALUATION OF OS-INTEGRATED SRAM PUFS

6.1 Estimation of the Min. Entropy Convergence

Bitwise Inter-device Minimal Entropy. We want to evaluate
the unpredictability of uninitialized SRAM between multiple
devices using the min. entropy. (i) Based on experiment data,
we measure the relative frequency pmax = max(p, 1− p) for
attaining one (p) or zero (1−p) at the same SRAM bit position
of the different devices. Based on a vector of pmax values for

every bit position, we evaluate the empirical min. entropy
for varying sample sizes. For this, we pick ten sets of devices
randomly, and calculate their average min. entropy and p-
values. (ii) An estimator theoretically calculates the expected
min. entropy or the empirical estimator as a function of the
sample size, i.e., the number of nodes, and the maximum
probability for logical zero or one.
Robustness of Estimator. To assess the validity of our min.
entropy measurements, we evaluate its convergence rate.
We compare our measurements with a sequence of perfect
Bernoulli trials and quantify the convergence for different
values of pmax (cf. Section 2.2).

Figure 8a presents the results with convergence lim-
its labeled at the right y-axis. For different pmax values,
the estimated convergence rate varies. Exemplary, a pmax

of 0.7 decreases the number of samples needed for con-
vergence, but it also decreases the relative min. entropy
Hmin(pmax = 0.7) down to ≈ 0.5. In contrast, the ideal case
of pmax = 0.5 should converge to Hmin(pmax = 0.5) ≈ 1,
which however does not occur within 700 displayed samples.
This demonstrates the need for large sample sizes.

In our measurements, we find a relative frequency of
p̂1 = 0.596, which slowly converges to a min. entropy of
Ĥmin ≈ 0.749 after more than 125 samples. The standard
deviation of our measurements σ(Ĥmin) yields 2.3 · 10−3 at
max. (Figure 8b), and decreases with increasing sample sizes.
A comparison of measurement results with our empirical
estimator shows almost perfect agreement. We conclude that
our measurements with 708 nodes are empirically robust.

6.2 Blockwise Evaluation of the Uniqueness

Evaluation between Devices. We want to quantify the
device uniqueness and analyze the fractional hamming
distance [69] between devices and blocks, as a preparation to
derive unpredictable secrets. Figure 9a displays our results.
Assuming a location-independent occurrence of zeros and
ones, the ideal distance is 0.5. Our measurements fluctuate
around an average value of 0.48 except for the block at
4 kB (bootloader, cf. Section 4.3), a slight deviation from the
optimum case. Based on these results, we consider memory
pattern as unique.

Figure 9a additionally presents the blockwise min. en-
tropies between all devices as a lower bound of its unique-
ness. The min. entropy is commonly used to determine input

9

8 16 24 32 40 48 56 64

Memory Address [kiB]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F
ra

c.
H

a
m

m
in

g
D

is
ta

n
ce

Ideal Hamm. Dist. (left axis)

0.0

0.2

0.4

0.6

0.8

R
el

a
ti

v
e

M
in

.
E

n
tr

o
p
y

Rel. Min. Entropy (right axis)

(a) Between 708 nodes.

8 16 24 32 40 48 56 64

Memory Address [kiB]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F
ra

c.
H

a
m

m
in

g
D

is
ta

n
ce

0.00

0.02

0.04

0.06

0.08

R
el

a
ti

v
e

M
in

.
E

n
tr

o
p
y

Rel. Min. Entropy (right axis)

Avg. Rel. Min. Entropy (right axis)

(b) Between ≈ 700 reboots on one device.

Fig. 9: SRAM evaluation. A total of 64 kB SRAM is split and analyzed in blocks of 1024 Bytes. Boxes show fractional hamming
distances between all blocks (left y-axis) and lines show min. entropies (right y-axis). IQR: 25th–75th percentile, whiskers:
Q1-1.5·IQR and Q3+15·IQR.

lengths in crypto-contexts (e.g., key lengths). Our results
reveal a min. entropy of ≈ 75 % for each block, which is in
agreement with Section 6.1 and sufficient to derive unique
secrets. As an example, a naive key generator would require
171 Bits of uninitialized memory to create a 128 Bit maximum
entropy key.
Evaluation on a Single Device. We apply the same
methodology to ≈ 700 readouts on the same device to
quantify its initial randomness, required to derive distinct
seeds. Thereby we utilize a low-power cycle with a sleep
delay of one second. Figure 9b presents our results for the
blockwise hamming distances and min. entropies. The intra-
device hamming distances reveal a different picture than the
inter-device analysis. Even though a majority of bits remain
stable over retries, a small portion adds noise, which leads
to intra-device distances of ≈ 0.06 (average). This behavior
remains stable among all memory blocks. Bit flips lead to an
intra-device min. entropy of 6.8 %±0.51(σ), which supports
seed generation. Conversely, a reproducible key generator
must eliminate these. To dimension sufficient correction
schemes, we also search for the bit error probability in every
block and between all measurements, and find the maximum
at pe=0.086.

7 ANALYSIS OF SEED AND KEY GENERATION

7.1 Analysis of Random Seeds

We evaluate the quality of seeding and generate two seeds on
each startup, (i) a secure 256 Bit seed with maximum entropy,
(ii) a 32 Bit general purpose seed for non security purposes.
Our evaluation program triggers periodic power-off cycles
of 1 sec. over two days, which results in ≈ 180 k values per
device, and 45.1 Mbit secure / 5.7 Mbit general purpose seed
bits.
Secure Seeds. We calculate the required bits from SRAM
based on the intra-device min. entropy of ≈ 7 % as obtained
in Section 6.2. We account for the entropy loss using the
leftover hash lemma [70] (L = log2(1/ε) with ε = 2−256

close to uniform) while targeting at 256 Bit entropy in our
final seeds. This requires a minimum of 7314 Bits/914 Bytes
of uninitialized memory. We conservatively chose 1024 Bytes.

It is worth noting that SRAM portions should be chosen
based on a deployment specific initial evaluation of SRAM
properties. All seed values are unique and uniformly dis-
tributed due to the properties of the SHA256 hash.
General Purpose Seeds. A min. entropy of 7 % requires a
minimum of 457 Bits/57 Bytes of SRAM to provide 32 Bit of
seed entropy. Conservatively, we choose 128 Bytes with well
aligned values in return. Figure 10 presents the probabilities
of p for every bit in the 32 Bit seed, from two sample devices.
They roughly follow a normal distribution and provide 89–
95 % min. entropies, which we consider sufficient for non-
security purposes.

0 10 20 30
Bit [#]

0.2

0.5

0.8

p
1

=
1
−
p

0

Min. Entropy: 93.62%

0 10 20 30
Bit [#]

Min. Entropy: 89.05%

Fig. 10: Evaluation of general purpose seeds. Index based
distribution of bit probabilities (p) throughout 32 Bit integer
values; min. entropy across ≈ 180 k measurements per
device.

7.2 Analysis of the Fuzzy Extractor for Key Generation
Figure 11 visualizes the fuzzy extractor properties for varying
configurations (cf. Section 5.5). Similar to the seed evaluation,
every configuration produces ≈ 180 k values. We vary the
code offset from 9 to 24 Bytes on the y-axis, and the number of
repetitions by the repetition error-correction code between 1–
13 on the x-axis. A repetition of 1 reflects a single occurrence
of the code word. The Golay code is active in all cases.
Lower right triangles in Figure 11 (blue) encode the length of
required SRAM bits. The same length is required for helper
data on non-volatile memory.
Remaining Key Entropy. A naïve estimation of the entropy
of a key output would multiply the SRAM length by the inter-
device min. entropy to determine its cryptographic strength.

10

1 3 5 7 9 11 13

Repetitions [#]

9

12

15

18

21

24

C
o
d
e

O
ff

se
t

[B
y
te

s]

1.
4e

-0
1

2.
1e

-0
1

2.
3e

-0
1

2.
5e

-0
1

5.
5e

-0
1

7.
9e

-0
1

7.
3e

-0
5

9.
5e

-0
5

1.
1e

-0
5

2.
3e

-0
4

2.
3e

-0
5

1.
9e

-0
2

<
3e

-0
8

<
2e

-0
8

<
2e

-0
8

<
1e

-0
8

<
1e

-0
8

<
6e

-0
9

<
2e

-0
8

<
1e

-0
8

<
1e

-0
8

<
1e

-0
8

<
8e

-0
9

<
4e

-0
9

<
9e

-0
9

<
7e

-0
9

<
5e

-0
9

<
5e

-0
9

<
4e

-0
9

<
3e

-0
9

<
7e

-0
9

<
6e

-0
9

<
5e

-0
9

<
4e

-0
9

<
3e

-0
9

<
3e

-0
9

<
6e

-0
9

<
5e

-0
9

<
4e

-0
9

<
3e

-0
9

<
3e

-0
9

<
2e

-0
9

0 1000 2000 3000 4000
SRAM Length [Bits]

020406080100120140160
Leftover Entropy [Bits]

Fig. 11: SRAM length, remaining entropy, and measured
reconstruction failure rate for different configurations of the
fuzzy extractor.

For example, a code offset of 9 Bytes with repetition 1 leads
to an SRAM length of 18 Bytes/144 Bits; multiplied with a
min. entropy of ≈ 0.75 would then yield 108 Bits of entropy
in the SRAM used for key derivation. For biased SRAM,
however, publicly available helper data leak information
about the generated key [31], [46], [52], which is due to the
concatenation of the two error correction codes as part of the
fuzzy extractor. This leakage further reduces the remaining
entropy in the key and requires additional random code
offset- and SRAM bits to compensate. Maes et al. [52] derived
methods for calculating the leakage and the remaining
entropy as a function of bias, which reflects the average-
case resistance against brute force attacks [71].

We determine the remaining entropy for varying fuzzy
extractor configurations and for our measured SRAM bias
of p̂1 = 0.596 (cf. Section 6.1). Figure 11 visualizes the
results for various configurations of the fuzzy extractor.
The upper left triangles (red) reflect the remaining key
entropy after fuzzy extraction. Increasing code offsets in-
crease the required SRAM length (i.e., initial entropy) and
the remaining entropy in the extracted keys. Increasing
repetitions unsurprisingly increase the required input lengths
too, whereas the remaining entropy shows a reversed trend
and increases with fewer repetitions. Code offsets of 24 Bytes
expose remaining entropies from 182 Bits (1 repetition) down
to 82 Bits (13 repetitions). A random code offset of 24 Bytes
with 5 repetitions provides 144 Bits of remaining entropy and

meets the recommended security strength [72] of 128 Bits key
entropy.
Reliability. Figure 11 also presents the empirical reconstruc-
tion failure rate, which is introduced by bit errors between
SRAM readouts that cannot be corrected by the fuzzy
extractor. Increasing code offsets increases the error rate
(notable in Figure 11 following repetitions 1 and 3 for bottom
to top). Following repetitions fewer than five, all fuzzy
extractor configurations reveal a notable failure probability,
which contradicts the common key reconstruction error
rate of 10−6 [13], [44], [45], [52]. Five or more Repetitions
expose errors smaller than 3 · 10−8. In our measurements,
no uncorrected bit error occurred in reconstructed outputs
and the error values represent the multiplicative inverse of
all successfully reconstructed bits.
Discussion. Increasing the SRAM length is undesirable since
memory is sparse on very constrained IoT devices. Repeti-
tions should remain few to avoid entropy loss. Conversely,
multiple repetitions are required to provide an acceptable
reconstruction rate, in particular for deployments of large
SRAM noise level [28]. A code offset of 24 Bytes and five
repetitions preserves sufficient key entropy on our M3 nodes
at a failure rate that meets the requirements for a PUF design.
Other fuzzy extractor configurations either sacrifice reliability
by an intolerable reconstruction failure rate at the required
level of security, or they sacrifice the remaining key entropy.
Our overall balanced strategy provides highly unique and
reliable device identities at an acceptable security level. Pre-
processing of the SRAM pattern as proposed in [25], [26], [53]
can further reduce the required SRAM length and increase
the remaining key entropy from biased SRAM PUFs, which
promises to improve the performance at the same or better
security strength.

7.3 Processing Overhead
We measure processing times on M3 nodes and compare
the PUF performance with two different off-the-shelf IoT
platforms: ESP32 and HiFive (see Section 3).

First, we analyze the startup latency of two RIOT
applications executed on the M3 node, without the PUF
module. (i) Hello world is a minimal single-threaded
application and introduces a startup latency of 1.1 ms. (ii)
gnrc_networking is the standard IPv6 networking appli-
cation which initializes many modules in 8 threads prior
to execution of application code. This requires 10.8 ms for
startup. The latter case excludes seed generation. Here, we
utilize a static CSPRNG seed, since M3 nodes lack an entropy
source (without the PUF).

Table 1 presents the processing overhead of (i) soft-reset
detection, (ii) common routines, and (iii) both seed generators.
Soft-reset detection is mandatory with our PUF module and
adds a small overhead of < 8µs on the M3 node. ESP32
adds ≈ 23µs and HiFive surprisingly requires ≈ 65 times
longer than M3. This is an effect of PUF operation prior
to system clock initialization. Common processing adds a
negligible overhead on all platforms. General purpose seed
generation (≈ 0.02–0.13 ms) is lean compared to secure seed
generation (up to 14 ms on M3) which is comparable to
gnrc_networking, though, seed generation from real en-
tropy sources is slow in general [1]. Secure seeds take± 12 ms

11

TABLE 1: Additional operating system startup latencies
introduced by soft-reset detection and generation of two
seeds.

Platform Soft-reset
detection [ms]

Common
routines [ms]

Seed generation [ms]

simple secure

M3 7.65 · 10−3 3.00 · 10−3 0.13 13.65
ESP32 22.59 · 10−3 0.47 · 10−3 0.02 1.37
HiFive 494.91 · 10−3 1.50 · 10−3 0.08 27.03

on ESP32 and HiFive. Flash memory access during SHA256
computation is slower on HiFive due to a serial interface. In
agreement with previous measurements, processing times do
not directly reflect CPU frequency. Initializing clocks prior to
PUF execution can improve performance in the future, but
requires rearrangement of the OS startup routine. Exemplary,
we rearrange the startup code for the M3 platform and find
a speedup of almost 7 times, though, system clock speed
increased by a factor of 9, comparing the hardware default
state (8 MHz) and the RIOT configuration (72 MHz).

Next, we look at the processing overhead of the fuzzy
extractor and focus on reconstruction since enrollments
happen rarely. We present four relevant configurations for
key construction in Figure 12. ‘Helper’ contains readout of
the helper data from flash. ‘XOR’ contains the overhead
from bitwise xor operation at the input and output of the
fuzzy extractor (Figure 7a). ‘Decode’ includes overhead
of the concatenated Golay- and repetition decoder, and
‘Encode’ includes renewed encoding of the corrected code
offset. ‘Hash’ calculates a digest over the reconstructed PUF
measurement. Finally, ‘Clear’ contains the overhead of re-
setting vulnerable data structures after usage.

The absolute latency (numbers above bars) depends
on the SRAM length and requires 10–20 ms on M3 in
all presented cases. The order of magnitude compares to
gnrc_networking and the secure seed generator. Recon-
struction and seed generation add to the existing startup
latency, though. Other platforms reflect results from Table 1
and take 1.6–2.6 ms (ESP32) and 35–50 ms (HiFive) respec-
tively. Readout of the helper data is only notable on the M3
(≈ 17 %) due to its slow NOR flash. The relative processing
time for fuzzy extraction increases almost linearly with
longer code offsets (Figure 12 bottom to top). Increasing the
number of repetitions (Figure 12 left to right) also increases
the relative hashing time for a reduction in decoding. Longer
inputs affect the cryptographic hash efforts moderately more
than the simple decoder.

In summary, the collection of PUF features moderately
delays the startup routines of our sample applications. This
motivates our modular design, which allows for selective
configuration of PUF features. Furthermore, a positive soft-
reset detection skips parts of the PUF execution. The order
of tens of milliseconds is still small compared to the required
SRAM power-off time (1 second has proven suitable for
different platforms) to generate a fresh memory pattern. In
practice, most IoT applications only awake a few times per
hour or day, which obviates the latency overhead.

M3 ESP32 HiFive
0

25

50

75

100

R
el

a
ti

v
e

P
ro

c.
T

im
e

[%
]

19%

34%
52%

38%

11% 11%
18%

29% 28% 33%

∑
20.0 ms 2.6 ms 50.4 ms

Helper XOR Decode Encode Hash Clear

M3 ESP32 HiFive
0

25

50

75

100

R
el

a
ti

v
e

P
ro

c.
T

im
e

[%
]

17%

37%
55%

40%

14% 14%
23%

26% 24% 29%

∑
13.2 ms 2.0 ms 40.9 ms

(a) Reps.: 5, Code offs.: 24 Bytes

M3 ESP32 HiFive
0

25

50

75

100

R
el

a
ti

v
e

P
ro

c.
T

im
e

[%
]

19%

34%
52%

38%

11% 11%
18%

29% 28% 33%

∑
20.0 ms 2.6 ms 50.4 ms

(b) Reps.: 9, Code offs.: 24 Bytes

M3 ESP32 HiFive
0

25

50

75

100

R
el

a
ti

v
e

P
ro

c.
T

im
e

[%
]

17%

37%
55%

41%

14% 14%
20%

26% 25% 31%

∑
10.0 ms 1.6 ms 34.8 ms

(c) Reps.: 5, Code offs.: 18 Bytes

M3 ESP32 HiFive
0

25

50

75

100

R
el

a
ti

v
e

P
ro

c.
T

im
e

[%
]

18%

33%
50%

37%

10% 11%
17%

32% 31% 37%

∑
15.7 ms 2.1 ms 42.4 ms

(d) Reps.: 9, Code offs.: 18 Bytes

Fig. 12: Additional OS startup latency introduced by PUF
reconstruction for four configurations of the fuzzy extractor
on different boards. Unlabeled bars relate to proportions
below 10%.

8 SECURITY ANALYSIS

PUFs need to maintain unpredictability and unclonability.
A secret is embedded in the chip, hence, no seed or key is
stored during device sleep, the prevalent state of a battery-
driven IoT device. Secrets only persist during a short time
after system startup, reducing the attack vector to a limited
time. Practical attacks, however, can still exploit a number of
vectors. We identify (i) assets, (ii) attackers, and (iii) attack
surfaces of our PUF module, and present (iv) threats. Risks
arise from the combination of specific hardware capabilities,
the deployment consideration, application requirements,
and related attacker assumptions. Hence, we are aiming
to provide an overview of the prevalent risks, together with
a series of mitigations.

8.1 Assets

The most vulnerable resources of the SRAM PUF are the
uninitialized memory pattern (A1), the output of the PUF,
namely secure seeds (A2), and the key (A3). These assets
must preserve confidentiality and integrity. In our implemen-
tation, the memory marker (A4) (e.g., for soft-reset detection,
see Section 5) persist after OS startup and is vulnerable
because it controls the next reset behavior, i.e., can instruct to
skip or execute the PUF on a future reset. Hence, this data
must preserve integrity. Non-volatile memory (A5) stores
helper data that is required for key reconstruction. Although
helper data is considered public, it is still susceptible. It must
preserve integrity and availability to reconstruct the PUF

12

correctly. Authenticity is also desired, but conventionally
very challenging to achieve.

8.2 Adversaries
We distinguish two types of adversaries. First, software
attackers that try to compromise, manipulate, or analyze the
system under attack without hardware access. This includes
crypto-analysis and the application of learning algorithms.
Software attackers exploit software backdoors, weak imple-
mentations, or software bugs to reveal secret information, or
disturb code execution. Considering networked nodes in the
IoT, attackers can be in wireless reach or connected remotely.
Second, hardware attackers that have direct physical device
access. We distinguish two types of hardware attackers: Non-
invasive attackers try to interface the device during sleep or
operation. They utilize interfaces such as system peripherals,
or try to manipulate the device operation conditions. Invasive
hardware attackers have deep knowledge and access to
advanced techniques to gather or manipulate information
on the silicon level. We exclude invasive attacks from the
reminder of this section because they are (i) rare due to high
financial and knowledge requirements and (ii) very specific to
chip constructions, and so are mitigations, which contradicts
our goal to improve the security of cheap, heterogeneous,
and possibly already deployed devices.

8.3 Surfaces
We categorize the attack surfaces into three groups. (i) The
communication interface (S1), e.g., the low-power radio can
act as an entry point to inject malicious inputs, or be used
for (crypto-) analysis of protocols that make use of random
numbers derived by the PUF seed, or the key derived by
the fuzzy extractor. This interface also acts as entry point
for software updates (future work). (ii) I/Os provide an
interface to the MCU (S2). Peripherals such as UART, SPI, or
GPIO can revel system internals through logging output, and
open an attack vector for interaction with the system. More
crucial, debugging interfaces such as JTAG open a direct
interface to the chip memory. (iii) The physical presence of
a device (S3) provides a surface to operational conditions
(e.g., temperature, magnetic field) and the power supply.

8.4 Threats & Mitigations
We classify threats using STRIDE [74] which defines six
categories of security threats: Spoofing identity (S), Tamper-
ing with data (T), Repudiation (R), Information disclosure
(I), Denial of service (D), and Elevation of privilege (E).
Table 2 summarizes our results and presents mitigations for
hardware (T0–T2) and software (T3–T6) adversaries.
T0. An attacker manages to read non-volatile memory, by
(physically) connecting to the flash memory. Without the
PUF, persistent keys would be stored as plain text, directly
disclosing the secret. PUFs provide additional security by
storing only the public helper data in flash. This attack,
however, may disclose information in cases of high bias.
Hence, helper data readout should still be impractical.
T1. An attacker manages to read/write data such as the
uninitialized SRAM pattern, seeds, or keys. Debug interfaces
can directly interact with the processor. Adversaries that

manage to connect to the debug lines and initiate a debug
session, can halt the CPU during startup to read out memory.
If the PUF primitive is used for authentication, this enables
spoofing and elevation of privileges without repudiation.
Tampering can invalidate operation leading to denial of
service which, however, is simple to achieve with physical
device access. It is noteworthy that PUFs do not introduce
additional threats compared to pure software solutions.
T2. An attacker manages to tamper by manipulating
environmental operation conditions of the device. Common
examples vary the temperature or control the power supply,
e.g., the power-off time, operation voltage, or startup slope.
This affects random physical processes, including but not
limited to SRAM startup state. A reduction of entropy
disqualifies seeds and discloses information, especially in
combination with T0. False key reconstruction can lead to
denial of service. Without the PUF, applications require
alternative sources for seed generation, or sometimes use
TRNGs permanently which are similarly affected by the
environment. PUFs thus act as an additional source of
entropy to increase seed security.
T3. An attacker monitors (secured) network traffic that
utilizes random numbers or keys. This attack might be
complemented by owning and analyzing the SRAM on
a device of the same type, exploiting bias to predict the
initial SRAM pattern. Crypto-analysis of the output of known
algorithms can disclose information of secrets derived from
insufficient entropy. Combined with T0, learning attacks
become a risk [58] in these cases. Without the PUF, however,
random numbers are unavailable on platforms without a
TRNG which fully prevents security. Keys are sometimes
shipped by the vendor and reutilized across devices, leading
to zero entropy on large quantities of nodes [75], [76]. PUFs
enable security contributing a uniformly random seed and a
unique key that is derived from individual device variations.
T4. An attacker manages to read data structures through
software backdoors, which challenges privacy regardless of
PUFs (e.g., compromise of keys in working memory). At the
time that the network interface is up and running, SRAM is
not uninitialized anymore, and vulnerable seeds should be
cleared. A state compromise of a non-forward secure PRNG,
however, potentially allows backtracking of the initial SRAM
pattern and discloses information. Without the PUF, initial
secrets are likely stored persistently in plain text. PUFs reduce
this attack surface to helper data disclosure (see T0).
T5. An attacker manages to overwrite vulnerable data
structures (e.g., forcing buffer overflow). Tampering with
the soft-reset memory marker (Section 5.3) can trigger a false
negative detection on next reset, which leads to zero entropy
seeding and defect key reconstruction. Similarly, tampering
helper data is a risk. This causes information disclosure and
enables denial of service without repudiation. Interfering
with code execution threatens code execution regardless of
PUFs, though.
T6. Combines T2 and T5. An attacker manages to tamper
with the voltage supply through software interfaces–likely
present in low-power OSes for undervolting. Dynamic
adjustments during program execution that do not affect
startup conditions after reset (sleep) are uncritical, since the
PUF is processed before operation. Adjustments that persist

13

TABLE 2: Threat overview of the SRAM PUF integration.

No. Threat description Asset
(§8.1)

Adversary
(§8.2)

Surface
(§8.3)

STRIDE
(§8.4) Mitigation

T0 Readout public helper
data.

A5 Hardware S2 I • Conserv. entropy estim. during enrollment.

T1 Read/write data. A1–5 Hardware S2 STRIDE • Enable debug port lock.
• Use one-time program. memory / write protect.
• Cut input/output connections.
• Deploy device with tamper protect. enclosure.

T2 Manipulate operational
conditions.

A1 Hardware S3 TID • Additional entropy sources for seed generation.
• Sensors to monitor environ. conditions [73].

T3 (Crypto-)analysis of net-
work traffic.

A1–3 Software S1 I • Conserv. entropy estim. during enrollment.
• Short error correction codes.

T4 Readout public/secret
data.

A5 Software S1 I • Clear memory after usage.
• Separate mem. for non-/secure seeds and key.

T5 Overwrite control data. A4–5 Software S1 TRID • Enable hardware assisted soft-reset detection.

T6 Control operational con-
ditions.

A1-3 Software
(&Hardware)

S1 TID • Enable hardware assisted voltage detection.

after reset, however, are crucial. A lower voltage causes the
reduction of SRAM entropy which disqualifies seeds, leading
to information disclosure. Alternative random sources might
be similarly affected by this attack (see T2).
Threat discussion. PUFs provide non-uniform keys across
devices, which means that each device has to be attacked
separately, rather than attacking one and owning all devices.
The success of a hardware attacker depends on (i) the
device accessibility and (ii) the additional security features of
the chip. Hardware attacks are typically small-scale, which
contradicts the large-scale characteristics of common IoT
deployments. A non-invasive hardware attack requires high
efforts for a single device, whereas many threats can be
mitigated by standard hardware features. High security
applications, however, should design specific hardware-
security features and consider device enclosures.

Software attacks are more likely in the IoT since devices
become accessible remotely through the network. Thereby,
the attack surface reduces notably, compared to hardware
attacks. Presuming an adequate enrollment, the prevalent
software-based threat is given by information disclosure
and tampering through a software backdoor (T4–T6). These
threats, however, do not assault the PUF in particular, but
generally impede operation of this constrained device class.
Hence, the PUF adds a layer of security in practice. To reduce
this attack surface, vendors include trusted execution envi-
ronments (e.g., ARM TrustZone, RISC-V PMP) on modern
IoT platforms, that allow for code isolation and privileged
memory access. Privileged PUF operations can improve
security by separating user facing, networking, or driver
code from secure operations. Conversely, secure processing
environments require a root of trust, which can be assisted
with a PUF. Hence, both features could complement each
other in the future.

9 CONCLUSION AND OUTLOOK

This paper started from the observation that many commod-
ity IoT devices provide little to no hardware security features,

sometimes not even a source of randomness. We presented
the first comprehensive PUF integration into an IoT operating
system to fill this gap and broadly enhance embedded
security. Our PUF proposal uses uninitialized SRAM, which
is available on common IoT platforms, and is portable due
to an integration below the hardware abstraction layer of the
open-source operating system.

We evaluated SRAM PUF on typical class 2 devices in
an open testbed using 708 nodes. This is, to the best of
our knowledge, the first empirical PUF study with several
hundreds constrained IoT nodes, albeit prior work [6] proved
the need for large sample sizes for the subtle analysis of
SRAM bias. Our analysis revealed four key insights.

(i) An inter-device distance of ≈ 48 % between node
pairs shows high uniqueness, which enables the generation
of unpredictable keys. Still, the physical SRAM layout
introduces inter-device bias, which becomes visible when
analyzing high numbers of nodes. This reduces the inter-
device min. entropy to ≈ 75 %, and thereby the number
of unpredictable bits per node. Key generation relies on
public helper data, which may reveal information about the
SRAM pattern in the case of bias. Our analysis of the entropy
leakage identified a fuzzy extractor configuration that results
in 144 Bits of remaining key entropy at a failure rate of 6·10−9.
(ii) An intra-device min. entropy of ≈ 7 % allows for secure
seed generation on startup. (iii) The uninitialized SRAM
properties of real-word aged, heavily utilized testbed nodes
are still sufficient to achieve (i) and (ii). (iv) A configurable
OS integration can seamlessly provide PUF services to the
IoT at moderate start-up overhead while shielding soft resets.

We could also show that a number of hardware-based non-
invasive attacks against SRAM PUFs heavily depend on the
availability of platform features such as device pinouts or de-
bug port locks. The availability of PUFs upgrades the security
of commercial off-the-shelf devices without cryptographic
hardware and strengthens the resistance against the more
dangerous software attacks from remote parties throughout
the Internet. Contributing non-uniform keys across devices,

14

our PUF integration reduces the efficacy of these attacks,
since each node needs to be attacked individually, rather
than attacking one and owning all.

This work opens four future research directions. First,
pre-processing of biased SRAM pattern may increase the
security of keys while reducing the fuzzy extractor overhead,
but it adds a layer of complexity to the generation process,
which needs careful evaluation on resource constrained
devices. Second, an aging detection and an anti-aging
stage may observe and mitigate entropy loss on degrading
nodes. Third, the PUF functions can be extended to include
trusted execution environments, which become increasingly
available on modern hardware. Fourth, integrated analysis
tools may improve estimates of entropy and SRAM length.
We hope this will ease deployment efforts toward a future,
more secure IoT.
Acknowledgments. We would like to thank Nils Wisiol
for his careful feedback, which has significantly helped to
improve the paper. This work was supported in part by
the German Federal Ministry for Education and Research
(BMBF) within the project PIVOT: Privacy-Integrated design
and Validation in the constrained IoT.
Availability of software and reproducibility. We support
reproducible research ([77], [78]) and utilize open source
software and open testbed platforms. All of our work is
publicly released. The code of the software components, pre-
compiled binary images, the implementation of the estimator,
documentation, data sets and related tools are available on
GitHub at https://github.com/inetrg/IEEE-TDSC-PUF23.

REFERENCES

[1] P. Kietzmann, T. C. Schmidt, and M. Wählisch, “A Guideline on
Pseudorandom Number Generation (PRNG) in the IoT,” ACM
Comput. Surv., vol. 54, no. 6, pp. 112:1–112:38, July 2022. [Online].
Available: https://dl.acm.org/doi/10.1145/3453159

[2] D. Kumar, K. Shen, B. Case, D. Garg, G. Alperovich, D. Kuznetsov,
R. Gupta, and Z. Durumeric, “All Things Considered: An Analysis
of IoT Devices on Home Networks,” in 28th USENIX Security
Symposium (USENIX Security 19). Santa Clara, CA: USENIX
Association, Aug. 2019, pp. 1169–1185.

[3] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallit-
sis, D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman,
N. Sullivan, K. Thomas, and Y. Zhou, “Understanding the Mirai
Botnet,” in 26th USENIX Security Symposium (USENIX Security 17).
Vancouver, BC: USENIX Association, Aug. 2017, pp. 1093–1110.

[4] A. Maiti, J. Casarona, L. McHale, and P. Schaumont, “A large
scale characterization of RO-PUF,” in International Symposium on
Hardware-Oriented Security and Trust (HOST’10). Piscataway, NJ,
USA: IEEE, 2010, pp. 94–99.

[5] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar, “Impact of NBTI on
SRAM read stability and design for reliability,” in 7th International
Symposium on Quality Electronic Design (ISQED’06). Los Alamitos,
CA, USA: IEEE Computer Society, 2006.

[6] F. Wilde and M. Pehl, “On the Confidence in Bit-Alias Measurement
of Physical Unclonable Functions,” in International New Circuits
and Systems Conference (NEWCAS’19). Piscataway, NJ, USA: IEEE,
2019.

[7] E. Baccelli, C. Gündogan, O. Hahm, P. Kietzmann, M. Lenders,
H. Petersen, K. Schleiser, T. C. Schmidt, and M. Wählisch, “RIOT:
an Open Source Operating System for Low-end Embedded
Devices in the IoT,” IEEE Internet of Things Journal, vol. 5,
no. 6, pp. 4428–4440, December 2018. [Online]. Available:
http://dx.doi.org/10.1109/JIOT.2018.2815038

[8] C. Bormann, M. Ersue, and A. Keranen, “Terminology for
Constrained-Node Networks,” IETF, RFC 7228, May 2014.

[9] The Hacker News, “A Critical Random Number Generator Flaw
Affects Billions of IoT Devices,” https://thehackernews.com/2021/
08/a-critical-random-number-generator-flaw.html, last accessed
29-03-2022, 2021.

[10] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical One-
Way Functions,” Science, vol. 297, no. 5589, pp. 2026–2030, 2002.

[11] B. Gassend, D. Clarke, van Marten Dijk, and S. Devadas, “Silicon
Physical Random Functions,” in Proc. of the 9th ACM Conference on
Computer and Communications Security (CCS ’02). New York, NY,
USA: ACM, 2002, pp. 148–160.

[12] M. G. Samaila, M. Neto, D. A. B. Fernandes, M. M. Freire, and
P. R. M. Inácio, “Challenges of securing Internet of Things devices:
A survey,” Security and Privacy, vol. 1, no. 2, p. e20, 2018.

[13] J. Guajardo, S. S.Kumar, G.-J. Schrijen, and P. Tuyls, “FPGA Intrinsic
PUFs and Their Use for IP Protection,” in Cryptographic Hardware
and Embedded Systems (CHES’07), P. Paillier and I. Verbauwhede,
Eds. Berlin, Heidelberg: Springer–Verlag, 2007, pp. 63–80.

[14] I. Eichhorn, P. Koeberl, and V. van der Leest, “Logically Reconfig-
urable PUFs: Memory-Based Secure Key Storage,” in Proc. of the
6th ACM Workshop on Scalable Trusted Computing (STC ’11). New
York, NY, USA: ACM, 2011, pp. 59–64.

[15] U. Chatterjee, R. S. Chakraborty, and D. Mukhopadhyay, “A PUF-
Based Secure Communication Protocol for IoT,” ACM Trans. Embed.
Comput. Syst., vol. 16, no. 3, 2017.

[16] G. Bianchi, A. L. Rosa, and G. Restuccia, “RIOT-AKA: cellular-like
authentication over IoT devices,” in 29th IEEE Int. Conf. on Network
Protocols (ICNP’21). Piscataway, NJ, USA: IEEE, 2021, pp. 1–6.

[17] A. Falcone, C. Felicetti, A. Garro, A. Rullo, and D. Saccà, “PUF-
Based Smart Tags for Supply Chain Management,” in 16th Interna-
tional Conference on Availability, Reliability and Security (ARES’21).
New York, NY, USA: ACM, 2021.

[18] S. Schulz, A.-R. Sadeghi, and C. Wachsmann, “Short Paper:
Lightweight Remote Attestation Using Physical Functions,” in
Proc. of the 4th ACM Conference on Wireless Network Security (WiSec
’11). New York, NY, USA: ACM, 2011, pp. 109–114.

[19] M. A. Prada-Delgado, A. Vázquez-Reyes, and I. Baturone, “Trust-
worthy firmware update for Internet-of-Thing Devices using
physical unclonable functions,” in Global Internet of Things Summit
(GIoTS ’17). Piscataway, NJ, USA: IEEE, 2017, pp. 1–5.

[20] Marten van Hulst, “Anchoring TrustZone
with SRAM PUF,” https://community.arm.com/
arm-community-blogs/b/architectures-and-processors-blog/
posts/anchoring-trustzone-with-sram-puf, last accessed 09-29-
2021, 2019.

[21] R. Faraji and H. R. Naji, “Adaptive Technique for Overcoming
Performance Degradation Due to Aging on 6T SRAM Cells,” IEEE
Transactions on Device and Materials Reliability, vol. 14, no. 4, pp.
1031–1040, 2014.

[22] U. Guin, W. Wang, C. Harper, and A. D. Singh, “Detecting Recycled
SoCs by Exploiting Aging Induced Biases in Memory Cells,” in
International Symposium on Hardware Oriented Security and Trust
(HOST’19). Piscataway, NJ, USA: IEEE, 2019, pp. 72–80.

[23] D. E. Holcomb, W. P. Burleson, and K. Fu, “Power-Up SRAM State
as an Identifying Fingerprint and Source of True Random Numbers,”
IEEE Transactions on Computers, vol. 58, no. 9, pp. 1198–1210, 2009.

[24] F. Wilde, C. Frisch, and M. Pehl, “Efficient Bound for Conditional
Min-Entropy of Physical Unclonable Functions Beyond IID,” in
International Workshop on Information Forensics and Security (WIFS’19).
Piscataway, NJ, USA: IEEE, 2019.

[25] M. T. Rahman, A. Hosey, Z. Guo, J. Carroll, D. Forte, and
M. Tehranipoor, “Systematic Correlation and Cell Neighborhood
Analysis of SRAM PUF for Robust and Unique Key Generation,”
Journal of Hardware and Systems Security, vol. 1, no. 2, pp. 137–155,
2017.

[26] K. Xiao, M. T. Rahman, D. Forte, Y. Huang, M. Su, and M. Tehra-
nipoor, “Bit selection algorithm suitable for high-volume pro-
duction of SRAM-PUF,” in International Symposium on Hardware-
Oriented Security and Trust (HOST’14). Piscataway, NJ, USA: IEEE,
2014, pp. 101–106.

[27] A. R. Korenda, F. Afghah, B. Cambou, and C. Philabaum, “A Proof
of Concept SRAM-based Physically Unclonable Function (PUF) Key
Generation Mechanism for IoT Devices,” in Workshop on Security
Trust and Privacy in Emerging Cyber-Physical Systems (SECON’19).
Piscataway, NJ, USA: IEEE, 2019.

[28] G.-J. Schrijen and V. van der Leest, “Comparative analysis of SRAM
memories used as PUF primitives,” in DATE ’12: Design, Automation
Test in Europe Conference Exhibition. Piscataway, NJ, USA: IEEE,
2012, pp. 1319–1324.

https://github.com/inetrg/IEEE-TDSC-PUF23
https://dl.acm.org/doi/10.1145/3453159
http://dx.doi.org/10.1109/JIOT.2018.2815038
https://thehackernews.com/2021/08/a-critical-random-number-generator-flaw.html
https://thehackernews.com/2021/08/a-critical-random-number-generator-flaw.html
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/anchoring-trustzone-with-sram-puf
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/anchoring-trustzone-with-sram-puf
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/anchoring-trustzone-with-sram-puf

15

[29] S. Katzenbeisser, Ü. Kocabaş, V. Rožić, A.-R. Sadeghi, and I. V. C.
Wachsmann, “PUFs: Myth, Fact or Busted? A Security Evaluation
of Physically Unclonable Functions (PUFs) Cast in Silicon,” in
Cryptographic Hardware and Embedded Systems (CHES ’12), E. Prouff
and P. Schaumont, Eds. Berlin, Heidelberg: Springer–Verlag, 2012,
pp. 283–301.

[30] M. Claes, V. van der Leest, and A. Braeken, “Comparison of SRAM
and FF PUF in 65nm Technology,” in Information Security Technology
for Applications, P. Laud, Ed. Berlin, Heidelberg: Springer–Verlag,
2012, pp. 47–64.

[31] P. Koeberl, J. Li, A. Rajan, and W. Wu, “Entropy loss in PUF-
based key generation schemes: The repetition code pitfall,” in IEEE
International Symposium on Hardware-Oriented Security and Trust
(HOST ’14). Piscataway, NJ, USA: IEEE, 2014, pp. 44–49.

[32] W. Feller, An Introduction to Probability Theory and Its Applications,
2nd ed. New York: Wiley & Sons, 1971, vol. 2.

[33] F. Wilde, “Large Scale Characterization of SRAM on Infineon
XMC Microcontrollers as PUF,” in Proc. of the 4th Workshop on
Cryptography and Security in Computing Systems (CS2’17). New
York, NY, USA: ACM, 2017, pp. 13–18.

[34] R. Hesselbarth, F. Wilde, C. Gu, and N. Hanley, “Large scale RO
PUF analysis over slice type, evaluation time and temperature
on 28nm Xilinx FPGAs,” in International Symposium on Hardware-
Oriented Security and Trust (HOST’18). Piscataway, NJ, USA: IEEE,
2018, pp. 126–133.

[35] C. Gu, C.-H. Chang, W. Liu, N. Hanley, J. Miskelly, and M. O’Neill,
“A large-scale comprehensive evaluation of single-slice ring oscil-
lator and PicoPUF bit cells on 28-nm Xilinx FPGAs,” Journal of
Cryptographic Engineering, vol. 11, no. 3, pp. 227–238, 2021.

[36] M.-D. Yu, R. Sowell, A. Singh, D. M’Raïhi, and S. Devadas,
“Performance metrics and empirical results of a PUF cryptographic
key generation ASIC,” in International Symposium on Hardware-
Oriented Security and Trust (HOST’12). Piscataway, NJ, USA: IEEE,
2012, pp. 108–115.

[37] M. Barbareschi, E. Battista, A. Mazzeo, and N. Mazzocca, “Testing
90 nm microcontroller SRAM PUF quality,” in 10th International
Conference on Design & Technology of Integrated Systems in Nanoscale
Era (DTIS’15). Piscataway, NJ, USA: IEEE, 2015.

[38] V. van der Leest, E. van der Sluis, G.-J. Schrijen, PimTuyls, and
H. Handschuh, Efficient Implementation of True Random Number
Generator Based on SRAM PUFs. Berlin, Heidelberg: Springer, 2012,
pp. 300–318.

[39] A. van Herrewege, V. van der Leest, A. Schaller, S. Katzenbeisser,
and I. Verbauwhede, “Secure PRNG Seeding on Commercial
Off-the-shelf Microcontrollers,” in 3rd International Workshop on
Trustworthy Embedded Devices (TrustED ’13). New York, NY, USA:
ACM, 2013, pp. 55–64.

[40] K. Krentz, C. Meinel, and H. Graupner, “Secure self-seeding with
power-up SRAM states,” in ISCC ’17: Symposium on Computers and
Communications. Heraklion, Greece: IEEE, 2017, pp. 1251–1256.

[41] A. Juels and M. Wattenberg, “A Fuzzy Commitment Scheme,” in
Proc. of the 6th ACM Conference on Computer and Communications
Security (CCS ’99). New York, NY, USA: ACM, 1999, pp. 28–36.

[42] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy Extractors:
How to Generate Strong Keys from Biometrics and Other Noisy
Data,” SIAM Journal on Computing, vol. 38, no. 1, pp. 97–139, 2008.

[43] M.-D. Yu and S. Devadas, “Secure and robust error correction for
physical unclonable functions,” IEEE Design & Test of Computers,
vol. 27, no. 1, pp. 48–65, 2010.

[44] M. Hiller, L. Kürzinger, and G. Sigl, “Review of error correction
for PUFs and evaluation on state-of-the-art FPGAs,” Journal of
Cryptographic Engineering, vol. 10, no. 3, pp. 229–247, 2020.

[45] V. van der Leest, B. Preneel, and E. van der Sluis, “Soft Decision
Error Correction for Compact Memory-Based PUFs Using a Single
Enrollment,” in Cryptographic Hardware and Embedded Systems
(CHES ’12), E. Prouff and P. Schaumont, Eds. Berlin, Heidelberg:
Springer–Verlag, 2012, pp. 268–282.

[46] J. Delvaux, D. Gu, D. Schellekens, and I. Verbauwhede, “Helper
Data Algorithms for PUF-Based Key Generation: Overview and
Analysis,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 34, no. 6, pp. 889–902, 2015.

[47] G. S. Edward and S. Devadas, “Physical Unclonable Functions for
Device Authentication and Secret Key Generation,” in Proc. of the
44th Annual Design Automation Conference (DAC ’07). New York,
NY, USA: ACM, 2007, pp. 9–14.

[48] C. Bösch, J. Guajardo, A.-R. Sadeghi, J. Shokrollahi, and P. Tuyls,
“Efficient Helper Data Key Extractor on FPGAs,” in Cryptographic
Hardware and Embedded Systems - CHES 2008. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 181–197.

[49] R. Maes, A. V. Herrewege, and I. Verbauwhede, “PUFKY: A
Fully Functional PUF-Based Cryptographic Key Generator,” in
Cryptographic Hardware and Embedded Systems (CHES ’12), E. Prouff
and P. Schaumont, Eds. Berlin, Heidelberg: Springer–Verlag, 2012,
pp. 302–319.

[50] P. Kietzmann, L. Boeckmann, L. Lanzieri, T. C. Schmidt, and
M. Wählisch, “A Performance Study of Crypto-Hardware in the
Low-end IoT,” in International Conference on Embedded Wireless
Systems and Networks (EWSN’21). New York, USA: ACM, February
2021. [Online]. Available: https://www.ewsn.org/file-repository/
ewsn2021/Article8.pdf

[51] M.-D. M. Yu, D. M’Raïhi, S. Devadas, and I. Verbauwhede, “Security
and Reliability Properties of Syndrome Coding Techniques Used in
PUF Key Generation,” 2013.

[52] R. Maes, V. van der Leest, E. van der Sluis, and F. Willems, “Secure
key generation from biased PUFs: extended version,” Journal of
Cryptographic Engineering, vol. 6, no. 2, pp. 121–137, 2016.

[53] H. Liu, W. Liu, Z. Lu, Q. Tong, and Z. Liu, “Methods for Estimating
the Convergence of Inter-Chip Min-Entropy of SRAM PUFs,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 2,
pp. 593–605, 2018.

[54] F. Ganji, S. Tajik, F. Fäßler, and J.-P. Seifert, “Strong Machine
Learning Attack Against PUFs with No Mathematical Model,”
in Cryptographic Hardware and Embedded Systems (CHES’16). Berlin,
Heidelberg: Springer–Verlag, 2016, pp. 391–411.

[55] J. Shi, Y. Lu, and J. Zhang, “Approximation Attacks on Strong
PUFs,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 39, no. 10, pp. 2138–2151, 2020.

[56] N. Wisiol, B. Thapaliya, K. T. Mursi, J.-P. Seifert, and Y. Zhuang,
“Neural Network Modeling Attacks on Arbiter-PUF-Based Designs,”
IEEE Transactions on Information Forensics and Security, 2022.

[57] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and J. Schmid-
huber, “Modeling Attacks on Physical Unclonable Functions,” in
Proc. of the 17th ACM Conference on Computer and Communications
Security (CCS’10). New York, NY, USA: ACM, 2010, pp. 237–249.

[58] E. Strieder, C. Frisch, and M. Pehl, “Machine Learning of Physical
Unclonable Functions using Helper Data: Revealing a Pitfall in the
Fuzzy Commitment Scheme,” IACR Transactions on Cryptographic
Hardware and Embedded Systems (TCHES ’21), vol. 2021, no. 2, pp.
1–36, 2021.

[59] C. Helfmeier, C. Boit, D. Nedospasov, and J.-P. Seifert, “Cloning
Physically Unclonable Functions,” in IEEE International Symposium
on Hardware-Oriented Security and Trust (HOST ’13). Piscataway,
NJ, USA: IEEE, June 2013, pp. 1–6.

[60] S. Zeitouni, Y. Oren, C. Wachsmann, P. Koeberl, and A.-R. Sadeghi,
“Remanence Decay Side-Channel: The PUF Case,” IEEE Transactions
on Information Forensics and Security, vol. 11, no. 6, pp. 1106–1116,
2016.

[61] Eclipse Foundation, “IoT & Edge Developer Survey Report,” https:
//outreach.eclipse.foundation/iot-adoption-2019, last accessed 03-
12-2022, 2019.

[62] P. Kietzmann, C. Gündogan, T. C. Schmidt, and M. Wählisch, “A
PUF Seed Generator for RIOT: Introducing Crypto-Fundamentals
to the Wild,” in Proc. of 16th ACM International Conference on Mobile
Systems, Applications (MobiSys), Poster Session. New York, NY, USA:
ACM, June 2018.

[63] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel,
R. Pissard-Gibollet, F. Saint-Marcel, G. Schreiner, J. Vandaele, and
T. Watteyne, “FIT IoT-LAB: A large scale open experimental IoT
testbed,” in 2015 IEEE 2nd World Forum on Internet of Things (WF-
IoT). Piscataway, NJ, USA: IEEE Press, Dec 2015, pp. 459–464.

[64] C. Gündogan, P. Kietzmann, M. Lenders, H. Petersen, T. C.
Schmidt, and M. Wählisch, “NDN, CoAP, and MQTT: A
Comparative Measurement Study in the IoT,” in Proc. of 5th ACM
Conference on Information-Centric Networking (ICN). New York,
NY, USA: ACM, September 2018, pp. 159–171. [Online]. Available:
https://doi.org/10.1145/3267955.3267967

[65] L. Boeckmann, P. Kietzmann, L. Lanzieri, T. C. Schmidt, and
M. Wählisch, “Usable Security for an IoT OS: Integrating the Zoo
of Embedded Crypto Components Below a Common API,” in
International Conference on Embedded Wireless Systems and Networks
(EWSN’22). New York, USA: ACM, October 2022.

[66] The Linux Kernel Development Community, “Kconfig
Language,” https://www.kernel.org/doc/html/latest/kbuild/
kconfig-language.html, last accessed 28-09-2020, 2020.

[67] D. E. Knuth, The Art of Computer Programming (Second Edition).
Reading, MA, USA: Addison Wesley, 2009.

https://www.ewsn.org/file-repository/ewsn2021/Article8.pdf
https://www.ewsn.org/file-repository/ewsn2021/Article8.pdf
https://outreach.eclipse.foundation/iot-adoption-2019
https://outreach.eclipse.foundation/iot-adoption-2019
https://doi.org/10.1145/3267955.3267967
https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html
https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html

16

[68] M. J. E. Golay, “Notes on Digital Coding,” Proc. of the Institute of
Radio Engineers (IRE ’49), vol. 37, pp. 657–657, 1949.

[69] R. W. Hamming, “Error detecting and error correcting codes,” The
Bell System Technical Journal, vol. 29, no. 2, pp. 147–160, 1950.

[70] B. Barak, Y. Dodis, H. Krawczyk, O. Pereira, K. Pietrzak, F.-
X. Standaert, and Y. Yu, “Leftover Hash Lemma, Revisited,” in
Advances in Cryptology (CRYPTO ’11), P. Rogaway, Ed. Berlin,
Heidelberg: Springer–Verlag, 2011, pp. 1–20.

[71] J. L. Massey, “Guessing and entropy,” in Proceedings of IEEE
International Symposium on Information Theory (ISIT’94), 1994, p.
204.

[72] E. Barker, “Recommendation for Key Management,” National
Institute of Standards and Technology, Gaithersburg, MD, US, Tech.
Rep. NIST SP 800-57 Part 1, May 2020.

[73] M. T. H. Anik, J.-L. Danger, S. Guilley, and N. Karimi, “Detecting
Failures and Attacks via Digital Sensors,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 40,
no. 7, pp. 1315–1326, 2021.

[74] L. Kohnfelder and P. Garg, “The threats to our products,”
Microsoft, Tech. Rep., 1999. [Online]. Available: https://adam.
shostack.org/microsoft/The-Threats-To-Our-Products.docx

[75] E. Ronen, A. Shamir, A.-O. Weingarten, and C. O’Flynn, “IoT Goes
Nuclear: Creating a ZigBee Chain Reaction,” in IEEE Symposium on
Security and Privacy (SP). Piscataway, NJ, USA: IEEE Press, 2017,
pp. 195–212.

[76] The Hacker News, “Millions of IoT Devices Using Same Hard-
Coded CRYPTO Keys,” https://thehackernews.com/2015/11/
iot-device-crypto-keys.html, last accessed 02-12-2022, 2015.

[77] ACM, “Result and Artifact Review and Badging,” http://acm.org/
publications/policies/artifact-review-badging, Jan., 2017.

[78] Q. Scheitle, M. Wählisch, O. Gasser, T. C. Schmidt, and G. Carle,
“Towards an Ecosystem for Reproducible Research in Computer
Networking,” in Proc. of ACM SIGCOMM Reproducibility Workshop.
New York, NY, USA: ACM, August 2017, pp. 5–8.

AUTHOR BIOGRAPHY

Peter Kietzmann is a PhD student of the Internet
Technologies research group at the Hamburg
University of Applied Sciences. His particular
interests lie in radio technologies, embedded
programming, and secure IoT protocols. In the
German-French research project PIVOT (Privacy-
Integrated design and Validation in the con-
strained IoT) he is currently involved, exploring
the secure protection of data on low-end de-
vices and low-power radio networks of the ultra-
constrained IoT.

Thomas C. Schmidt studied mathematics,
physics, and German literature at Freie Univer-
sität Berlin (FU Berlin), Berlin, Germany, and
the University of Maryland at College Park, MD.
He received the Ph.D. degree in mathematical
physics from FU Berlin, in 1993. He is a Professor
of computer networks and Internet technologies
with the Hamburg University of Applied Sciences,
Hamburg, Germany, where he heads the Internet
Technologies Research Group. He was the Direc-
tor of the HTW Computer Centre, Berlin. Since

then, he has continuously conducted numerous national and international
research projects. He was the Principal Investigator in a number of EU,
nationally funded, and industrial projects, as well as a Visiting Professor
with the University of Reading, Reading, U.K. He is also a co-founder
and a coordinator of the open source community developing the RIOT
operating system. His current research interests include development,
measurement, and analysis of large-scale distributed systems like the
Internet or its offsprings. Dr. Schmidt has served as a Co-Editor and a
Technical Expert on several occasions and is actively involved in the work
of IETF and IRTF, where he co-chaired the SAM RG.

Matthias Wählisch received the Ph.D. degree
(with highest honors) in computer science from
Freie Universität Berlin (FU Berlin), Berlin, Ger-
many. He is a Professor of computer science
with FU Berlin, heading the Internet Technologies
Research Group. He is a co-founder and a coor-
dinator of some successful open source projects
such as RIOT. His efforts are driven by trying to
improve Internet communication based on sound
research. He is the PI of several national and
international projects. He has authored or co-

authored over 130 peer-reviewed papers (e.g., in ACM HotNets, ACM
IMC, and ACM ICN). His current research interests include the design and
evaluation of networking protocols and architectures, as well as Internet
measurements and analysis. Dr. Wählisch was a recipient of the Young
Talents Award of Leibniz-Kolleg Potsdam for outstanding achievements
in advancing the Internet, and recipient of the Excellent Young Scientists
Award for his contributions to the Internet of Things and their prospective
entrepreneurial practice. He has been active in the IETF/ IRTF since
2005. He co-organized or co-chaired over 30 scientific events, including
the IEEE ICNP Ph.D. Forum 2013, ACM ICN 2017, ACM IMC 2017, and
ACM SIGCOMM 2017.

https://adam.shostack.org/microsoft/The-Threats-To-Our-Products.docx
https://adam.shostack.org/microsoft/The-Threats-To-Our-Products.docx
https://thehackernews.com/2015/11/iot-device-crypto-keys.html
https://thehackernews.com/2015/11/iot-device-crypto-keys.html
http://acm.org/publications/policies/artifact-review-badging
http://acm.org/publications/policies/artifact-review-badging

	1 Introduction
	2 Problem Statement and Related Work
	2.1 Properties of Uninitialized SRAM
	2.2 Empirical Evaluation of PUFs
	2.3 Random Seed and Key Generation
	2.4 Security Analysis of PUFs

	3 Experiment Setup
	3.1 Testbed Environment
	3.2 Hardware Platform
	3.3 Software Platform

	4 Large Field Study of Uninitialized SRAM
	4.1 Inter-device Correlation
	4.2 Analysis of Static Bias
	4.3 Analysis of Aging

	5 PUF Design for the RIOT OS
	5.1 Compile-time Configuration
	5.2 Integration into OS Startup Routine
	5.3 Detection of Soft Resets
	5.4 Random Seed Generation
	5.5 Key Generation

	6 Evaluation of OS-integrated SRAM PUFs
	6.1 Estimation of the Min. Entropy Convergence
	6.2 Blockwise Evaluation of the Uniqueness

	7 Analysis of Seed and Key Generation
	7.1 Analysis of Random Seeds
	7.2 Analysis of the Fuzzy Extractor for Key Generation
	7.3 Processing Overhead

	8 Security Analysis
	8.1 Assets
	8.2 Adversaries
	8.3 Surfaces
	8.4 Threats & Mitigations

	9 Conclusion and Outlook
	References
	Biographies
	Peter Kietzmann
	Thomas C. Schmidt
	Matthias Wählisch

