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A B S T R A C T

The paper presents a worst-case touchdown performance analysis of auto-landed aircraft under com-
plex wind disturbance. It takes advantage of the fact that the approaching aircraft effectively follows
a predefined trajectory provided by the instrument landing system. Thus, the aircraft dynamics’ lin-
earization along the approach trajectory results in a finite horizon linear time-varying (LTV) repre-
sentation. This naturally allows to include altitude triggered control law changes and changes in the
flight dynamics, e.g., due to ground effect, in the analysis. To cover a broad range of environmental
and aircraft parameter combinations in the worst-case analysis, a time-varying trajectory uncertainty
description is introduced. The uncertainty’s input/output behavior is covered by integral quadratic
constraints. Thus, recent advances on the worst-case gain analysis of finite horizon LTV systems
can be used. The corresponding analysis condition is based on a parameterized Riccati differential
equation’s solvability, which leads to a readily solvable nonlinear optimization problem. Applying
the robust LTV framework, worst-cases for common touchdown criteria, such as vertical touchdown
velocity, are calculated. These worst-cases cover the influence of complex wind fields and a large air-
craft and environmental parameter set. The results are evaluated against corresponding Monte Carlo
simulation on the original high fidelity, industry-sized nonlinear aircraft model.

1. Introduction
More than 60% of all accidents in civil aviation his-

tory occurred during approach or landing rendering them
the most safety critical flight phases by some margin [2, 8].
Over the last two decades, the mandatory implementation of
autoland systems in airliners reduced the absolute amount
of accidents especially for poor visual conditions [13]. Au-
toland systems are dedicated autopilots designed to track
the localizer and glideslope signal of the runway’s instru-
ment landing system, perform the touchdown, and deceler-
ate the aircraft on the runway. These systems must operate
safely for a large set of aircraft parameters and environmen-
tal conditions. Although, highly reliable inside this operat-
ing window, their performance deteriorates quickly if (tur-
bulent) wind disturbances start violating this window [1].
This significantly reduces their operational capability in bad
weather, e.g., thunder storms. Hence, recent research fo-
cuses on the development of control designs increasing the
autoland’s robustness against wind disturbance [3, 4, 24].
Therefore, it becomes mandatory to develop fast and reliable
accompanying worst-case touchdown performance analysis
tools for their design and certification process.

Requirements for the capabilities and performance of
autoland systems, and their proof of compliance are defined
by the aviation authorities such as the European Union Avi-
ation Safety Agency (EASA) or Federal Aviation Adminis-
tration (FAA). Following for instance the EASA’s CS-AWO
131(c) ([9]), the autoland system must satisfy limits on the
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longitudinal touchdown point, lateral deviation to the cen-
terline, sink rate, bank angle and sideslip angle for a large
set of aircraft and environmental parameters, e.g., landing
weight, center of gravity, wind conditions and airfield el-
evations. The autoland’s compliance with these specifica-
tions must be demonstrated by a combination of analysis
and flight test demonstration. Autoland analyses found in lit-
erature ([4, 15, 16, 18, 24]) rely solely on simulation-based
methods such as Monte Carlo simulations or worst-case op-
timizations of the nonlinear aircraft model covering reason-
able combinations of the parameters defined in [9]. These
methods are computationally expensive, as they must cover
extensive aircraft and environmental conditions, and distur-
bances. Moreover, due to the sample-based nature, they are
limited to provide lower bounds to the actual worst-case per-
formance, e.g., a lower bound on the maximum sink rate
at touchdown ([4, 18, 24]). In case of Monte Carlo based
methods, additional probabilistic statements are possible if a
suitable probability distribution can be fitted into the perfor-
mance metric, e.g., confidence intervals or the probability of
exceedance regarding certification bounds for the predicted
sink rate at touchdown.

In contrast to these classical lower bound methods, re-
cently several worst-case analysis methods based on the lin-
ear time-varying (LTV) integral quadratic constraint (IQC)
framework have been proposed, see e.g., [7, 22]. In short,
these methods are based on an extension of the bounded real
lemma (BRL) for LTV systems to cover integral quadratic
constraints [22]. Reference [7] then proposed an efficient
worst-case optimization framework to solve the BRL condi-
tions over large time horizons.

The present paper contributes a guaranteed worst-case
analysis of typical touchdown constraints under crosswind
conditions for a complex benchmark aircraft with an au-
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tolanding system. A major focus of the paper is put on the
realism of the analysis scenario. As such, the considered
uncertainties, disturbances and performance metrics of the
analysis are chosen in accordance with the EASA certifica-
tion requirements for automatic landing systems (CS-AW0
131 Performance Demonstration). The approach exploits the
fact that during automated landing, the aircraft follows a
predefined trajectory based on the glideslope and localizer
signal of the instrument landing system (ILS). Hence, the
aircraft’s dynamic can be represented as an explicit time-
varying system along the approach trajectory. A Jacobian-
based linearization along the trajectory leads to finite hori-
zon linear time-varying (LTV) system which can be used
in the LTV-IQC framework to perform worst-case analy-
ses. The proposed method is based on a recent extension
of the bounded real lemma (BRL) for LTV systems to cover
integral quadratic constraints in [22] and a worst-case op-
timization framework in [7]. The optimization framework
allows for an efficient analysis of large-scale LTV systems
over long horizons, covering various types of perturbations
such as real parametric and dynamic uncertainties. Its fea-
sibility was demonstrated in an industry relevant worst-case
loads analysis of a space launcher under atmospheric distur-
bance in [6]. The theoretic and computational preliminaries
are given in Section 2. In summary, the proposed analysis
supplements classical probability based tools for approach
analyses by providing fast guaranteed worst-case results.
Due to the computational efficiency of the method, it can
be easily integrated in an iterative control design loop.

The benchmark aircraft considered in this paper is a large
twin-engine airliner comparable to an Airbus A330. The
model was introduced in [4] and is freely available from
https://w3.onera.fr/smac/aircraftModel. It
was used in an auto-landing control design challenge for-
mulated in [3]. As part of the challenge a fully functional
robust control design was developed in [24]. Both the air-
craft model and the controller are briefly described in Sec-
tion 3. The novel benchmark analysis presented in Section
4 is a worst-case touchdown analysis of the controller ([24])
under wind disturbances. The evaluated touchdown criteria
are directly taken from the design challenge [3]. The worst-
case analysis is compared to results from nonlinear Monte
Carlo simulations.

A special focus in the present paper is put on the accu-
rate treatment of wind scenarios in the proposed worst-case
framework. Two different types of wind disturbances are
considered in the analysis: Altitude dependent wind fields
and turbulence. The former can be directly treated in the cal-
culation of the reference trajectory. The latter is, however,
more complicated. Since the LTV-IQC framework is based
on induced norm metrics, a corresponding time horizon de-
pendent shaping filter is designed. This approach is along
the lines of similar methods for time invariant or parameter
varying systems in literature, see, e.g., [12, 14, 17].

2. Background on Finite Horizon Robustness
Analysis
A finite horizon continuous LTV system Gt is defined as

ẋt(t) = At(t) xt(t) + Bt(t) d(t)
e(t) = Ct(t) xt(t) +Dt(t) d(t),

(1)

where xt(t) ∈ ℝnxt denotes the state vector, d(t) ∈ ℝnd

the input vector, and e(t) ∈ ℝne the output vector. Its sys-
tem matrices are locally bounded continuous functions of
time t and compatible size-wise to the corresponding vec-
tors, e.g., At(t) ∈ ℝnxt×nxt . The explicit time dependency
will be omitted regularly to shorten the notation. The finite
horizon Lebesgue 2-norm L2[0, T ] is used to describe the
size of a signal d(t) in this paper [23]:

‖d‖2[0,T ] =

√

∫

T

0
d(t)T d(t) dt. (2)

2.1. Integral Quadratic Constraints
In this paper, the input/output behavior of an uncertainty

Δ is bounded via IQCs. The IQC time-domain definition is
based upon a filter Ψ ∈ ℝℍnz×(nv+nw)∞ and an nz × nz real,
symmetric matrix M [20, 21]. A graphical interpretation is
given in Fig. 1. The uncertainty Δ satisfies the IQC defined

Δ

Ψ
z

wv

Figure 1: Time-domain IQC interpretation of the uncertainty
Δ

by M and Ψ if the filter Ψ’s output z resulting from filtering
the uncertainty input v and output w fulfills the quadratic
time constraint

∫

T

0
z(t)TMz(t) dt ≥ 0 (3)

for all v ∈ L2[0, T ] and w = Δ(v) over the finite-horizon
[0, T ]. If satisfied, the short notation Δ ∈ IQC(Ψ,M) is
used.

2.2. Robust Finite Horizon Analysis Condition
A robust performance analysis framework, can be de-

rived from the worst-case analysis condition of nominal LTV
systems in [10] and the time-domain IQC representation of
the uncertainty Δ [5, 22]. It covers the feedback intercon-
nection Fu(Gt,Δ) of a known LTV system Gt and an un-
certainty Δ satisfying an IQC described by Ψ and M , i.e.
Δ ∈ IQC(Ψ,M). Thus, the IQC filter Ψ can be connected
to the feedback interconnection as shown in Fig. 2. The re-
sulting extended LTV system G’s dynamics are defined by
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Gt

Δ

Ψ
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z

Figure 2: Feedback Interconnection LTV system Gt and un-
certainty Δ

ẋ(t) = A(t) x(t) + [ B1(t) B2(t) ]
[

w(t)
d(t)

]

[

z(t)
e(t)

]

=
[

C1(t)
C2(t)

]

x(t) +
[

D11(t) D12(t)
D21(t) D22(t)

] [

w(t)
d(t)

]

,
(4)

with the state vector x(t) ∈ ℝnx consisting of Gt’s and Ψ’s
states, the input vector d(t) ∈ ℝnd , and the output vector
e(t) ∈ ℝne . Hence, the time-domain inequality (3) enforced
on the IQC filter output z replaces the explicit uncertainty
representation w = Δ(v).

The finite horizon worst-case L2[0, T ] to ‖e(T )‖2 gain
presents an applicable performance metric to quantify the
touchdown constraints. It is defined as:

‖Fu(Gt,Δ)‖2 ∶= sup
Δ∈IQC(Ψ,M)

sup
d∈L2[0,T ]
d≠0,x(0)=0

‖e(T )‖2
‖d(t)‖2[0,T ]

. (5)

It geometrically describes the ball upper bounding the worst-
case output e(T ) at the final time T over allΔ ∈ IQC(Ψ,M)
for ‖d(t)‖2[0,T ] ≤ 1.

A dissipation inequality defining an upper bound on the
worst-case L2[0, T ] to ‖e(T )‖2 gain of the interconnection
Fu(Gt,Δ) can be derived based on the extended system G
(4) and the IQC (3) ([7, 22]). This dissipation inequality
leads to a linear matrix inequality, which can be stated equiv-
alently as an integrability condition of a Riccati differential
equation (RDE). The latter is given in Theorem 1([7, 22]).

Theorem 1. Let Fu(Gt,Δ) be well posed ∀Δ ∈ IQC(Ψ,M),
then ‖Fu(Gt,Δ)‖2 < WC if there exists a continuously dif-
ferentiable symmetric P ∶ [0, T ]→ ℝnx×nx such that

P (T ) = 1
WC

C2(T )TC2(T ), (6)

Ṗ = Q + P Ã + ÃTP − PSP ∀t ∈ [0, T ], (7)

and

R =
[

DT11MD11 DT11MD12
DT12MD11 DT12MD12−WCI

]

< 0 ∀ t ∈ [0, T ], (8)

with

Ã = [ B1 B2 ]R−1
[

(CT1 MD11)T

(CT1 MD12)T

]

− A, (9)

S = − [ B1 B2 ]R−1
[

BT1
BT2

]

(10)

and

Q = −CT1MC1 +
[

(CT1 MD11)T

(CT1 MD12)T

]T
R−1

[

(CT1 MD11)T

(CT1 MD12)T

]

.

(11)

PROOF. The proof builds on the definition of a time depen-
dent quadratic storage function V (x, t) = xTP (t)x. Perturb-
ing (7) results in a Riccati differential inequality which can
be reformulated as an LMI using Schur’s complement. Mul-
tiplying [xT , wT , dT ] and [xT , wT , dT ]T on the LMI’s left
and right side, respectively, gives a dissipation inequality.
Integrating this dissipation inequality from 0 to T for zero
initial conditions gives

∫

T

0
z(t)TMz(t)dt −  ∫

T

0
d(t)T d(t)dt + x(T )TP (T )x(T )

< 0.
(12)

The equality (6) is left and right multiplied with x(T )T and
x(T ), respectively, providing

x(T )TP (T )x(T ) − 1
WC

e(T )T e(T ) > 0. (13)

The substitution of (12) in (13) and subsequently employing
the vector 2-norm (Euclidean) ‖e(T )‖22 = e(T )

T e(T ) results
in the upper bound WC on (5).

A more detailed proof can be found in [22]. Note that
Theorem 1 only provides an upper on the worst-case gain.
However, the Theorem does not provide information on the
tightness of this bound.

2.3. Computational Approach
In general, a specific Δ can be represented by an infinite

amount of IQCs. This problem is generally circumvented in
literature by selecting a fixed filter Ψ and freely parameter-
ize M [20, 25]. However, M must be restricted to a feasible
set  such that Δ ∈ IQC(Ψ,M) for all M ∈ . Conse-
quentially, the RDE (7) in Theorem 1 is parametrized with
M . A feasible parametrization for a full-block uncertain LTI
dynamic uncertainty is given in Example 1 [25]. It will be
applied in the analysis in Section 4.

Example 1. Let Δ be a full-block dynamic LTI uncertainty,
withΔ ∈ ℝℍnw×nv and 0 < ‖Δ‖∞ ≤ b. A valid time-domain

IQC for Δ is defined by Ψ =
[ b �⊗Inv 0

0  �⊗Inw

]

and  ∶=

{M =
[X⊗Inv 0

0 −X⊗Inw

]

∶ X = XT ≥ 0 ∈ ℝ(�+1)×(�+1)}.

A typical choice for  � ∈ ℝℍ(�+1)×1∞ is:

 � =
[

1 1
(s−�) … 1

(s−�)�

]T
, � < 0 , � ∈ ℕ0. (14)

The basis function  � with user-selected � and � defines
the fixed filter Ψ, whereas X is a free parameter. Hence,
a nonlinear optimization problem over M constrained by
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the RDE’s solvability to minimize the upper bound  on the
worst-case gain can be stated:

min
M∈



such that ∀t ∈ [0, T ]

P (T ) = 1
WC

C2(T )TC2(T )

Ṗ = Q + P Ã + ÃTP − PSP
R < 0

(15)

This nonlinear optimization problem can be readily solved
with the algorithm provided in [7]. It combines an inner loop
bisecting WC for a given M with an outer loop identifying
the optimal M ∈ and WC by employing the specifically
designed meta-heuristic algorithm Log-L-SHADE. This al-
gorithm provides the user with a set of adjustable parameters
to tune it to a specific analysis. These incorporate the deci-
sion variable search space, the initial population size, i.e.
the size of the initial, randomized decision variable set, and
the amount of population iterations, i.e., the amount of de-
cision set iterations. As a rule of thumb, the latter two scale
with size of IQC parameterization. A detailed discussion of
the settings and their respective effects on the search perfor-
mance is provided in [7].

3. Autolanding Model
The considered aircraft is in a standard nonlinear six-

degrees-of-freedom form in a body-fixed frame with trans-
lational velocities u, v , and w and angular velocities p, q,
and r. The aircraft’s orientation in the Earth-fixed frame is
given by the standard Euler angles Φ, Θ, and Ψ [19]. The
aircraft’s center of gravity position in the Earth-fixed frame
is denoted by x, y, and z. The path angle  , course angle
� , and ground speed Vg (horizontal speed relative to earth)
define the aircraft’s flight path relative to the Earth. Its aero-
dynamic angle of attack � and sideslip angle � are calcu-
lated based on the aerodynamic velocity resulting from su-
perimposing its translational velocity and the atmospheric
wind. In approach, the aircraft is controlled by a pair of
ailerons, an elevator, a rudder, and symmetrically operat-
ing twin engines. First-order low-pass transfer functions are
utilized to characterize the actuator dynamics in the simula-
tion. Each actuator is implemented with a specific deflection
limit/saturation and rate limit. Note that these limits are only
considered in the Monte Carlo simulations and are omit-
ted from LTV worst-case analysis. A standard atmosphere
model based on the international standard atmosphere (ISA)
is provided to model the effects of different airfield eleva-
tions and outside air temperatures.

The autoland controller originally developed in [24] is
analyzed in this paper. Only a brief description of the con-
trol architecture is provided here with a special focus on the
parts of the controller that become explicitly time-dependent
along a specific approach trajectory. For a detailed overview
of the control design procedure the interested reader is re-
ferred to [24]. The control design considers the longitudinal

and lateral motion as decoupled. Hence, both motions and
the corresponding controllers are analyzed separately in the
course of this paper. The controller structure for the longi-
tudinal motion is depicted in Fig. 3 and its implementation
for the LTV analysis described in the following paragraphs.

∫ ∫

kΔz(t)kVz

Longitudinal
Dynamics

Robust
Controller

VCAS

−

Vrefki∫kT (t)
�th

nz

Vz

−

Δẑ

Vz,ref
nz,ref

q

�e

�(t)
H

Figure 3: Longitudinal part of the autoland controller as used
in the LTV analysis (time-varying gains highlighted)

The auto-throttle maintains the approach speed constant
Vref providing a throttle command. It provides a throttle com-
mand �th until flare initiation at a fixed height above ground
level HAGL = 20m, which along a specific trajectory cor-
responds to a time Tfl. The auto-throttle is implemented as
proportional-integral (PI) controller using calibrated airspeed
VCAS feedback:

�th = kT
(

1 + 1
15
1
s

)

(

Vref − VCAS
)

, (16)

with kT = 0.045 before flare initiation and 0 after, i.e., KT
is implemented as a time-varying scalar.

The Robust Controller block represents a multi-input
single-output fifth-orderH∞ controller. It calculates the ele-
vator deflections based on the provided reference load factor
nz,ref and the respective measured signals nz and q.

The reference load factor nz,ref is tracked by a propor-
tional sink rate controller:

nz,ref = kVz (Vz,ref − Vz), (17)

with kVz = 0.625. Note that in (17) Vz is the altitude of the
landing gear.

The glide slope tracker calculates the reference sink rate
signal Vz,ref until initiation of the flare maneuver using a
proportional control law:

Vz,ref = kΔz(t)Δẑ, (18)

with kΔz = 0.1 and zero after Tfl. Note that offset Δẑ de-
scribes the landing gear’s deviation from the centerline.After
flare initiation, i.e., t ≥ Tfl, a dedicated flare controller pro-
vides the Vz,ref signal to the sink rate tracker. Therefore, the
feedback loop from HAGL to Vz is closed via

Vz,ref = �(HAGL +Hbias). (19)
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The gain � as well asHbias (calculated offset value) are zero
before flare initialization Tfl and depend afterwards on the
sink rate at t = Tfl and the desired vertical velocity at touch-
down. Reference [24] elaborates the calculation procedure.
As the sink rate at flare initialization depends on the ap-
proach scenario (wind cases, aircraft parameters, etc.), the
values of � vary in a range from 4.6 to 12.3 in the worst-
case analysis. For the nominal trajectory under headwind
the value of � is 8.38 and under tailwind 6.26.

The lateral controller’s structure is depicted in Fig. 4.
The lateral directional control is provided by a ninth-order

∫
g
Vg
∫ Vg∫

kΔykΦ

kẏVg0 cos�0

Lateral
Dynamics

Robust
Controller

p Φ

−

� Δy

Φrefpref

r ny

�a

�r

kny (t)
ny,ref 4s+1

20s+1
Ψ

Figure 4: Lateral part of the autoland controller as used in
the LTV analysis (adaptations highlighted)

multivariable H∞ controller using roll rate and lateral load
factor feedback represented by the Robust Controller block.

A bank angle tracker calculates the H∞ controller’s ref-
erence roll rate using proportional bank angle feedback:

pref = k�
(

�ref − �
)

, (20)

with k� = 0.7.
The reference bank angle in (20) is calculated by the

localizer signal tracker. The controller approximates Δẏ as
Δẏ ≈ Vg sin� resulting in the following controller:

�ref = kΔyΔŷ + kẏVg sin�, (21)

with kΔy = 0.003 and kẏ = 0.033. The signal Δŷ provides
the landing gear’s offset to the centerline rather than the sen-
sor’s offset Δy. Equation (21) is nonlinear in � and requires
a linearization along the approach trajectory for the LTV
analysis. Fig. 4 emphasizes this adaptation.

The decrab maneuver is initiated at a fixed height above
ground levelHAGL = 5m, which along a specified trajectory
corresponds to the time TDC. The decrab controller is given
as:

ny,ref = kny (t)
4s + 1
20s + 1

 , (22)

with kny = 33 after initiation of the decrab maneuver and
zero otherwise.

3.1. Performance Metrics and Disturbances
The autoland controller’s performance is evaluated with

respect to five touchdown criteria, which are specified by the

Table 1
Touchdown performance criteria

Vz,TD [m/s]H60 [m] yLG,TD [m] �TD [deg] �LG,TD [deg]
6.2 0 15 12 14

certification authorities, e.g., the EASA ([9]) or the FAA.
Firstly, the vertical speed at touchdown Vz,TD which indi-
cates hard landings, i.e. exceeding the main landing gears
structural limit load. Secondly, the height of the main land-
ing gear above runway 60m behind the runway threshold
H60, which if zero indicates a short landing. Thirdly, the
lateral deviation from the runway centerline at touchdown
yLG,TD indicating the risk of a runway excursion. The penul-
timate criterion is the bank angle at touchdown �TD evaluat-
ing the risk of a wingtip strike. The final criterion is the land-
ing gear sideslip angle relative to the centerline at touch-
down �LG,TD assessing the structural load on the landing
gear. Recommendations for the limit of the each criterion
are provided in [3] for the given aircraft and summarized in
Tab. 1. These limits have to be satisfied for a set of aircraft
and environmental parameters. A set satisfying the require-
ments defined in the CS-AWO is derived in [3] and sum-
marized in Tab. 2. The aircraft parameter include the min-
imum and maximum touchdown mass and center of mass.
The touchdown mass mainly influences the aircraft inertias.
Higher masses make the aircraft more sluggish to control
commands. Lower masses make it more sensible to wind.
The center of mass directly influence the aircrafts stabil-
ity. The environmental requirements are based on statistical
evaluations of existing airports. A specifically critical en-
vironment combination is a high runway elevation and high
temperature, resulting in low lift and reduced control author-
ity. In addition, the autoland system must satisfy the perfor-
mance criteria under complex wind disturbances including
wind shears and turbulence.

3.2. Linear Time-Varying Dynamics
The general LTV representation Gt of the aircraft is de-

rived by Jacobian-based linearization of the nonlinear model
along a nominal approach trajectory. This trajectory is ob-
tained by simulation of a reference approach with the air-
craft and approach scenario in the following setting. The
aircraft’s center of gravity position is at 22% of the mean
aerodynamic chord and it has a mass of 140 t. The reference
airfield is at mean sea level under nominal ISA condition.
Finally, the approach starts at 300m altitude, 30m below
the glide slope and 20m right of the localizer signal.

The cross-coupling between the longitudinal and lateral
motion is neglectable during the approach. This assump-
tion is justified by the small bank and pitch angles during
approach following from the control design and trajectory.
Moreover, the longitudinal and lateral aerodynamics in the
nonlinear model are not coupled through the angle of at-
tack and the sideslip angle. For more details see [3] or [24].
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Table 2
Aircraft and environmental parameters of the nonlinear
model

Parameter Distribution∗ min max

Mass [t] uniform 120 180
Center of mass

[%]
uniform 15 41

Temperature
[◦C]

uniform −69 40

Runway slope
[%]

 (0, 0.4) −2 2

Glide Slope
[deg]

 (−3, 0.075) −3.15 −2.85

Runway
elevation [ft]

[−1000, 250] ∶ 50% −1000 9200

[250, 750] ∶ 28.33%
[750, 1250] ∶ 13.33%
[1250, 1750] ∶ 3.33%
[1750, 2500] ∶ 1.67%
[2500, 3500] ∶ 1.00%
[3500, 4500] ∶ 0.67%
[4500, 9200] ∶ 1.67%

∗ (�, �): normal distribution with mean � and standard deviation �.

Hence, separate models for the longitudinal and lateral anal-
ysis can be derived from Gt. The longitudinal analysis inter-
connection consisting of the respective controller and air-
craft dynamics Glong,nom has 17 states, two disturbance in-
puts (i.e., longitudinal wind uw and vertical wind ww) and
two performance outputs (i.e., sink rate Vz,LG and height
above ground HLG). The lateral analysis interconnection
Glat,nom has 19 states, lateral wind vw as single disturbance
input, and three performance outputs, namely lateral offset
to centerline, wheel sideslip �LG and bank angle.

As a result of the different phases of the approach, i.e.,
tracking and flare segment, the aircraft possesses notice-
ably time-varying dynamics. This characteristic is exem-
plary shown by the bode magnitude plot in Fig. 5. It de-
picts the transfer function from �e to � calculated on frozen
points in time corresponding to a landing gear altitude in-
terval from 50m to 0m with a step size of 2.5m along the
nominal approach trajectory. A significant change in the dy-
namics occurs as soon as the flare is triggered. Hence, the
transfer functions after flare initialization are colored in light
blue ( ).

3.3. Wind Model
The wind disturbances analyzed in this paper are derived

from [3], which are based on the EASA certification require-
ments for autoland systems [9]. They were also applied in
[24] for the controller design verification. They consist of
a turbulent wind field added to an altitude-dependent wind
shear. The resulting wind profiles are used to design a cor-
responding LTV wind model for the worst-case analysis.

10−2 10−1 100 101
−60

−40

−20

0

20

! [rad∕s]

M
ag

ni
tu

de
[d

B
]

Figure 5: Bode magnitude plot of �e to � transfer function
evaluated at frozen points in time covering the approach tra-
jectory from 50m to 0m: Before flare initiation ( ), after
flare initiation ( )

3.3.1. Steady Wind
Two distinct steady wind fields are considered in the

analysis. The first consists of a tail and crosswind compo-
nent wtail and wcross, respectively, with altitude dependent
magnitudes. They both reach their maximum magnitudes
of 10 kts and 25 kts, respectively, 15m above the ground.
These wind magnitudes correspond to the maximum values
expected in [3] and are chosen to account for the worst-case
type analysis in the present paper. Their build-up follows the
same description, which is shown on the example of wtail:

wtail =10 kts

(

1
2
(HAGL −HAGL,0)2

(HAGL,0 − 15m)2
+ 1

)

− 10 kts

(

1
2

|

|

|

|

|

(HAGL −HAGL,0)2

(HAGL,0 − 15m)2
− 1

|

|

|

|

|

)

,

(23)

where HAGL,0 is the aircraft’s initial altitude. Similarly, alti-
tude dependent head- and crosswind components with max-
imum magnitudes of 30 kts and 25 kts, respectively, form
the second wind field. Note that knots are used often in this
paper as the unit for velocities, as is still very common in
aeronautics.

As a consequence of their altitude dependence, the con-
stant wind profiles are unique for a specific trajectory. Hence,
the LTV model derived from a reference trajectory calcu-
lated for a given wind scenario implicitly includes the lat-
ter’s influence on the aircraft dynamics.

3.3.2. Turbulent Wind
In case of the longitudinal touchdown conditions simul-

taneous longitudinal and vertical turbulence is added to the
two steady wind fields described above. The longitudinal
turbulence is generated by filtering a random number signal
with zero mean, variance of one, and sample time of 0.05 s
through the first-order filter Guw described by

Guw
= 116
2.5s + 1

. (24)

The vertical turbulence is formed by the same type of ran-
dom signal passed through the first-order filter Gww :

Gww
= 3.375
0.125s + 1

. (25)
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Lateral turbulence is added to the (two) steady wind fields to
analyze the lateral touchdown conditions. This lateral turbu-
lence field is generated in the same way as longitudinal one.
Note that the filters Guw

and Gww
are shaping filters with

low pass characteristics. These filters are commonly used
in aerospace certification and based on empirical data, see,
e.g., [12].

The turbulence filter (24) and (25) require a white noise
input to produce adequate disturbance. Directly applying
these two filters in the LTV analysis will not yield feasi-
ble results as the L2[0, T ] to ‖e(T )‖2 considers any norm
bounded input signal. Hence, wind filters applied in the LTV
analysis must convert any L2[0, T ] bounded signal into a
signal with spectral characteristics comparable to realistic
turbulence. Specifically, the design procedure shall provide
wind filters to provide worst-case wind signals matching the
original turbulence fields’ power spectral density (PSD).

The proposed design procedure consists of three steps
and is exemplary shown for the longitudinal turbulence shap-
ing filter. First, 2000 random turbulence profiles are gen-
erated along the reference approach trajectory by filtering
unique white noise through (24). A sampling rate of 20Hz
is used for the noise signal. The generated signals are lim-
ited to the finite time horizon [0, T ] defined by the time span
of the reference approach. The second step is calculating the
PSDs Ωuw,i

of the time-domain wind signals uw,i using the
average squared of their Fourier transform:

Ωuw,i
(!) = lim

T→∞
2
�
1
T

|

|

|

|

|

∫

T

0
uw,i(t)e−j!tdt

|

|

|

|

|

2

. (26)

In this paper, the wind signals’ Fourier transforms are calcu-
lated via a fast Fourier transform applying the built-in Mat-
lab function fft for the finite time horizon [0, T ]. Thirdly,
a minimum phase first-order transfer function is calculated

upper bounding the calculated
√

|

|

|

Ωuw,i
(!)||

|

of all wind sig-
nals using Matlab’s fitmagfrd function and a safety mar-
gin of 8dB. The latter accounts for the finite amount of con-
sidered wind signals and an immanent probability of ex-
ceedance for any statistically derived wind turbulence inten-
sity, see e.g. [9]. As the analysis is conducted in the time do-
main, the transfer function is transformed into the LTI state-
space representation Guw,LTV. The subscript LTV empha-
sizes the filter’s application in the LTV analysis. The PSD
magnitudes for a selection of uw,i and the fitted wind filter
Guw,LTV are compared in Fig. 6. As the longitudinal and lat-
eral turbulence have the same spectral characteristics, this
wind filter is also used in the lateral analysis. To increase
clarity, it will be denoted as Gvw,LTV in the lateral touch-
down analysis. The turbulence wind filter for the vertical
turbulence filter Gww,LTV is calculated accordingly.

3.4. Uncertainty Model
Aircraft and environmental parameters varying from the

reference scenario result in different aircraft dynamics and
approach trajectories. Hence, the corresponding aircraft LTV
models differ from the nominal case in Section 3.2. Ad-
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Figure 6: Comparison of the power spectral density magni-
tudes: LTV wind filter Guw ,LTV ( ), Monte Carlo turbulence
signals uw,i ( )

ditionally, the trajectory has a direct influence on the lin-
earized longitudinal/lateral controller’s parameter further al-
tering the closed loop dynamics. This is emphasized by the
bode magnitude plot in Fig. 7. It shows transfer functions
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Figure 7: Bode magnitude plot of �e to � transfer functions
calculated 10m above ground: nominal model ( ), per-
turbed models ( )

from �e to � calculated at a frozen point in time correspond-
ing to an altitude of 10m above ground level for different
parameter combinations derived from the distributions pro-
vided in Tab. 2. Covering all uncertain parameters from Tab.
2 explicitly would result in an extensive IQC parameteriza-
tion. Thus, for the lateral and longitudinal worst case analy-
sis, all uncertain parameters are lumped into LTV weighted
uncertainties Δlong and Δlat of the following structure:

Glong = (1 +WlongΔlong)Glong,nom (27)

Glat = (1 +WlatΔlat)Glat,nom. (28)

In (27) and (28), Δlong and Δlat are LTI uncertainties, with
‖

‖

‖

Δlong
‖

‖

‖∞
≤ 1 and ‖

‖

Δlat
‖

‖∞ ≤ 1, respectively, and Wlong

and Wlat are time-varying shaping filters. The weighting fil-
ters Wlong and Wlat are calculated following the procedure
proposed in [11]. Firstly, aircraft and controller LTV mod-
els for 200 approaches are calculated based on the param-
eter set in Tab. 2 and a selected static wind profile, i.e. a
25 kts side wind shear superimposed with either a 30 kts
head wind or 10 kts tail wind shear. Secondly, on a frozen al-
titude grid spanning from 300m to 0m with 2.5m step size,
third-order minimal phase weightings are calculated such
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that all closed-loop models are included in the uncertainty
set (27) and (28), respectively. Afterwards, the altitude grid
is mapped to the corresponding nominal approach trajec-
tory’s time grid. The corresponding time-varying weighting
filters are obtained by piece-wise cubic Hermite polynomial
interpolation. Note that separate weighting filters have to be
calculated for each wind scenario presented in Section 3.3.

Note that the applied dynamic uncertainty adds conser-
vatism to the worst-case analysis compared to an explicit
parametric uncertainty set. However, this drawback is of
theoretical nature, as a parametric uncertainty set based on
Tab. 2 results in a large IQC parameterization. This large
parameterization makes the problem harder to solve and in
practice introduces conservatism to the result. An IQC anal-
ysis also does not provide the worst-case uncertainty combi-
nation. Hence, the analysis would not provide additional in-
formation, but only increase the computational time signifi-
cantly. Moreover, given the worst-case nature of the analysis
the increase in conservatism compared to the Monte Carlo
simulation can be seen as beneficial.

The dynamic uncertainty description also mitigates the
fact that LTV analyses can only handle a predefined anal-
ysis horizon, which is an inherent limitation of the LTV
IQC framework, see, e.g., [22]. However, the static wind
scenarios as well as varying environmental and aircraft pa-
rameters influence the approach duration in a deterministic
fashion (as it is the case for the reference approach). There-
fore, these parameters influence the touchdown performance
mainly by altering the aircraft dynamics at specific times.
Given the deterministic nature, certain times map to certain
altitudes above ground level. The proposed weight calcula-
tion over a frozen altitude grid exploits this correlation. Con-
verting the altitude dependent weights then back to the time
grid of the respective reference approach scenario yields an
uncertain LTV model defined over the predefined analysis
horizon. This model covers the altitude-dependent dynam-
ics of all considered approaches and their influence on the
touchdown performance independently of their actual dura-
tion.The wind turbulence for a given static head- or tailwind
scenario does not significantly influence the touchdown time
in the present paper. This small effect comes from the tur-
bulence’s stochastic nature and was confirmed in extensive
test scenarios.

4. Analysis
4.1. Analysis Scenarios

The analysis is tailored to give fast feedback in the con-
troller’s design process regarding the worst-case touchdown
conditions. A summary of the different analyzed wind sce-
narios introduced in Section 3.3 and corresponding touch-
down conditions is given in Tab. 3. The first two wind sce-
narios asses the controller’s performance in the pitch plane.
They evaluate the landing gear’s vertical velocity Vz,TD at
touchdown and the landing gear’s altitude above runway
60m behind the threshold H60. For each of the two sce-
narios, an individual reference trajectory is calculated based
on the respective static wind condition as given in Tab. 3.

Table 3
Wind scenarios covered in the analysis

Case Model Static Wind [kts] Turbulence Criteria

Long.∗ Lat.

1 Long. +10 25 �u, �w Vz,TD,
H60

2 Long. −30 25 �u, �w Vz,TD,
H60

3 Lat. +10 25 �v yLG,TD,
�LG,TD,
�TD

4 Lat. −30 25 �v yLG,TD,
�LG,TD,
�TD

∗ positive/negative value indicates tailwind/headwind

Additionally, both scenarios include horizontal and vertical
turbulence. Note that for the H60 evaluation the final time
in LTV analysis does not correspond to the reference trajec-
tory’s touchdown, but to the time the aircraft is 60m behind
the runway threshold.

The final two scenarios are assessing the controller’s lat-
eral performance. They evaluate the landing gear’s lateral
offset yLG,TD and the sideslip angle �LG,TD of the landing
gear relative to the centerline, and the bank angle �TD at
touchdown. As for the longitudinal scenario, the two consid-
ered reference trajectories consider the tail- and headwind
case as specified in Tab. 3. The lateral scenarios only in-
clude turbulent crosswind.

4.2. Analysis Setup
The LTV worst-case longitudinal and lateral touchdown

conditions are calculated applying the algorithm proposed
in [7] on the nonlinear optimization problem (15). The for-
mer evaluates the uncertain closed loops Glong (head- and
tailwind scenario, respectively) extended with the longitu-
dinal and vertical wind filter Gwu,LTV and Gww,LTV, respec-
tively. The latter evaluates the uncertain closed loops Glat
(head- and tailwind scenario, respectively) extended with
the lateral wind filter Gvw,LTV. These uncertain representa-
tions must be transferred into the IQC framework to apply
the analysis algorithm. In the first two test cases concern-
ing the pitch plane, Δlong is a 2 × 2 full block, dynamic LTI
uncertainty. Its input/output behavior is covered by the IQC
described in Example 1, with nv = nw = 2. A MacMillan
degree � of one is chosen, and the value of � is −1.25. This
means Δ ∈ IQC1(Ψ1,M1), with M1 restricted to the set

 ∶= {M =
[

X⊗I2 0
0 −X⊗I2

]

∶ X = XT ≥ 0 ∈ ℝ2×2} and

Ψ1 =
[

 1⊗I2 0
0  1⊗I2

]

.
The same class of IQC is used to cover the input/output

behavior of the SISO, dynamic LTI uncertainty Δlat in the
lateral analysis. Here, nv = nw = 1, with the IQC fac-
torization defined by � = 1 and � = −0.75. Hence, Δ ∈
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IQC2(Ψ2,M2), with M2 restricted to the set  ∶= {M =
[X 0
0 −X

]

∶ X = XT ≥ 0 ∈ ℝ2×2} and Ψ2 =
[

 2 0
0  2

]

.
The finite horizon worst-caseL2[0, T ] to Euclidean gain

only bounds the performance output signal’s Euclidian vec-
tor norm over the disturbance inputs at the final time T .
Therefore, for a given scenario, each touchdown condition
must be evaluated separately. Thus, the LTV worst-case gain
optimization has to be executed ten times (five individual
criteria, each evaluated for two wind scenarios). A single
analysis covering all touchdown conditions for a given wind
scenario is not sufficient. Given the worst-case gain’s defi-
nition, these analyses cannot identify the actual worst-cases
of the single touchdown conditions.

The worst-case gain optimization algorithm applies a
tailored logarithmically scaled adaptive differential evolu-
tion with linear population size reduction. The algorithm is
initialized with an initial population size of 40 in the longi-
tudinal analysis and 20 in the lateral analysis. The popula-
tion size determines the set of initial guesses for the solution
vector, i.e. feasible IQC paramterizations. Hence, the longi-
tudinal analysis’s larger IQC parameterization reasons the
larger initial population size. In general, a factor of twenty
per nw provides fast and accurate optimization result. A total
of 10 population iterations are conducted with a minimum
population size of four, i.e. at least four guesses for the IQC
parameterization are evaluated in each iteration. The loga-
rithmic search space’s lower and upper bound are set to −7
and 1, respectively. These bounds correspond to a decimal
search space from 10−7 to 1. The limits are chosen suffi-
ciently large such that no solution vector approaches the
boundary. All other settings concerning the meta-heuristic
are identical to the standard settings proposed in [7] and in
general require no user adjustments.

To validate the worst-case analyses, four separate Monte
Carlo simulations are performed, one for each wind sce-
nario. Recall that these wind scenarios correspond to the
vertices of the analysis in [3]. Each test case is covered by
10000 samples derived from Tab. 2 using the high fidelity
model provided in [3].

4.3. Results
The LTV worst-case analysis calculated a maximum ver-

tical touchdown velocity of Vz,TD,WC1 = 6.36m/s and a
minimal altitude above ground level 60m behind the thresh-
old H60 of 1.9m for the tailwind scenario (i.e., scenario 1).
The most critical touchdown conditions found in the respec-
tive Monte Carlo simulations are Vz,TD,MC1 = 4.79m/s and
H60,MC1 = 2.25m.

In the headwind scenario (i.e., scenario 2), the worst-
case vertical touchdown velocity of 7.44m/s, and a worst-
caseH60,WC2 of−6.40m were calculated. Note that the value
of H60,WC2 is the difference between the reference altitude
and the calculated worst-case altitude disturbance. Hence,
a negative sign indicates that the landing gear touched the
ground earlier than 60m from the threshold. The correspond-
ing Monte Carlo simulation provided a critical Vz,TD,MC2 of
6.89m/s and a H60,MC2 of −0.48m. Hence, at least one

Table 4
Longitudinal analysis

Analysis Test Case 1 Test Case 2

Vz,TD[m/s] H60[m] Vz,TD[m/s] H60[m]

Reference 1.37 13.25 1.49 4.7
LTV WC 6.36 1.9 7.44 −6.40
Monte
Carlo

4.79 2.25 6.89 −0.48

short landing occurred, as the LTV analysis predicted. All
previously discussed results, including the reference touch-
down conditions, are summarized in Tab. 4. The “Refer-
ence” entry corresponds to the touchdown conditions of the
reference approach.
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Figure 8: Analysis Results: LTV worst-case analysis ( ),
histogram Monte Carlo simulation ( ), most critical
Monte Carlo results( )

In the following paragraphs, the lateral touchdown con-
ditions are evaluated. For the third scenario (10 kts tailwind),
the LTV worst-case analysis calculated a total bank angle at
touchdown �TD,WC3 of 11.29 deg, a lateral offset to the cen-
terline yLG,TD,WC3 of 11.4m, and a worst-case sideslip an-
gle of the landing gear �LG,TD3 of 17.17 deg. Maximum val-
ues of 11.27 deg, 8.36m, and 11.13 deg for the bank angle,
lateral offset, and sideslip angle, respectively, were identi-
fied in the corresponding Monte Carlo simulation. For the
fourth scenario (30 kts headwind), the LTV worst-case anal-
yses calculated a total value of 11.01 deg for the bank an-
gle, 14.46m for lateral offset, and 17.61 deg for the sideslip
angle. The corresponding Monte Carlo simulation’s results
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Table 5
Lateral analysis

Analysis Test Case 3 Test Case 4

�TD
[deg]

yLG,TD
[m]

�LG,TD
[deg]

�TD
[deg]

yLG,TD
[m]

�LG,TD
[deg]

Reference 0.02 −0.90 0.97 0.21 1.39 1.39
LTV WC 11.29 11.40 17.17 11.01 14.46 17.61
Monte
Carlo

11.27 8.36 11.13 10.72 13.42 16.37

are 10.72 deg for the bank angle, 13.42m for the lateral off-
set, and 16.37 deg for the sideslip angle. In Tab. 5, the lat-
eral analysis’ results, as discussed, are summarized. Thus,
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Figure 9: Analysis Results: LTV worst-case analysis ( ),
Histogram Monte Carlo simulation ( ), Most critical
Monte Carlo results ( )

each Monte Carlo simulation is upper bounded by the re-
spective LTV worst-case. This is visualized in Fig. 8 and
Fig. 9, showing the four Mont Carlo analyses’ histograms
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Figure 10: Comparison of lateral offset from flare initiation
to touchdown: Most critical Monte Carlo result ( ), LTV
worst-case bound ( )

with their most critical value highlighted and the individual
LTV worst-cases. Notably, the ten LTV analyses were com-
pleted in 80min, which is eight times faster than the 640min
required for the four Monte Carlo simulations, given the
relatively small sample size of 10000. Therefore, the LTV
analysis is more viable to quickly assess the qualitative im-
pact of design changes as is required in an iterative tun-
ing process. Fig. 10 compares the most critical lateral off-
set to the centerline identified in the Monte Carlos simula-
tion (during the flare segment) to the worst-case of the LTV
analysis. The lateral deviation remains small at the begin-
ning of the flare and increases rapidly before touchdown.
This behavior results from the decrab maneuver. All analy-
ses were run on a standard desktop computer equipped with
an Intel i7 processor and 32GB memory. Furthermore, only
the LTV worst-case analysis identifies (guaranteed) worst-
cases, whereas the Monte Carlo simulation can only provide
lower bounds on the touchdown conditions. Additionally,
the distributions in Fig. 8 and Fig. 9 indicate that the latter
requires large sample sizes to allow for meaningful conclu-
sions on the most critical touchdown scenarios. Note that the
Monte Carlo simulation results here are more conservative
than those in [24], as the latter uses the original code pro-
vided in [3] for the touchdown evaluation. The original code
applies turbulence intensities proportional to the maximum
static wind velocities, whereas the Monte Carlo simulation
in the present paper uses the maximum possible values of
the turbulence intensities in every analysis.

5. Conclusion
The proposed linear time-varying analysis procedure of

an autolanded aircraft provides fast upper bounds on the
worst-case touchdown conditions under elaborate wind sce-
narios. Treating the aircraft as a finite horizon linear time-
varying system, allows to respect the varying dynamics and
changing control laws under the restriction of the approach’s
finiteness. As the linear time-varying results establish fea-
sible upper bounds for the Monte Carlo simulations con-
ducted on corresponding high-fidelity nonlinear model in a
fraction of time, it provides a supplemental tool for the de-
sign process and evaluation of autolanding controllers.
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